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Abstract

In many applications, it has been found that the autoregressive conditional het-
eroskedasticity (ARCH) model under the conditional normal or Student’s t dis-
tributions are not general enough to account for the excess kurtosis in the data.
Moreover, asymmetry in the financial data is rarely modeled in a systematic way.
In this paper, we suggest a general density function based on the maximum entropy
(ME) approach that takes account of asymmetry, excess kurtosis and also of high
peakedness. The ME principle is based on the efficient use of available information,
and as is well known, many of the standard family of distributions can be derived
from the ME approach. We demonstrate how we can extract information functional
from the data in the form of moment functions. We also propose a test procedure
for selecting appropriate moment functions. Our procedure is illustrated with an
application to the NYSE stock returns. The empirical results reveal that the ME
approach with a fewer moment functions leads to a model that captures the stylized
facts quite effectively.
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1 Introduction

There have been a number of theoretical and empirical studies in the area of
density estimation. Since complete information about the density function is
not available, a parametric form is generally assumed before performing esti-
mation. In non-parametric approach, estimated tail-behavior of the density,
which is of substantial concern in most financial applications, is not satisfac-
tory due to the scarcity of data in the tail part of the distribution. If the density
function is correctly specified, then classical maximum likelihood estimation
preserves efficiency and consistency. The true density, however, is not known in
almost all cases; therefore, an assumed density function could be misspecified.
The main contribution of this paper is to show that how can one extract useful
information about the unknown density from a given data by imposing some
well-defined moment functions in analyzing financial time-series data. By so
doing one can reduce the degree of model misspecification considerably. We
use the maximum entropy density (MED) as conditional density function in
the autoregressive conditional heteroskedasticity (ARCH) framework. Since
Engle’s (1982) pioneering work and its generalization by Bollerslev (1986),
ARCH type models have been widely used, and various extensions have been
suggested, primarily in two directions. First extension has concentrated on
generalizing the conditional variance function. Second extension deals with
the form of the conditional density function. Various non-normal conditional
density functions have been proposed to explain high leptokurtic behavior.
Although these two extension are inter-related, in this paper we concentrate
on the second extension, namely, finding a suitable general form of the con-
ditional density. If we impose certain moment conditions, we can obtain nor-
mal, Student’s t, generalized error distribution (GED) and Pearson type-IV
distribution through MED formulation. In this sense, our proposed maximum
entropy ARCH (MEARCH) model is a very general one.

MEARCH model is quite related to other moment based estimation, such as
generalized method of moments (GMM) and maximum empirical likelihood
(MEL) estimation. All these estimations could also be considered within es-
timating function (EF) approach, for example, see Bera, Bilias and Simlai
(2006). The purpose of this paper is twofold. First, we present the charac-
terization of MED, and show how, within an ARCH framework, our selected
moment conditions capture asymmetry and excess kurtosis of financial data.
Second, we introduce estimation procedure of the MEARCH model, and sug-
gest moment selection criteria based on Rao’s score test.

The rest of the paper is organized as follows. In the next section we present
some basic characteristics of MED and discuss estimation of a basic model.
In Section 3, we propose our MEARCH model along with its estimation and
the moment selection test. Section 4 provides an empirical application to the

2



daily return of NYSE with specific moment functions that generate a skewed
and heavy tail distribution. The paper is concluded in Section 5.

2 Maximum entropy density

The maximum entropy density is obtained by maximizing Shannon’s (1948)
entropy measure

H(f) = −
∫

f(x) ln f(x)dx, (1)

satisfying

E[φj(x)] =
∫

φj(x)f(x)dx = µj, j = 0, 1, 2, · · · , q, (2)

where the µj’s are known values. The normalization constraint corresponds to
j = 0 by setting φ0(x) and µ0 to 1. The Lagrangian for the above optimization
problem is given by

L = −
∫

f(x) ln f(x)dx +
q∑

j=0

λj

[∫
φj(x)f(x)dx− µj

]
, (3)

where λj is the Lagrange multiplier corresponding the j-th constraint in (2),
j = 0, 1, 2, · · · , q. The solution to the above optimization problem, obtained
by simple calculus of variation, is given by [Zellner and Highfield (1988) and
Golan, Judge and Miller (1996, p. 36)]

f(x) =
1

Ω(λ)
exp


−

q∑

j=1

λjφj(x)


 , (4)

where Ω(λ) is calculated by
∫

f(x)dx = 1, and can be expressed in terms of the

Lagrangian multipliers as Ω(λ) =
∫

exp
[
−∑q

j=1 λjφj(x)
]
dx. Ω(λ) is known as

the “partition function” that converts the relative probabilities to absolute
probabilities. In the maximization problem (1)-(2), φj(x) in the moment con-
straint equation (hereafter, we call φ as moment function) is only function of
data x. Due to this characteristics of φj, we obtain simple exponential forms
as a solution to the maximization problem. Since (4) belongs to exponential
family, λj’s and φj(x)’s are the natural parameters and the corresponding
sufficient statistics, respectively.
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We extend simple exponential solution forms to more general exponential
forms by introducing additional parameters, γ, in φj. Consider the following
optimization problem,

max
f

H(f) = −
∫

f(x) ln f(x)dx, (5)

satisfying

∫
φj(x, γ)f(x)dx = Cj(γ), j = 0, 1, 2, · · · , q. (6)

The solution to (5)-(6), obtained by applying the same Lagrangian’s proce-
dure, is the general exponential density

f(x) =
1

Ω(λ, γ)
exp


−

q∑

j=1

λjφj(x, γ)


 , (7)

where Ω(λ, γ) =
∫

exp
[
−∑q

j=1 λjφj(x, γ)
]
dx. Thus, by adding additional pa-

rameter γ to moment functions, the ME formulation provides a more general
family of distributions.

The moment conditions can be interpreted as known prior information, and
using these we can achieve a least biased distribution by the ME principle.
Suppose we have no prior information except for the normalization constraint,
then the solution is the uniform distribution which is a “perfect smooth” den-
sity. If we have an additional information, say

∫
xf(x)dx = µ1 > 0, then the

solution takes the form, f(x|λ1) = λ1 exp[−λ1x] where x ∈ [0,∞). With a
further constraint, say

∫
x2f(x)dx = µ2, the associated solution is the normal

distribution. In the next subsection, we discuss in detail the role of differ-
ent moment conditions in some of the commonly used distributions, and also
suggest new densities by constructing and selecting certain moment functions
judiciously.
All solutions are functions of Lagrangian multipliers which represent marginal
contribution (shadow price) of constraints to the objective value. For exam-
ple, suppose λ̂2 corresponding to

∫
x2f(x)dx = µ2 is estimated to be close to

0, then, there is little contribution of this moment constraint to the objec-
tive function. Consequently, the Lagrangian multiplier reflect the information
content of each constraint.
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2.1 Maximum entropy characterization of thick tail, peakedness and asym-
metry

Maximum entropy distribution has a very flexible functional form. By choos-
ing a sequence of moment functions φj(x), j = 1, 2, · · · , q, we can generate a
sequence of various flexible MED functions. Many well-known families of dis-
tributions can be obtained as special cases of MED function. Kagan, Linnik
and Rao (1973) provided characterization of many distributions, such as, the
beta, gamma, exponential and Laplace distributions as ME densities. In Ta-
ble 1, we present a number of well-known distributions under various moment
constraints. These common distributions can be interpreted in an information
theoretic way that they are least biased density functions obtained by im-
posing certain moment constraints which are inherent in the data. If we add
more and more moment constraints, the resulting density, f(x) will be more
unsmooth.

[Table 1, approximately here]

Let us consider three moment functions x2, ln(γ2 +x2) and ln(1+x2) that cor-
respond to normal, Student’s t and Cauchy distributions, respectively. These
three and two other moment functions from the generalized error distribution
(GED) are plotted in Figure 1. From equation (7), we note that a moment
function φj(x, γ) adds to the log-density ln f(x) an extra term −λjφj(x, γ)
when the moment constraint is binding. φj(x, γ) = ln(γ2 + x2) penalizes the
tail events less severely than the function φj(x, γ) = x2 (that generate the
normal density) to adhere the maximum value of the entropy under the con-
straints.

This intuitive penalization mechanism results in heavier tails for the Student’s
t density. As the value of γ2 decreases, φj(x, γ) takes less extreme values at tails
and that in turn makes the tails of the densities thicker. Therefore, in some
sense, the shape of the resulting density has a close link with the “inverted”
shape of φj(x, γ). This observation, in general, leads us to the choice of differ-
ent moment functions. Various financial data such as, stock returns, inflation
rates and exchange rates display both thick tails and high peakedness. Wang,
Fawson, Barnett and McDonald (2001) proposed the exponential generalized
beta distribution of the second kind to explain thick tails and high peakedness
of financial time-series data. From Figure 1 and the above discussion on the
link between φj(x, γ) and f(x), we can say that φj(x, γ) = ln(γ2 + x2) type of
functions cannot capture peakedness.

[Figure 1, approximately here]

To take account of high peakedness, we suggest functions ln(1 + |x/r|p) and
tan−1(x2/r2). In Figure 2, these functions along with ln(1+x2) are plotted. We
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note that ln(1+ |x|1.3) and ln(1+ |x|0.7) have cusp at x = 0, while the Cauchy
moment function ln(1 + x2) does not. In ln(1 + |x/r|p) the parameter p(< 2)
appears to capture peakedness, while r takes account of the tail thickness. For
p ≥ 2, the cusp behavior disappears, and for this case, both p and r together
capture the tail behavior of the underlying distribution. The moment function
tan−1(x2) also captures high peakedness and penalizes the tails less than that
of ln(1 + x2).

[Figure 2, approximately here]

As is well known, financial data also displays asymmetry (skewness), see for
instance, Premaratne and Bera (2000). Moment functions, ln x, 0 < x < ∞,
ln(1− x), 0 < x < 1 and tan−1(x/γ), −∞ < x < ∞ can capture asymmetry,
and these are plotted in Figure 3. ln x and ln(1− x) generates the beta distri-
bution over the range 0 ≤ x ≤ 1; tan−1(x/γ) is part of the moment functions

of the Pearson type-IV density. E[ln x] = Γ′(a)
Γ(a)

is used as a moment condition
in gamma density and chi-squared is a special case of gamma distribution
when E[ln x] = Γ′(1/2)

Γ(1/2)
+ln 2 for 0 < x < ∞. Premaratne and Bera (2005) used

tan−1(x/γ) to test asymmetry in leptokurtic financial data.

[Figure 3, approximately here]

In general, any odd function can serve as a moment function to capture
asymmetry. However, the benefits of a function like tan−1(x/γ) are that it
is bounded over the whole range and “robust” to outliers. Chen, Chou and
Kuan (2000) used sin(x) and βx/(1 + β2x2) with a specific value of β to test
asymmetry. Tests based on such bounded functions will be more robust com-
pared to those based on the third moment, i.e., moment function like x3 [for
more on this, see, Premaratne and Bera (2005)]. Some robust type functions
that capture general skewness are plotted in Figure 4.

[Figure 4, approximately here]

As we assign more and more moment constraints in maximization problem
(1)-(2) or (5)-(6), the solution is likely to become more unsmooth (rough)
functional if given moment constraints are informative. There is a close rela-
tionships between MED and the penalization method. The ME method starts
with a very smooth density and, adding more moment constraints, MED is
likely to have more “roughness” but with improved goodness-of-fit at the same
time. Here we do not face the problem of selecting smoothing parameter or the
bandwidth. Instead, we need choose moment functions priori. On the other
hand, a nonparametric approach begins with a rough density (histogram), and
then uses a smoothing procedure (such as selecting a proper bandwidth) to
control the balance between smoothness and goodness-of-fit. Gallant (1981),
Gallant and Nychka (1987) and Ryu (1993) considered (semi-) non-parametric
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density estimators using flexible polynomial series approaches such as Fourier
series, Hermite polynomial and any orthonormal basis. These approaches are
useful to fit the underlying density or functional form and to analyze asymp-
totic properties of estimators since very high orders of polynomial series can
be easily considered. However, if one can select only a few informative func-
tions that explain underlying density enough instead of using high orders of
polynomials, the complexity and computational burden can be significantly
reduced, and, moreover, some valuable interpretation can be made using the
selected informative functions.

2.2 Methods of estimation

When µj’s are unknown in (2), the maximum likelihood (ML) estimates are
the same as ME estimates when µj’s are replaced by their consistent estimates
1
T

∑T
t=1 φj(xt), j = 1, 2, · · · , q. Since exponential family distributions have a

unique ML solution, the ME solution is also unique, if it exists. However,
when we have general moment conditions [ as in (6)], then we have to consider
estimation of unknown parameter γ. Usually, this estimation problem can
be solved by estimating saddle point of the objective function proposed by
Kitamura and Stutzer (1997) and Smith (1997).

Let us rewrite (6) as
∫

[φj(x, γ)− Cj(γ)]f(x)dx =
∫

ψj(x, γ)f(x)dx = 0, j = 1, 2, · · · , q,

where ψj(x, γ) = φj(x, γ)−Cj(γ). The profiled objective function is obtained
by substituting (7) to the Lagrangian (3)

ln
∫

exp


−

q∑

j=1

λjψj(x, γ)


 dx. (8)

ME estimators of the parameters γ and λ are the solution of following saddle
point problem

γ̂ME = arg max
γ

ln
∫

exp


−

q∑

j=1

λ̂jψj(x, γ)


 dx,

where λ̂(γ) is given by

λ̂(γ)ME = arg min
λ

ln
∫

exp


−

q∑

j=1

λjψj(x, γ)


 dx.
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Since the profiled objective function (8) has the exponential form it is relatively
easy to calculate first order derivatives. However, Cj(γ) could be complicated
in some case or even, may not have analytic form. In such a case, Cj(γ) can be
substituted by the sample moment of φj(x, γ). Thus, we consider the following
non-linear equations:

∫
φj(x, γ)f(x|λ, γ)dx =

1

T

T∑

t=1

φj(xt, γ), j = 1, 2, · · · q.

We can express (8) as

ln
∫

exp


−

q∑

j=1

λjφj(x, γ) +
q∑

j=1

λjCj(γ)


 dx

= ln


exp




q∑

j=1

λjCj(γ)


 ·

∫
exp


−

q∑

j=1

λjφj(x, γ)


 dx




=
q∑

j=1

λjCj(γ) + ln
∫

exp


−

q∑

j=1

λjφj(x, γ)


 dx.

Since from (4) ln
∫

exp
[
−∑q

j=1 λjφj(x, γ)
]

= ln Ω(λ, γ) the above expression
can be simplified as

q∑

j=1

λjCj(γ) + ln Ω(λ, γ). (9)

From (7) the log-likelihood function is given by

l(λ, γ) = −T ln Ω(λ, γ)−
q∑

j=1

λj

T∑

t=1

φj(xt, γ). (10)

From (9) and (10) it is clear that profiled objective function is the same as
−(1/T )l(λ, γ). Thus, the first order condition for the ME principle and the
ML principle are the same under the general moment problem. However, the
second order condition may differ between those principles because there exist
restrictions that the Lagrange multipliers are the functions of γ in the ME
problem. However, in the ML problem, λj is not a function of γ because
(1/T )

∑T
t=1 φj(xt, γ) does not affect the form of the solution (7).
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3 Maximum entropy GARCH model

Various ARCH-type models under the assumption of non-normal conditional
density have been proposed to explain leptokurtic and asymmetric behavior of
financial data. We propose to use flexible ME density to capture such stylized
facts, and consider the following model:

yt = mt(xt; ζ) + εt, t = 1, 2, · · · , T,

where mt(·) is the conditional mean function, xt is a K×1 vector of exogenous
variables and ζ is a vector of parameters. We assume that εt|Ft−1 ∼ g(0, ht),
where g(·) is the unknown density function of εt conditional on the set of past
information Ft−1, and ht = α0 +

∑p
j=1 αjε

2
t−j +

∑s
j=1 βjht−j.

Following (7), we can write the density function of the standardized error term
ηt (= εt/

√
ht) in a general MED form as

f(ηt) =
1

Ω(λ, γ)
exp


−

q∑

j=1

λjφj(ηt, γ)


 , (11)

where φj(ηt, γ), j = 1, 2, · · · , q, denote the moment functions. We will term
ARCH model with conditional density f(εt|Ft−1) implied by the above MED
f(ηt) as the maximum entropy ARCH (MEARCH) model. The (conditional)
quasi-log-density function of εt is given by

lQME
t (θ) = − ln Ω(λ, γ)−

q∑

j=1

λjφj

(
yt − x′tζ√

ht

, γ

)
− 1

2
ln ht, t = 1, · · · , T,

where θ = (α′, β′, ζ ′, λ′, γ′)′ ∈ Θ, and hence the quasi-log-likelihood function
is

lQME(θ) =
T∑

t=1

lQME
t (θ)

=−T ln Ω(λ, γ)−
T∑

t=1

q∑

j=1

λjφj

(
yt − x′tζ√

ht

, γ

)
− 1

2

T∑

t=1

ln ht. (12)

The scores corresponding to the quasi-log-likelihood for ARCH regression
model are

∂lQME(θ)

∂α
=

T∑

t=1


 1

2ht

∂ht

∂α




q∑

j=1

λjφ
′
j(·)

εt

h
1/2
t

− 1





 , (13)
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∂lQME(θ)

∂ζ
=

T∑

t=1




q∑

j=1

λjφ
′
j(·)

x′t
h

1/2
t

+
1

2ht

∂ht

∂ζ




q∑

j=1

λjφ
′
j(·)

εt

h
1/2
t

− 1





 , (14)

∂lQME(θ)

∂λj

=−T
∂ ln Ω(λ, γ)

∂λj

−
T∑

t=1

φj

(
yt − x′tζ√

ht

, γ

)
, (15)

∂lQME(θ)

∂γ
=−T

∂ ln Ω(λ, γ)

∂γ
−

T∑

t=1

q∑

j=1

λj

∂φj

(
yt−x′tζ√

ht
, γ

)

∂γ
, (16)

where φ′j(·) = ∂φj(η, γ)/∂η. The quasi-log likelihood specification (12) is re-
lated to other semi-nonparametric ARCH approaches. In parametric model,
the score function is the optimal estimating function (EF) [Godambe (1960)].
If underlined conditional density is correctly specified, then equations (13) -
(16) are the optimal estimating functions (EFs). Li and Turtle (2000) derived
the optimal EFs for ARCH model as

`∗1 =−
T∑

t=1

∂ht

∂α

h2
t (γ2t + 2− γ2

1t)
g2t, (17)

`∗2 =−
T∑

t=1

∂x′tζ
∂ζ

ht

g1t +
T∑

t=1

h
1/2
t γ1t

∂x′tζ
∂ζ

− ∂ht

∂ζ

h2
t (γ2t + 2− γ2

1t)
g2t, (18)

where g1t = yt−x′tζ, g2t = (yt−x′tζ)2−ht−γ1th
1/2
t (yt−x′tζ), γ1t =

E[(yt−x′tζ)3|Ft−1]

h
3/2
t

,

and γ2t =
E[(yt−x′tζ)4|Ft−1]

h2
t

− 3. (17) and (18) are actually the same as GMM

moment conditions attainable by optimal instrumental variables. There is no
priori distributional assumption for yt conditional on Ft−1 in the EF approach.
Under the conditional normality assumption, γ1t = 0, and γ2t = 0, equations
(17) and (18) are identical to the first order condition of Engle (1982) [equa-
tion (7), p. 990] up to a sign change. We can relate our approach to robust
estimation through the influence function. Let us consider M -estimation that
minimizes

∑T
t=1 ρ(ηt, θ), where ηt = (yt − x′tζ)/

√
ht, and define the influence

function as −ν(η, θ)/E[∂ν(η, θ)/∂η], where ν(η, θ) = ∂ρ(η, θ)/∂η [see McDon-
ald and Newey (1988)]. If ρ(·) is negative of the natural logarithm of the true
density, then we have the ML estimator of θ. Function ν(·) measures the influ-
ence that η will have on the resulting estimators. For the ME density in (11),
the function ν(·) is

ν(η, θ) =
q∑

i=1

λi
∂φi(η, θ)

∂η
. (19)

For N(0, 1) density, λφ(η, θ) = 1
2
η2 and hence ν(η, θ) = η which is unbounded.

Li and Turtle (2000) did not assume any particular conditional density and
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followed a semi-parametric method. In their EFs (17) and (18), the γ1t and
γ2t should be specified in some arbitrary way. They noted that since the or-
thogonality of g1t and g2t holds for any γ2t, an approximate value for γ2t might
be used to give near optimal estimating functions l∗1 and l∗2. If the underly-
ing density is Cauchy, the parameters cannot be estimated consistently by
EF approach due to the non-existence of moments. Our MEARCH approach,
however, can be used since the moment condition, E [ln(1 + x2)] = 2 ln 2, gen-
erates Cauchy distribution and the associated influence function ν(η, θ) =
λ(2η)/(1 + η2) is bounded. Therefore, careful choice of moment function φ(·)
can lead to robust estimation.

3.1 Estimation

For ARCH-type models, the standardized error term, ηt = εt/
√

ht, should
have mean 0 and variance 1. However, the MED of ηt given in (11) may not
have this property. For convenience, we rewrite (11) as

f(ηt) = C−1 exp


−

q∑

j=1

λjφj(ηt, γ)


 , (20)

where C denotes normalizing constant and the parameters vector γ ≡ [γ′p : γs]
′,

where γs denotes a scale parameter. Suppose the density (20) is such that
E(ηt) = µ and V(ηt) = σ2. If we define ut = (ηt − µ)/σ, then ut ∼ (0, 1) and
ηt = σut + µ. Due to the transformation ut = (ηt − µ)/σ, the density (20) in
terms of εt changes to

fε(εt) = C−1σ
1√
ht

exp

[
−

q∑

i=1

λiφi

(
σεt√
ht

+ µ, γ

)]
. (21)

In (21), the scale parameter γs, however, will not separately be identified
within an ARCH framework. To make the density free of γs, let us define
η̃t = ηt/γs, so that E(η̃t) = µ/γs = µ̃ and V(η̃t) = σ2/γs

2 = σ̃2. The density
function of η̃t, f̃(η̃t) can be written as

f̃(η̃t) = C̃−1 exp

[
−

q∑

i=1

λiφi (η̃t, γp)

]
. (22)

An “equivalent” density is obtained by substituting µ = γsµ̃ and σ = γsσ̃ in
the (21) as
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fεt(ε) = C−1γs
σ̃√
ht

exp

[
−

q∑

i=1

λiφi

(
γsσ̃εt√

ht

+ γsµ̃, γ

)]

= C̃−1 σ̃√
ht

exp

[
−

q∑

i=1

λiφi

(
σ̃εt√
ht

+ µ̃, γp

)]
. (23)

The quasi-log-likelihood function corresponding to the density (23) can be
written as

l(θ) =
T∑

t=1

ln g

(
εt

h
1/2
t

)
− 1

2

T∑

t=1

ln ht (24)

=−T ln C̃ + T ln σ̃ −
T∑

t=1

q∑

i=1

λiφi

(
σ̃εt√
ht

+ µ̃, γp

)
− 1

2

T∑

t=1

ln ht, (25)

where θ = (α′, β′, ζ ′, λ′, γ′p)
′ and g(·) is the quasi-density function of ut given

by

g(ut) = C̃−1σ̃ exp

[
−

q∑

i=1

λiφi (σ̃ut + µ̃, γp)

]
. (26)

Since φi(·)’s in (25) are not predetermined but are selected from a variety of
moment functions to the underlying density, one cannot guarantee C̃−1, µ̃,
and σ̃ to have analytic forms. Therefore, in practical applications these are
computed using numerical integration.

Following our discussion in Section 2 that the first order conditions for maxi-
mizing entropy and the likelihood function are the same under general moment
problem, we obtain our parameter estimator by maximizing (25). A range of
numerical optimization techniques can be used to maximize (25). We adapted
the Broyden, Fletcher, Goldfarb and Shannon (BFGS) algorithm. For compu-
tational convenience, the derivatives are computed numerically. We will denote
our estimator as θ̂QMLE. Lee and Hansen (1994) and Lumsdaine (1996) showed
consistency and asymptotic normality for the QMLE under “conditional nor-
mal” GARCH model. Lee and Hansen (1994) established these results under
the assumption that ut is a stationary martingale difference sequence with
E|ut|κ < ∞ with some κ ≤ 4. Ling and McAleer (2003) proved consistency
and asymptotic normality of QMLE under the second-order moments of the
conditional distribution and the finite fourth-order moments of the uncondi-
tional distribution of ut. We assume that our model satisfies these conditions.
The limiting distribution of θ̂QMLE is given by

√
T

(
θ̂QMLE − θ0

)
−→d N

(
0, A0

T
−1

B0
T A0

T
−1

)
,
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where θ0 is the quasi-true parameter, A0
T = −T−1E

(
∂2l(θ0)
∂θ∂θ′

)
, and B0

T =

T−1E
(

∂l(θ0)
∂θ

∂l(θ0)
∂θ′

)
. When our ME density function coincides with the true

density, then θ̂QMLE ≡ θ̂MLE and we have

√
T

(
θ̂QMLE − θ0

)
−→d N

(
0, B0

T
−1

)
.

Instead of maximizing (25) with respect to all the parameters, a computation-
ally less burdensome procedure would be a two-step approach of estimation.
In the first-step, using some initial consistent estimates (such as, obtained by
maximizing a likelihood function assuming normality) of the conditioned mean

and variance parameters, we can obtain η̂t = ε̂t/
√

ĥt and then fit a ME density
to ût = (η̂t − µ̂)/σ̂, using proposed methods in Section 2. In the second-step,
fixing the estimated density, g(·) in (24), we can maximize quasi-log-likelihood
function with respect to the set of parameter of interest. Engle and González-
Rivera (1991) suggested such an approach, where in the first-step, they used a
nonparametric method of density estimation. However, based on their simula-
tion results, they noted (p. 350): “ When conditional distribution is Student’s
t, we cannot find any gain. We suspect that this poor performance come from
the poor nonparametric estimation of the tails of the density.” We can take
care of the tail part of distribution by choosing moment functions targeting
the tail area of the density. Another problem with the two-step procedure
is that for a GARCH model with a general distribution that takes care of
asymmetry and excess kurtosis, the underlying information matrix may not
be block-diagonal between the conditional mean and variance parameters and
the distributional parameters. Therefore, for a such a model, complete adap-
tive estimation is not possible. Also for this case, the usual standard errors of
the parameters estimated by two-step method will not be consistent, as noted
by Engle and González-Rivera (1991, p. 352). Therefore, for efficient estima-
tion and valid inference, it is necessary to consider the joint estimation of all
the parameters.

3.2 Moment selection test

As we discussed earlier, Lagrange multipliers provide marginal information of
the constraints, and therefore, λj should be very close to zero if its associated
moment function does not convey any valuable information. Now we derive
a statistic for testing H0j : λj = 0 using Rao’s score (RS) principle. Detailed
derivation is given in the Appendix.
Note that C̃, σ̃ and µ̃ in the log-likelihood function l(θ) given in (25) are
functions of the parameter vector θ = (α′, β′, ζ ′, λ′, γ′p)

′. The first derivatives
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of l(θ) with respect to λj is given by

dλj
= −T

∂ ln C̃(θ)

∂λj

+ T
∂ ln σ̃(θ)

∂λj

−
T∑

t=1

φj

(
σ̃(θ)εt√

ht

+ µ̃(θ)

)
−

T∑

t=1

∆j, (27)

where

∆j =
q∑

i=1

λi

[
φ′j

(
σ̃(θ)εt√

ht

+ µ̃(θ)

)
×

(
∂σ̃(θ)

∂λj

εt√
ht

+
∂µ̃(θ)

∂λj

)]
,

and for notational convenience, from now on the parameter vector γp is sub-
assumed within φ(·).

The score function (27), under λj = 0, reduces to [the details are in Appendix]

d0
λj

= T (ϕj + ξj)−
T∑

t=1

φj

(
ω1/2

v εt√
ht

+ ωm

)
−

T∑

t=1

∆̃j,

where

∆̃j =
∑

i={1,2,···,q}\{j}
λiφ

′
i

(
ω1/2

v εt√
ht

+ ωm

) (
(ωvωj − ω(v,j))εt

2
√

ωvht

+ (ωmωj − ω(m,j))

)
,

and ωm = Ef̃0
[η̃], ωj = Ef̃0

[φj(η̃)], ω(m,j) = Ef̃0
[η̃φj(η̃)], ωv = Ef̃0

[(η̃ − ωm)2],

ω(v,j) = Ef̃0
[(η̃ − ωm)2φj(η̃)], ϕj = Eg0 [φj(u)], and ξj = Eg0 [∆̃j] denoting each

subscript represents a particular distribution with which the expectation is
taken. Distributions, f̃0(η̃) and g0(u) are given by

f̃0(η̃) =
exp

[
−∑

i={1,2,···,q}\{j} λiφi(η̃)
]

∫
exp

[
−∑

i={1,2,···,q}\{j} λiφi(η̃)
]
dη̃

, (28)

g0(u) =
exp

[
−∑

i={1,2,···,q}\{j} λiφi

(
ω1/2

v u + ωm

)]

∫
exp

[
−∑

i={1,2,···,q}\{j} λiφi

(
ω

1/2
v u + ωm

)]
du

, (29)

where
∑

i={1,2,···,q}\{j} mean summation over i = 1, 2, · · · , j−1, j +1, · · · , q. We
write the score statistic for testing λj = 0 as Rj(θ) = d0

λj
/T , which is given by

Rj(θ) = (ϕj + ξj)− 1

T

T∑

t=1

φj

(
ω1/2

v εt√
ht

+ ωm

)
− 1

T

T∑

t=1

∆̃j.

=Eg0

[
φj(u) + ∆̃j

]
− 1

T

T∑

t=1

[
φj

(
ω1/2

v εt√
ht

+ ωm

)
+ ∆̃j

]
.
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Therefore, the test can be viewed as the difference between population mean
relating to the j-th moment function and its sample counterpart. Since ϕj, ξj,
ωm, ωv, and ∆̃j in Rj(θ) include expectation operator, those will depend on the
distributions under the null hypothesis as given in (28) and (29). When f̃0(η̃)
is symmetric around 0, then Ef̃0

[φi(η̃)] = 0 if φi(η̃) is an odd function and has
point symmetric property at vertex 0. For an even function the expectation is
not zero. Examples of odd and point symmetric functions are tan−1(η̃), η̃/(1+
η̃2), sinh−1(η̃), and sin(η̃), while ln(1 + η̃2), ln(1 + |η̃|p), tan−1(η̃2), and cos(η̃)
are even functions. Premaratne and Bera (2005) developed a test of the form
Rj(θ) for testing asymmetry under heavy tails distribution. They used Pearson
type-IV density function under the alternative hypothesis. Thus, under the
null, their distribution becomes Pearson type-VII which is symmetric around
0 and also includes Student’s t as a special case. It can be easily checked that
their Rj(θ) = − 1

T

∑T
t=1 tan−1(ηt/r) and E[tan−1(ηt/r)] = 0 under symmetry.

An operational form of Rao’s score (RS) statistic would be

RSj = T · R2
j (θ̂)

V̂
,

where θ̂ is the MLE of θ and V̂ is an consistent estimator of asymptotic vari-
ance of

√
T ·Rj(θ̂). Under the null hypothesis, H0 : λj = 0, RSj is asymptoti-

cally distributed as χ2
1. We obtain V̂ by bootstrap approach, and the bootstrap

score test statistic is given by

RSjB = T · R2
j (θ̂)

V̂B

, (30)

where V̂B denotes the variance of Rj(θ̂) calculated by bootstrap method. Under
the null hypothesis, as B →∞, RSjB is asymptotically distributed as χ2

1. For
finite B, RSjB is asymptotically distributed as Hotelling’s T 2 with (1, B − 1)
degrees of freedom, in short T 2

1,B−1 [see Dhaene and Hoorelbeke (2004)].

4 Empirical application

To illustrate the suitability of our methodology to financial data, we consider
an empirical application of MEARCH model using the daily prices of NYSE,
from Jan.1, 1985 to Dec. 30, 2004, a total of 5,218 observations obtained from
the Datastream. To achieve stationarity, we transform the indices prices into
returns, rt = [ln St/St−1] × 100, where St is the price index at time t. The
returns data and a corresponding nonparametric density are plotted in Fig-
ure 5. The data plot clearly shows that there is a high degree of clustering
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(conditional heteroskedasticity) and the estimated nonparametric density in-
dicates high degree of non-normality with thick tails and high peakedness. The
sample kurtosis, skewness and Jarque and Bera (JB) normality test statistics
are 55.89, −2.43 and 613269, respectively, and indicate not only high excess
kurtosis but also distinct negative skewness. Ljung-Box (LB) test statistics for
residuals from an AR(1) model at lags 12 days using the series (Q) and its
squares (Q2), cubes (Q3) and fourth-power (Q4) are 22.87, 424.93, 42.31 and
7.20, respectively. It appears that AR(1) model can take account of part of
autocorrelation in the data. Very high values of Q2 indicate nonlinear depen-
dence and strong presence of conditioned heteroskedasticity. The Q3 and Q4

statistics measure higher order dependence and some changes in the third and
fourth moments over time but these changes are not as strong as for the time
varying second moment as evident from the high values of Q2. To explain such
behaviors of stock return data, we need to consider a model which captures
distributional characteristics and dynamic moment structure simultaneously.

[Figure 5, approximately here]

For the testing and selecting different moment functions, we start with two
separate ME densities as distributions under the respective null hypothesis.
The first density corresponds to the moment function ln(1+η̃2) = ln(1+(η/r)2)
and as noted earlier, this is the Pearson type VII distribution which includes
Student’s t as a special case. The second density is implied by the moment
function ln(1+ |η̃|p) and reduces to the first one when p = 2. Since the results
of our tests based on statistic (30) with different bootstrap sample sizes B =
50, 100, 150 and 200 are similar, we report the results only for B = 100 (Table
2). When the null density comes from the moment function ln(1 + η̃2), the
Lagrange multipliers corresponding to tan−1(η̃2), sinh−1(η̃) and tan−1(η̃) are
all highly significant. As noted earlier, tan−1(η̃) represents high peakedness,
and sinh−1(η̃) and tan−1(η̃) capture asymmetry. Our test results indicate that
these three moment functions take account of certain data characteristics and
convey some additional information after we have already started with the
moment function ln(1 + η̃2), i.e., the Pearson type VII density. On the other
hand, none of the additional Lagrange multipliers are significant when we test
the null density implied by the moment function ln(1 + |η̃|p) (with maximum
likelihood estimate, p̂ = 1.3978). This function behaves like a “sufficient”
moment function in the sense that once we start with ln(1+|η̃|p), the additional
moment functions do not throw any further light on the underlying density. It
is as if ln(1 + |η̃|p) exhausts all the available information (in the sample) that
is relevant for estimating the density function.

[Table 2, approximately here]

We now use these test results and estimate the AR(1)-GARCH(1,1) model
with various ME densities. We consider the three moment functions one-by-
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one (in addition to ln(1 + η̃2)) for which the associated Lagrange multipliers
were significant (see Table 2). The estimation results are reported in Table 3.
It is clear that additional moment functions increase the log-likelihood value
substantially and make the model selection criteria AIC and SIC values more
attractive. We should add that the moment function ln(1 + |η̃|p) where p
appears as an additional parameter, by itself performs extremely well. Also,
as we discussed in Section 2.1, p̂ = 1.3978 < 2 captures the peakedness of
the distribution. This encourages us to test various combinations of moment
functions and estimate models with different sets of moment functions. To
conserve space we do not report all the test and estimation results but these
can be obtained from us on request. In the right panel of Table 3, we present
results from four models under several combinations of moment functions for
which the Lagrange multipliers were significant. The moment functions used
in these models are quite clear from the lower part of the Table 3; for example,
the Model 1 corresponds to moment function ln(1 + |η̃|p).

[Table 3, approximately here]

Model 4, apparently the “best” model, includes six moment functions for which
all the Lagrange multipliers are highly significant. Performance of Models 2
and 3 are almost identical as the moment functions tan−1(·) and sinh−1(·) have
similar shape (see Figure 4), and as we shall also see in Figures 6 and 7. Using
our earlier discussion it is tempting to say that ln(1 + η̃2) exclusively explains
excess kurtosis, tan−1(η̃2) captures high peakedness, and tan−1(η̃) and other
functions take care of asymmetry, etc. However, these moment functions are
not orthogonal and therefore, when many are present in a single ME density,
we need to consider their combined effect.

It is interesting to compare above estimation results to those of GARCH mod-
els based on some other general parametric density functions used in the
current literature: standard normal; Student’s t [Bollerslev (1987)]; skewed-
t [Fernández and Steel (1998) and Lambert and Laurent (2001)]; and inverse
hyperbolic sine (IHS)[Hansen, McDonald and Theodossiou (2000)]. The val-
ues of log-likelihood functions and model selection criteria (AIC and SIC) for
those models are reported in Table 4. We note that, in terms of goodness-of-fit,
Model 4 achieves the levels of some of the very general standard distributions
quite easily.

[Table 4, approximately here]

In Figures 6 and 7 we plot, respectively, the conditional densities, and the
influence functions ν(·), computed using the formula (19) for our four models
(presented in Table 3). Density corresponding to Model 4 is very close to the
nonparametric density based on the standardized residuals of the estimated
GARCH model under conditional normality (QMLE). All the four influence
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functions are bounded, and as expected it is hard to distinguish the lines
for Models 2 and 3. The influence function corresponding to the Model 4
has the least variation and comes out to be the best. Thus, after a series of
estimations and tests, our maximum entropy approach leads to a model that
captures stylized facts quite effectively.

[Figure 6, approximately here]

[Figure 7, approximately here]

5 Concluding remarks

In this paper, we provide a generalization of GARCH model by incorporating
MED as the underlying probability distribution. We characterize MED and
discuss various moment functions that are suitable to capture excess kurto-
sis, asymmetry and high peakedness generally observed in financial data. We
devise a test to select appropriate moment functions. Our empirical results
demonstrate that the suggested MEARCH model is quite useful in capturing
the behavior of the data. Many other moment functions and their mixtures
could be chosen to generate even more flexible density. Our procedure is quite
different from those that use certain non-normal densities. Those densities
have fixed forms and not amenable to easy modification. Ours is a completely
flexible procedure where various moment functions are selected based on the
information available from the data. The approach is also constructive than a
(semi-) non-parametric one using orthonormal series in the sense that the ME
model provides a highly parsimonious model. The extension to the multivariate
MEARCH model is of particular interest since many empirical works deal with
the multivariate GARCH models such as Bollerslev’s (1990) constant condi-
tional correlation and Engle’s (2002) dynamic conditional correlation models
[for a review of these models see Bauwens, Laurent and Rombouts (2006)].
Kouskoulas, Pierce and Ulaby (2004) and more recently, Wu (2007) explored
the computational methods and properties for multivariate MED under the
arithmetic and Legendre series moment constraints, respectively. It would be
useful to extend their approaches to the general moments constraints that we
suggest.
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Appendix

A Derivation of the moment selection test

We start with the log-likelihood function (25)

l(θ) = −T ln κ(θ)−
T∑

t=1

q∑
i=1

λiφi

(
σ̃(θ)εt√

ht
+ µ̃(θ)

)
− 1

2

T∑
t=1

ln ht, (A.1)

where κ(θ) = C̃(θ)−1σ̃(θ) in the density of u given in (26). For convenience κ(θ) can be represented as

κ(θ) =

∫
exp

[
−

q∑
i=1

λiφi(σ̃(θ)u + µ̃(θ))

]
du.

Note that κ(θ), µ̃(θ), and σ̃(θ) are also function of Lagrange multiplier, λj for j = 1, 2, · · · , q, and µ̃(θ) =∫
η̃f̃(η̃)dη̃ and σ̃(θ) =

(∫
(η̃ − µ̃)2f̃(η̃)dη̃

)1/2
.

The score function of dλj
is

dλj
=

∂l(θ)

∂λj
= −T

∂ ln κ(θ)

∂λj
−

T∑
t=1

[
φj

(
σ̃(θ)εt√

ht
+ µ̃(θ)

)
+

q∑
i=1

λi
∂φi(·)
∂λj

]

= −T
∂ ln κ(θ)

∂λj
−

T∑
t=1

φj

(
σ̃(θ)εt√

ht
+ µ̃(θ)

)
−

T∑
t=1

∆j , (A.2)

where

∆j =

q∑
i=1

λiφ
′
i

(
σ̃(θ)εt√

ht
+ µ̃(θ)

)(
∂σ̃(θ)

∂λj

εt√
ht

+
∂µ̃(θ)

∂λj

)

with φ′i(·) as the derivative of φi(·). Below we obtain ∂ ln κ(θ)/∂λj , ∂µ̃(θ)/∂λj and ∂σ̃(θ)/∂λj to get explicit
expression of the score dλj

.

Since µ̃(θ) = C̃(θ)−1
∫

η̃ exp
[
−

∑q

i=1
λiφi(η̃)

]
dη̃.

∂µ̃(θ)

∂λj
=

∂C̃(θ)−1

∂λj

∫
η̃ exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃ − C̃(θ)−1

∫
η̃φj(η̃) exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃. (A.3)

Using the expression of f̃(η̃) in (22)

∫
f̃(η̃)dη̃ =

∫
1

C̃(θ)
exp

[
−

q∑
i=1

λiφi (η̃)

]
dη̃ = 1.

By differentiating this with respect to λj , we have the identity
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1

C̃(θ)2

∂C̃(θ)

∂λj

∫
exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

+C̃(θ)−1

∫
exp

[
−

q∑
i=1

λiφi(η̃)

]
φj(η̃)dη̃ = 0. (A.4)

Using this identity, ∂C̃(θ)−1/∂λj in (A.3) can be expressed as

∂C̃(θ)−1

∂λj
=

C̃(θ)−1
∫

φj(η̃) exp
[
−

∑q

i=1
λiφi(η̃)

]
dη̃∫

exp
[
−

∑q

i=1
λiφi(η̃)

]
dη̃

. (A.5)

Thus, from (A.3) we have

∂µ̃(θ)

∂λj
=

C̃(θ)−1
∫

φj(η̃) exp
[
−

∑q

i=1
λiφi(η̃)

]
dη̃∫

exp
[
−

∑q

i=1
λiφi(η̃)

]
dη̃

∫
η̃ exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

−
∫

η̃φj(η̃) exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

= Ef̃ [φj(η̃)]Ef̃ [η̃]− Ef̃ [η̃φj(η̃)] . (A.6)

Since σ̃(θ) =
[
C̃(θ)−1

∫
(η̃ − µ̃(θ))2 exp

[
−

∑q

i=1
λiφi(η̃)

]
dη̃

]1/2

∂σ̃(θ)

∂λj
=

1

2
σ̃(θ)−1

[
∂C̃(θ)−1

∂λj

∫
(η̃ − µ̃(θ))2 exp

(
−

q∑
i=1

λiφi(η̃)

)
dη̃

+C̃(θ)−1

∫ {
−2 (η̃ − µ̃(θ))

∂µ̃(θ)

∂λj
exp

(
−

q∑
i=1

λiφi(η̃)

)

− (η̃ − µ̃(θ))2 φj(η̃) exp

(
−

q∑
i=1

λiφi(η̃)

)
dη̃

}]
.

Putting the expression of ∂C̃(θ)−1/∂λj from (A.5) in the above equation, we can write

∂σ̃(θ)

∂λj
=

1

2
σ̃(θ)−1

[
Ef̃ [φj(η̃)] σ̃(θ)2 − Ef̃

(
2 (η̃ − µ̃(θ))

∂µ̃(θ)

∂λj

)
− Ef̃

(
(η̃ − µ̃(θ))2 φj(η̃)

)]
, (A.7)

where Ef̃

[
2 (η̃ − µ̃(θ))

∂µ̃(θ)
∂λj

]
is equal to 0. Thus, (A.7) is given by

∂σ̃(θ)

∂λj
=

1

2
σ̃(θ)−1

[
Ef̃ [φj(η̃)]Ef̃

[
(η̃ − µ̃(θ))2

]
− Ef̃

[
(η̃ − µ̃(θ))2 φj(η̃)

]]
.

The first order derivative of ln κ(θ) in (A.1) with respect to λj is

∂ ln κ(θ)

∂λj
=

A∫
exp

[
−

∑q

i=1
λiφi (σ̃(θ)u + µ̃(θ))

]
du

,
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where

A =

∫ [
−φj (σ̃(θ)u + µ̃(θ)) exp

{
−

q∑
i=1

λiφi (σ̃(θ)u + µ̃(θ))

}

+exp

{
−

q∑
i=1

λiφi (σ̃(θ)u + µ̃(θ))

}{
−

q∑
i=1

λiφ
′
i (σ̃(θ)u + µ̃(θ))×

(
∂σ̃(θ)

∂λj
u +

∂µ̃(θ)

∂λj

)}]
du.

Thus

∂ ln κ(θ)

∂λj
= Eg [−φj (σ̃(θ)u + µ̃(θ))] + Eg

[
−

q∑
i=1

λiφ
′
i (σ̃(θ)u + µ̃(θ))×

(
∂σ̃(θ)

∂λj
u +

µ̃(θ)

∂λj

)]
. (A.8)

Evaluating (A.6), (A.7) and (A.8) under the null hypothesis H0j : λj = 0, yields

∂µ̃(θ)

∂λj

∣∣∣∣
λj=0

= ωmωj − ω(m,j),

∂σ̃(θ)

∂λj

∣∣∣∣
λj=0

= (1/2)ω
−1/2
v (ωvωj − ω(v,j)),

∂ ln κ(θ)

∂λj

∣∣∣∣
λj=0

= −ϕj − ξj ,

where ωm = Ef̃0
[η̃], ωj = Ef̃0

[φj(η̃)], ω(m,j) = Ef̃0
[η̃φj(η̃)], ωv = Ef̃0

[(η̃ − ωm)2], ω(v,j) = Ef̃0
[(η̃ −

ωm)2φj(η̃)], ϕj = Eg0 [φj(u)], and ξj = Eg0 [∆̃j ]. Here the subscripts to the expectation operator represent

distributions with which the expectations are taken. Distributions, f̃0(η̃), g0(u) and ∆̃j are given by

f̃0(η̃) =

exp

[
−

∑
i={1,2,···,q}\{j} λiφi(η̃)

]

∫
exp

[
−

∑
i={1,2,···,q}\{j} λiφi(η̃)

]
dη̃

,

g0(u) =

exp

[
−

∑
i={1,2,···,q}\{j} λiφi

(
ω

1/2
v u + ωm

)]

∫
exp

[
−

∑
i={1,2,···,q}\{j} λiφi

(
ω

1/2
v u + ωm

)]
du

,

∆̃j =
∑

i={1,2,···,q}\{j}
λiφ

′
i

(
ω

1/2
v εt√

ht
+ ωm

)(
(ωvωj − ω(v,j))εt

2
√

ωvht
+ (ωmωj − ω(m,j))

)
.

Under the null hypothesis λj = 0, the score function in (A.2) can be written as

d0
λj

= T (ϕj + ξj)−
T∑

t=1

φj

(
ω

1/2
v εt√

ht
+ ωm

)
−

T∑
t=1

∆̃j .

Hence, Rao’s score statistic Rj(θ) can be expressed as

Rj(θ) = (ϕj + ξj)− 1

T

T∑
t=1

[
φj

(
ω

1/2
v εt√

ht
+ ωm

)
− ∆̃j

]
.
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Table 2. Moment function selection test results with bootstrap sample size
B = 100

cos(η̃) η̃/(1 + η̃2) sin(η̃) tan−1(η̃2) sinh−1(η̃) tan−1(η̃)
(i) ln(1 + η̃2) 1.519 2.591 0.475 18.883∗∗ 8.773∗∗ 7.823∗∗

(0.218) (0.108) (0.491) (0.000) (0.003) (0.005)
(ii) ln(1 + |η̃|p) 1.708 0.596 0.762 0.151 0.831 0.773

(0.191) (0.440) (0.383) (0.698) (0.362) (0.379)

Notes: (i) and (ii) denote null density corresponds to the moment function ln(1 + η̃2) and ln(1 + |η̃|p),
respectively. P-values are given in the parentheses and calculated using asymptotic χ2

1 distribution. 1%
critical values of Hotelling’s T 2 are T 2

1,49: 7.181, T 2
1,99: 6.898, T 2

1,149: 6.808, T 2
1,199: 6.764., respectively. **

indicates statistical significance at the 1% level.
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Table 3. Estimation with different moment functions

(i) (i) & (i) & (i) &

ln(1 + η̃2) tan−1(η̃2) sinh−1(η̃) tan−1(η̃) Model 1 Model 2 Model 3 Model 4

AR(1)

ζ0 0.0608 0.0591 0.0484 0.0498 0.0528 0.0472 0.0474 0.0458

(0.0089) (0.0088) (0.0098) (0.0098) (0.0091) (0.0096) (0.0095) (0.0097)

ζ1 0.0428 0.0422 0.0395 0.0396 0.0355 0.0392 0.0396 0.0388

(0.0129) (0.0126) (0.0130) (0.0130) (0.0120) (0.0127) (0.0127) (0.0126)

GARCH(1,1)

α0 0.0064 0.0066 0.0065 0.0065 0.0068 0.0066 0.0066 0.0073

(0.0021) (0.0021) (0.0020) (0.0020) (0.0022) (0.0020) (0.0020) (0.0024)

α1 0.0577 0.0571 0.0571 0.0572 0.0588 0.0580 0.0580 0.0651

(0.0087) (0.0085) (0.0083) (0.0084) (0.0091) (0.0081) (0.0080) (0.0092)

β1 0.9366 0.9359 0.9365 0.9364 0.9340 0.9339 0.9340 0.9314

(0.0094) (0.0094) (0.0092) (0.0092) (0.0100) (0.0091) (0.0091) (0.0097)

Lagrange multipliers (λj ’s)

ln(1 + |η̃|p) 9.1912

(4.0198)

ln(1 + η̃2) 3.0040 2.9474 3.1284 3.1012 3.3108 3.3193 2.4649

(0.2076) (0.1992) (0.2213) (0.2200) (0.3975) (0.3955) (0.1877)

tan−1(η̃2) -1.0630 -1.2067 -1.2172 -0.9024

(0.1249) (0.2064) (0.2085) (0.1586)

cos(η̃) 0.6327 0.6248 0.8239

(0.2735) (0.2712) (0.0978)

tan−1(η̃) 0.3587 0.3019 -3.3456

(0.1265) (0.1870) (0.7318)

sin(η̃) -0.4075 -0.4640

(0.1310) (0.1600)

sinh−1(η̃) 0.2783 0.1785 2.1510

(0.0889) (0.1155) (0.4830)

η̃/(1 + η̃2) 1.7340

(0.3539)

p 1.3978

(0.1001)

log-likelihood -6084.15 -6073.51 -6079.49 -6080.37 -6067.36 -6059.33 -6059.32 -6041.94

AIC 2.3343 2.3306 2.3329 2.3332 2.3282 2.3263 2.3263 2.3200

SIC 2.3418 2.3394 2.3417 2.3420 2.3370 2.3389 2.3389 2.3339

Note: Standard errors are given in the parentheses.
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Table 4. Goodness-of-fit for four densities

Normal Student’s t Skewed-t IHS
Log-Likelihood -6334.76 -6085.46 -6082.82 -6079.05

AIC 2.4300 2.3348 2.3342 2.3317
SIC 2.4362 2.3423 2.3430 2.3415
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Fig. 1. Moment functions φj(x, γ) representing thick tail
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Fig. 2. Moment functions φj(x, γ) representing high peakedness
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Fig. 3. Moment functions φj(x, γ) representing skewness
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Fig. 4. Moment functions φj(x, γ) representing general skewness
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Fig. 5. NYSE return data and nonparametric kernel density
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Notes: Usual gaussian kernel is used for estimating nonparametric density in which rule-of-thumb
bandwidth [Silverman (1986)] is 0.1035.
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Fig. 6. Density estimates for the standarized residuals of the final models
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Notes: QMLE denotes usual Gaussian kernel density using Scott (1992)’s optimal bandwidth (0.1534) for
standardized residual from the estimated GARCH model under conditional normality.
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Fig. 7. Influence functions for the final models
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