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Microsoft COCO: Common Objects in Context
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick

Abstract—We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of
object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex
everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in
precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a
total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via
novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of
the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and
segmentation detection results using a Deformable Parts Model.
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1 INTRODUCTION

One of the primary goals of computer vision is the
understanding of visual scenes. Scene understanding
involves numerous tasks including recognizing what
objects are present, localizing the objects in 2D and 3D,
determining the objects’ and scene’s attributes, charac-
terizing relationships between objects and providing a
semantic description of the scene. The current object clas-
sification and detection datasets [1], [2], [3], [4] help us
explore the first challenges related to scene understand-
ing. For instance the ImageNet dataset [1], which con-
tains an unprecedented number of images, has recently
enabled breakthroughs in both object classification and
detection research [5], [6], [7]. The community has also
created datasets containing object attributes [8], scene
attributes [9], keypoints [10], and 3D scene information
[11]. This leads us to the obvious question: what datasets
will best continue our advance towards our ultimate goal
of scene understanding?

We introduce a new large-scale dataset that addresses
three core research problems in scene understanding: de-
tecting non-iconic views (or non-canonical perspectives
[12]) of objects, contextual reasoning between objects
and the precise 2D localization of objects. For many
categories of objects, there exists an iconic view. For
example, when performing a web-based image search
for the object category “bike,” the top-ranked retrieved
examples appear in profile, unobstructed near the cen-
ter of a neatly composed photo. We posit that current
recognition systems perform fairly well on iconic views,
but struggle to recognize objects otherwise – in the
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Fig. 1: While previous object recognition datasets have
focused on (a) image classification, (b) object bounding
box localization or (c) semantic pixel-level segmentation,
we focus on (d) segmenting individual object instances.
We introduce a large, richly-annotated dataset comprised
of images depicting complex everyday scenes of com-
mon objects in their natural context.

background, partially occluded, amid clutter [13] – re-
flecting the composition of actual everyday scenes. We
verify this experimentally; when evaluated on everyday
scenes, models trained on our data perform better than
those trained with prior datasets. A challenge is finding
natural images that contain multiple objects. The identity
of many objects can only be resolved using context, due
to small size or ambiguous appearance in the image. To
push research in contextual reasoning, images depicting
scenes [3] rather than objects in isolation are necessary.
Finally, we argue that detailed spatial understanding of
object layout will be a core component of scene analysis.
An object’s spatial location can be defined coarsely using
a bounding box [2] or with a precise pixel-level segmen-
tation [14], [15], [16]. As we demonstrate, to measure
either kind of localization performance it is essential
for the dataset to have every instance of every object
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category labeled and fully segmented. Our dataset is
unique in its annotation of instance-level segmentation
masks, Fig. 1.

To create a large-scale dataset that accomplishes these
three goals we employed a novel pipeline for gathering
data with extensive use of Amazon Mechanical Turk.
First and most importantly, we harvested a large set
of images containing contextual relationships and non-
iconic object views. We accomplished this using a sur-
prisingly simple yet effective technique that queries for
pairs of objects in conjunction with images retrieved
via scene-based queries [17], [3]. Next, each image was
labeled as containing particular object categories using
a hierarchical labeling approach [18]. For each category
found, the individual instances were labeled, verified,
and finally segmented. Given the inherent ambiguity of
labeling, each of these stages has numerous tradeoffs that
we explored in detail.

The Microsoft Common Objects in COntext (MS
COCO) dataset contains 91 common object categories
with 82 of them having more than 5,000 labeled in-
stances, Fig. 6. In total the dataset has 2,500,000 labeled
instances in 328,000 images. In contrast to the popular
ImageNet dataset [1], COCO has fewer categories but
more instances per category. This can aid in learning
detailed object models capable of precise 2D localization.
The dataset is also significantly larger in number of in-
stances per category than the PASCAL VOC [2] and SUN
[3] datasets. Additionally, a critical distinction between
our dataset and others is the number of labeled instances
per image which may aid in learning contextual informa-
tion, Fig. 5. MS COCO contains considerably more object
instances per image (7.7) as compared to ImageNet (3.0)
and PASCAL (2.3). In contrast, the SUN dataset, which
contains significant contextual information, has over 17
objects and “stuff” per image but considerably fewer
object instances overall.

An abridged version of this work appeared in [19].

2 RELATED WORK
Throughout the history of computer vision research
datasets have played a critical role. They not only pro-
vide a means to train and evaluate algorithms, they
drive research in new and more challenging directions.
The creation of ground truth stereo and optical flow
datasets [20], [21] helped stimulate a flood of interest
in these areas. The early evolution of object recognition
datasets [22], [23], [24] facilitated the direct comparison
of hundreds of image recognition algorithms while si-
multaneously pushing the field towards more complex
problems. Recently, the ImageNet dataset [1] containing
millions of images has enabled breakthroughs in both
object classification and detection research using a new
class of deep learning algorithms [5], [6], [7].

Datasets related to object recognition can be roughly
split into three groups: those that primarily address
object classification, object detection and semantic scene
labeling. We address each in turn.

Image Classification The task of object classification
requires binary labels indicating whether objects are
present in an image; see Fig. 1(a). Early datasets of this
type comprised images containing a single object with
blank backgrounds, such as the MNIST handwritten
digits [25] or COIL household objects [26]. Caltech 101
[22] and Caltech 256 [23] marked the transition to more
realistic object images retrieved from the internet while
also increasing the number of object categories to 101
and 256, respectively. Popular datasets in the machine
learning community due to the larger number of training
examples, CIFAR-10 and CIFAR-100 [27] offered 10 and
100 categories from a dataset of tiny 32×32 images [28].
While these datasets contained up to 60,000 images and
hundreds of categories, they still only captured a small
fraction of our visual world.

Recently, ImageNet [1] made a striking departure from
the incremental increase in dataset sizes. They proposed
the creation of a dataset containing 22k categories with
500-1000 images each. Unlike previous datasets contain-
ing entry-level categories [29], such as “dog” or “chair,”
like [28], ImageNet used the WordNet Hierarchy [30] to
obtain both entry-level and fine-grained [31] categories.
Currently, the ImageNet dataset contains over 14 million
labeled images and has enabled significant advances in
image classification [5], [6], [7].

Object detection Detecting an object entails both
stating that an object belonging to a specified class is
present, and localizing it in the image. The location of
an object is typically represented by a bounding box,
Fig. 1(b). Early algorithms focused on face detection [32]
using various ad hoc datasets. Later, more realistic and
challenging face detection datasets were created [33].
Another popular challenge is the detection of pedestri-
ans for which several datasets have been created [24],
[4]. The Caltech Pedestrian Dataset [4] contains 350,000
labeled instances with bounding boxes.

For the detection of basic object categories, a multi-
year effort from 2005 to 2012 was devoted to the creation
and maintenance of a series of benchmark datasets that
were widely adopted. The PASCAL VOC [2] datasets
contained 20 object categories spread over 11,000 images.
Over 27,000 object instance bounding boxes were la-
beled, of which almost 7,000 had detailed segmentations.
Recently, a detection challenge has been created from 200
object categories using a subset of 400,000 images from
ImageNet [34]. An impressive 350,000 objects have been
labeled using bounding boxes.

Since the detection of many objects such as sunglasses,
cellphones or chairs is highly dependent on contextual
information, it is important that detection datasets con-
tain objects in their natural environments. In our dataset
we strive to collect images rich in contextual information.
The use of bounding boxes also limits the accuracy
for which detection algorithms may be evaluated. We
propose the use of fully segmented instances to enable
more accurate detector evaluation.

Semantic scene labeling The task of labeling se-
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Fig. 2: Example of (a) iconic object images, (b) iconic scene images, and (c) non-iconic images.

mantic objects in a scene requires that each pixel of an
image be labeled as belonging to a category, such as
sky, chair, floor, street, etc. In contrast to the detection
task, individual instances of objects do not need to be
segmented, Fig. 1(c). This enables the labeling of objects
for which individual instances are hard to define, such
as grass, streets, or walls. Datasets exist for both indoor
[11] and outdoor [35], [14] scenes. Some datasets also
include depth information [11]. Similar to semantic scene
labeling, our goal is to measure the pixel-wise accuracy
of object labels. However, we also aim to distinguish
between individual instances of an object, which requires
a solid understanding of each object’s extent.

A novel dataset that combines many of the properties
of both object detection and semantic scene labeling
datasets is the SUN dataset [3] for scene understanding.
SUN contains 908 scene categories from the WordNet
dictionary [30] with segmented objects. The 3,819 ob-
ject categories span those common to object detection
datasets (person, chair, car) and to semantic scene la-
beling (wall, sky, floor). Since the dataset was collected
by finding images depicting various scene types, the
number of instances per object category exhibits the long
tail phenomenon. That is, a few categories have a large
number of instances (wall: 20,213, window: 16,080, chair:
7,971) while most have a relatively modest number of
instances (boat: 349, airplane: 179, floor lamp: 276). In
our dataset, we ensure that each object category has a
significant number of instances, Fig. 5.

Other vision datasets Datasets have spurred the ad-
vancement of numerous fields in computer vision. Some
notable datasets include the Middlebury datasets for
stereo vision [20], multi-view stereo [36] and optical flow
[21]. The Berkeley Segmentation Data Set (BSDS500) [37]
has been used extensively to evaluate both segmentation
and edge detection algorithms. Datasets have also been
created to recognize both scene [9] and object attributes
[8], [38]. Indeed, numerous areas of vision have benefited
from challenging datasets that helped catalyze progress.

3 IMAGE COLLECTION

We next describe how the object categories and candi-
date images are selected.

3.1 Common Object Categories

The selection of object categories is a non-trivial exercise.
The categories must form a representative set of all
categories, be relevant to practical applications and occur
with high enough frequency to enable the collection of
a large dataset. Other important decisions are whether
to include both “thing” and “stuff” categories [39] and
whether fine-grained [31], [1] and object-part categories
should be included. “Thing” categories include objects
for which individual instances may be easily labeled
(person, chair, car) where “stuff” categories include
materials and objects with no clear boundaries (sky,
street, grass). Since we are primarily interested in pre-
cise localization of object instances, we decided to only
include “thing” categories and not “stuff.” However,
since “stuff” categories can provide significant contex-
tual information, we believe the future labeling of “stuff”
categories would be beneficial.

The specificity of object categories can vary signifi-
cantly. For instance, a dog could be a member of the
“mammal”, “dog”, or “German shepherd” categories. To
enable the practical collection of a significant number
of instances per category, we chose to limit our dataset
to entry-level categories, i.e. category labels that are
commonly used by humans when describing objects
(dog, chair, person). It is also possible that some object
categories may be parts of other object categories. For in-
stance, a face may be part of a person. We anticipate the
inclusion of object-part categories (face, hands, wheels)
would be beneficial for many real-world applications.

We used several sources to collect entry-level object
categories of “things.” We first compiled a list of cate-
gories by combining categories from PASCAL VOC [2]
and a subset of the 1200 most frequently used words
that denote visually identifiable objects [40]. To further
augment our set of candidate categories, several children
ranging in ages from 4 to 8 were asked to name every
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Fig. 3: Our image annotation pipeline is split into 3 primary worker tasks: (a) Labeling the categories present in
the image, (b) locating and marking all instances of the labeled categories, and (c) segmenting each object instance.

object they see in indoor and outdoor environments.
The final 271 candidates may be found in the appendix.
Finally, the co-authors voted on a 1 to 5 scale for each
category taking into account how commonly they oc-
cur, their usefulness for practical applications, and their
diversity relative to other categories. The final selec-
tion of categories attempts to pick categories with high
votes, while keeping the number of categories per super-
category (animals, vehicles, furniture, etc.) balanced. Cat-
egories for which obtaining a large number of instances
(greater than 5,000) was difficult were also removed.
To ensure backwards compatibility all categories from
PASCAL VOC [2] are also included. Our final list of 91
proposed categories is in Fig. 5(a).

3.2 Non-iconic Image Collection

Given the list of object categories, our next goal was to
collect a set of candidate images. We may roughly group
images into three types, Fig. 2: iconic-object images [41],
iconic-scene images [3] and non-iconic images. Typical
iconic-object images have a single large object in a
canonical perspective centered in the image, Fig. 2(a).
Iconic-scene images are shot from canonical viewpoints
and commonly lack people, Fig. 2(b). Iconic images have
the benefit that they may be easily found by directly
searching for specific categories using Google or Bing
image search. While iconic images generally provide
high quality object instances, they can lack important
contextual information and non-canonical viewpoints.

Our goal was to collect a dataset such that a majority
of images are non-iconic, Fig. 2(c). It has been shown that
datasets containing more non-iconic images are better at
generalizing [42]. We collected non-iconic images using
two strategies. First as popularized by PASCAL VOC
[2], we collected images from Flickr which tends to have
fewer iconic images. Flickr contains photos uploaded by
amateur photographers with searchable metadata and

keywords. Second, we did not search for object cate-
gories in isolation. A search for “dog” will tend to return
iconic images of large, centered dogs. However, if we
searched for pairwise combinations of object categories,
such as “dog + car” we found many more non-iconic
images. Surprisingly, these images typically do not just
contain the two categories specified in the search, but nu-
merous other categories as well. To further supplement
our dataset we also searched for scene/object category
pairs, see the appendix. We downloaded at most 5
photos taken by a single photographer within a short
time window. In the rare cases in which enough images
could not be found, we searched for single categories
and performed an explicit filtering stage to remove iconic
images. The result is a collection of 328,000 images with
rich contextual relationships between objects as shown
in Figs. 2(c) and 6.

4 IMAGE ANNOTATION

We next describe how we annotated our image collec-
tion. Due to our desire to label over 2.5 million category
instances, the design of a cost efficient yet high quality
annotation pipeline was critical. The annotation pipeline
is outlined in Fig. 3. For all crowdsourcing tasks we
used workers on Amazon’s Mechanical Turk (AMT).
Examples of our user interfaces can be found in the
appendix.

4.1 Category Labeling

The first task in annotating our dataset is determin-
ing which object categories are present in each image,
Fig. 3(a). Since we have 91 potential categories and
a large number of images, asking workers to answer
91 binary classification questions per image would be
prohibitively expensive. Instead, we used a hierarchical
approach [18]. Individual object categories are grouped
into 11 super-categories (see the appendix). For a given
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Fig. 4: (a) Precision and recall of experts (red) and the majority vote of AMT workers (blue). Note that the aggregate
of 3 workers has better or similar recall to most experts. (b) illustrates the precision and recall of workers, with
color indicating how many jobs they completed. For details and definition of ground truth for each plot see text.

image, a worker was presented with each group of
categories in turn and asked to indicate whether any
instances exist for that super-category. This greatly re-
duces the time needed to classify the various categories.
For instance, a worker may easily determine whether
any animals are present in the image without having
to specifically look for cats, dogs, etc. If a worker de-
termines an instance in the super-category is present
(animal), they indicate the instance’s specific category
(dog, cat, etc.) by dragging the category’s icon onto the
image over one instance of the category. The placement
of these icons is critical for the following stage. To ensure
high recall, five workers were asked to label each image;
a detailed analysis of performance is presented shortly.
This stage took 17,751 worker hours to complete.

4.2 Instance Spotting

In the next stage all instances of the object categories
in an image were labeled, Fig. 3(b). In the previous
stage each worker labeled one instance of a category, but
multiple category instances may exist. For each image,
a worker was asked to place crosses on top of each
instance of a specific category found in the previous
stage. To boost recall, the location of the instance found
by the worker in the previous stage was shown to
the current worker to help them in finding an initial
instance. Without this priming, it can be difficult for a
worker to quickly find an instance of a category upon
first seeing the image. The workers could also use a
magnifying glass to find small instances. Each worker
was asked to label at most 10 instances of a specific
category per image. Each image was completed by 5
workers for a total of 8,417 worker hours.

4.3 Instance Segmentation

Our final stage is the laborious task of segmenting each
category instance, Fig. 3(c). For this stage we modified

the excellent user interface developed by Bell et al. [16]
for image segmentation. Our interface asks the worker
to segment a category instance specified by a worker
in the previous stage. If other instances have already
been segmented in the image, those segmentations are
shown to the worker. If the worker does not see an
instance of the category in the image (false positive from
the previous stage) the worker may click “No <object
name> in the image.” Similarly if a worker does not find
an unsegmented instance in the image they may specify
“No unsegmented <object name> in the image.”

Segmenting 2,500,000 object instances is an extremely
time consuming task requiring over 22 worker hours per
1,000 segmentations. To minimize cost we only had a
single worker segment each image. However, we initially
found that most workers only produce a coarse outline
of the instance resulting in poor segmentations. As a
consequence, we required all workers to complete a
training task for each object category. After reading the
instructions, the training task asked workers to segment
an object instance. If the worker’s segmentation did
not adequately match the ground truth segmentation
the worker is repeatedly asked to improve their seg-
mentation until it passes. The use of a training task
vastly improves the quality of the workers (only about
1 in 3 workers passed the training stage) and resulting
segmentations. Finally, the work of approved workers
was periodically verified to ensure segmentation quality
remains high. Example segmentations may be viewed in
Fig. 6.

In some images many instances of the same category
are tightly grouped together and it is hard to distinguish
individual instances. For example, it might be difficult
to segment an individual person from a crowd. In these
cases, the group of instances is marked as one segment
and labeled “do not care” for evaluation, e.g., finding
people in a crowd will not affect a detector’s score.
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Fig. 5: (a) Number of annotated instances per category for MS COCO and PASCAL VOC. (b,c) Number of annotated
categories and annotated instances, respectively, per image for MS COCO, ImageNet Detection, PASCAL VOC and
SUN (average number of categories and instances are shown in parentheses). (d) Number of categories vs. the
number of instances per category for a number of popular object recognition datasets. (e) The distribution of
instance sizes for the MS COCO, ImageNet Detection, PASCAL VOC and SUN datasets.

4.4 Annotation Performance Analysis

To ensure the quality of our annotations we analyze the
quality of our workers by comparing them to expert
workers. In Fig. 4 we show results for the task of
category labeling. We compare the precision and recall of
seven expert workers (co-authors of the paper) with the
results obtained by taking the union of one to ten AMT
workers. For this task precision is of less importance
since false positives will be removed at later stages,
where adding false negatives is much more difficult.

Fig. 4(a) shows that 5 AMT workers, the same number as
was used to collect our labels, achieves the same recall as
most of the expert workers. Note that the expert labelers
achieved between 65% and 80% recall. These low values
of recall are due to our liberal definition of a category
being present. If only one expert labels an object category
as being present, we assume the category is indeed
present. However, the presence of many categories is
often ambiguous. Upon closer inspection, we find recall
values of 70% to 75% are generally sufficient to capture
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the non-ambiguous categories. Fig. 4(b) shows the pre-
cision and recall of our workers on category labeling.
Unlike in Fig. 4(a), the ground truth labels were now
estimated using a majority vote. The color indicates the
number of jobs completed by each worker. Notice that
workers who complete more hits have generally higher
precision and recall. All jobs from workers below the
black line were rejected.

5 DATASET STATISTICS
Next, we analyze the properties of the Microsoft Com-
mon Objects in COntext (MS COCO) dataset in com-
parison to several other popular datasets. These include
the ImageNet [1], PASCAL VOC 2012 [2], and SUN
[3] datasets. Each of these datasets varies significantly
in size, list of labeled categories and types of images.
ImageNet was created to capture a large number of
object categories, many of which are fine-grained. SUN
focuses on labeling scene types and the objects that com-
monly occur in them. Finally, PASCAL VOC’s primary
application is object detection in natural images. MS
COCO is designed for the detection and segmentation
of objects occurring in their natural context. The number
of instances per category for all 91 categories collected
so far are shown in Fig. 5(a). The completion of our
final segmentation stage is still ongoing. Please see the
appendix for a complete list of collected segmentations,
including over 580,000 people.

A summary of the datasets showing the number of
object categories and the number of instances per cate-
gory is shown in Fig. 5(d). While MS COCO has fewer
categories than ImageNet and SUN, it has more instances
per category which we hypothesize will be useful for
learning complex models capable of precise localization.
In comparison to PASCAL VOC, MS COCO has both
more categories and instances.

An important property of our dataset is we strive to
find non-iconic images containing objects in their natural
context. The amount of contextual information present
in an image can be estimated by examining the number
of object categories and instances per image, Fig. 5(b,
c). For ImageNet we plot the object detection validation
set, since the training data only has a single object
labeled. On average our dataset contains 3.5 categories
and 7.7 instances per image. In comparison ImageNet
and PASCAL VOC both have less than 2 categories and
3 instances per image on average. Another interesting
comparison is only 10% of the images in MS COCO
have only one category per image, in comparison to
over 60% of images containing a single object category
in ImageNet and PASCAL VOC. As expected, the SUN
dataset has the most contextual information since it is
scene-based.

Finally, we analyze the average size of objects in the
datasets. Generally smaller objects are harder to recog-
nize and require more contextual reasoning to recognize.
As shown in Fig. 5(e), the average sizes of objects is
smaller for both MS COCO and SUN.

6 ALGORITHMIC ANALYSIS

To establish a concrete benchmark, we split our dataset
into training, validation, and test data. We have a train-
ing set of 164,000 images and a validation and test set
of 82,000 images each. We took care to minimize the
chance of near-duplicate images existing across splits
by explicitly removing duplicates (detected with [43])
and splitting images by date and user. Following now-
established protocol, we will release annotations for train
and validation images, but not test.

Bounding-box detection We begin by examining the
performance of the well-studied 20 PASCAL object cate-
gories on our dataset. We take a subset of 55,000 images
from train/val data for the following experiment and
obtain tight-fitting bounding boxes from the annotated
segmentation masks. We evaluate models tested on both
the MS COCO and PASCAL datasets, see Table 1. We
evaluate two different models. DPMv5-P: the latest im-
plementation of [44] (release 5 [45]) trained on PASCAL
VOC 2012. DPMv5-C: the same implementation trained
on COCO (5000 positive and 10000 negative images). We
use the default parameter settings for training COCO
models.

If we compare the average performance of DPMv5-P
on PASCAL VOC and MS COCO, we find that average
performance on MS COCO drops by nearly a factor of
2, suggesting that MS COCO does include more difficult
(non-iconic) images of objects that are partially occluded,
amid clutter, etc. We notice a similar drop in performance
for the model trained on MS COCO (DPMv5-C).

The effect on detection performance of training on
PASCAL VOC or MS COCO may be analyzed by com-
paring DPMv5-P and DPMv5-C. They use the same
implementation with different sources of training data.
Table 1 shows DPMv5-C still outperforms DPMv5-P in
6 out of 20 categories when testing on PASCAL VOC. In
some categories (e.g., dog, cat, people), models trained
on MS COCO perform worse, while on others (e.g., bus,
tv, horse), models trained on our data are better.

Consistent with past observations [46], we find that
including difficult (non-iconic) images during training
may not always help. Such examples may act as noise
and pollute the learned model if the model is not
rich enough to capture such appearance variability. Our
dataset allows for the exploration of such issues.

Torralba and Efros [42] proposed a metric to measure
cross-dataset generalization which computes the ‘per-
formance drop’ for models that train on one dataset
and test on another. The performance difference of the
DPMv5-P models across the two datasets is 12.7 AP
while the DPMv5-C models only have 7.7 AP difference.
Moreover, overall performance is much lower on MS
COCO. These observations support two hypotheses: 1)
MS COCO is significantly more difficult than PASCAL
VOC and 2) models trained on MS COCO can generalize
better to easier datasets such as PASCAL VOC given
more training data. To gain insight into the differences
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Fig. 6: Samples of annotated images in the MS COCO dataset.

between the datasets, see the appendix for visualizations
of person and chair examples from the two datasets.

Generating segmentations from detections We now
describe a simple method for generating object bounding
boxes and segmentation masks, following prior work
that produces segmentations from object detections [47],
[48], [49], [50]. We learn aspect-specific pixel-level seg-
mentation masks for different categories. These are read-
ily learned by averaging together segmentation masks
from aligned training instances. We learn different masks

corresponding to the different mixtures in our DPM
detector. Sample masks are visualized in Fig. 7.

Detection Evaluated By Segmentation Segmentation
is a challenging task even assuming an object detector
reports correct results as it requires fine localization of
object part boundaries. To decouple segmentation evalu-
ation from detection correctness, we benchmark segmen-
tation quality using only correct detections. Specifically,
given that the object detector reports a correct bounding
box, how well does the predicted segmentation of that



9

plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv Avg.

DPMv5-P 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

DPMv5-C 43.7 50.1 11.8 2.4 21.4 60.1 35.6 16.0 11.4 24.8 5.3 9.4 44.5 41.0 35.8 6.3 28.3 13.3 38.8 36.2 26.8

DPMv5-P 35.1 17.9 3.7 2.3 7 45.4 18.3 8.6 6.3 17 4.8 5.8 35.3 25.4 17.5 4.1 14.5 9.6 31.7 27.9 16.9

DPMv5-C 36.9 20.2 5.7 3.5 6.6 50.3 16.1 12.8 4.5 19.0 9.6 4.0 38.2 29.9 15.9 6.7 13.8 10.4 39.2 37.9 19.1

TABLE 1: Top: Detection performance evaluated on PASCAL VOC 2012. DPMv5-P is the performance reported
by Girshick et al. in VOC release 5. DPMv5-C uses the same implementation, but is trained with MS COCO.
Bottom: Performance evaluated on MS COCO for DPM models trained with PASCAL VOC 2012 (DPMv5-P) and
MS COCO (DPMv5-C). For DPMv5-C we used 5000 positive and 10000 negative training examples. While MS
COCO is considerably more challenging than PASCAL, use of more training data coupled with more sophisticated
approaches [5], [6], [7] should improve performance substantially.

Fig. 7: We visualize our mixture-specific shape masks.
We paste thresholded shape masks on each candidate
detection to generate candidate segments.

Fig. 8: Evaluating instance detections with segmentation
masks versus bounding boxes. Bounding boxes are a
particularly crude approximation for articulated objects;
in this case, the majority of the pixels in the (blue) tight-
fitting bounding-box do not lie on the object. Our (green)
instance-level segmentation masks allows for a more
accurate measure of object detection and localization.

object match the groundtruth segmentation? As criterion
for correct detection, we impose the standard require-
ment that intersection over union between predicted and
groundtruth boxes is at least 0.5. We then measure the
intersection over union of the predicted and groundtruth
segmentation masks, see Fig. 8. To establish a baseline for
our dataset, we project learned DPM part masks onto the
image to create segmentation masks. Fig. 9 shows results
of this segmentation baseline for the DPM learned on the
20 PASCAL categories and tested on our dataset.

7 DISCUSSION

We described a new dataset for detecting and seg-
menting objects found in everyday life in their natural
environments. Utilizing around 60,000 worker hours, a

vast collection of category instances was gathered, anno-
tated and organized to drive the advancement of object
detection and segmentation algorithms. Emphasis was
placed on finding non-iconic images of objects in natural
environments and varied viewpoints. Dataset statistics
indicate the images contain rich contextual information
with many objects present per image.

There are several promising directions for future anno-
tations on our dataset. We currently only label “things”,
but labeling “stuff” may also provide significant con-
textual information that may be useful for detection.
Many object detection algorithms benefit from additional
annotations, such as the amount an instance is occluded
[4] or the location of keypoints on the object [10]. Finally,
our dataset could provide a good benchmark for other
types of labels, including scene types [3], attributes [9],
[8] and full sentence written descriptions [51].

To download and learn more about MS COCO please
see the project website1. MS COCO will evolve and grow
over time; up to date information is available online.

Acknowledgments Funding for all crowd worker tasks was
provided by Microsoft. P.P. and D.R. were supported by ONR
MURI Grant N00014-10-1-0933. We would like to thank all
members of the community who provided valuable feedback
throughout the process of defining and collecting the dataset.

APPENDIX OVERVIEW

In the appendix, we provide 1) detailed descriptions
of the AMT user interfaces, 2) the status of instance
segmentation, and lastly 3) the full list of 271 candidate
categories (from which our final 91 were selected) and
40 scene categories (used for scene-object queries).

APPENDIX I: USER INTERFACES

We visualize our user interfaces for collection non-iconic
images, labeling object categories, spotting all object
instances, and finally segmenting all object instances.

Non-iconic Image Collection Flickr provides a rich
image collection associated with text captions. However,
captions might be inaccurate and images may be iconic.

1. http://mscoco.org/

http://mscoco.org/
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Fig. 9: A predicted segmentation might not recover object detail even though detection and groundtruth bounding
boxes overlap well (left). Sampling from the person category illustrates that on a per-instance basis, predicting
segmentation from top-down projection of DPM part masks is difficult even for correct detections (center). Averaging
over instances for each of the PASCAL VOC categories on our dataset demonstrates that it presents a challenge for
object segmentation algorithms (right).

Fig. 10: Icons of 91 categories in the MS COCO dataset grouped by 11 supercategories. We use these icons in our
annotation pipeline to help workers quickly reference the indicated object category.

To construct a high-quality set of non-iconic images, we
first collect candidate images by searching for pairs of
object categories, or pairs of object and scene categories.
We then created an AMT filtering task that allowed users
to remove invalid or iconic images from a grid of 128
candidates, Fig. 12. We found the choice of instructions
to be crucial, and so provided users with examples of
iconic and non-iconic images. Some categories rarely co-
occurred with others. In such cases, we collect candidates
using only the object category as the search term, but
apply a similar filtering step, Fig. 12(b).

Category Labeling Fig. 11(a) visualizes our interface
for instance labeling. We designed the labeling task to
encourage workers to annotate all categories present in
the image. Workers annotate categories by dragging and
dropping icons from the bottom category panel onto a
corresponding object instance. Only a single instance of
each object category needs to be annotated in the image.
We group icons by the supercategories from Fig. 10,
allowing workers to quickly skip categories that are
unlikely to be present.

Instance Spotting Fig. 11(b) depicts our interface for
instance spotting. The interface shows a blinking icon
specifying a particular category instance, obtained from
the previous category-labeling stage. Workers are asked
to spot and click all instances in the image. In order
to spot small objects, we found it crucial to include a
“magnifying glass” feature that doubles the resolution
of a worker’s current selected region.

Instance Segmentation Fig. 11(c) shows our user
interface for instance segmentation. We modified source
code from the OpenSurfaces project, which defines a
single AMT task for segmenting multiple (6) regions
of a homogenous material in real-scenes. In our case,
we define a single task for segmenting a single object
instance labeled from the previous annotation stage. To
aid the segmentation process, we added a visualization
of the object category icon to remind workers of the cate-
gory to be segmented. Crucially, we also added zoom-in
functionality to allow workers to annotate small objects
and curved boundaries efficiently. Each worker needed
to complete a training task for each object category
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Fig. 11: User interface for collecting instance annotations. (a) labels categories by drag and drop icons from the
bottom panel onto objects in the image. (b) marks each instance in the image with the help of a magnifying glass.
(c) segments each indicated instance with a polygonal mask.

Fig. 12: User interface for non-iconic image collection. (a)
visualizes our filtering interface for selecting non-iconic
images containing pairs of objects. (b) visualizes our
interface for selecting non-iconic images for categories
that rarely co-occurred with others.

before being allowed to complete a segmentation task.
The use of a training task greatly increased the quality
of the segmentations. To ensure high coverage of all
object instances in the previous annotation stage, we use
multiple workers (3) to label all instances per image.
We would like to segment all such object instances,
but instance annotations across different workers may
refer to different or redundant instances. To resolve this
correspondence ambiguity, we sequentially post AMT

segmentation tasks, ignoring instance annotations that
are already covered by an existing segmentation mask.

APPENDIX II: SEGMENTATION PROGRESS

Up to May 1, 2014, we have collected 590k segmenta-
tions for 55 object categories. AMT workers collectively
contribute 480 working hours for labeling 25k instance
segmentations per day. We will keep the system running
and expect to segment every instance in about 3 months.

APPENDIX III: OBJECT & SCENE CATEGORIES

Our current dataset contains 91 object categories. We
began with a list of frequent object categories taken from
WordNet, LabelMe, SUN and other sources as well as
categories derived from a free recall experiment with
young children. The authors then voted on the resulting
271 categories with the aim of sampling a diverse and
computationally challenging set of categories, see Section
3 for details. The list in Table 2 enumerates those 271
categories in descending order of votes.

As discussed in Section 3, in addition to using object-
object queries to gather non-iconic images, object-scene
queries also proved effective. For this task we selected a
subset of 40 scene categories from the SUN dataset that
frequently co-occurred with object categories of interest.
Table 3 enumerates the 40 scene categories (evenly split
between indoor and outdoor scenes).
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(a) PASCAL VOC. (b) MS COCO.

Fig. 13: Random person instance samples from (a) PASCAL VOC and (b) MS COCO. To increase the variability,
only one instance is sampled for each image.

bicycle car motorcycle bird cat dog horse sheep bottle chair
couch (sofa) potted plant tv cow (gender neutral) airplane hat license plate bed laptop fridge
microwave sink stove (oven) toaster bus train mirror dining table elephant banana

bread toilet book boat plate cell phone computer mouse remote clock face
hand apple keyboard backpack steering wheel wineglass chicken zebra shoe eye

mouth scissors truck traffic light eye glasses cup blender hair drier wheel street sign
umbrella door fire hydrant bowl teapot fork knife spoon bear headlights
window desk computer refrigerator pizza squirrel duck frisbee guitar nose

teddy bear tie stop sign surf board sandwich pen/pencil kite orange tooth brush printer
pans head sports ball broccoli suitcase carrots chandelier parking meter fish hand bag

hot dog stapler basketball hoop donut vase baseball bat baseball glove giraffe coat/jacket skis
snow board table lamp egg door handle power outlet hair tiger table coffee table skateboard
helicopter tomato tree bunny pillow tennis racket cake feet bench chopping board

washer lion monkey comb light switch arms legs house cheese goat
magazine key picture frame cupcake fan (ceil/floor) frogs rabbit owl scarf ears

home phone pig strawberries pumpkin van kangaroo rhinoceros sailboat deer playing cards
towel hyppo can dollar bill doll soup meat window muffins tire

necklace tablet corn ladder pineapple candle desktop carpet cookie toy cars
bracelet bat balloon gloves milk pants wheelchair building bacon box
platypus pancake cabinet whale dryer torso lizard shirt shorts pasta
grapes shark swan fingers towel side table gate beans flip flops moon

road/street fountain fax machine bat hot air balloon cereal seahorse rocket cabinets basketball
telephone movie (disc) football goose long sleeve shirt short sleeve shirt raft rooster copier radio

fences goal net toys engine soccer ball field goal posts socks tennis net seats elbows
aardvark dinosaur unicycle honey legos fly roof baseball mat ipad
iphone hoop hen back table cloth soccer nets turkey pajamas underpants goldfish
robot crusher animal crackers basketball court horn firefly armpits nectar super hero costume jetpack
robots

TABLE 2: Candidate category list.
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(a) PASCAL VOC. (b) MS COCO.

Fig. 14: Random chair instance samples from (a) PASCAL VOC and (b) MS COCO. To increase the variability, only
one instance is sampled for each image.

library church office restaurant kitchen living room bathroom factory campus bedroom
child’s room dining room auditorium shop home hotel classroom cafeteria hospital room food court

street park beach river village valley market harbor yard parking lot
lighthouse railway playground swimming pool forest gas station garden farm mountain plaza

TABLE 3: Scene category list.
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