
A Compiler Approach to Fast Hardware Design Space
Exploration in FPGA-based Systems

Byoungro So, Mary W. Hall and Pedro C. Diniz

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{bso,mhall,pedro}@isi.edu

ABSTRACT
This paper describes an automated approach to hardware
design space exploration, through a collaboration between
parallelizing compiler technology and high-level synthesis
tools. We present a compiler algorithm that automatically
explores the large design spaces resulting from the applica-
tion of several program transformations commonly used in
application-specific hardware designs. Our approach uses
synthesis estimation techniques to quantitatively evaluate
alternate designs for a loop nest computation. We have im-
plemented this design space exploration algorithm in the
context of a compilation and synthesis system called DE-
FACTO, and present results of this implementation on five
multimedia kernels. Our algorithm derives an implementa-
tion that closely matches the performance of the fastest de-
sign in the design space, and among implementations with
comparable performance, selects the smallest design. We
search on average only 0.3% of the design space. This tech-
nology thus significantly raises the level of abstraction for
hardware design and explores a design space much larger
than is feasible for a human designer.

Categories and Subject Descriptors
D.3.4 [Compilers]: Parallelizing Compilers; B.5.2 [Designs

Aids]: Automatic Synthesis; D.7.1 [Types and Design

Styles]: Algorithms implemented in hardware, Gate Arrays

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Design Space Exploration, Data Dependence Analysis, Reuse
Analysis, Loop Transformations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

1. INTRODUCTION
The extreme flexibility of Field Programmable Gate Ar-

rays (FPGAs) has made them the medium of choice for fast
hardware prototyping and a popular vehicle for the real-
ization of custom computing machines. FPGAs are com-
posed of thousands of small programmable logic cells dy-
namically interconnected to allow the implementation of any
logic function. Tremendous growth in device capacity has
made possible implementation of complex functions in FP-
GAs. For example, FPGA implementations can sometimes
yield even faster solutions than conventional hardware, up
to 2 orders of magnitude on encryption [18]. In addition
FPGAs offer a much faster time to market for time-critical
applications and allow post-silicon in-field modification to
prototypical or low-volume designs where an Application
Specific Integrated Circuit (ASIC) is not justified.

Despite growing importance of application-specific FPGA
designs, these devices are still difficult to program making
them inaccessible to the average developer. The standard
practice requires developers to express the application in
a hardware-oriented language such as Verilog or VHDL,
and synthesize the design to hardware using a wide va-
riety of synthesis tools. As optimizations performed by
synthesis tools are very limited, developers must perform
high-level and global optimizations by hand. For example,
no commercially-available high-level synthesis tool handles
multi-dimensional array variables1 nor automatic selection
of loop unroll factors.

Because of the complexity of synthesis, it is difficult to
predict a priori the performance and space characteristics of
the resulting design. For this reason, developers engage in
an iterative refinement cycle, at each step manually apply-
ing transformations, synthesizing the design, examining the
results, and modifying the design to trade off performance
and space. Throughout this process, called design space
exploration, the developer carries the responsibility for the
correctness of the application mapping.

We believe the way to make programming of FPGA-based
systems more accessible is to offer a high-level imperative
programming paradigm, such as C, coupled with compiler
technology oriented towards FPGA designs. In this way,
developers retain the advantages of a simple programming

1Several claim the support of this feature but only for sim-
ulation purposes, not actual hardware synthesis.

model via the high-level language but rely on powerful com-
piler analyses and transformations to optimize the design as
well as automate most of the tedious and error-prone map-
ping tasks. We make the observation that, for a class of
FPGA applications characterized as highly parallel array-
based computations (e.g., multimedia codes), many hand
optimizations performed by developers are similar to trans-
formations used in parallelizing compilers. For example, de-
velopers parallelize computations, optimize external mem-
ory accesses, explicitly manage storage and perform loop
transformations. For this reason, we argue that parallelizing
compiler technology can be used to optimize FPGA designs.

In this paper, we describe an automated approach to de-
sign space exploration, based on a collaboration between a
parallelizing compiler and high-level synthesis tools. Com-
pletely synthesizing a design is prohibitively slow (hours to
days) and further, the compiler must try several designs to
arrive at a good solution. For these reasons, we exploit esti-
mation from behavioral synthesis to determine specific hard-
ware parameters (e.g., size and speed) with which the com-
piler can quantitatively evaluate the application of a trans-
formation to derive an optimized and feasible implementa-
tion of the loop nest computation. Since the hardware im-
plementation is bounded in terms of capacity, the compiler
transformations must also consider space constraints. This
compiler algorithm effectively enables developers to explore
a potentially large design space, which without automation
would not be feasible.

In previous work, we presented an overview of DEFACTO,
the system upon which this work is based, which combines
parallelizing compiler technology in the Stanford SUIF com-
piler with hardware synthesis tools [9]. In this paper, we
present a detailed algorithm for design space exploration
and results demonstrating its effectiveness. While there are
a few systems that automatically synthesize hardware de-
signs from C specifications [24], to our knowledge there is no
other system that automatically explores the design space in
collaboration with behavioral synthesis estimation features.
Our current infrastructure largely supports the direct map-
ping of computations to multiple FPGAs [26]. However, the
work in this paper describes an implementation and experi-
mental results for designs that are mapped to a single FPGA
and multiple memories. We thus focus on the algorithmic
aspects of design space exploration under simpler data and
computation partitioning strategies.

This paper makes the following specific contributions.

• Describes the integration of behavioral synthesis tools
and parallelizing compiler technology to map compu-
tations to FPGA-based architectures. We present a
compiler algorithm for design space exploration that
relies on behavioral synthesis estimates. The algo-
rithm applies loop transformations to explore a space-
time trade-off in the realization of hardware designs.

• Defines a balance metric for guiding design space explo-
ration, which suggests when it is profitable to devote
more resources to storage or computation. The de-
sign space exploration algorithm exploits monotonic-
ity properties of the balance metric to effectively prune
large regions of the search space, thereby allowing the
compiler to consider a wider range of transformations
that otherwise would not be feasible.

• Presents experimental results for five multimedia ker-
nels. Our algorithm derives an implementation that

closely matches the performance of the fastest design
in the design space, and among implementations with
comparable performance, selects the smallest design.
We search on average only 0.3% of the design space.

As technology advances increase density of FPGA devices,
tracking Moore’s law for conventional logic of doubling ev-
ery 18 months, devices will be able to support more sophisti-
cated functions. With the future trend towards on-chip inte-
gration of internal memories, FPGAs with special-purpose
functional units are becoming attractive as a replacement
for ASICs and for custom embedded computing architec-
tures. We foresee a growing need to combine the strengths
of high-level program analysis techniques, to complement
the capabilities of current and future synthesis tools. De-
vices and consequently designs will become more complex,
demanding an efficient solution to exploring even larger de-
sign spaces.

The remainder of the paper is organized as follows. In the
next section we present some background on FPGAs and
behavioral synthesis. Section 3 describes the optimization
goal of our design space exploration algorithm in mapping
loop nest computations to hardware. In Section 4 we discuss
the analyses and transformation our algorithm uses. In Sec-
tion 5 we present the design space exploration algorithm. In
Section 6 we present experimental results for the application
of this algorithm to 5 image processing computations. We
survey related work in Section 7 and conclude in Section 8.

2. BACKGROUND
We now describe FPGAs and synthesis, and compare with

optimizations performed in parallelizing compilers. We also
discuss features of our target application domain.

2.1 Field-Programmable-Gate-Arrays
FPGAs are a popular vehicle for rapid prototyping or as

a way to implement simple logic interfaces. FPGAs are im-
plemented as (re)programmable seas-of-gates with distinct
internal architectures. For example, the Xilinx Virtex family
of devices consists of 12, 288 device slices where each slice in
turn is composed of 2 look-up tables (LUTs) each of which
can implement an arbitrary logic function of 11 boolean in-
puts and 6 outputs [15]. Two slices form a configurable logic
block (CLBs) and these blocks are interconnected in a 2-
dimensional mesh via programmable static routing switches.
To configure an FPGA, designers have to download a bit-
stream file with the configuration of all slices in the FPGA
as well as the routing. Other programmable devices, for
example the APEX II devices from Altera, have a more hi-
erarchical routing approach to connecting the CLBs in their
FPGAs, but the overall functionality is similar [6].

As with traditional architectures, bandwidth to external
memory is a key performance bottleneck in FPGAs, since
it is possible to compute orders of magnitude more data
in a cycle than can be fetched from or stored to memory.
However, unlike traditional architectures, an FPGA has the
flexibility to devote its internal configurable resources either
to storage or to computation.

2.2 FPGA Synthesis Flow
Synthesis flow for FPGAs is the term given to the process

of translating functional logic specifications to a bitstream
description that configures the device. This functional spec-
ification can be done at multiple levels. Using hardware

description languages such as VHDL or Verilog, designers
can specify the functionality of their datapath circuits (e.g.,
adders, multipliers, etc.) as a diagram of design blocks. This
structural specification defines the input/output interface for
each block and allows the designers to describe finite state
machines (FSMs) to control the temporal behavior of each of
the blocks. Using this approach designers can control every
single aspect of operations in their datapaths. This is the
preferred approach when maximum performance is sought,
but requires extremely high design times.

The process that takes a structural specification and tar-
gets a particular architecture’s programmable units (LUTs
in the case of Xilinx devices) is called RTL-level synthesis.
The RTL-level synthesis generates a netlist representation of
the intended design, used as the input of low-level synthesis
steps such as the mapping and place-and-route (P&R) to
ultimately generate the device bitstream configuration file.

2.3 Behavioral Synthesis vs. Compilers
Behavioral specifications in VHDL or Verilog, as opposed

to lower level structural specifications, express computations
without committing to a particular hardware implementa-
tion structure. The process of taking a behavioral specifi-
cation and generating a hardware implementation is called
behavioral synthesis. Behavioral synthesis performs three
core functions:

• binding operators and registers in the specification
to hardware implementations (e.g., selecting a ripple-
carry adder to implement an addition);

• resource allocation (e.g., deciding how many ripple-
carry adders are needed); and,

• scheduling operations in particular clock cycles.

To generate a particular implementation, behavioral syn-
thesis requires the programmer to specify the target design
requirements in terms of area, clock rate, number of clock
cycles, number of operators, or some combination. For ex-
ample, the designer might request a design that uses two
multipliers and takes at most 10 clock cycles. Behavioral
synthesis tools use this information to generate a particular
implementation that satisfies these constraints.

In addition, behavioral synthesis supports some optimiza-
tions, but relies heavily on the developer to direct some of
the mapping steps. For example, current behavioral syn-
thesis tools allow the specification of which loops to unroll.
After loop unrolling, the tool will perform extensive opti-
mizations on the resulting inner loop body, such as paral-
lelizing and pipelining operations and minimizing registers
and operators to save space. However, deciding the unroll
factor is left up to the programmer.

Behavioral Synthesis Parallelizing Compilers

Optimizations only on scalar variables Optimizations on scalars and arrays

Optimizations only inside loop body Optimizations inside loop body

and across loop iterations

Supports user-controlled Analyses guide automatic

loop unrolling loop transformations

Manages registers and Optimizes memory accesses

inter-operator communication Evaluates trade-offs of different

storage on- and off-chip

Considers only single FPGA System-level view: multiple FPGAs

multiple memories

Performs allocation, binding and No knowledge of hardware

scheduling of hardware resources implementation of computation

Table 1: Comparison of Behavioral Synthesis and

Parallelizing Compiler Technologies.

While there are some similarities between the optimiza-
tions performed by synthesis tools and parallelizing com-
pilers, in many ways they offer complementary capabilities,
as shown in Table 1. The key advantage of parallelizing
compiler technology over behavioral synthesis is the abil-
ity to perform data dependence analysis on array variables,
used as a basis for parallelization, loop transformations and
optimizing memory accesses. This technology permits opti-
mization of designs with array variables, where some data
resides in off-chip memories. Further, it enables reasoning
about the benefits of code transformations (such as loop
unrolling) without explicitly applying them. In addition,
parallelizing compilers are capable of performing global pro-
gram analysis, which permits optimization across the entire
system.

2.4 Target Application Domain
Because of their customizability, FPGAs are commonly

used for applications that have significant amounts of fine-
grain parallelism and possibly can benefit from non-standard
numeric formats (e.g., reduced data widths). Specifically,
multimedia applications, including image and signal pro-
cessing on 8-bit and 16-bit data, respectively, offer a wide
variety of popular applications that map well to FPGAs.

For example, a typical image processing algorithm scans
a multi-dimensional image and operates on a given pixel
value and all its neighbors. Images are often represented as
multi-dimensional array variables, and the computation is
expressed as a loop nest. Such applications exhibit abun-
dant concurrency as well as temporal reuse of data. Exam-
ples of computations that fall into this category include im-
age correlation, Laplacian image operators, erosion/dilation
operators and edge detection.

Fortunately, such applications are a good match for the
capabilities of current parallelizing compiler analyses, which
are most effective in the affine domain, where array subscript
expressions are linear functions of the loop index variables
and constants [25]. In this paper, we restrict input programs
to loop nest computations on array and scalar variables (no
pointers), where all subscript expressions are affine with a
fixed stride. The loop bounds must be constant.2 We sup-
port loops with control flow, but to simplify control and
scheduling, the generated code always performs conditional
memory accesses.

3. OPTIMIZATION GOAL AND BALANCE
Simply stated, the optimization criteria for mapping a sin-

gle loop nest to FPGA-based systems are as follows: (1) the
design must not exceed the capacity constraints of the sys-
tem; (2) the execution time should be minimized; and, (3)
for a given level of performance, FPGA space usage should
be minimized. The motivation for the first two criteria
should be obvious, but the third criterion is also needed for
several reasons. First, if two designs have equivalent perfor-
mance, the smaller design is more desirable, in that it frees
up space for other uses of the FPGA logic, such as to map
other loop nests. In addition, a smaller design usually has
less routing complexity, and as a result, may achieve a faster

2Non-constant bounds could potentially be supported by the
algorithm, but the generated code and resulting FPGA de-
signs would be much more complex. For example, behavioral
synthesis would transform a for loop with a non-constant
bound to a while loop in the hardware implementation.

target clock rate. Moreover, the third criterion suggests a
strategy for selecting among a set of candidate designs that
meet the first two criteria.

With respect to a particular set of transformations, which
are described in the next section, our algorithm attempts
to select the best design that meets the above criteria. The
algorithm uses two metrics to guide the selection of a design.
First, results of estimation provide space usage of the design,
related to criterion 1 above. Another important metric used
to guide the selection of a design, related to criteria 2 and
3, is Balance, defined by the equation.

Balance = F/C,

where F refers to the data fetch rate, the total data bits
that memory can provide per cycle, and C refers to the data
consumption rate, total data bits the computation can con-
sume during the computational delay. If balance is close to
one, both memories and FPGAs are busy. If balance is less
than one, the design is memory bound; if greater than one,
it is compute bound. When a design is not balanced, this
metric suggests whether more resources should be devoted
to improving computation time or memory time.

We borrow the notion of balance from previous work for
mapping array variables to scalar registers to balance the
floating point operations and memory accesses [5]. Because
we have the flexibility in FPGAs to adjust time spent in
either computation or memory accesses, we use the data
fetch rate and data consumption rate, and compare them
under different optimization assumptions.

4. ANALYSES AND TRANSFORMATIONS
This section describes at a high level the code transfor-

mations performed by our system, as illustrated by the FIR
filter example in Figure 1.

Unroll-and-Jam. The first code transformation, unroll-
and-jam, involves unrolling one or more loops in the itera-
tion space and fusing inner loop bodies together, as shown in
Figure 1(b). Unrolling exposes operator parallelism to high-
level synthesis. In the example, all of the multiplies can
be performed in parallel. Two additions can subsequently
be performed in parallel, followed by two more additions.
Unroll-and-jam can also decrease the dependence distances
for reused data accesses, which, when combined with scalar
replacement discussed below, can be used to expose oppor-
tunities for parallel memory accesses.

Scalar Replacement. Scalar replacement replaces ar-
ray references by accesses to temporary scalar variables, so
that high-level synthesis will exploit reuse in registers [5].
Our approach to scalar replacement closely matches previ-
ous work, which eliminates true dependences when reuse
is carried by the innermost loop, for accesses in the affine
domain with consistent dependences (i.e., constant depen-
dence distances) [5]. There are, however, two differences:
(1) we also eliminate unnecessary memory writes on out-
put dependences; and, (2) we exploit reuse across all loops
in the nest, not just the innermost loop. The latter differ-
ence stems from the observation that many, though not all,
algorithms mapped to FPGAs have sufficiently small loop
bounds or small reuse distances, and the number of regis-
ters that can be configured on an FPGA is sufficiently large.
A more detailed description of our scalar replacement and
register reuse analysis can be found in [9].

In the example in Figure 1(c), we see the results of scalar
replacement, which illustrates some of the above differences

int S[96];
int C[32];
int D[64];
for (j=0; j<64; j++)
for(i = 0; i<32; i++)

D[j] = D[j] + (S[i+j] * C[i]);
(a) Original code.

for (j=0; j<64; j+=2)
for(i = 0; i<32; i+=2){

D[j] = D[j] + (S[i+j] * C[i]);
D[j] = D[j] + (S[i+j+1] * C[i+1]);
D[j+1] = D[j+1] + (S[i+j+1] * C[i]);
D[j+1] = D[j+1] + (S[i+j+2] * C[i+1]);

}
(b) After unrolling j loop and i loop by 1 (unroll

factor 2) and jamming copies of i loop together.

for (j=0; j<64; j+=2) { /* initialize D registers */
d 0 = D[j];
d 1 = D[j+1];
for (i=0; i<32; i+=2) {

if (j==0) { /* initialize C registers */
c 0 0 = C[i];
c 1 0 = C[i+1];

}
S 0 = S[i+j+1];
d 0 = d 0 + S[i+j] * c 0 0; /* unroll(0,0) */
d 0 = d 0 + S 0 * c 1 0; /* unroll(0,1) */
d 1 = d 1 + S 0 * c 0 0; /* unroll(1,0) */
d 1 = d 1 + S[i+j+2] * c 1 0; /* unroll(1,1) */
rotate registers(c 0 0, ... ,c 0 15);
rotate registers(c 1 0, ... ,c 1 15);

}
D[j] = d 0;
D[j+1] = d 1;

}
(c) After scalar replacement of accesses to C and D across

both i and j loop.

for (j=0; j<32; j++) { /* initialize D registers */
d 0 = D2[j];
d 1 = D3[j];
for (i=0; i<16; i++) {

if (j==0) { /* initialize C registers */
c 0 0 = C0[i];
c 1 0 = C1[i];

}
S 0 = S1[i+j];
d 0 = d 0 + S0[i+j] * c 0 0; /* unroll(0,0) */
d 0 = d 0 + S 0 * c 1 0; /* unroll(0,1) */
d 1 = d 1 + S 0 * c 0 0; /* unroll(1,0) */
d 1 = d 1 + S0[i+j+1] * c 1 0; /* unroll(1,1) */
rotate registers(c 0 0, ... ,c 0 15);
rotate registers(c 1 0, ... ,c 1 15);

}
D3[j] = d 1;
D2[j] = d 0;

}
(d) Final code generated for FIR, including loop

normalization and data layout optimization.

Figure 1: Optimization Example: FIR.

from previous work. Accesses to arrays C and D can all
be replaced. The D array is written back to memory at
the end of the iteration of the j loop, but redundant writes
are eliminated. Only loop-independent accesses to array S
are replaced because the other accesses to array S do not
have a consistent dependence distance. Because reuse on
array C is carried by the outer loop, to exploit full reuse of
data from C involves introducing extra registers that hold
values of C across all iterations of the inner loop. The rotate
operation shifts the registers and rotates the last one into
the first position; this operation can be performed in parallel
in hardware.

Loop Peeling and Loop-Invariant Code Motion.

We see in Figure 1(c) and (d) that values for the c registers
are loaded on the first iteration of the j loop. For clarity
it is not shown here, but the code generated by our com-
piler actually peels the first iteration of the j loop instead
of including these conditional loads so that other iterations
of the j loop have the same number of memory loads and
can be optimized and scheduled by high-level synthesis ac-
cordingly. Although at first glance the code size appears to
be doubled by peeling, high-level synthesis will usually reuse
the operators between the peeled and original loop body, so
that the code growth does not correspond to a growth in
the design. Memory accesses to array D are invariant with
respect to the i loop, so they are moved outside the loop
using loop-invariant code motion. Within the main unrolled
loop body, only memory accesses to array S remain.

Data Layout and Array Renaming. Another code
transformation lays out the data in the FPGA’s external
memory so as to maximize memory parallelism. Custom
data layout is separated into two distinct phases. In the
first phase, which we call array renaming, performs a 1-
to-1 mapping between array access expressions and virtual
memory ids, to customize accesses to each array according
to their access patterns. Array renaming can only be per-
formed if all accesses to the array within the loop nest are
uniformly generated. Two affine array references A(a1i1 +
b1, . . . , anin + bn) and A(c1i1 + d1, . . . , cnin + dn), where
a1, . . . , an, b1, . . . , bn, c1, . . . cn, d1, . . . , dn are constants and
i1, . . . , in are loop index variables, are uniformly generated
if ∀i=1,nai = ci. If an array’s accesses are not uniformly
generated, then it is mapped to a single memory. The result
of array renaming is an even distribution of data across the
virtual memories.

The second phase, called memory mapping, binds virtual
memory ids to physical ids, taking into consideration ac-
cesses by other arrays in the loop nest to avoid scheduling
conflicts. As shown in Figure 1(d), the effect of data layout
is that even elements of S and C are mapped to memory 0,
and odd elements are mapped to memory 1, with accesses
renamed to reflect this layout. D is similarly distributed to
memories 2 and 3.

This approach is similar in spirit to the modulo unrolling
used in the RAW compiler [3]. However, as compared to
modulo unrolling, which is a loop transformation that as-
sumes a fixed data layout, our approach is a data trans-
formation. Further, our current implementation supports
a more varied set of custom data layouts. A typical lay-
out is cyclic in at least one dimension of an array, possibly
more, but more customized data layouts arise from packing
small data types, strided accesses, and subscript expressions
with multiple induction variables (i.e., subscripts of the form

a0i0+a1i1+. . .+anin+b, where n > 0 and more than one ai

is non-zero). A full discussion of the data layout algorithm
is beyond the scope of this paper, but further discussion can
be found in [9].

Summary. To summarize, the algorithm evaluates a fo-
cused set of possible unroll factors for multiple loops in the
loop nest. Data reuse is exploited within and across the
loops in the nest, as a result of scalar replacement by the
compiler, eliminating unnecessary memory accesses. Oper-
ator parallelism is exposed to high-level synthesis through
the unrolling of one or more loops in the nest; any indepen-
dent operations will be performed in parallel if high-level
synthesis deems this beneficial.

Thus, we have defined a set of transformations, widely
used in conventional computing, that permit us to adjust
parallelism and data reuse in FPGA-based systems through
a collaboration between parallelizing compiler technology
and high-level synthesis. To meet the optimization crite-
ria set forth in the previous section, we have reduced the
optimization process to a tractable problem, that of select-
ing the unroll factors for each loop in the nest that leads to
a high-performance, balanced, efficient design. In the next
section, we present the algorithm in detail.

Although our algorithm focuses on a fixed set of compiler
transformations, the notion of using balance to guide the
performance-space tradeoff in design space exploration can
be used for other optimizations as well.

5. OPTIMIZATION ALGORITHM
The discussion in this section defines terms and uses these

to describe the design space exploration algorithm. The
algorithm is presented assuming that scalar replacement will
exploit all reuse in the loop nest on affine array accesses. The
resulting design will store all reused data internally on the
FPGA, which is feasible for many applications with short
reuse distances, but may require too many on-chip registers
in the general case. We address this problem by limiting the
number of registers in Section 5.4.

5.1 Definitions
We define a saturation point as a vector of unroll factors

where the memory parallelism reaches the bandwidth of the
architecture, such that the following property holds for the
resulting unrolled loop body:X

i∈Reads

widthi = C1 ∗
X

l∈NumMemories

widthl.X
j∈Writes

widthj = C2 ∗
X

l∈NumMemories

widthl.

Here, C1 and C2 are integer constants. To simplify this
discussion, let us assume that the access widths match the
memory width, so that we are simply looking for an unroll
factor that results in a multiple of NumMemories read and
write accesses for the smallest values of C1 and C2. The
saturation set, Sat, can then be determined as a function of
the number of read and write accesses, R and W , in a single
iteration of the loop nest and the unroll factor for each loop
in the nest. We consider reads and writes separately because
they will be scheduled separately.

We are interested in determining the saturation point after
scalar replacement and redundant write elimination. For the

purposes of this discussion, we assume that for each array
accessed in the main loop body, all accesses are uniformly
generated, and thus a customized data layout will be ob-
tained; modifications to the algorithm when this does not
hold are straightforward, but complicate the calculation of
the saturation point. R is defined as the number of uni-
formly generated read sets. W is the number of uniformly
generated write sets. That is, there is a single memory read
and single write access for each set of uniformly generated
references because all others will be removed by scalar re-
placement or redundant write elimination.

We define an unroll factor vector as U = 〈u1, . . . , un〉,
where ui corresponds to the unroll factor for loop i, and a
function P (U) =

Q
1≤i≤n ui, which is the product of all the

unroll factors. Let Psat = lcm(gcd(R,W),NumMemories).
The saturation set Sat can then be defined as a vector whose
product is Psat, where ∀ui 6= 1, array subscript expressions
for memory accesses are varying with respect to loop i. That
is, the saturation point considers unrolling only those loops
that will introduce additional memory parallelism. Since
loop peeling and loop-invariant code motion have eliminated
memory accesses in the main loop body that are invariant
with respect to any loop in the nest, from the perspective of
memory parallelism, all such unroll factor vectors are equiv-
alent. A particular saturation point Sati refers to unrolling
the i loop by the factor Psat, and using an unroll factor of
1 for all other loops.

5.2 Search Space Properties
The optimization involves selecting unroll factors for the

loops in the nest. Our search is guided by the following
observations about the impact of unrolling a single loop in
the nest, which depend upon the assumptions about target
applications in Section 2.4.

Observation 1. The data fetch rate is monotonically non-
decreasing as the unroll factor increases by multiples of Psat,
but it is also nonincreasing beyond the saturation point.

Intuitively, the data fetch rate increases as there are more
memory accesses available in the loop body for scheduling
in parallel. This observation requires that the data is laid
out in memory and the accesses are scheduled such that the
number of independent memory accesses on each memory
cycle is monotonically nondecreasing as the unroll factor
increases. Here, the unroll factor must increase by multi-
ples of Psat, so that each time a memory operation is per-
formed, there are NumMemories accesses in the main loop
body that are available to schedule in parallel. This is true
whenever data layout has successfully mapped each array
to multiple memories. (If data layout is not successful, as
is the case when not all accesses to the same array are uni-
formly generated, a steady state mapping of data to mem-
ories can guarantee monotonicity even when there are less
than NumMemories parallel accesses, but we will ignore
this possibility in the subsequent discussion.)

Data layout and mapping data to specific memories is
controlled by the compiler. Given the property of array re-
naming from Section 4, that the accessed data is evenly dis-
tributed across virtual memory ids, this mapping derives a
solution that, in the absence of conflicting accesses to other
arrays, exposes fully parallelizable accesses. To prevent con-
flicting read or write accesses in mapping virtual memory ids
to physical ones, we must first consider how accesses will be

scheduled. The compiler component of our system is not
directly responsible for scheduling; scheduling memory ac-
cesses as well as computation is performed by behavioral
synthesis tools such as Monet.

The scheduling algorithm used by Monet, called As Soon
As Possible, first considers which memory accesses can oc-
cur in parallel based on comparing subscript expressions and
physical memory ids, and then rules out writes whose results
are not yet available due to dependences [10]. In performing
the physical memory id mapping, we first consider read ac-
cesses, so that we maximize the number of read operations
that can occur in parallel. The physical id mapping matches
the read access order, so that the total number of memory
reads in the loop is evenly distributed across the memories
for all arrays. As an added benefit, operands for individual
writes are fetched in parallel. Then the physical mapping for
write operations is also performed in the same order, evenly
distributing write operations across the memories.

With these properties of data layout and scheduling, at
the saturation point, we have guaranteed through choice of
unroll factor that the data fetch rate increases up to the
saturation point, but not beyond it.

Observation 2. The consumption rate is monotonically
non-decreasing as the unroll factor increases by multiples of
Psat, even beyond the saturation point.

Intuitively, as the unroll factor increases, more operator
parallelism is enabled, thus reducing the computation time
and increasing the frequency at which data can be con-
sumed. Further, based on Observation 1, as we increase the
data fetch rate, we eliminate idle cycles waiting on memory
and thus increase the consumption rate. Although the par-
allelism exploited as a result of unrolling a loop may reach
a threshold, performance continues to improve slightly due
to simpler loop control.

Observation 3. Balance is monotonically nondecreasing
before the saturation point and monotonically nonincreasing
beyond the saturation point as the unroll factor increases by
multiples of Psat.

That balance is nondecreasing before the saturation point
relies on Observation 1. The data fetch rate is increasing
as fast as or faster than the data consumption rate because
memory accesses are completely independent, whereas op-
erator parallelism may be restricted. Beyond the saturation
point, the data fetch rate is not increasing further, and the
consumption rate is increasing at least slightly.

5.3 Algorithm Description
The algorithm is presented in Figure 2. Given the above

described monotonicity of the search space for each loop in
the nest, we start with a design at the saturation point, and
we search larger unroll factors that are multiples of Psat,
looking for the two points between which balance crosses
over from compute bound to memory bound, or vice versa.
In fact, ignoring space constraints, we could search each loop
in the nest independently, but to converge to a near-optimal
design more rapidly, we select unroll factors based on the
data dependences, as described below.

The algorithm first selects Uinit, the starting point for the
search, which is in Sat. We select the most promising unroll
factors based on the dependence distance vectors. A depen-
dence distance vector is a vector d = 〈d1, d2, . . . , dn〉 which

represents the vector difference between two accesses to the
same array, in terms of the loop indices in the nest [25].
Since we are starting with a design that maximizes memory
parallelism, then either the design is memory bound and we
stop the search, or it is compute bound and we continue. If
it is compute bound, then we consider unroll factors that
provide increased operator parallelism, in addition to mem-
ory parallelism. Thus, we first look for a loop that carries
no dependence (i.e., ∀d∈Ddi = 0). All unrolled iterations of
such a loop can be executed in parallel. If such a loop i is
found, then we set the unroll factor to Sati. assuming this
unroll factor is in Sat.

If no such loop exists, then we instead select an unroll fac-
tor that favors loops with the largest dependence distances,
because such loops can perform in parallel computations be-
tween dependences. The details of how our algorithm selects
the initial unroll factor in this case is beyond the scope of
this paper, but the key insight is that we unroll all loops
in the nest, with larger unroll factors for the loops carrying
larger minimum nonzero dependence distances. The mono-
tonicity property also applies when considering simultaneous
unrolling for multiple loops as long as unroll factors for all
loops are either increasing or decreasing.

If the initial design is space constrained, we must re-
duce the unroll factor until the design size is less than the
size constraint Capacity, resulting in a suboptimal design.
The function FindLargestFit simply selects the largest un-
roll factor between the baseline design corresponding to no
unrolling (called Ubase), and Uinit, regardless of balance, be-
cause this will maximize available parallelism.

Assuming the initial design is compute bound, the algo-
rithm increases the unroll factors until it reaches a design
that is (1) memory bound; (2) larger than Capacity; or,
(3) represents full unrolling of all loops in the nest (i.e.,
Ucurr = Umax), as follows.

The function Increase(Uin) returns unroll factor vector
Uout such that

(1)P (Uout) = 2 ∗ P (Uin); and,
(2)∀iu

in
i ≤ uout

i ≤ umax
i .

If there are no such remaining unroll factor vectors, then
Increase returns Uin.

If either a space-constrained or memory bound design is
found, then the algorithm will select an unroll factor vector
between the last compute bound design that fit, and the
current design, approximating binary search, as follows.

The function SelectBetween(Usmall , Ularge) returns the un-
roll factor vector Uout such that

(1)P (Uout) = (P (Usmall) + P (Ularge)/2;

(2)∀iu
small
i ≤ uout

i ≤ ularge

i ; and,
(3)P (Uout) = C ∗P (Uinit), for some constant C.

If there are no such remaining unroll factor vectors, then
SelectBetween returns Usmall, a compute bound design.

5.4 Adjusting Number of On-Chip Registers
For designs where the reuse distance is large and many

registers are required, it may become necessary to reduce the
number of data items that are stored on the FPGA. Using
fewer on-chip registers means that less reuse is exploited,
which in turn slows down the fetch rate and, to a lesser
extent, the consumption rate. The net effect is that, in the

Search Algorithm:
Input: Code /* An n-deep loop nest */
Output: 〈u1, . . . , un〉 /* a vector of unroll factors */

Ucurr = Uinit

Umb = Umax

ok = False
while (!ok) do
Code = Generate(Ucurr)
Estimate = Synthesize(Code)
B = Balance(Code,Estimate.Performance)
/* first deal with space-constrained designs */
if (Estimate.Space > Capacity) then

if (Ucurr = Uinit) then
Ucurr = FindLargestFit(Ubase, Ucurr)
ok = True

else
Ucurr = SelectBetween(Ucb, Ucurr)

else if (B = 1) then ok = True /* Balanced, so DONE! */
else if (B < 1) then /* memory bound */

Umb = Ucurr

if (Ucurr = Uinit) then ok = True
else

/* Balanced solution is between earlier size and this */
Ucurr = SelectBetween(Ucb, Umb)

else if (B > 1) then /* compute bound */
Ucb = Ucurr

if (Umb = Umax) then
/* Have only seen compute bound so far */
Ucurr = Increase(Ucb)

else
/* Balanced solution is between earlier size and this */
Ucurr = SelectBetween(Ucb, Umb)

/* Check if no more points to search */
if (Ucurr = Ucb) ok = True

end
return Ucurr

Figure 2: Algorithm for Design Space Exploration.

first place, the design will be smaller and more likely to fit
on chip, and secondly, space is freed up so that it can be
used to increase the operator parallelism for designs that
are compute bound.

To adjust the number of on-chip registers, we can use loop
tiling to tile the loop nest so that the localized iteration
space within a tile matches the desired number of registers,
and exploit full register reuse within the tile.

6. EXPERIMENTAL RESULTS
This section presents experimental results that character-

ize the effectiveness of the previously described design space
exploration algorithm for a set of kernel applications. We de-
scribe the applications, the experimental methodology and
discuss the results.

6.1 Application Kernels
We demonstrate our design exploration algorithm on five

multimedia kernels, namely:

• Finite Impulse Response (FIR) filter, integer multiply-
accumulate over 32 consecutive elements of a 64 ele-
ment array.

• Matrix Multiply (MM), integer dense matrix multipli-
cation of a 32-by-16 matrix by a 16-by-4 matrix.

• String Pattern Matching (PAT), character matching
operator of a string of length 16 over an input string
of length 64.

Metrics: Area, Number Clock Cycles

Behavioral VHDL

Transformed SUIF

C Application

YES

Balanced
Design?

NO

Balance Calculation

SUIF

Monet

SUIF2VHDL

Behavioral Synthesis

Compiler Analyses

scalar replacement
data layout

array renaming
data reuse

Determination

Unroll Factor

tiling
unroll & jam

Figure 3: Compilation and Synthesis Flow.

• Jacobi Iteration (JAC), 4−point stencil averaging com-
putation over the elements of an array.

• Sobel (SOBEL) Edge Detection (see e.g., SOBEL [22]),
3-by-3 window Laplacian operator over an integer im-
age.

Each application is written as a standard C program where
the computation is a single loop nest. There are no pragmas,
annotations or language extensions describing the hardware
implementation.

6.2 Methodology
We applied our prototype compilation and synthesis sys-

tem to analyze and determine the best unrolling factor for
a balanced hardware implementation. Figure 3 depicts the
design flow used for these experiments. First, the code is
compiled into the SUIF format along with the application
of standard compiler optimizations. Next, our design space
exploration algorithm iteratively determines which loops in
the loop nest should be unrolled and by how much. To
make this determination the compiler starts with a given
unrolling factor and applies a sequence of transformations
as described in Sections 4 and 5. Next, the compiler trans-
lates the SUIF code resulting from the application of the
selected set of transformations to behavioral VHDL using
a tool called SUIF2VHDL. The compiler next invokes the
Mentor Graphics’ MonetTM behavioral synthesis tool to ob-
tain space and performance estimates for the implementa-
tion of the behavioral specification. In this process, the com-
piler currently fixes the clock period to be 40ns. The MonetTM

synthesis estimation yields the amount of area used by the
implementation and the number of clock cycles required to
execute to completion the computation in the behavioral
specification. Given this data, the compiler next computes
the balance metric.

This system is fully automated. The implementation of
the compiler passes specific to this experiment, namely data
reuse analysis, scalar replacement, unroll&jam, loop peel-
ing, and customized data layout, constitutes approximately
14, 500 lines of C++ source code. The algorithm executed
in less than 5 minutes for each application, but to fully syn-

thesize each design would require an additional couple of
hours.

6.3 Results
In this section, we present results for the five previously

described kernels in Figures 4 through 10. The graphs show
a large number of points in the design space, substantially
more than are searched by our algorithm, to highlight the
relationship between unroll factors and metrics of interest.
The first set of results in Figures 4 through 7 plots bal-
ance, execution cycles and design area in the target FPGA
as a function of unroll factors for the inner and outer loops
of FIR and MM. Although MM is a 3-deep loop nest, we
only consider unroll factors for the two outermost loops,
since through loop-invariant code motion the compiler has
eliminated all memory accesses in the innermost loop. The
graphs in the first two columns have as their x-axis unroll
factors for the inner loop, and each curve represents a spe-
cific unroll factor for the outer loop.

For FIR and MM, we have plotted the results for pipelined
and non-pipelined memory accesses to observe the impact of
memory access costs on the balance metric and consequently
in the selected designs. In all plots, a squared box indicates
the design selected by our search algorithm. For pipelined
memory accesses, we assume a read and write latency of
1 cycle. For non-pipelined memory accesses, we assume a
read latency of 7 cycles and a write latency of 3 cycles,
which are the latencies for the Annapolis WildStar

TM [13]
board, a target platform for this work. In practice, memory
latency is somewhere in between these two as some but not
all memory accesses can be fully pipelined. In all results we
are assuming 4 memories, which is the number of external
memories that are connected to each of the FPGAs in the
Annapolis WildStar

TM board.
In these plots, a design is balanced for an unrolling factor

when the y-axis value is 1.0. Data points above the y-axis
value of 1.0 indicate compute-bound designs whereas points
with the y-axis value below 1.0 indicate memory-bound de-
signs. A compute-bound design suggests that more resources
should be devoted to speeding up the computation compo-
nent of the design, typically by unrolling and consuming
more resources for computation. A memory-bound design
suggests that less resources should be devoted to computa-
tion as the functional units that implement the computation
are idle waiting for data. The design area graphs represent
space consumed (using a log scale) on the target Xilinx Vir-
tex 1000 FPGAs for each of the unrolling factors. A vertical
line indicates the maximum device capacity. All designs to
the right side of this line are therefore unrealizable.

With pipelined memory accesses, there is a trend towards
compute-bound designs due to low memory latency. With-
out pipelining, memory latency becomes more of a bottle-
neck leading, in the case of FIR, to designs that are al-
ways memory bound, while the non-pipelined MM exhibits
compute-bound and balanced designs.

The second set of results, in Figures 8 through 10, show
performance of the remaining three applications, JAC, PAT
and SOBEL. In these figures, we present, as before, balance,
cycles and area as a function of unroll factors, but only for
pipelined memory accesses due to space limitations.

We make several observations about the full results. First,
we see that Balance follows the monotonicity properties de-
scribed in Observation 3, increasing until it reaches a sat-

0 1 2 4 8 16 32
Inner Loop Unroll Factor

0.1

0.15

0.2

0.25

0.3

0.35

0.4

B
a

la
n

c
e

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

0 1 2 4 8 16 32
Inner Loop Unroll Factor

0

2000

4000

6000

8000

10000

12000

14000

16000

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

10
4

10
5

Space (log-scaled)

10
2

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 4: Balance, Execution Time and Area for Non-pipelined FIR.

0 1 2 4 8 16 32
Inner Loop Unroll Factor

0.8

1.2

1.6

2

2.4

2.8

3.2

B
a

la
n

ce

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

0 1 2 4 8 16 32
Inner Loop Unroll Factor

0

1000

2000

3000

4000

5000

6000

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

10
4

10
5

10
6

Space (log-scaled)

10
2

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 5: Balance, Execution Cycles and Area for Pipelined FIR.

0 1 2 4 8 16
Inner Loop Unroll Factor

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a

la
n

c
e

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

0 1 2 4 8 16
Inner Loop Unroll Factor

0

1000

2000

3000

4000

5000

6000

7000

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

10
4

10
5

Space (log-scaled)

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 6: Balance, Execution Cycles and Area for Non-pipelined MM.

0 1 2 4 8 16
Inner Loop Unroll Factor

0.5

1

1.5

2

2.5

3

B
a

la
n

c
e

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

0 1 2 4 8 16
Inner Loop Unroll Factor

0

1000

2000

3000

4000

5000

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

10
4

10
5

Space (log-scaled)

10
2

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 7: Balance, Execution Cycles and Area for Pipelined MM.

0 1 2 4 8 16
Inner Loop Unroll Factor

0.8

1

1.2

1.4

1.6

1.8

2

2.2

B
a

la
n

ce

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

0 1 2 4 8 16
Inner Loop Unroll Factor

200

400

600

800

1000

1200

1400

1600

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

10
4

10
5

Space (log-scaled)

10
2

10
3

E
x
e

c
u

ti
o

n
 C

y
c
le

s
 (

lo
g

-s
c
a

le
d

)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 8: Balance, Execution Time and Area for Pipelined JAC.

0 1 2 4 8 16
Inner Loop Unroll Factor

1

1.5

2

2.5

3

B
a

la
n

c
e

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 3
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 6
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 12
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 24
Outer Loop Unroll Factor 48

selected design

0 1 2 4 8 16
Inner Loop Unroll Factor

0

500

1000

1500

2000

2500

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 3
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 6
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 12
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 24
Outer Loop Unroll Factor 48

selected design

10
3

10
4

Space (log-scaled)

10
0

10
1

10
2

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 9: Balance, Execution Cycles and Area for Pipelined PAT.

0 1 2 4 8 16 32
Inner Loop Unroll Factor

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

B
a

la
n

ce

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

0 1 2 4 8 16 32
Inner Loop Unroll Factor

1000

2000

3000

4000

5000

6000

7000

8000

E
x
e

c
u

ti
o

n
 C

y
c
le

s

Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

10
4

10
5

Space (log-scaled)

10
3

10
4

E
xe

cu
tio

n
 C

yc
le

s
(l
o

g
-s

ca
le

d
)

selected design

max space

(a) Balance (b) Execution Time (c) Area

Figure 10: Balance, Execution Time and Area for Pipelined SOBEL.

uration point, and then decreasing. The execution time is
also monotonically nonincreasing, related to Observation 2.
In all programs, our algorithm selects a design that is close
to best in terms of performance, but uses relatively small
unroll factors. Among the designs with comparable perfor-
mance, in all cases our algorithm selected the design that
consumes the smallest amount of space. As a result, we
have shown that our approach meets the optimization goals
set forth in Section 3. In most cases, the most balanced
design is selected by the algorithm. When a less balanced
design is selected, it is either because the more balanced de-
sign is before a saturation point (as for non-pipelined FIR),
or is too large to fit on the FPGA (as for pipelined MM).

Table 2 presents the speedup results of the selected de-
sign for each kernel as compared to the baseline, for both
pipelined and non-pipelined designs. The baseline is the
loop nest with no unrolling (unroll factor is 1 for all loops)
but including all other applicable code transformations as
described in Section 4.

Although in these graphs we present a very large number
of design points, the algorithm searches only a tiny fraction
of those displayed. Instead, the algorithm uses the prun-

Program Non-Pipelined Pipelined
FIR 7.67 17.26
MM 4.55 13.36
JAC 3.87 5.56
PAT 7.53 34.61

SOBEL 4.01 3.90

Table 2: Speedup on a single FPGA.

ing heuristics based on the saturation point and balance,
as described in section 5. This reveals the effectiveness of
the algorithm as it finds the best design point having only
explored a small fraction, only 0.3% of the design space con-
sisting of all possible unroll factors for each loop. For larger
design spaces, we expect the number of points searched rel-
ative to the size to be even smaller.

6.4 Accuracy of Estimates
To speed up design space exploration, our approach relies

on estimates from behavioral synthesis rather than going
through the lengthy process of fully synthesizing the design,
which can be anywhere from 10 to 10, 000 times slower for
this set of designs. To determine the gap between the be-

havioral synthesis estimates and fully synthesized designs,
we ran logic synthesis and place-and-route to derive imple-
mentations for a few selected design points in the design
space for each of the applications. We synthesized the base-
line design, the selected designs for both pipelined and non-
pipelined versions, and a few additional unroll factors be-
yond the selected design.

In all cases, the number of clock cycles remains the same
from behavioral synthesis to implemented design. However,
the target clock rate can degrade for larger unroll factors due
to increased routing complexity. Similarly, space can also
increase, slightly more than linearly with the unroll factors.
These factors, while present in the output of logic synthesis
and place-and-route, were negligible for most of the designs
selected by our algorithm. Clock rates degraded by less
than 10% for almost all the selected designs as compared
with the baseline, and the speedups in terms of reduction in
clock cycles more than made up for this. In the case of FIR
with pipelining, the clock degraded by 30%, but it met the
target clock of 40ns, and because the speedup was 17X, the
performance improvement was still significant. The space
increases were sublinear as compared to the unroll factors,
but tended to be more space constrained for large designs
than suggested by the output of behavioral synthesis.

The very large designs that appear to have the high-
est performance according to behavioral synthesis estimates
show much more significant degradations in clock and in-
creases in space. In these cases, performance would be worse
than designs with smaller unroll factors. Our approach does
not suffer from this potential problem because we favor small
unroll factors, and only increase the unrolling factor when
there is a significant reduction in execution cycles due to
memory parallelism or instruction-level parallelism.

For this set of applications, these estimation discrepan-
cies, while not negligible, never influenced the selected de-
sign. While this accuracy issue is clearly orthogonal to the
design space algorithm described in this paper, we believe
that estimation tools will improve their ability to deliver ac-
curate estimates given the growing pressures for accuracy in
simulation for increasingly larger designs.

7. RELATED WORK
In this section we discuss related work in the areas of au-

tomatic synthesis of hardware circuits from high-level lan-
guage constructs and design space exploration using high-
level loop transformations.

7.1 Synthesizing High-Level Constructs
The gap between hardware description languages such

as VHDL or Verilog and applications in high-level imper-
ative programming languages prompted researchers to de-
velop hardware-oriented high-level languages. These new
languages would allow programmers to migrate to config-
urable architectures without having to learn a radically new
programming paradigm while retaining some level of control
about the hardware mapping and synthesis process.

One of the first efforts in this direction was the Handel-
C[21] parallel programming language. Handel-C is heavily
influenced by the OCCAM CSP-like parallel language but
has a C-like syntax. The mapping from Handel-C to hard-
ware is compositional where constructs, such as for and
while loops, are directly mapped to predefined template
hardware structures [20].

Other researchers have developed approaches to mapping
applications to their own reconfigurable architectures that
are not FPGAs. These efforts, e.g., the RaPiD [7] recon-
figurable architecture and the PipeRench [12], have devel-
oped an explicitly parallel programming language and/or
developed a compilation and synthesis flow tailored to the
features of their architecture.

The Cameron research project is a system that compiles
programs written in a single-assignment subset of C called
SA-C into dataflow graphs and then synthesizable VHDL [23].
The SA-C language includes reduction and windowing op-
erators for two-dimensional array variables which can be
combined with doall constructs to explicitly expose paral-
lel operations in the computation. Like in our approach,
the SA-C compiler includes loop-level transformations such
as loop unrolling and tiling, particularly when windowing
operators are present in a loop. However, the application
of these transformations is controlled by pragmas, and is
not automatic. Cameron’s estimation approach builds on
their own internal data-flow representation using curve fit-
ting techniques [17].

Several other researchers have developed tools that map
computations expressed in a sequential imperative program-
ming language such as C to reconfigurable custom comput-
ing architectures. Weinhardt [24] describes a set of pro-
gram transformations for the pipelined execution of loops
with loop-carried dependences onto custom machines using
a pipeline control unit and an approach similar to ours. He
also recognizes the benefit of data reuse but does not present
a compiler algorithm.

The two projects most closely related to ours, the Nimble
compiler [19] and work by Babb et. al. [2], map applications
in C to FPGAs, but do not perform design space exploration.
They also do not rely on behavioral synthesis, but in fact
the compiler replaces most of the function of synthesis tools.

7.2 Design Space Exploration
In this discussion, we focus only on related work that has

attempted to use loop transformations to explore a wide
design space. Other work has addressed more general issues
such as finding a suitable architecture (either reconfigurable
or not) for a particular set of applications [1].

In the context of behavioral VHDL [16] current tools such
as Monet

TM [14] allow the programmer to control the ap-
plication of loop unrolling for loops with constant bounds.
The programmer must first specify an application behavioral
VHDL, linearize all multi-dimensional arrays, and then se-
lect the order in which the loops must execute. Next the
programmer must manually determine the exact unroll fac-
tor for each of the loops and determine how the unrolling is
going to affect the required bandwidth and the computation.
Given the effort and interaction between the transformations
and the data layout options available this approach to design
space exploration is extremely awkward and error-prone.

Other researchers have also recognized the value of ex-
ploiting loop-level transformations in the mapping of regu-
lar loop computations to FPGA-based architectures. Der-
rien/Rajopadhye [8] describe a tiling strategy for doubly
nested loops. They model performance analytically and se-
lect a tile size that minimizes the iteration’s execution time.

7.3 Discussion
The research presented in this paper differs from the ef-

forts mentioned above in several respects. First the focus of

this research is in developing an algorithm that can explore
a wide number of design points, rather than selecting a sin-
gle implementation. Second, the proposed algorithm takes
as input a sequential application description and does not
require the programmer to control the compiler’s transfor-
mations. Third, the proposed algorithm uses high-level com-
piler analysis and estimation techniques to guide the appli-
cation of the transformations as well as evaluate the various
design points. Our algorithm supports multi-dimensional
array variables absent in previous analyses for the mapping
of loop computations to FPGAs. Finally, we use a com-
mercially available behavioral synthesis tool to complement
the parallelizing compiler techniques rather than creating an
architecture-specific synthesis flow that partially replicates
the functionality of existing commercial tools. Behavioral
synthesis allows the design space exploration to extract more
accurate performance metrics (time and area used) rather
than relying on a compiler-derived performance model. Our
approach greatly expands the capability of behavioral syn-
thesis tools through more precise program analysis.

8. CONCLUSION
We have described a compiler algorithm that balances

computation and memory access rates to guide hardware
design space exploration for FPGA-based systems. The ex-
perimental results for five multimedia kernels reveal the al-
gorithm quickly (in less than five minutes, searching less
than 0.3% of the search space) derives a design that closely
matches the best performance within the design space and
is smaller than other designs with comparable performance.

This work addresses the growing need for raising the level
of abstraction in hardware design to simplify the design pro-
cess. Through combining strengths of parallelizing compiler
and behavioral synthesis, our system automatically performs
transformations typically applied manually by hardware de-
signers, and rapidly explores a very large design space. As
technology increases the complexity of devices, consequently
designs will become more complex, and furthering automa-
tion of the design process will become crucial.

Acknowledgements. This research has been supported
by DARPA contract # F30602-98-2-0113. The authors wish
to thank contributors to the DEFACTO project, upon which
this work is based, in particular Joonseok Park, Heidi Ziegler,
Yoon-Ju Lee, and Brian Richards.

9. REFERENCES
[1] S. Abraham, B. Rau, R. Schreiber, G. Snider, and M.

Schlansker. Efficient design space exploration in PICO.
Tech. report, HP Labs, 1999.

[2] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank,
R. Barua and S. Amarasinghe. Parallelizing Applications
into Silicon. In Proc. of the IEEE Symp. on FPGA for
Custom Computing Machines (FCCM’99), 1999.

[3] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps:
A compiler-managed memory system for raw machines. In
Proc. of the 26th Intl. Symp. on Computer Architecture
(ISCA’99), 1999.

[4] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. In Proc. of the ACM
Conference on Program Language Design and
Implementation (PLDI’90), pages 53–65, 1990.

[5] S. Carr and K. Kennedy. Improving the ratio of memory
operations to floating-point operations in loops. ACM
Transactions on Programming Languages and Systems,
15(3):400–462, July 1994.

[6] Altera Corp. APEX II programmable logic device data
sheets. 2001.

[7] D. Cronquist, P. Franklin, and C. Ebeling. Specifying and
compiling applications for RaPiD. In Proc. of the IEEE
Symp. on FPGA for Custom Computing Machines
(FCCM’98), pages 116–125, 1998.

[8] S. Derrien and S. Rajopadhye. Loop tiling for
reconfigurable accelerators. In Proc. of the Eleventh Intl.
Symp. on Field Programmable Logic (FPL’2001), 2001.

[9] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler. Bridging
the gap between compilation and synthesis in the
DEFACTO system. In Proc. of the Forteenth Workshop on
Languages and Compilers for Parallel Computing
(LCPC’2001), August 2001. To be published as Lecture
Notes in Computer Science.

[10] J. P. Elliott. UnderStanding Behavioral Synthesis: A
Practical Guide to High-Level Design. 1999.

[11] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the
Streams-C C-to-FPGA compiler: an applications
perspective. In Proc. of the ACM Symp. on Field
Programmable Gate Arrays (FPGA’2002), 2001.

[12] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R. Taylor, and R. Laufer. PipeRench: A coprocessor for
streaming multimedia acceleration. In Proc. of the 26th
Intl. Symp. on Computer Architecture (ISCA’99), 1999.

[13] Annapolis MicroSystems WildStar
tm manual, 4.0. 1999.

[14] Mentor Graphics Monet
TM user’s manual (release r42). 1999.

[15] XILINX Virtex-II 1.5V FPGA data sheet. ds031(v1.7).
2001.

[16] D. Knapp. Behavioral Synthesis. Prentice-Hall, 1996.
[17] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi. Fast

area estimation to support compiler optimizations in
FPGA-based reconfigurable systems. In Proc. of the IEEE
Symp. on FPGAs for Custom Computing Machines
(FCCM’2002), 2002.

[18] M. Leong, O. Cheung, K. Tsoi, and P. Leong. A bit-serial
implementation of the international data encryption
algorithm IDEA. In Proc. of the IEEE Symp. on FPGA for
Custom Computing Machines (FCCM’98), pages 122–131,
1998.

[19] Y. Li, T. Callahan, E. Darnell, R.E. Harr, U. Kurkure, and
J. Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In Proc. of the Design
Automation Conference (DAC ’00), June, 2000.

[20] W. Luk, D. Ferguson, and I. Page. Structured hardware
compilation of parallel programs. Abingdon EE&CS Books,
1994.

[21] I. Page and W. Luk. Compiling OCCAM into FPGAs. In
Proc. of the First Intl. Symp. on Field Programmable Logic
(FPL’91), 1991.

[22] J. Proakis and D. G. Manolakis. Digital Signal Processing:
Principles, Algorithms and Applications. Prentice-Hall,
1995.

[23] R. Rinker, M. Carter, A. Patel, M.Chawathe, C. Ross,
J. Hammes, W. Najjar, and W. Bohm. An automated
process for compiling dataflow graphs into reconfigurable
hardware. IEEE Trans. on VLSI Systems, 9(1):130–139,
2001.

[24] M. Weinhardt. Compilation and pipeline synthesis for
reconfigurable architectures. In Proc. of the 1997
Reconfigurable Architectures Workshop RAW’97.
Springer-Verlag, 1997.

[25] M. Wolfe. Optimizing Supercompilers for Supercomputers.
Addison-Wesley, 1996.

[26] H. Ziegler, B. So, M. Hall, and P. Diniz. Coarse-Grain
Pipelining for Multiple FPGA Architectures. In Proc. of
the IEEE Symp. on FPGA for Custom Computing
Machines (FCCM’02), 2002.

