

Interoperable Systems Group
Dublin City University

Glasnevin, Dublin 9, IRELAND.

 Title:

 Author:

 Project:

REF:

Date:

Storage of Complex Business
Rules in Object Database

Dalen Kambur

EGTv

ISG-02-09

 August 05, 2002

Abstract

True integration of large systems requires sharing
of information stored in databases beyond sharing
of pure data: business rules associated with this
data must be shared also. This research focuses
on providing a mechanism for defining, storing and
sharing business rules across different information
systems, in an area where existing technologies are
weak. In this paper, we present the pre-integration
stage where individual business rules are stored in
the database for subsequent exchange applications
and information systems.

1 Introduction, background
and motivation

Federated database systems (FDS) integrate dif-
ferent, mutually incompatible component database
systems [SL90]. Client application requests are is-
sued against the FDS, which applies them against
local databases. The FDS model is particularly
useful in multimedia databases, where component
databases store multimedia data using different
multimedia data types, each of which defines differ-
ent operations on the stored data. In a FDS these
different data types must have an identical access
interface, which requires reusing existing operations
and definition of new operations in the FDS. These
operations are a form of business rules, transforma-
tion patterns associated with the data, rather then
any particular application.

One multimedia system that could benefit from
federated multimedia database architecture is the
F́ıshlár Digital Multimedia System [LSO+00]. This
system uses Oracle Video Server software in a single
server environment. As this can be scaled only to a
certain (technological) limit, the processing power
and the available disk space are limited, thus limit-
ing the number of concurrent users and the amount
of digital multimedia material that can be stored
with the system. Distribution of processing and
data across several servers is needed, where indi-
vidual servers can be based upon mutually incom-
patible technologies. Thus, a federated multimedia
system is suitable in this case. Business rule sharing
is essential as it facilitates incorporation of mutu-
ally incompatible technologies, and can help with
performance by distributing the work-load against

multiple servers.
This research does not deal with actual algo-

rithms used to extract, stream or modify multime-
dia content, rather it provides an infrastructure for
developing multimedia database federations. With
multimedia databases, an essential part of the data
stored with the database are manipulation rules, as
different types of multimedia databases might store
and manipulate multimedia content in a different
manner. These multimedia manipulation rules rep-
resent a form of complex business rules. The F́ısh-
lár system for example, is intended only for stream-
ing digital multimedia content to multiple users.
The streaming of multimedia material itself is a
complex business rule; involving transformation of
the stored multimedia content into series of chunks
each of which can be independently transmitted to
a client application (for instance, web browser) and
displayed. Another complex rule might add a spe-
cial effect in a specified place in existing multimedia
material, involving searching through the multime-
dia material for the place to insert the special ef-
fect, inserting the special effect and storing the end
result with the database. In both of these cases,
the business rule is too complex to be defined in
a database specific programming language (DBPL);
and the processing should be carried out by the
database server in order to maximise performance.

The currently available object database technolo-
gies, object-oriented databases based upon ODMG
[CB99] and object-relational (O-R) SQL1999
[GP99] standards are deficient in this respect:
whereas ODMG does not identify a need to de-
fine or share business rules, SQL1999 offers only
a DBPL for defining business rules. Using CORBA
[HV99], business rules can be defined and shared
for distributed objects, and its Persistent Storage
Services [Ion02] enable its usage with persistent ob-
jects stored in different types of databases. Usage
of PSS however, is a highly complex low-level and
error-prone development process which shifts the
attention of a developer from the system to be built
to low-level technical details.

Related research projects are generally limited
through propriety of their data model, communi-
cation protocol and lack of published metamodel.
The contribution in our research project is the
provision of sharing of business rules for object
databases using standard technologies to overcome
compatibility issues. This builds upon the work of-

1

fered in [RB02].
This paper is structured as follows: In §2 an

overview of related research projects is given. In §3
we examine the categories of business rules, where
for each category is identified how can it be used
in object-oriented modelling. §4 introduces the ar-
chitecture we use in this research with some opera-
tional scenarios. §5 contains important implemen-
tation details with an overview of used technologies.
Finally, conclusions are given in §6.

2 Related Research

In this section, we review how existing projects
share business rules. For each project, we explain
how the business rules are modelled, what the limi-
tations of the project are, and integration capabili-
ties with regard to business rules. We conclude the
description of each project with those aspects that
are employed in our research.

2.1 The MOOD Project

In the METU Object-Oriented DBMS (MOOD)
project [DAO+95] , the business rules are mod-
elled as C++ methods and compiled to dynamic
libraries. To apply a business rule against the data,
a client application specifies the rule to be applied
and parameters, where the DBMS loads the library
containing the rule and applies it against the data.
This communication is based on a proprietary pro-
tocol, details of which were never published making
it difficult to integrate a MOOD database with any
other database. Business rules cannot be invoked
within queries, which significantly reduces power
of queries to built-in operations. Example 1 is in-
valid because the WHERE clause of the query applies
business rule contains to identify whether the de-
scription of a program contains Cherry.

Example 1
SELECT name FROM Program

WHERE desc.contains("Cherry")

An approach to compile business rules into individ-
ual libraries may introduce an overhead with busi-
ness rules defined using other business rules, i.e. if
business rule A is defined using business rules B
and C, then prior to application of business rule A,
libraries containing business rules B and C must

be loaded. We consider this approach to have too
fine level of granularity.

MIND (METU INteroperable DBMS) is the in-
tegration architecture used in this research. In this
architecture, individual databases are wrapped us-
ing CORBA objects, thus employing a standard
protocol. However, the integration architecture
does not facilitate the application of business rules
on integrated database systems even if the inte-
grated database is a MOOD database. Further-
more, no standard metamodel has been published
as part of this project, which is an important pre-
requisite for efficient database integration. How-
ever, the general approach chosen in this project,
i.e. to use a general purpose programming language
to define complex business rules and to compile
them into dynamic libraries is well suited to our
own approach.

2.2 The LOQIS Database System

In the LOQIS database system [SBMS94], busi-
ness rules are modelled using the Stack Based
Query Language (SBQL) as procedures and stored
with the database. A procedure [SKL95] con-
sists of a procedure name, parameters and body,
where the name is an identifier, parameters are ex-
pressions (essentially, queries) and the body con-
sists of expressions and control statements such
as if..then..else and they return an expres-
sion. In Example 2, taken from [SKL95] procedure
ChangeDept changes the department the employ-
ees work in for all employees listed in E. E can be
a single employee, a set of employees or any kind
of expression (i.e. query), providing a simple and
powerful way to define a procedure.

Example 2
procedure ChangeDept(var E; var D)

begin
delete (DEPT.EMPLOYS) where EMP∈E;
(e←E).(

create local EMPLOYS(↑e);
D/=EMPLOYS;e.WORKS_IN:=↑D;
e.EDNO:=D.DNO;)

end ChangeDept;

For integration LOQIS uses views, where a view
is a result of procedure execution, thus facilitating
powerful transformations on stored data. LOQIS

2

views can also include behaviour. The project does
not directly address integration of different data
sources. Only parts of the metadata side of the
project were published. SBQL, though powerful
and clearly defined, is rather abstract and close to
the art of programming languages. However, the
concepts introduced in SBQL are built into our ap-
proach, where we provide a more traditional exter-
nal interface.

2.3 The MultiView Project

In the MultiView project [HR93] business rules are
defined as methods written in Opal and stored in
the GemStone database, where Opal is GemStone’s
version of the SmallTalk. Opal employs total en-
capsulation (i.e. data is accessible only via acces-
sor methods), and used to emulate multiple inheri-
tance, originally not provided with the GemStone.
A technique named object-slicing is employed and
facilitates non-consecutive storage of properties of
an object. This retains a single object [RKR94] rep-
resentation to methods, thus being ideal for repre-
senting virtual objects. However, the implementa-
tion of the technique in the MultiView is restricted
to SmallTalk which is not widely spread program-
ming language.

With regards to integration, the project fo-
cuses on the integration of other MultiView based
databases and resolving structural differences. In-
teroperability with other types of databases was not
part of the research. For integration, views are pro-
vided as sets of virtual classes, each of which is de-
fined using integration operations over other virtual
or base classes. The operations provided are sim-
ple, setting an accent on set operations on objects
(select, union, intersect and diff). The re-
fine operation is used for redefining associations,
changing types of properties and similar purposes
resulting in adding new properties. The hide op-
eration results in removing existing properties. Re-
definition of inheritance of virtual classes is impos-
sible with the provided operations. As the model
employs total encapsulation, these properties are
business rules defined in Opal using other proper-
ties of the virtual class to be defined, and the base
classes. For representing virtual objects, object-
slicing is used, which is an aspect of this research
project that will take part in our research for rep-
resenting virtual objects. There are no details of a

metamodel specification.

2.4 The IRO-DB Project

In the IRO-DB project [BFN94] business rules are
provided for users of the federation of relational
and object-oriented databases. Rules are defined
using the C++ programming language, following
the Object Manipulation Language (OML) defini-
tion from ODMG standard, as part of the interface
to virtual class. IRO-DB does not facilitate an ac-
cess to the properties directly, instead accessor op-
erations are generated. The rules are compiled and
made available to the federated applications and
queries. No discussion as to what business rules
are allowed to do (only to query or alter data) and
the outcome of modifying operations (as we discuss
in §3) is offered. In this research, an early draft of
the standard ODMG metamodel was used. The
communication protocol used between client appli-
cation and the server is modified Call Level Inter-
face (CLI), however in the later research they have
used CORBA instead [RBPF98], by exporting the
objects and business rules using CORBA interface.
In our research CORBA is used in similar fashion,
where we facilitate definition and usage of business
rules at preintegration stage and in the future of
the research, in federated database.

3 A Taxonomy of Business
Rule Formats

Client applications operate on data stored in
databases in different fashions: some of the oper-
ations applied against data are client application
specific, whereas other operations are more associ-
ated with the data itself. Such operations are busi-
ness rules and need to be stored with the database
so that more then one client application can use
them. In this section a detailed taxonomy of oper-
ations is presented with an explanation as to how
each particular format of operation is supported in
our architecture. Operations can be distinguished
by

• their return value;

• if they modify objects (modifiability);

• the parameters they receive.

3

Administrator

lockAccount()

Subscription

startDate

endDate

getDuration()

cancel()

Channel

name

cancelUser()

recordProgram()
10..* 10..*

subscribedTo

User

ratingLimit()

subscribe()

changeRating()

0..*
1

0..*
1

TVSchedule

broadcastDate

duration

updateSchedule()

record()

1

0..*

1

0..*

GenericUser

name

login

password

generatePassword()

requestRecording()

ScreenShot

image

Trailer

clip

Rating

name

description

isUserFit()

1

0..*

1

0..*

Category

name

description

1..*

1

1..*

1

Program

name

description

deleteAllTrailers()

getTrailer()

getScreenShot()

1

0..*

1

0..*

0..*0..* 0..*0..*

recordings

0..*

1

0..*

1 0..*

1

0..*

1

0..*

1

0..*

1

1

0..*

1

0..*

Figure 1: The Recorder schema.

The categories are first introduced (§3.1) and later,
combinations of the categories are discussed and
explained (§3.2). In the remainder of the article a
multimedia database schema illustrated in figure 1
will be used. The schema belongs to a digital mul-
timedia provider which provides its customers with
capability to record multimedia material broadcast
on different channels and later on to access to that
material. User subscribes to a particular channel,
and the same program can be scheduled more then
once, on different channels and broadcasting dates.

3.1 Rule Categories

• Return value

Operations can either return a value or not. A re-
turn value is calculated upon invocation, not stored
with the database, and can be used in expressions
as a simple value. The return value can be of prim-
itive type or an object reference. While a primitive
type can be easily passed into an operation, an ob-
ject reference must maintain the location reference
and thus requires additional handling.

Operations returning no value are similar to pro-
cedures and can be used to modify the state of an
object or to query and return the state of the ob-
ject via output parameters. Operations returning
an object reference allow client applications to get
references and manipulate stored objects.

• Modifiability

In order to explain some of the issues involved, we
introduce two terms to refer to objects modified
during operations. The object of which class the
operation is defined is known as the target object.
An object connected (through a relationship prop-
erty) to the target object, and which is also af-
fected by the original operation, is referred to as
the related object. Write operations create, update
or delete at least one object. An update operation
that changes only the target object is considered a
level 0 update operation. In other words, it does
not affect another object indirectly.

Operations may update related objects. We refer
to these changes as level 1 changes. For instance,
an operation updateSchedule(program) of class
Channel updates the time the program is broad-
cast by modifying the broadcastDate property of
a related object of class TVSchedule.

Write operations can also create and delete re-
lated objects. This feature is based upon an object-
factory design pattern [GHJV98] where an object-
factory class is responsible for providing an inter-
face for creating and deleting the objects of the
managed class. These changes are also categorised
as level 1 updates. For example, an operation
deleteAllTrailers of the class Program does not
modify the target object, but it deletes related ob-
jects of class Trailer (the cancelled broadcasts of
the program).

Similar to level 1 updates, level n updates in-
clude any changes made to related objects of the
related objects, where n is the number of relation-
ships between the modified object and the target
object.

Invocation of write operations in queries involves
an additional risk as the order of evaluation is not
guaranteed in query languages and thus might re-
sult in different results which is discussed later on.

• Parameters

An operation may contain either zero or more pa-
rameters. Each parameter can be of primitive type
or a reference. Also, each parameter can be either
read or write. In the case where the operation di-
rectly manipulates an object, its structure and in-
terface must be known at compile time, where the
interface of primitive type is always known at com-
pilation time (primitive type is atomic), i.e. does

4

not have structure. For example, a business rule
subscribe(channelName) of class User must know
the structure of the Channel class to identify the
channel object which the User wants to subscribe
to.

However, in the case where the operation del-
egates the parameter manipulation to an opera-
tion of some other class and does not manipulate
the parameter itself, the structure and interface of
the parameter need not be known during compi-
lation. For example, a business rule recordPro-
gram(user,date) of class Channel might use the
record(user) rule of class TVSchedule that des-
ignates a program to be recorded for the specified
user, thus not manipulating user directly.

3.2 Category Combinations

In this subsection, we shall classify each operation
based on its format into A, B or C category, where
category A operations preserve an object’s state,
category B operations modify an object’s state, and
finally, category C operations are not supported.
An overview of formats of operations and their cor-
responding categories is given in table 1. This cate-
gorisation is useful to determine the extent to which
an operation can be supported with our architec-
ture, which is explained further on.

Operations that preserve both an object’s state
and parameters are classified as category A and can
be used in queries and in client applications. For
instance, operation of format 3 returns a value of
an expression based on the object’s state preserv-
ing an object’s state and parameters, thus, if used
in a query, the evaluation order will not affect the
results and it is safe to use such an operation in
queries.

Operations that change an object’s state or oper-
ation parameters (classified as category B) can be
used from client applications, but cannot be safely
used in queries. Changes within the operation in-
vocation and their order of execution might affect
the result of the query. Changes are supported
(level 0 and higher) where the developer must as-
sure that the changes are not conflicting. In gen-
eral, if changes caused by invoked operations do not
interfere with the selection criterion, and if the op-
erations modify different objects the query is safe
to execute. Clearly, the safeness of an operation
execution depends not only on an operation, but

the query as well. For instance,

Example 3
SELECT s.user.Name

FROM (SELECT s1.*

FROM Subscription s1

WHERE s1.subscribedTo.name

= "SuperTV Plus") s

WHERE s.cancel() > 30;

is to select the names of all the subscribers of the
SuperTV Plus channel which need to be refunded
(have more then 30 days of subscription left un-
used) because the channel cancelled subscription
with the provider. Same operation in a similar
query is not safe, as illustrated in example 4.

Example 4
SELECT s.user.Name

FROM Subscription s

WHERE s.cancel() > 30 and
s.subscribedTo.name

="SuperTV Plus";

If cancel operation is executed before filtering
against the Channel, the query would cancel sub-
scriptions to all channels and return the names of
users that need to be refunded of SuperTV Plus
channel. The cancel operation is of format 4 and
as it can affect query execution, belongs to category
B.

Operations not retrieving or making changes to
an object are not used in modelling object-oriented
systems and in the table 1 are classified to be of cat-
egory C. For instance, operations of format 1 make
no sense as they make no changes to any object nor
they retrieve a value.

Though it might seem overly simple, this is the
maximum extent to which an operation defined us-
ing a standard programming language can be classi-
fied. To determine if an operation is safe in a query,
a formal description of both the operation and the
query would be required, which is not available
with standard programming languages and stan-
dard query languages.

• Rule Formats

Operations returning no values and modifying no
objects have no use in any application and are not
supported.

5

Format Form ModifyCategory
1 f() C
2 f()

√
B

3 x = f() A
4 x = f()

√
B

5 f(r1, ..., rn) C
6 f(r1, ..., rn, w1, ..., wm) B
7 f(r1, ..., rn)

√
B

8 f(r1, ..., rn, w1, ..., wm)
√

B
9 x = f(r1, ..., rn) A
10 x = f(r1, ..., rn, w1, ..., wm) B
11 x = f(r1, ..., rn)

√
B

12 x = f(r1, ..., rn, w1, ..., wm)
√

B

Table 1: Combinations of Categories.

These operations are used to change an object’s
state, are not dependent on external parameters
and generate no return value. For example, an op-
eration deleteAllTrailors() of the class Program
deletes all the trailors of the target program.

These operations retrieve an attribute’s value or
use an expression to derive a new value, while pre-
serving the object’s state. For example, the get-
Duration() operation of the class Subscription
returns a duration of the subscription in days (i.e.
endDate - startDate).

This type of operation is permitted to modify the
objects and also generates a return value. For ex-
ample, operation cancel() of class Subscription
cancels the subscription the user had to a particular
channel. The previous value of endDate attribute
is returned to facilitate potential financial compen-
sation.

For reasons similar to format 1 operations, these
operations are not supported.

These operations allow modification to parame-
ters only. The object’s state is preserved and no
value is returned. For example, an operation get-
Trailer(client) of the Program class streams to
the client the trailer (and thus, modifies the client
object). In this, the state of the Program object is
not modified.

These operations are used to modify objects.
They receive non-modifiable parameters and gen-
erate no return value. For example, an operation
cancelUser(user) of Channel class canlcels the
subscription to the channel for the user.

These operations are permitted to modify both
an object’s state and parameters, while gener-
ating no return value. For example, the sub-
scribe(channel) operation of the class User sub-
scribes an user to the Channel. This operation
creates an object of class Subscription, and as-
sociates it with the referenced channel object and
User object, thus modifying both of them.

These operations generate a return value while
preserving the object’s state. For example, an op-
eration isUserFit(user) of the class Rating re-
turns true if the user is is fit to watch programs of
that rating.

These operations alter some of the parameters
they receive and generate a return value while pre-
serving the object’s state. For example, an oper-
ation getScreenShot(index,image) of the class
Program places the screenshot number index in
the parameter image and returns the number of
remaining images.

These operations change an object’s state and
generate a return value based on the non-modifying
parameters they receive. For example, an opera-
tion requestRecording(program,channel,time)
of the class User requests recording of a particu-
lar program on a specified channel by creating an
association between GenericUser and Program.

These operations change an object’s state and in-
put parameters they receive, while also generating
a return value. For example, an operation chang-
eRating(newRating) operation of the class User
changes the rating of the movies the user is allowed
to watch, returning the reference to the previous
rating of the user.

4 Architecture and Opera-
tional Scenarios

The architecture presented here provides develop-
ers with the ability to store business rules inside
database and remote client applications with access
to them. It is an extension of [KR01] in which only
ODMG databases were supported. This architec-
ture facilitates both O-R and ODMG databases and
is introduced through scenarios that cover different
operational aspects of the architecture: registering
classes for adding new business rules (§4.1); reusing
existing business rules (§4.2); and specifying new

6

business rules (§4.3). The ODLb language used
in these scenarios is introduced through a series of
examples with a full formal specification given in
[Kam02].

In this architecture, the classes must be regis-
tered with the system before business rules can be
reused or defined. The registration process requires
the classes from the database schema to be specified
and subsequently, existing or newly defined opera-
tions are available to all client applications or query
engine. In this section, we illustrate this process of
making classes and operations available to all client
applications.

4.1 Registering classes for adding
new business rules

Behaviour Store

Database Interface

Client Interface

State

Processor

Behaviour

Processor

Gateway
Layer

Database
Layer

State Schema Meta-schema

Canonical Schema

Access
Layer

Import Processor

ODLb

files

Create/update
meta-objects

Create/update
meta schema

OR Store

Persistent meta-objects

ODMG Store

Persistent meta-objects

Figure 2: Registering a class.

In the scenario illustrated in figure 2, classes for
which operations are stored and shared are made
available to the system. The database is located at
the Database Layer, and can be an ODMG or an
O-R database. The Import Processor reads the
ODLb file containing a list of classes to be regis-
tered. This list is used to create (with the incorpo-
ration of a new database) or update (with the in-
corporation of new classes) the Meta-schema. The
Meta-schema is a canonical form of the database
metadata and is maintained by the Database In-
terface which transforms native database objects
to their canonical form (to be used by other lay-
ers). The information stored in the Meta-schema
is subsequently used to execute client application
requests. The shaded parts of the architecture in
figure 2 are not used in this scenario and will be
described later.

The ODLb language features are introduced in
the remainder of this subsection.

Example 5
database MultimediaProvider {

import GenericUser;

}

In Example 5, only the class GenericUser is im-
ported. The database declaration specifies the
name of the database the class will be taken from.
The import declaration specifies the names of the
classes to be registered. In this case, the relation-
ship to Recording will not be imported as it has
no meaning. Please refer to §4.2 for the affect of
these commands to business rules.

A more comprehensive way to register larger and
more complex schemas is provided using the op-
tional sub, rel and all keywords specified after
the class name. The sub will include all subclasses
of the specified class; the rel will register all classes
connected to the specified class using relationships;
and the all keyword combines both of these.

Example 6
database MultimediaProvider {

import GenericUser sub;
}

In Example 6, all the GenericUser subclasses are
registered (i.e. Administrator and User). As
classes Program, Rating and Subscription are not
registered, the relationships to these classes are
dropped.

Example 7
database MultimediaProvider {

import GenericUser rel;
}

In Example 7, all classes except of class Adminis-
trator are registered as all of them are accessible
via relationships.

Example 8
database MultimediaProvider {

import GenericPerson all
exclude Rating;

}

7

In Example 8, it is shown that a limitation can be
placed on set of classes to be registered, namely,
class Rating is excluded along with relationships
from User and Program to this class. Other classes
and relationships are registered. Please refer to
[Kam02] for a more detailed description of language
and examples.

4.2 Using business rules from exist-
ing applications

O-R and ODMG databases differ in their support
for storage of operations. ODMG databases pre-
sume all operations are part of client applications,
and the database server contains only an object’s
state. Such operations, as part of the client ap-
plication, cannot be extracted and reused. How-
ever, source modules can be used for redefining
the operations as “new”, as explained in §4.3. O-R
databases facilitate a limited storage of operations.
These operations are defined using a proprietary
database programming language1 (such as Oracle
PL/SQL). Part of the database server’s functional-
ity is to implement such operations. Thus, these
operations are not part of the client application
(they are already separated) and can be reused.
However these operations cannot be directly im-
ported. Instead operation names and signatures
(i.e. parameter types and return value) are stored
in the meta-schema. Client application requests for
invocation of the reused operation are forwarded to
the Database Layer and executed by the database
server. Results of the execution are also retrieved
from the database server.

A scenario of importing an existing operation
is illustrated in figure 2 (§4.1), where the Import
Processor reads names and signatures of all avail-
able operations for each class to be incorporated
from the Database Layer. The signatures are
transformed to a common form which is also used
to specify new operations and stored in the Meta-
schema. The stored information is propagated to
the Database Layer via the Database Interface
and is subsequently used by the Behaviour Pro-
cessor to invoke operation.

The commands in §4.1 are used to import
O-R behaviour together with class definitions.

1Though the O-R database standard defines a program-
ming language, we are unaware of any compliant O-R
database.

In Example 5, the generatePassword() and
requestRecording() business rules will be im-
ported, as only class GenericUser was imported.
In Example 6, business rules generatePass-
word(), requestRecording(), lockAccount(),
ratingLimit(), subscribe() and changeRat-
ing() will be imported. In Example 7, business
rules generatePassword(), requestRecording(),
lockAccount(), ratingLimit(), subscribe(),
changeRating(), cancelUser(), deleteAll-
Trailers(), getTrailer(), getScreenShot(),
isUserFit(), record(), updateSchedule(),
recordProgram(), getDuration() and cancel()
will be imported. In Example 8, business rules
generatePassword(), requestRecording(), rat-
ingLimit(), cancel(), subscribe(), changeR-
ating(), cancelUser(), deleteAllTrailers(),
getTrailer(), record(), updateSchedule(),
recordProgram(), getDuration() and lockAc-
count() are imported.

Before our new architecture for object database
systems, none of these rules were available to client
applications except as part of proprietary applica-
tions. These rules are now available to all client
applications.

4.3 Specifying new business rules

The specification of new business rules is illustrated
in figure 3. Following traditional programming lan-
guages, this is a two stage process in which the
business rule is first declared and then defined2.
To declare a new business rule, the Import Pro-
cessor reads ODLb files containing their decla-
rations. These declarations contain a list of opera-
tions and signatures, module specifications and files
for building the modules, are stored with the Meta-
schema, and forwarded to the Database Layer us-
ing the Database Interface.

In figure 3 the process of defining operation is
presented. An operation is defined similarly to a
method in a programming language, i.e. using ob-
ject attributes and other, already defined, meth-
ods. For this, an extended form of programming
language is used which facilitates using ODLb dec-
larations instead of programming language decla-
rations. The Import Processor reads files spec-

2The broken line linking the Import Processor to the
Behaviour Store takes place only when defining business
rules.

8

OR Store

Behaviour Store

Database Interface

Client Interface

State

Processor

Behaviour

Processor

Gateway
Layer

Database
Layer

State Schema Meta-schema

Canonical Schema

Access
Layer

Import Processor

ODLb

files

Update
meta-objects

Update
meta schema

Behaviour
to import

Store new
behaviour

Persistent meta-objects Persistent meta-objects

ODMG Store

Figure 3: Specifying new behaviour.

ified as belonging to a single module and builds
a single, dynamically loadable library by translat-
ing ODLb declarations to programming language
declarations. Modules are stored with the Be-
haviour Storage, and registered with the Meta-
schema, thus making newly defined methods avail-
able for invocation. The Behaviour Storage is a
register of available modules and it is implemented
as a folder on a file system.

5 Implementation

In this research only standard technologies, avail-
able on variety of platforms and in different pro-
gramming languages are used. Our architecture
requires a technology that facilitates data (param-
eters, object references and return values) trans-
fer between different platforms, so we have chosen
CORBA (Orbix).

It also requires a number of programming and
query language processing tools, and all of them are
designed using ANTLR [ANT02] which generates
parser classes from the specification file containing
rules (encoded in a customised version of Extended
Backus-Naur Form), followed by semantic actions.
The parser invokes the semantic actions for each
construction recognised in source files.

The Versant Developer Suite (VDS) is an ODMG
database used for the first prototype. Our platform
is Windows based, though all of the technologies we
used should be easily portable to other platforms.
Microsoft Visual C++ compiler was used to operate
with the VDS and Orbix. A Linux version is under
development.

The prototype is built as a standard client-server
system, where server is used by the client appli-
cations using a Client Interface, packaged in
Database and Session classes. For each database,
a single instance of the Database class is registered
with the CORBA Naming Service and acts as an
object factory for the Session class. The Session
class provides a client application interface to both
Object Processor and Query Processor in the
form of separate methods. To establish a connec-
tion, client applications invoke the getSession()
method of the Database object registered with the
CORBA Naming Service using the database name.

For each persistent class, a wrapper with the
same name is (re)generated as described in the op-
erational scenarios §4.1, §4.2 and §4.3. The wrap-
per has a set of operations bound to the opera-
tions of persistent classes which package the oper-
ation invocation request. The wrappers also have
the same set of properties as the persistent classes
which are synchronised with the persistent objects
where object-slicing [HR93] is used to assure for-
warding of changes to the server.

Similarly, wrappers are generated for server-
side operation implementation. They propagate
changes to the database and provide hooks to which
client application requests are forwarded, this way
implementing parts of the State Processor and
Behaviour Processor. Object-slicing is also used
here to forward the changes to the database. How-
ever, this implementation of object-slicing will be
reused for subsequent integration phase.

6 Conclusions

In this paper our approach to storing and access-
ing business rules in object databases was demon-
strated. We have shown the importance of this fa-
cility in one of the most prominent areas of informa-
tion technology applications in business: multime-
dia databases. Despite the importance of sharing
business rules, the current industry standards pro-
vide very little support. We presented our classifi-
cation of business rules based on their format, and
the scenarios in which they are used (i.e. query
as opposed to client application). This classifica-
tion also used to describe the extent to which each
particular business rule can be supported in our
architecture. Rather then using a full formal de-

9

scription, we provided the reader with a more infor-
mal series of scenarios, illustrated with examples.
Nevertheless, we provided implementation details
(technologies used and overall design) to give an
overview of the technical background of this work.
In the future research we will focus on extending
the architecture to provide business rules in object-
oriented views, which is the ultimate aim of this
research. In the introduction section of this paper,
we briefly mentioned the application area of object-
oriented views: multimedia systems and business
systems integration. Bearing in mind the broad ar-
chitectural design, we feel such an extension will be
simple, requiring more theoretical research related
to updatability of, and inclusion of, behaviour in
object-oriented views.

References

[ANT02] ANTLR, ANTLR Reference Manual,
ANTLR, 2002.

[BFN94] Busse, R., Fankhauser, P. and Neuhold,
E. J., Federated Schemata in ODMG,
in East/West Database Workshop,
pp. 356–379, 1994, URL cite-
seer.nj.nec.com/225897.html.

[CB99] Catell, R. and Barry, D., The Object
Data Standard: ODMG 3.0, Morgan
Kaufmann, 1999.

[DAO+95] Dogac, A. et al., METU Object-
Oriented DBMS Kernel, in Proceedings
of the 6th International Conference on
Database and Expert Systems Applica-
tions, pp. 14–27, Springer Verlag, 1995.

[GHJV98] Gamma, E. et al., Design Patterns:
Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1998.

[GP99] Gulutzan, P. and Pelzer, T., SQL-99
Complete, Really, R&D Books, 1999.

[HR93] Harumi, K. and Rundensteiner, E.,
Developing an Object-Oriented View
Management System, in Proceedings of
the Centre for Advanced Studies Con-
ference (CASCON), pp. 548–562, 1993.

[HV99] Henning, M. and Vinoski, S., Ad-
vanced CORBA Programming with
C++, Addison-Wesley, 1999.

[Ion02] Iona Technologies Plc, CORBA Pro-
grammer’s Guide C++, Iona Technolo-
gies Plc., 2002.

[Kam02] Kambur, D., Storage of Behaviour in
Object Databases, in Technical Report
ISG-02-02, pp. 1–13, 2002.

[KR01] Kambur, D. and Roantree, M., Us-
ing stored behaviour in object-oriented
databases, in Proceedings of the 4th
Workshop EFIS 2001, pp. 61–69, IOS
Press, 2001.

[LSO+00] Lee, H. et al., The F́ıschlár Digital
Video Recording, Analysis, and Brows-
ing System, in Proceedings of the RIAO
2000 - Content-based Multimedia Infor-
mation Access, 2000.

[RB02] Roantree, M. and Bećarević, D., Meta-
data Usage in Multimedia Federations,
in First International Meta informatics
Symposium (MIS 2002), 2002.

[RBPF98] Ramfos, A. et al., CORBA Based Data
Integration Framework, in Proceedings
of the Third International Conference
on Integrated Design and Process Tech-
nology, IDPT, pp. 176–183, 1998.

[RKR94] Ra, Y., Kuno, H. and Runden-
steiner, E., A Flexible Object-Oriented
Database Model and Implementation
for Capacity Augmenting Views, Techi-
cal report, Department of Electronic
Engineering and Computer Science,
University of Michigan, 1994.

[SBMS94] Subieta, K. et al., A Stack-Based Ap-
proach to Query Lanugages, in Pro-
ceedings of the Second International
East/West Workshop, pp. 159–180,
Springer Verlag, 1994.

[SKL95] Subieta, K., Kambayashi, Y. and
Leszczy lowski, J., Procedures in
Object-Oriented Query Languages, in
Proceedings of the 21st International

10

Conference on Very Large Data Bases,
pp. 182–193, Morgan Kaufmann, 1995.

[SL90] Sheth, A. and Larson, J., Feder-
ated Database Systems for Manag-
ing Distributed, heterogeneous and Au-
tonomous Databases, in ACM Comput-
ing Surveys, vol. 22(3), pp. 183–226,
1990.

11

