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Abstract

Cells arriving to an ATM network experience random delays due to queueing in
upstream multiplexing stages, notably in customer premises. This is the phenomenon of
jitter and the aim of the present paper is to study its inuence on peak rate enforcement.
We �rst introduce some general characterizations of jitter and then, describe two models
of jittered ows based on simple queueing systems. We discuss the objectives of peak rate
enforcement and study the impact of jitter on the dimensioning of Jumping Window
and Leaky Bucket mechanisms. A useful synthetic characterization of jitter appears
to be a remote quantile of the cell delay distribution expressed in units of the initial
inter-cell interval.

1 Introduction

The use of the Asynchronous Transfer Mode (ATM) in the Broadband-Integrated Services
Digital Network (B-ISDN) allows users to establish connections of widely di�erent bit rates
over an access link of around 150 Mbit/s. The price of this exibility is the danger that a user
having contracted a communication at, say, 10 Mbit/s, in fact uses his access to emit data at
a much greater rate (up to 150 Mbit/s) bringing the risk of network performance degradation.
It is essential to be able to enforce the contracted peak rate by means of a policing device
at the user-network interface. (Network operators may also wish to enforce bit rates coming
from the network of another operator at the network-node interface). This enforcement is
complicated by the fact that an initially periodic cell stream is altered by the random delays
a�ecting cells in multiplexing stages (notably in customer premises equipment) between the
source and the policing device. This is the phenomenon of jitter and requires that, instead
of simply measuring the interval between two cells, we make a statistical estimation of the
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In a recent study [Nie 90], Niestegge has proposed a method for dimensioning a leaky
bucket for peak rate policing based on a remote quantile of the delay distribution of an
arbitrary cell. While the simplicity of this approach is appealing for practical applications,
we have preferred to establish a more complete description of the jitter phenomenon taking
account, notably, of the correlations between successive cell arrival epochs.

Di�erent characterizations of jitter are discussed in Section 2 and applied to models of the
jitter a�ecting a multiplexed periodic source in Section 3. The results are used in Section 4
to dimension the parameters of jumping window and leaky bucket policing mechanisms.

2 Characterizing jitter

2.1 Quantifying jitter

Jitter is an expression of the random delay a�ecting cells at multiplexing stages in the network.
A �rst quanti�cation is simply the probability distribution of the delay of an arbitrary cell
and, notably, its remote quantiles (e.g. � such that Prfdelay > �g < 10�10). The alteration of
the periodic nature of the cell arrival process is partially characterized by the inter-cell distri-
bution and, in particular, by its moments; the squared coe�cient of variation is a convenient
dimensionless measure of jitter. However, since the periodic nature of the original stream is
preserved over relatively long intervals, additional quanti�cations are necessary to account for
correlations between successive interarrivals.

2.2 A Markovian jittered process

To simplify the discussion, we consider the jitter in a discrete time process where the time
unit is, however, arbitrary. We consider an initially periodic stream whose inter-cell interval
is d (Fig. 1). The ith cell has a sojourn time in system (multiplex or network) of D+Wi where
D is a constant (propagation time, etc.) and Wi is a non-negative random delay component.
We assume the Wi constitute a stationary ergodic process with probability distribution :

wk = PrfWi = kg; for k � 0:

We further assume that the dependence between successive delays is �rst order Markovian
characterized by the transition probabilities:

qjk = PrfWi = k jWi�1 = j g; for j � 0; k � 0:

The wk then satisfy the equations:

wk =
X
j�0

wjqjk: (1)

The constant delay D which depends only on the route followed by the cells of the con-
nection considered is usually ignored.
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Figure 1: Periodic stream passing through a jittering element

2.3 Inter-cell time distributions. .

Let 0 be an arbitrary instant and let �0 be the cell exit instant immediately preceding 0. Let
�i; i � 1, be the exit instants of subsequent cells. We introduce the random variables Un and
U 0
n de�ned by:

Un = �n � �0 � nd;

U 0
n = �n � nd:

Un is the variation of the nth order inter-exit time with respect to the interarrival interval
nd; U 0

n has a similar interpretation when the exit time is measured from an arbitrary instant.
Jitter is characterized by the distributions of the random variables Un; n � 1, and especially
that of U1 = W1 �W0. The distribution of U1 allows a comparison between the interarrival
in the jittered process with that in the initial ow which is constant and exactly equal to d.

For further characterization we introduce some notation. Let fn(k) and f 0n(k) be the
distributions of Un and U 0

n respectively. De�ne:

gn(j; k) = Prf�2 � �1 = d+ j; �n+1 � �2 = (n � 1)d + kg

i.e., gn is the joint distribution of an arbitrary interval (not the interval containing the arbitrary
instant 0) and the sum of the n� 1 subsequent intervals. Then

fn(k) =
X
i�0

wiq
(n)
i;i+k; (2)

gn(j; k) =
X
i�0

wiqi;i+jq
(n)
i+j;i+j+k; (3)

f 0n(k) =
1

d

k+(n�1)(d�1)X
t=�d+1

kX
t=0

gn(r; k � t); (4)

where q
(n)
ij is the i� j component of the nth power of the transition matrix. The relation for

f 0n(k) is derived as follows.
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both �1 � �0 (the arbitrary instant has more chance of falling in a long interval) and to the
distribution gn(j; k) (the arbitrary interval has more chance of falling in a frequently occuring
interval length); on normalizing, we deduce:

Prf�1 � �0 = d + r; �n � �1 = (n� 1)d + sg =
(d+ r)gn(r; s)

d
;

d being the expected inter-exit time. Now, given �1 � �0, the distribution of �1 is uniform on
(0; �1 � �0):

Prf�1 = d+ t j�1 � �0 = d+ rg =
1

d + r
; for � d < t � r;

so that

Prf�1 = d + t; �n � �1 = (n� 1)d + sg =
1

d

X
r�t

gn(r; s):

We obtain (4) on setting s = k � t and summing over t in the range �d < t � k.
This result can be established more rigourously by using the theory of point processes as

follows. We have assumed that the cell process is stationary and therefore, we can consider
that the points �k are de�ned for k 2 Z with : : : ��1 < �0 � 0 < �1 < : : : and the process
f�kg is a stationary point process. For n � 1, write �nk = �n+k � �k+1. The process f�k; �nkg is
a stationary marked point process. Adapting formula (4.1.3) in [Bac 90] to the discrete time
case, we get:

Pf�1 = k; �nk = rg =
1

d

1X
l=k

P 0f�1 = l; �nk = rg

where P 0 is the Palm probability associated with the point process f�kg. Consequently, we
have

Pf�1 = d+ t; �n � �1 = (n� 1)d+ sg =
1

d

1X
l=d+t

P 0f�1 = l; �n0 = (n� 1)d + sg

=
1

d

X
r�t

gn(r; s):

The remainder of the proof is as above.

2.4 Arrivals in a window

Consider a time window of width x: let �x(n) be the probability this window contains n cell
exits assuming the window starts just after a cell exit and let �0x(n) be the same probability
assuming the window starts at an arbitrary instant. These probabilities are derived as follows:

�x(n) = Prfat least n cellsg � Prfat least n+ 1 cellsg

= PrfUn + nd � xg � PrfUn+1 + (n + 1)d � xg (5)

=
X

j��nd+x

fn(j)�
X

j��(n+1)d+x

fn+1(j):
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x( )
X

j��nd+x
n( )

X
j��(n+1)d+x

n+1( ) ( )

2.5 Limit distributions

In the limit n!1, q(n)ij ! wj, for all i, and we obtain limit distributions:

f1(k) =
X
i

wiwi+k;

g1(j; k) =
X
i

wiqi;i+jwi+j+k; (7)

f 01(k) =
1

d

X
t��d+1

X
r�t

g1(r; k � t):

When n is large we can thus approximate �x(n) and �0x(n) by �x(n) and �0x(n) de�ned by:

�x(n) =
�nd+xX

j=�(n+1)d+x+1

f1(j); (8)

�0x(n) =
�nd+xX

j=�(n+1)d+x+1

f 01(j):

Note that the probabilities �x(n), in particular, are fairly simple to obtain and depend only
on the stationary waiting time distribution.

3 Models of jitter

3.1 Multiplexing periodic sources

If all sources superposed in an ATM multiplexer have the same bit rate there is no jitter since,
for any given periodic stream, the delay is identical for every cell. When sources have di�erent
bit rates, the degree of jitter depends on their relative rates. The greatest e�ect will be felt
by the highest rate streams since the number of cells from other streams arriving between
successive periodic cells will then be most variable; for a low rate stream, on the other hand,
roughly the same number of cells will arrive between any two successive cells in roughly the
same relative positions and the delay of each cell will therefore be almost identical. The
following models for calculating the jitter of a periodic stream assume the number of cells
from other streams arriving in successive intervals are independent and should lead to an
overestimation of the induced delay variability.

3.2 Jitter due to a multiplexing stage

We assume a multiplex receives the superposition of a periodic stream of cells of period d
and a Poisson stream of rate � where the unit of time is the cell transmission time [Rob 89].
We assume the multiplex can only start to transmit cells at speci�c instants . . . , -2, -1, 0,
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g ) g
arrival is a Markov process. Assuming FIFO service, the queue length at the ith periodic cell
arrival is identical to the waiting timeWi introduced in Section 2. To calculate the transition
probabilities qij we introduce the conditional probabilities:

Q(j; k) = PrfWi > k jWi�1 = jg; (9)

Pn(j; k) = PrfWi > k jWi�1 = j and n Poisson arrivals in ((i� 1)d; id)g:

We then have,

qjk = Q(j; k � 1)�Q(j; k); (10)

Q(j; k) =
X
n

Pn(j; k)
(�d)n

n!
e��d;

and it remains to calculate Pn(j; k). It is shown in appendix A that these probabilities are
given by:

Pn(j; k) =

8>>>>>>>>><
>>>>>>>>>:

0; for j + 1 � d and n � d + k � j � 1
or j + 1 < d and n � k;

n�kX
s=1

 
n

s+ k

! �
s

d

�s+k �
1 �

s

d

�n�s�k d � n+ k

d� s
;

for j + 1 < d and k < n � d+ k � j � 1;
1 for n > d+ k � j � 1:

(11)

The complicated expression in the middle is the probability the queue length is k at the end
of an interval of length d in which there occur n arrivals at uniformly distributed instants
[Vir 89].

The delay distribution wk is deduced on solving the state equations. Figure 2 plots
PrfWi � kg for a multiplex load of 0.7 and di�erent values of the period d. Also plot-
ted is the M/D/1 waiting time distribution which provides an upper bound on the waiting
time distribution quantiles and constitutes a good approximation for reasonably large d.

The variability of the inter-exit time distribution f1(k) depends on d. Figure 3 gives the
squared coe�cient of variation for di�erent values of d and two multiplex loads, 0.7 and 0.85.
Table 1 gives the 10�10 quantile � of the random delay Wi. Jitter is clearly most signi�cant
for higher loads and smaller periods.

The convergence of the nth order inter-exit time distribution to the limit f1(k) is illustrated
in Table 2 for load 0.7 and period 15 (corresponding, for example, to a 10 Mbit/s connection
on a 150 Mbit/s link). For all practical purposes, convergence is attained after 8 intervals
in this example. Convergence is slower for higher loads but, in all cases, the f1 distribution
constitutes a conservative approximation for the e�ects of jitter.

3.3 Jitter due to tra�c on a bus

In the following alternative model of the jitter a�ecting a multiplexed periodic stream, the
considered stream is supposed to be inserted on a bus already partially occupied by upstream
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Figure 2: Waiting time distribution { FIFO multiplex.

Figure 3: Squared coe�cient of variation of inter-exit time {FIFO multiplex.
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� = 0:7 16 28 32 34 35
� = 0:85 36 59 66 71 72

Table 1: Quantile � such that PrfWi > �g � 10�10 { FIFO multiplex.

k -30 -15 0 15 30
f1(k) 0 0 .22 .22e-06 .37e-15
f4(k) .47e-11 .50e-05 .22 .54e-05 .30e-10
f8(k) .87e-10 .60e-05 .22 .60e-05 .96e-10
f1(k) .10e-09 .60e-05 .22 .60e-05 .10e-09

Table 2: Inter-exit time distributions { FIFO multiplex (d=15, load=0.7)

stations. We assume each slot is already occupied with probability p, independently of the
state of occupation of the other slots. This situation is encountered when modelling a Local
Area Network based upon the DQDB access protocol [Tra 89]. The cells of the periodic
stream are served by the �rst unoccupied slot occuring after their arrival. The waiting time
of the periodic cells is then Markovian with transition probabilities:

qjk =

8><
>:

pk(1 � p); forj � d � 1
pd+k�j (1� p); for d � j � d + k

0; for d + k < j

Rather than directly solving the state equations, we can derive the distribution wk by arguing
as follows. The sojourn time of a periodic cell in this system, Wi + 1, is exactly the same
as the sojourn time of a customer in a D=Geo=1 queueing system (i.e. a single server with
periodic arrivals and shifted geometrically distributed service time) with interarrival time d
and service time distribution

Prfservice time = k slotsg = pk�1(1 � p); for k � 1:

This statement may readily be veri�ed on writing down transition probablities for the latter
process. Now, the sojourn time in the D=Geo=1 queue is the sum of two independent random
variables: the service time and the waiting time. The distribution of the latter is derived in
appendix B. We have :

Prfwaiting time = k slotsg =

(
1� �; for k = 0;

�(1� �)(1� p) (1� (1� �)(1� p))k�1 ; for k � 1;

where � is the real root between 0 and 1 of the equation

z = (p + (1� p)z)d :
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wk = (1� p)(1 � �) (1� (1� p)(1 � �)) ; for k � 0: (12)

Figure 4 gives the squared coe�cient of variation for the same parameter values as in
Figure 3, and Table 3 gives the 10�10 quantile � of the random delay for di�erent values of
the multiplex load � = p+ 1=d, namely � = 0:7 and � = 0:85:

Figure 4: Squared coe�cient of variation of inter-exit time { bus multiplex.

Note that the variation attains a maximum between d = 2 and d = 5: when d is very
small, the interferring tra�c is too low in volume to a�ect the periodic stream; as d increases,
the cell delay also increases but becomes insigni�cant with respect to the period.

For large d, it is clear that the value of � is very small (e.g. for d= 15, we �nd � = 0:001).
Consequently, we have wk � qjk and the inter-exit time distributions fn(k) converge rapidly
to f1(k).

In table 4, we compare functions �x(n) and �0x(n) by their particular values �nd(n+y) and
�0nd(n+y) for load 0.7 and period 15. These functions are independent of n and the argument
y expresses the deviation from the expected number of arrivals in an arbitrary interval. �0x(n)
di�ers from �x(n) by a horizontal translation of between 0 and 1. The same is true in general
for �0x and �x and, in particular, we have:

�nd(n+ y � 1) > �0nd(n+ y) > �nd(n+ y)

for y � 1.

4 Peak rate enforcement

4.1 Policing mechanisms

We consider two alternative mechanisms for peak rate enforcement: the jumping window
and the leaky bucket [Rat 90]. The former is conceptually the simplest and allows a direct
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� = 0:7 16 27 31 33 34
� = 0:85 35 56 63 67 68

Table 3: Quantile � such that PrfWi > �g � 10�10 {Bus multiplex.

y -4 -2 0 2 4
�0nd(n+ y) .63e-09 .24e-03 .81 .12e-03 .13e-09
�nd(n+ y) .86e-10 .76e-04 .86 .75e-04 .86e-10

Table 4: Distribution of excess cells in a window - bus multiplex.

appreciation of the e�ects of jitter. It consists in a device which counts the number of cell
arrivals in a window of length Nd (we assume an integer multiple of the policed period for
simplicity) and discards any cells over an allowed limit N + V . The window is re-initialized
every Nd time units. The leaky bucket is more complex consisting in a counter which is
incremented on each cell arrival and decremented at a �xed rate a. Cells arriving when the
counter attains a certain threshold M are discarded. Our objective is to dimension N and V
and a and M to e�ectively police the jittered streams described by the above models.

4.2 Policing objectives

It is essential that the network can be sure that a user, having obtained a resource allocation
for a certain peak rate, does not then emit data at a higher rate, thus provoking congestion
and cell losses for all contending communications. It has been recognized that any bandwidth
enforcement mechanism must realize a compromise between three factors [Eck 90]:

� responsiveness { the mechanism should react rapidly to control a non-conforming
stream;

� allowed margin { the di�erence between the contracted parameter and the maximum
rate which can pass the mechanism should not be too large;

� cell discard rate { a conforming source should su�er minimal cell loss (e.g. < 10�10).

Fixing the maximumcell loss rate of a conforming source at 10�10, we consider two possibilities
for the responsiveness { allowed margin trade-o�:

a) minimize response time while limiting peak rate excess (to 10% or 20%, for example);
b) minimize excess peak rate while limiting response time (e.g. reject cells occuring within

a certain interval of a preceding cell).
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N V N V N V
FIFO 30 3 30 3 20 2
bus 60 6 50 5 40 4

Table 5: Jumping window dimensioning - load=0.70.

4.3 Dimensioning a jumping window

Suppose we allow a peak rate margin of r (i.e. the policing mechanism will allow a peak rate
up to (1+ r) times the policed rate). The required window size Nd and the number of excess
cells allowed V must then satisfy:

X
n>V

�0Nd(N + n) < 10�10 and V=N < r:

In the results presented in Table 5 we have used the approximation �0x(n) for �
0
x(n). This

table gives the required values of N and V for a multiplex load of 0.7 in the two considered
models.

Concerning possibility b) in Section 4.2, it proves impossible to determine a minimal
interval between cells since the probability two cells arrive back to back is greater than the
objective discard probability of 10�10.

4.4 Dimensioning a leaky bucket

The value of the leaky bucket counter behaves like the number of customers in a G=D=1=M
queue with service rate a (leak rate) and arrival process that of the actual cell stream [Rat 90].
Note that the leak rate may be greater than the policed rate in order to decrease the value of
M and consequently, to increase the responsiveness of the mechanism. Dimensioning a leaky
bucket consists in estimating the required value of M to achieve a 10�10 cell loss rate for
given leak rate and arrival process. In this section we dimensionM in the case of the jittered
stream described in Section 3.3. We apply the Bene�s result [Nor 91] to derive an upper bound
on the queue length quantiles of the in�nite capacity queue. These are used as a conservative
estimate on the required bucket capacity.

Let D = 1=a be the service time of the `(jittered stream)/D/1' queue. The Bene�s result
yields the following bound:

PrfX > mg �
X
n�1

Prfn+m arrivals in an interval of length nDg

=
X
n�1

�0nD(n+m)

<
X
n�1

�nD(n+m� 1):
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Section 3.3. We have the following expression for �nD(n+m� 1) :

�nD(n+m� 1) =
1

1 + �

h
�(n+m�1)d�nD � �(n+m)d�nD

i

and the above bound yields :

PrfX > mg �
��D(1� �d)

(1 + �)(1 � �d�D)
�md

where � = (1 � (1 � p)(1� �)).
Determining the leaky bucket capacity M from the 10�10 quantile of this bound, we

deduce:

M �
�10

log10 �

1

d
+

1

ad
: (13)

Thus M is almost independent of the leak rate a (0 < a < 1=d). The �rst term in (13) is the
10�10 quantile of the cell waiting time distribution wk divided by d. This result supports the
heuristic approach in [Nie 90] and suggests that the remote delay quantile expressed in units
of the source period is a useful synthetic characterization of jitter. For a multiplex load of
0.85 and d = 15, we would require a value of M = 8 for a 10% margin of the leak rate over the
policed rate. Comparison with the results of Table 5 (for a lower load) con�rms that the leaky
bucket is much more responsive than the jumping window. However, this mechanism would
still allow signi�cant bursts to enter the network provoking congestion or requiring multiplex
bu�er over-dimensioning [Gui 91].

5 Conclusion

An assumption of Markovian dependence between the delays of successive cells allows us to
calculate various quantities of interest for characterizing jitter. This assumption is appropriate
for two ATM multiplex models and we have been able to investigate the e�ects of di�erent
source and multiplex parameters on the degree of jitter introduced. Jumping window and
leaky bucket mechanisms have been dimensioned to enforce the peak rate of jittered streams.
The leaky bucket is seen to be considerably more responsive than the jumping window. A
synthetic characterization of jitter consists in the remote delay quantile divided by the period
of the considered stream. This is su�cient to dimension the leaky bucket in some cases and
supports the heuristic approach of [Nie 90].
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A Transition probabilities in the M +D=D=1 queue

The M + D=D=1 queue with FIFO service has been introduced in Section 3.2. We wish
here to determine the transition probabilities qjk for the cells of the periodic stream. Since
the service discipline is FIFO, Wi is identical to the queue length Li seen by the ith arriving
periodic cell. With the notation of Section 3.2, we have the following theorem:

Theorem 1 The conditional probabilities Pn(j; k) are given by:

Pn(j; k) =

8>>>>>>>>><
>>>>>>>>>:

0; for j + 1 � d and n � d+ k � j � 1
or j + 1 < d and n � k;

n�kX
s=1

 
n

s+ k

! �
s

d

�s+k �
1�

s

d

�n�s�k d� n+ k

d� s
;

for j + 1 < d and k < n � d+ k � j � 1;
1 for n > d+ k � j � 1:

Proof :

It is clearly impossible to have Li > k if j + 1 � d (i.e. the server is always busy in the
interval) and at most k + d � j � 1 cells arrive or, if j + 1 < d and at most k cells arrive.
Similary, Li is certainly greater than k if more than k + d� j � 1 cells arrive. There remains
the intermediate case j + 1 < d and k < n � k + d � j � 1.

Let �n(k) be the complementary distribution of the queue length at service instant id due
uniquely to the n Poisson arrivals (i.e. discounting the j+1 cells already present at (i� 1)d).
Pn(j; k) is exactly equal to �n(k) if, and only if, the queue is empty somewhere in the interval
(by empty in the present case of a synchronous server, we mean the queue is empty at a
service instant).

To show the conditions de�ning the considered intermediate case do indeed imply that
the queue must empty at some point in ((i� 1)d; id), �rst, suppose the contrary : the system
is always busy. Then, Li = n+1+ j � d and Li > k. But this contradicts the condition on n
and we can conclude that the queue must empty. It remains to show that �n(k) is given by
the expression in Theorem 1.

Using Bene�s result [Nor 91], we have:

�n(k) =
n�kX
s=1

Pr fk + s arrivals in (id� s; id)g �

Pr f queue empty at id� s j k + s arrivals in (id� s; id)g:

Poisson arrivals being uniformly distributed over any �nite interval, the probability of
exactly k + s arrivals in an interval of length s is clearly : 

n
k + s

!�
s

d

�k+s �
1�

s

d

�n�k�s
:

It remains to calculate the second probability. If there are r + s arrivals in (id � s; id),
there are n � r � s arrivals in ((i � 1)d; id � s). Let nl be the number of Poisson arrivals
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distributed, and therefore exchangeable. Consequently, we can write :

Pr f queue empty at id� s j r + s arrivals in (id� s; id)g

= Prf queue empty at id� s j n � r � s arrivals in ((i� 1)d; id � s)g

= PrfNl < l; l = 1; � � � ; d� s j Nd�s = n� r � sg =
d � n+ r

d � s
:

from [Tak 77], Theorem 1, p.10. This completes the proof.

B The D=Geo=1 queue

We consider a discrete-time queueing system where events can only occur at speci�c instants
k; k 2 Z. Customers arrive to a single-server queue with in�nite capacity, their interarrival
time is deterministic and equal to d and they require service times which are independent and
shifted geometrically distributed with parameter p. More precisely, if Si denotes the service
time of the ith customer, we have :

k � 1;PrfSi = kg = (1 � p)pk�1

We consider a sequence fXigi�1 of independent and geometrically distributed random
variables with parameter p. Let r � 1. The generating function of the random variable
X1 + � � �+Xr is given by:

E
h
zX1+���+Xr

i
=

[(1� p)z]r

(1� pz)r
= (1 � p)rzr

1X
n=0

 
n+ r � 1
r � 1

!
znpn for j z j� 1;

It follows that:

PrfX1 + � � �+Xr = ng = (1� p)rpn�r
 
n� 1
r � 1

!
for n � r:

Consider a discrete-time renewal process in which the interrarival times Xi, i � 1, are shifted
geometrically distributed with parameter p. Let N denote the number of renewals in an
interval of length d and let br = PrfN = rg. We have:

br = PrfX1 + � � � +Xr � d;X1 + � � �+Xr+1 > dg

= (1� p)rpd�r
dX

k=r

 
k � 1
r � 1

!
=

 
d
r

!
(1� p)rpd�r

by using the Vandermonde convolution formula ([Rio 82], p.148). Finally, we have:

br =

8><
>:
 
d
r

!
(1� p)rpd�r if 0 � r � d;

0 otherwise:

14



f g
matrix is given by:

� = ((�i;j)) where

8><
>:

�i;0 = 1�
Pi

j=0 bj; i � 0;
�i;j = bi�j+1; i � 0; j = 1; � � � ; i+ 1;
�i;j = 0; otherwise:

The Markov chain fQng has a stationary distribution if and only if the equation �:� = �
has a unique solution which satis�es: �i � 0; for i � 0; and

P1
i=0 �i = 1. It can be shown

that this is equivalent to the following condition: the equation z = [p + (1 � p)z]d has a
unique solution between 0 and 1. Using Rouch�e's theorem, the condition is satis�ed when
� = p+1=d < 1. In this case, let � denote that solution. The stationary distribution is given
by: k � 0; �k = �k(1 � �).

The distribution of the waiting time W1 can be easily derived:

PrfW1 = 0g = 1 � �;

PrfW1 = kg = �(1� �)(1� p)[1� (1 � p)(1 � �)]k�1 for k � 1:

The distribution of the inter-exit time I is given by:

PrfI = kg =
1� p

1 + p(1 � �)
(1 � �)[1� (1� p)(1 � �)]d�k

+
1� p

1 + p(1 � �)
pk�1[1� (1� p)(1 � �)]d for 1 � k � d;

PrfI = kg =
1� p

1 + p(1 � �)

h
(1 � �)pk�d + pk�1[1� (1 � p)(1 � �)]d

i
for k � d:

The squared coe�cient of variation Cv2 of the inter-exit time I is given after some algebra
by:

Cv2 =
Var[I]

E[I]2
=

�2�

d(1 � p)(1 � �)
+

2(p + (1� p)�)

d2(1� p)2(1� �)
:
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