
WEB SERVICES COMPOSITION: A PRAGMATIC VIEW OF
THE PRESENT AND THE FUTURE

Dhavalkumar Thakker, Taha Osman, David Al-Dabass
School of Computing & Informatics,

Nottingham Trent University,
Burton Street, Nottingham NG1 4BU, United Kingdom.

Email: dhavalkumar.thakker@students.ntu.ac.uk, taha.osman@ntu.ac.uk,david.al-dabass@ntu.ac.uk

KEY WORDS
Web Services, Business Process Management, BPEL,
CDL.

ABSTRACT

Web Service is loosely coupled, highly accessible
distributed computing technology that can expose
applications beyond the firewall. Composition of Web
Services has received much attention from the business
and the research community. Composition techniques
are classified as static, dynamic and semi-automatic
composition, each addressing different application areas
and requirements. Here, we evaluate such approaches
from two perspectives: as Business Process
Management (BPM) solution and the facilitation they
provide to the composition participants: end users,
developers and composers in their present form. In this
paper, we use the present workflow-based composition
standard WS-BPEL, explore its merits and limitations
and analyze another static composition standard WS-
CDL which has complimentary role to BPEL for the
business process management. We also discuss dynamic
composition as the future work and what it can offer.

1. INTRODUCTION

The last decade has witnessed an explosion of
application services delivered electronically, ranging
from e-commerce to information service delivered
through the World Wide Web (WWW) to the services
that facilitate trading between business partners, better
known as Business-to-Business (B2B) relationships.
Traditionally these services are facilitated by distributed
technologies such as RPC, CORBA and more recently
RMI. Web Services is the latest distributed computing
technology. It is a form of remote procedure call like
other distributed computing technology, but uses XML
extensively for the messaging, discovery and
description. The use of XML messaging makes Web
Services platform and language neutral. Web Services
use SOAP (Simple Object Access Protocol)[1] for XML
messaging, which in turn uses ubiquitous HTTP for the
transport mechanism. HTTP is considered as a secure
protocol thus it allows the Web Services to be exposed
beyond the firewall. The Web Service messages and

operations with invocation details are described using a
platform-independent language WSDL (Web Services
Description Language)[2]. Web Services can be
published and discovered using UDDI (Universal
Description Discovery and Integration)[3] protocol. The
Web Services architecture centred on WSDL, UDDI
and SOAP is an instance of Service Oriented
Architecture (SOA). Using this architecture services can
be published using UDDI, with WSDL based
description, and can be searched, called and bind at run
time making it loosely coupled and highly accessible.

To take advantage of these features of Web Services,
network applications services have to be developed as
Web Services or converted into Web Service using the
wrapping mechanism [4]. Moreover, multiple Web
Services can be integrated either to provide a new,
value-added service to the end-user or to facilitate co-
operation between various business partners. This
integration of Web Services is called “Web Services
composition” and is feasible to achieve because of the
Web Services advantages of being platform, language
neutral and loosely coupled.

The logic for the composition mainly involves two
activities: selection of the candidate Web Services that
fulfil the requirement in accumulation and flow
management. Flow management is further categorized
into control and data flow, where control flow is the
order in which Web Services operations are invoked,
while the data flow is the order in which the messages
are passed between the Web Services operations. The
level of automation provided in performing selection of
services and flow management classifies composition
into static, semi-automatic and dynamic. Static
composition involves prior hard coding of the service
selection and flow management. Performing selection
and flow management on the fly, in machine-readable
format leads to dynamic composition. In semi-automatic
composition, service composer is involved at some
stage.

The focus of the discussion is to contrast these
approaches keeping in mind the feasibility of their

implementation today and in the near future. The
comparison perspective focuses on the ease of use and
facilitation provided to the participating parties, to the
end user who is going to use the composed service, to
the service developer (service provider) and to the
service composer. The later either can be software
developer, the business analyst or logic based agent
programmes. We will investigate Web Service
composition using above mentioned criteria for the both
the cases where the existing application is non-web
service based or Web Service has no WSDL file or
description available.

The structure of the paper is as follows: section 2
provides more detail on the Web Service Composition
and discusses composition using WS-BPEL, a
prominent industry standard. Section 3 provides insight
on the futuristic approaches to the composition. In
section 4 we conclude with our analysis of these
approaches.

2. OVERVIEW OF THE WEB SERVICES
OMPOSITION C

Traditional techniques approach Web Services
composition as the Business Process Management
(BPM) solution. Business process can be considered as
the group of activities to carry out business goals [5].
Business applications represent such activities in the
business processes, for example a customer order
fulfilment process will include individual applications
for the activities: customer placing an order, checking
account status, verifying order and despatch. BPM deals
with achieving the integration of these individual
applications to achieve business process view.

Business process can have scope within inter and intra
organization relations. EAI (Enterprise Application
Integration) is the BPM solution to achieve intra-
organization business applications integration, while
B2B integration software (e.g. Electronic Data
Interchange) addresses the problem for inter
organization business application integration.
Traditional EAI and B2B integration solutions are very
complex, proprietary and presumes many details about
the participating applications making them tightly
coupled. As the business applications are now being
developed using the Web Services, the BPM problems
(EAI, B2B) are being addressed with the composition of
Web Services, mainly to utilize SOA based Web
Service features.

Main industrial standards to achieve such composition
of Web Services as BPM solution are WS-BPEL (Web
Services Business Process Execution Language) [6],
WS-CDL (Web Services Choreography Description
Language) [7] and BPML (Business Process Modelling

Language) [8]. These approaches use WSDL
extensively and build on top of it. WSDL based
operations and messages with the data types are the
main details based on which the flow management and
other essential requirements for composition can be
built upon. But to achieve business process view of the
composition, composition specification needs to be built
on the explicit process model [9]. This process model
addresses requirements for describing flow management
in composition, handling business transaction with roll
back facility, state management for business interaction
support, and also handling exception and errors. The
process model and the extent to which these features
provided, differentiates these standards.

2.1 Composing services using BPEL

WS-BPEL (also called BPEL) specification - enhances
and replaces existing standards XLANG from Microsoft
and WSFL from IBM. Apart from being based on
WSDL, it uses workflow management as process model
to achieve the formalization for control and data flow.
WS-BPEL facilitates static composition, as the selection
of services and decision on flow management is done
priori. All the participant services in BPEL are modeled
as partners. Partners contribute to the total processing
capability of the BPEL process. BPEL process also has
its own processing capability for dataflow, control flow,
data manipulation, fault and event handling and state
management. The significance of BPEL architecture is
that the process itself is published as a Web Service.
This composed BPEL service can be treated as a single
Web Service and can be used for further composition
hence facilitating recursive composition.

BPEL standard aims to be the de facto standard for
inner-organization (EAI) and inert-organization (B2B)
Web Services integration. Hence, BPEL is categorized
into executable BPEL (BPELe) and abstract BPEL
(BPELa), where BPELe maps well to the requirements
of inner-organization based Web Services integration
and BPELa is aimed to cover the requirements for
achieving integration in cross-organizational domain.
BPELe represents the orchestration feature of BPEL,
where the Web Service operations are orchestrated from
a single party view. BPELa uses same language
constructs and semantics as the executable but rather
presents the aspects that are more suitable for Business-
to-Business interaction.

We describe a Web Service composition scenario
implemented using IBM BPEL runtime, BPWS4J [10].
The scenario is based on a travel agent service, which
manages the reservation of airline and hotel for the
customer trip. Travel agent is implemented as BPEL
process, which is the composition of four Web Services:
AirFrance service, AirUSA service, HotelRating service
and HotelService service. Process logic for the travel

agent is (fig 1): to check the availability of flight service
from two competing airlines AirFrance and AirUSA,
make flight reservation, and then retrieve hotel ratings
from the HotelRating service at the destination city and
make the reservation using HotelService Web Service at
the selected hotel. The reservations are made based on
customer preference (Air Line price preference:
cheapest, medium or high and hotel rating preference:
A, B or C).

2.1.1 Travel Agent Example

As BPEL is built on top of WSDL, WSDL file of
partner business services are required for the
composition process. This fact is described in BPEL
using partnerLinkType. The portType of such a Web
Service defines the role of partner in the composition.
Listing 1 shows AirFrance and AirUSA web services as
partners and the role they play in the composition using
portTypes (i.e. fr: is the unique identifier for the
AirFrance WSDL file). Figure 1 is the sequence
diagram for the travel agent service. 1.1.a and 1.1.b are
two activities for checking the flight between source and
destination city is available or not, performed in
parallel. The BPEL syntax for this using <flow> to
achieve parallel execution is shown in the listing 2. Both
invocations are executed in parallel.

Similarly other operations for checking the possibility
of reservation are performed on AirFrance and AirUSA,
and reservation is made after comparing the price
(activities 1.2a, 1.2b, 1.3a, 1.3b in figure 1). The
payment details are omitted to keep the example simple.
Listing 3 shows the code where the user has specified
the cheapest flight reservation in his preference.

<plnk:partnerLinkType name="airFrancePLT">
 <plnk:role name="AFcheckServices">

 <plnk:portType name="fr:AirFrance"/>
 </plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="airUSAPLT">
 <plnk:role name="AUcheckServices">
 <plnk:portType name="usa:AirUSA"/>
 </plnk:role>
</plnk:partnerLinkType>

Listing 1. Partners in BPEL process

<flow>
<invoke name= “invokeAirFrancecheckServices”
partnerLink = “AFcheckServicesPL”
portType="fr:AirFrance"……….>
<invoke name= “invokeAirUSAcheckServices”
partnerLink = “AUcheckServicesPL”
portType="fr:AirUSA"…………>
</flow>

Listing 2. Concurrency using <flow>

<switch name="comparePrices">
<case condition="bpws:getVariableData
('compInfo','PriceAirUSA') <
bpws:getVariableData('compInfo','PriceAirFrance')
">
<invoke name= “AUinvokegetReservation” </case>
<otherwise>
<invoke name= “AFinvokegetReservation”
<partnerLink= “AFgetReservationPL” …………..>
</otherwise>
</switch>

Listing 3. Selecting the cheapest AirLine<switch>

Fig 1. Sequence diagram for the
composition [Travel Agent viewpoint]

Implementation of travel agent example shows the
expressiveness of BPEL as composition language. In the
section 2.2 we will consider the merits and limitations
of BPEL architecture when applied to the composition
problems from inter or intra organization domain. We
will use our travel agent example for the discussion.

2.2 Discussion on BPEL facilitated composition

We will first consider BPELe for the enterprise
application integration and Business-to-Business
Integration relations. The architecture of the BPELe
process model assumes the selection of the services to
be done manually, for this reason the interpretation of
the requirement expected from the service is according
to the understanding of the composer. This assumption
is easy to achieve for the inner-organization relations,
where the composer has access to all the internal Web
Services details, which makes the achieved solution
tightly coupled. This is sufficient for the enterprise
application integration, as the change in the process
logic and addition or removal of services (Business
Process Reengineering) can be done in-house, in private
domain.

This approach has serious limitations when it comes to
B2B integration, where candidate services can be from
public, external or cross organizational domain. To
illustrate this in our travel agent example, which is a
B2B relation, lets consider a scenario, where the new
business (AirUK) wants to join this composition. It is
really difficult to add new businesses that are not part of
the old mix, because it is required that they as a
minimum implement the following operations: 1) an
operation to check whether flight service is available
between two cities 2) an operation to check the trip
expense between these two cities.3) an operation for
making reservation. Hence, the addition can be made
successful if the travel agent business publishes this
information as an agreement i.e WSDL file or text
description and the AirUK business has or newly
implements the service with the above operations and
then makes WSDL file available for the composition.

Apart from being tightly coupled, BPELe assumes the
B2B integration from the single party viewpoint as the
requirement specified above is from the travel agent
business logic viewpoint. Real world B2B integrations
are peer-to-peer in place of being centralized. It is more
like contract in terms of performing responsibility in the
collaborative work, as a result such integration requires
a notion to specify “ I will provide this functionality to
achieve this from all my partners (other businesses)”.

BPEL specification claims to facilitate the B2B
integration using abstract BPEL, where each party
describes their B2B participant functionality using
BPELa file. Hence all such businesses can publish their
own BPELa files and can work together. But again if
these BPEL files are not developed in collaborative way
at first place, then the consumer-producer relationship
cannot be achieved using BPELa. For this reason, the
bottom-up approach i.e. implementation first and then
description adopted by BPELa is not adequate for the
B2B relations. Therefore, the top-down approach that

describes functionality first and considers
implementation at later stage is better suited for such
B2B domain Web Services composition. Overall,
BPELa provides notion to specify only “this is the
functionality I provide” in place of required
collaborative notion “I will provide functionality to
achieve this from all my partners (other businesses)”
making BPELa inadequate for B2B integration.

To consider the facilitation provided to the composition
participants, in case of service provider if provider
wants to make their service available for composition
then they need to provide minimum functionality
required by the business logic from the single party
perspective in the integration. Considering new AirUK
service for travel agent composition, AirUK to be part
of the composition, options for the service provider of
the new AirUK service will be:

 a) If the AirUK has web service but does not
implement required functions, then the service needs to
be modified to accommodate the required
functionalities. WSDL file for this service can be made
available to the travel agent via UDDI. This WSDL file
can contain only those operations useful to the agent
service.
 b) If the AirUK has a non-web service application, with
the required functionality already built-in, then just a
WSDL file is required to be created without modifying
the existing non-web service application. As such Non-
Web Services, which have WSDL, can still be
composed in BPEL. BPEL execution engine uses WSIF
(Web Services Invocation Framework)[12] for the
Invocation of such non web-services [13].

Considering the case of service composer, they mainly
encounter problems in parameter mismatch during the
flow management, as the output of one service
operation has different format from the input of next
service operation in the flow logic. The other case might
be the bit of missing functionality, which probably is
already available as legacy code. To address both the
case, BPEL implementations [11] provides a
mechanism where the higher language code(C#, Java)
can be inline in the BPEL process. BPEL-J [14] is
another such an industrial effort to combine BPEL and
Java, where BPEL is for defining Business processes
and Java to provide general programming language
expressiveness, allowing each language to do what it
does best.

To illustrate the case of end-user, in our travel agent
example, the BPEL agent process is published using
JSP technology. This service can be retrieved using this
simple web page or can be retrieved from the public
UDDI registry, where the access point in the business
service binding information points to this JSP page. In

such B2C interactions, it is totally transparent from the
end-user that the service is a Web Service, composition
of multiple Web Services, could be implemented on
heterogeneous platforms or using different
programming languages. As Semantic Web [15]
introduced a scenario, where the intelligent software
programmes -agents work on behalf of the end user, and
can use composition to satisfy user requirement or task
however BPEL, in its’ present form has nothing to offer
to facilitate this approach. The similar way it has little to
do with automatic service composition.

To conclude, BPELe is the best candidate for
composing private, inner-organization Web Services
making suitable for EAI. Business analysts and
developers can work together and can compose such
Web Services manually using BPELe. The composition
is hard coded and the developers should have the
explicit knowledge of all the details of participating
business services. The control and data flow logic also
should be known in advance. BPELe can also facilitate
tightly coupled B2B integration; in contrast BPELa is
poor candidate for describing peer-to-peer B2B
collaborations.

3. WEB SERVICES COMPOSITION
APPROACHES IN THE NEAR AND THE
DISTANT FUTURE

3.1 Composition using WS-CDL

During our discussion over BPELa as B2B integration
language, we highlighted two main requirements
adequate for B2B integration. First, a description
language is required to facilitate top-down, using which
collaborative functionality in B2B integration is
described, agreed first and the respective parts can be
implemented by each partners. Second, the description
should be from peer-to-peer point of view, since natural
B2B integrations are peer-to-peer collaborative
relationships, not governed by a single party. Recently
promoted working draft WS-CDL [6] from W3C Web
Services choreography working group confirmed our
conclusions that more work on BPEL is required to
make it adoptable for B2B integration by addressing
these requirements and adopting approach specific to
the B2B relationship.

WS-CDL is a description language, using which the
B2B integration partners can first describe the
collaborative functionality. This description document is
considered as a contract and each party can implement
their own part. The WS-CDL document describes
common and complementary behaviour of all the parties
involved, making the viewpoint global, peer-to-peer [6].
Travel agent B2B integration previously illustrated in
figure 1 transforms into figure 2 under WS-CDL
architecture, where travel agent is no longer the

controller of the integration, in view of the fact that the
respective functionality and the ordering of the activities
performed is from the perspective of all the parties
involved and agreed by all in the CDL document.

Fig 2. Travel Agent B2B integration
scenario using CDL [global viewpoint]

CDL document describing this scenario becomes
contract between participating parties in terms of the
functionalities they agree to provide. For example,
considering the interaction between businesses Travel
Agent (TA) and AirLine (AL) Services in activity (5,6):
TA interacts with AL service for checking the price
(activity 5) for the required flight; for that reason AL
provides a web service operation Price_check, So that
TA can send getPrice_request. And TA has the
Price_check response operation, which AL uses to send
the response message.

Listings 4 and 5 describe this interaction in CDL. CDL
has the notion of role and relationship for the
participating parties in particular interaction. The
interaction PriceCheckRequestInteract in figure 9,
documents the fact that it is the fifth activity in
sequence, the participant in the interaction are those
who have TravelAgentAirLineBinding relationship,
operation affected is the AirLine Web Service operation
Price_check and getPrice_requestAtTravelAgent
(Unique Identifier for getPrice_request) message
exchanged from the role TravelAgent to AirLine.

<roleType name="AirLine">
 <behavior name="airline"
 interface="AirLinePT"/>
</roleType>

<roleType name="TravelAgent">
 <behavior name="TravelAgentForAirLine"
 interface=" TravelAgentForAirLinePT"/>
 …………
</roleType>

<relationshipType
 name="TravelAgentAirLineBinding">
 <role type="AirLine"/>

 <role type="TravelAgent" behavior
="TravelAgentForAirLine " >

 …..……….
</relationshipType>

Listing 4. Roles and Relationships

<interaction name="PriceCheckRequestInteract"
 operation="Price_check" …..………. >

<participate relationship="Travel
 AgentAirLineBinding"
 fromRole="TravelAgent"
 toRole="AirLine"/>
 <exchange name="request"
 action="request">
 <send variable="getPrice_requestAt
 TravelAgent"/>
 <receive variable="getPrice_reqeustAtAirLine"/>
 </exchange>

</interaction>

Listing 5. Interaction

The other aspect of CDL architecture is that the internal
business logic of each party remains hidden from the
business partners. i.e. in this travel agent application,
after getting price from airlines, travel agent can have
internal application to implement the business logic for
the air line selection based on certain criteria, while the
external detail described in CDL document is just an

operation to make reservation at particular airline. This
internal logic can be an EAI application composed using
BPEL.

If considering the facilitation provided to the
participants in CDL, service composer designs the
global interface CDL and as the other parties follow the
interface, composer does not have to deal with
individual service providers and can easily
accommodate them once providers follow the global
interface. Having a global interface also liberate
composer from problems of functionality and
technicality mismatch. CDL is still descriptive language
but can play the role like WSDL, to create stub files so
that each party service provider can have blue print of
what they are supposed to implement [16]. Consider the
benefit of having such descriptive language with top-
down approach when the integration takes place
between large numbers of Web Services.

Overall, CDL is designed to address the requirements
for B2B integration and compliments BPEL, which is a
better candidate for EAI. Consequently, CDL and BPEL
together address the problem of BPM by facilitating
static composition.

3.2 Dynamic Composition

Commercial Institutions are focusing their efforts on
standardizing the static composition techniques in
preparation for their wider adoption amongst the
business community. In contrast, research community
foresee that there is a better futuristic potential in the
semi-automatic and automatic or dynamic composition
of Web Services. Dynamic composition achieved can
serve a great range of business domains. In such kind of
composition participating services can be external and
public. User can specify parameters for the successful
composition and the composition is performed at the
run-time. The solution addresses the problems of
identifying candidate services, composing them, and
verifying closely that they satisfy the request.

Dynamic Web Services composition is the topic of our
ongoing research. As per our definition of composition
automation, a semantic based language specifying the
capability of Web services is required so that services
can be selected on the fly for the composition according
to user parameters. Semantic web based OWL-S
[17][18] can be utilized to achieve this. A layer on top
of OWL-S is required for: automating flow
management, interpreting the semantic web service
based capability, and to manipulate data before invoking
operations and to carry out execution according to the
user requirements. Artificial intelligence planning,
workflow management, and intelligent agents etc. are
the available options.

Using dynamic solution, users will get the maximum
flexibility, as composed services will be an optimum
mix based on the user specified input parameters. The
service providers will be able to participate in the
composition to their benefit with minimal effort, as the
human developer will be taken out of the loop.

4. CONCLUSIONS

Web Services composition approaches are characterized
as static, semi-automatic and dynamic. Well-known
industrial standards like BPEL and CDL facilitate
composition as the BPM solution. BPEL categorized
into BPELe and BPELa is designed to address intra and
inter organization BPM integration problem. BPELe
architecture makes it better suited for enterprise level
integrations while BPELa is a poor candidate for B2B
integrations. CDL is an effort to overcome the
limitations of BPELa and covers from where the BPEL
has left. These standards satisfy current business
requirements by adopting static composition.

In this paper, we also briefly explored the research
efforts into dynamic composition of Web Services, and
noted that future composition solutions based on OWL-
S can be applied to wider range of business applications
to facilitate machine-readable, agent based automatic
Web Services composition scenario.

REFERENCES

Gudgin M et al. 2003. “Simple Object Access Protocol(
SOAP) Version 1.2”, W3C recommendation, 2003,
http://www.w3.org/TR/soap12-part1/

Christensen E et al. 2001. “Web Services Description
Language(WSDL) version 1.1”, W3C recommendation,
http://www.w3.org/TR/wsdl/

Hately A et al. 2003. “Universal Description Discovery and
Integration (UDDI), Version 2.0” OASIS Specification,
http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv2

Osman T et al, 2005. An Integrative Framework for Traffic
Telematics Web Services, to be appeared in the Parallel and
Distributed Computing Networks Conference(PDCN 2005).

Leymann F at al. 2005. “Web Services and business process
management”. IBM Systems Journal, Volume 41-2, 2002,
198-211.

Andrews T et al, 2003. “Business Process Execution
Language for Web Services, Version 1.1”, http://www-
128.ibm.com/developerworks/library/wsbpel/

Kavantzas N et al, 2004. Web Services Choreography
Description Language (WS-CDL) Version 1.0,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
Arkin A, 2003. “Business Process Modelling Language
Version 1.0”, http://www.bpmi.org/bpml-spec.htm.

Staab S et al, “Web services: been there, done that?” IEEE
Intelligent Systems, Vol. 18, Issue. 1, Jan 2003, 72- 85.

BPWS4J, “Business Process Execution Language for Web
Services Java Run Time”.
http://www.alphaworks.ibm.com/tech/bpws4j.

Oracle BPEL Process Manager (PM),
http://www.oracle.com/technology/products/ias/bpel/index.ht
ml.

Web Services Invocation Framework, Apache Software
Foundation Web Services project, http://ws.apache.org/wsif/

Afshar M et al, 2004. “WSIF and JSR-208: Flexible binding
frameworks for today and tomorrow”, Web Services Journal,
http://www.sys-con.com/story/?storyid=46558&DE=1

Blow M et al, 2004 “BPELJ: BPEL for Java”, White paper
from BEA and IBM, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpelj/

Lee B at al, 2001. “The Semantic Web”, Scientific American

Austin D et al, 2004. “Web Services Choreography
Requirements”, W3C working draft

Martin D et al, 2004. “Semantic Mark-up for Web Services,
OWL-S version 1.1”

Martin D et al, 2004, "Bringing Semantics to Web Services:
The OWL-S Approach", Proceedings of the First
International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004).

AUTHOR BIOGRAPHIES

DHAVALKUMAR THAKKER took his Masters
degree in Data Communication Systems at Brunel
University, London-UK. He also received his bachelors
degree in engineering from India. He is a PhD student
of Nottingham Trent University, School of computing
and Informatics. His current research interests are
distributed computing technologies, Web Services
composition, Semantic Web and Ontologies. His email
address is dhavalkumar.thakker@students.ntu.ac.uk.

TAHA OSMAN is senior lecturer at the Nottingham
Trent University, UK. He received a B.Sc honours
degree in Computing from Donetsk Polytechnical
Institute, Ukraine in 1992. He joined the Nottingham
Trent University in 1993 where he received an MSc in
Real-time Systems in 1994 and a PhD in 1998. His
current research concerned investigation of Fault-
Tolerance in Open Distributed Systems. His email
address is taha.Osman@ntu.ac.uk.

DAVID AL-DABASS is professor at the Nottingham
Trent University, UK. His research work explores
algorithm and architecture for machine intelligence. His
email address is david.al-dabass@ntu.ac.uk and web
page is
http://ducati.doc.ntu.ac.uk/uksim/dad/webpage.htm.

	c0: Proceedings 19th European Conference on Modelling and Simulation
Yuri Merkuryev, Richard Zobel, Eugène Kerckhoffs © ECMS, 2005
ISBN 1-84233-112-4 (Set) / ISBN 1-84233-113-2 (CD)

