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Abstract

Approximate dynamic programming (ADP) is a broad umbrella for a modeling and algorithmic
strategy for solving problems that are sometimes large and complex, and are usually (but not always)
stochastic. It is most often presented as a method for overcoming the classic curse of dimensionality
that is well-known to plague the use of Bellman’s equation. For many problems, there are actually
up to three curses of dimensionality. But the richer message of approximate dynamic programming is
learning what to learn, and how to learn it, to make better decisions over time. This article provides
a brief review of approximate dynamic programming, without intending to be a complete tutorial.
Instead, our goal is to provide a broader perspective of ADP and how it should be approached from
the perspective on different problem classes.



There is a wide range of problems that involve making decisions over time, usually in the presence

of different forms of uncertainty. Using the vocabulary of operations research (which hardly owns

this broad problem class), we might describe our system as being in a state St, from which we take

an action xt and then observe new information Wt+1 which takes us to a new state St+1. We can

represent our rule (or policy) for making a decision using the function Xπ(St). Most of the time,

we can assume that we have a transition function SM (·) (also known as the “system model” or

sometimes just “model”) which describes how a system evolves from St to St+1. The dynamics of

our problem can then be described using

xt = Xπ(St), (1)

St+1 = SM (St, xt,Wt+1). (2)

We assume that there is a choice of decision functions Xπ where π ∈ Π designates a particular

function or policy (we use decision function and policy interchangeably). After we make a decision

xt, we assume we earn a contribution (cost if we are minimizing) given by C(St, xt) which usually

depends on the state. In some settings, the contribution depends on Wt+1, in which case it would

be written C(St, xt,Wt+1). Our goal is to find the best policy π ∈ Π that solves

sup
π∈Π

E
T∑
t=0

γtC(St, xt), (3)

where γ is a discount factor. We need an expectation because the information variable Wt is random

(at times before time t).

This simple framework covers a wide variety of problems. There has been a desire among some in

the research community to design a general solution framework that covers all problems, but we are

quite sure that this is going to prove fruitless. What has happened is that there have emerged fairly

distinct subcommunities that work on problems that tend to share certain empirical characteristics.

Somewhat frustratingly, these communities have also developed different vocabularies and different

notational systems. The three major communities are control theory, which includes mainstream

engineering (e.g., electrical, mechanical and chemical) as well as economics, artificial intelligence

(primarily computer science) and operations research. Operations research spans different subcom-

munities that work on stochastic optimization, including the Markov decision process community

(whose notation has been adopted by the artificial intelligence community), stochastic programming
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(a subcommunity of math programming that considers uncertainty), and the simulation community,

which approaches stochastic optimization from a somewhat different perspective.

These communities have evolved a rich vocabulary reflecting the different domains in which the

work takes place. In operations research, the state variable is denoted St and is most often understood

to represent the physical state of the system. In control theory, a state is xt which might refer to

the physical state of a production plant, the location, velocity and acceleration of an aircraft, or a

vector of parameters characterizing a statistical model. We use St as our state, xt as our action, and

Wt+1 as the information arriving between t and t+ 1. In the dynamic programming community, it is

customary to use the one-step transition matrix p(s′|s, x) which is the probability that we transition

to state s′ given that we are currently in state s and take action x. In the controls community, it

is more natural to use the transition function SM (·), which describes the physics of how the state

evolves over time.

Given the diversity of applications, it should not be surprising that there is more than one way

to approach solving the optimization problem in Equation (3). The most important of these are

Simulation-optimization - Here we assume that our decision function Xπ(St) depends only on

what we know now, and makes no attempt to use any sort of forecast of how decisions now

might impact the future. These are generally known as myopic policies, and often these depend

on a set of parameters. We want to find the set of parameters that perform the best over many

realizations of the future. Choosing the best set of parameters is typically done using the tools

of stochastic search (Spall (2003)) and the closely related field of simulation optimization (see

Fu (2002) and Chang et al. (2007)).

Rolling-horizon procedures - A RHP (sometimes called a receding-horizon procedure) uses either

a deterministic or stochastic forecast of future events based on what we know at time t. We then

use this forecast to solve a problem that extends over a planning horizon, but only implement

the decision for the immediate time period.

Dynamic programming - Dynamic programming makes decisions which use an estimate of the

value of states to which an action might take us. The foundation of dynamic programming is

Bellman’s equation (also known as the Hamilton-Jacobi equations in control theory) which is
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most typically written (Puterman (1994))

Vt(St) = max
xt

(
C(St, xt) + γ

∑
s′∈S

p(s′|St, xt)Vt+1(s′)
)
. (4)

Recognizing that all three approaches can be valid ways of solving a stochastic optimization problem,

approximate dynamic programming specifically focuses on using Bellman’s equation.

The remainder of this article provides a brief introduction to the very rich field known as ap-

proximate dynamic programming (ADP). As of this writing, there are three books dedicated to this

topic, each representing different communities. Neuro-Dynamic Programming (Bertsekas and Tsit-

siklis (1996)) is a primarily theoretical treatment of the field using the language of control theory;

Reinforcement Learning (Sutton and Barto (1998)) describes the field from the perspective of arti-

ficial intelligence/computer science; and Approximate Dynamic Programming (Powell (2007)) uses

the language of operations research, with more emphasis on the high-dimensional problems that

typically characterize the problems in this community. Judd (1998) provides a nice discussion of

approximations for continuous dynamic programming problems that arise in economics, and Haykin

(1999) is an in-depth treatment of neural networks, with a chapter devoted to their use in dynamic

programming. We do not have the space to cover all these perspectives, and focus instead on issues

that tend to arise in applications from operations research.

1 A brief introduction to ADP

From the seminal work of Bellman (1957) to Puterman (1994) and including numerous authors in

between, the field that is typically referred to as Markov decision processes writes Bellman’s equation

in the form given in Equation (4), which we refer to as the standard form of Bellman’s equation.

For our purposes, it is more convenient (but mathematically equivalent) to write Bellman’s equation

using the expectation form given by

Vt(s) = max
xt

(
C(St, xt) + γE {Vt+1(St+1)|St = s}

)
. (5)

where St+1 = SM (St, xt,Wt+1), and the expectation is over the random variable Wt+1. Vt(St) is

the value function (in control theory this is represented by J and is called the cost-to-go function)

which gives the expected value of being in state St at time t and following an optimal policy forward.

We index the value functions by time which is appropriate for finite-horizon models. We use a
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finite-horizon model because it makes the modeling of information (and randomness) more explicit,

especially when we use the expectation form.

The standard presentation in dynamic programming texts (e.g., Puterman (1994)) is that the

state space is discrete and can be represented as S = (1, 2, . . . , |S|). This is known in the artificial

intelligence community as a flat representation (Boutilier et al. (1999)). The “textbook” solution

to dynamic programming assumes Vt+1(s) is known and computes Vt(s) for each s ∈ S. Since

this step requires stepping backward through time, this is often referred to as backward dynamic

programming.

If St is a discrete, scalar variable, enumerating the states is typically not too difficult. But if it

is a vector, then the number of states grows exponentially with the number of dimensions. If St is

continuous (even if it is scalar), then we cannot use this strategy at all. The essence of approximate

dynamic programming is to replace the true value function Vt(St) with some sort of statistical

approximation that we refer to as V̄t(St), an idea that was suggested in Bellman and Dreyfus (1959).

The second step in approximate dynamic programming is that instead of working backward

through time (computing the value of being in each state), ADP steps forward in time, although

there are different variations which combine stepping forward in time with backward sweeps to update

the value of being in a state. Continuing to use our finite-horizon model, we are going to start with

a given state S0 and follow a particular sample path ω ∈ Ω. We are going to do this iteratively, so

assume we are about to start iteration n. After iteration n− 1, we have an approximation V̄ n−1
t (St).

We use this approximation to make decisions while we are following the nth sample path ωn. This

means that our decision function is given by

Xπ(Snt ) = max
xt

(
C(Snt , xt) + γE

{
V̄ n−1
t+1 (St+1)|Snt

} )
. (6)

Note that this provides us with a specific definition of what is meant by a policy π. In this setting,

the policy is determined by the value function approximation V̄t+1(St+1), which means the policy

space Π is the set of all possible value function approximations.

Let xnt be the value of xt that solves this problem, and let

v̂nt = C(Snt , x
n
t ) + γE

{
V̄ n−1
t+1 (St+1)|St

}
(7)

be a sample estimate of the value of being in state Snt . There are numerous ways to approximate a
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Step 0. Initialization:

Step 0a. Initialize V̄ 0
t (St) for all states St.

Step 0b. Choose an initial state S1
0 .

Step 0c. Set n = 1.

Step 1. Choose a sample path ωn.

Step 2. For t = 0, 1, 2, . . . , T do:

Step 2a. Solve

v̂n
t = max

xt

(
Ct(S

n
t , xt) + γE{V̄ n−1

t+1 (St+1)|St}
)

and let xn
t be the value of xt that solves the maximization problem.

Step 2b. Update V̄ n−1
t (St) using

V̄ n
t (St) =

{
(1− αn−1)V̄ n−1

t (Sn
t ) + αn−1v̂

n
t St = Sn

t

V̄ n−1
t (St) otherwise.

Step 2c. Compute Sn
t+1 = SM (Sn

t , x
n
t ,Wt+1(ωn)).

Step 3. Let n = n+ 1. If n < N , go to step 1.

Figure 1: A generic approximate dynamic programming algorithm using a lookup-table representa-
tion.

value function, and as a result there are many ways to estimate a value function approximation. But

the simplest approximation is known as a lookup table, which means that for each discrete state s,

we have an estimate V̄t(s) which gives the value of being in state s. If we are using a lookup-table

representation, we would update our estimate using

V̄ n
t (Snt ) = (1− αn−1)V̄ n−1

t (Snt ) + αn−1v̂
n
t . (8)

Here, αn−1 is known as a stepsize, since Equation (8) can be derived from a type of stochastic

optimization algorithm (see Powell (2007), Chapter 6 for a more detailed discussion). More on this

later.

Figure 1 summarizes a generic ADP algorithm. Note that it steps forward in time, and at no

point does it require that we enumerate all the states in the state space, as is required in classical

backward dynamic programming. On the surface, it seems as if we have eliminated the curse of

dimensionality.

The algorithm in Figure 1 serves as a reference point for all the research that takes place in the

approximate dynamic programming literature. While it is nice to eliminate the need to enumerate

states, this algorithm is unlikely to work for any problem that cannot already be solved exactly.
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First, while we do not explicitly enumerate all the states, we need an approximation of the value of

being in any state that we might visit. While this limits us to states that are visited, and any state

that might be visited from any state that is actually visited, this can still be a very large number.

Second, this algorithm only updates the values of states that we actually visit. Assume these

values are positive, and that our initial approximation uses zero. This means that any state that we

do not actually visit will keep a value of zero. Once we visit a state (presumably raising its value),

we are more inclined to take actions that might take us back to this state. This means we have to

find a way to visit states just to learn their value.

There are other problems. While we may have created the appearance of solving the curse of

multidimensional state variables, we still may have a problem with multidimensional information

variables. Consider a problem of managing inventories for P product types, where Stp is the number

of units of product p. Now let D̂tp be the random demand for product p at time t, where demands

may be correlated. Finding the expectation over the multivariate distribution of the vector Dt now

becomes computationally intractable. This is the second curse of dimensionality.

Finally, consider what happens when xt is a vector. Let xtp be the number of products of type p

that we are ordering, so xt is now a vector. If we actually were using a lookup-table representation

for a value function, the only way to solve the optimization problem in Equation (6) is to enumerate

the action space. When xt is a vector, the number of potential actions grows just as it does for the

state space. This is the third curse of dimensionality. A separate but related issue arises when states,

information and actions are continuous. This introduces issues even when these variables are scalar.

Interestingly, approximate dynamic programming handles multidimensional discrete variables as if

they are continuous.

2 Overcoming the curses of dimensionality

Before we progress too far, it is important to address the three curses of dimensionality, beginning

with state variables. We begin by noting that the so-called curse of dimensionality is really an

artifact of flat representations. If the state St is a multidimensional vector of discrete variables, it is

almost never going to be practical to list out all possible combinations of the state variable in a single

list (the flat representation). Instead, it is much better to retain the original structure of the state

variable, something that the artificial intelligence community refers to as a factored representation
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(Boutilier et al. (1999)).

State variables can be a mixture of discrete, continuous and categorical values. Assume for the

moment that all the elements of the state variable are numerical (discrete or continuous). The first

trick that is widely used to overcome multidimensional variables is to simply treat the vector St as

continuous. For example, imagine that Sti is the number of units of product of type i. We might

then approximate the value function using

V̄t(St|θ) =
∑
i∈I

θiSti. (9)

This is a very simple approximation that assumes that the behavior of the value function is linear in

the number of units of product. The parameter θi captures the marginal value of products of type i.

Now, with just |I| parameters, we have a value function that covers the entire state space. Of course,

this particular approximation architecture (linear in St) may not provide a very good approximation,

but it hints at the basic strategy for overcoming the curse of dimensionality. Section 3 deals with

value function approximations in more detail.

The second problem is the expectation. There are many real-world problems where the random

information is a large vector of prices and demands, making it computationally impossible to compute

the expectation exactly. It is possible to approximate the expectation by using a sample, but this

can complicate the optimization problem when xt is a vector.

There are many problems where the decision is fairly simple (what price to charge, what quantity

should be ordered), but there are also problems where xt is a potentially high dimensional vector. How

do I allocate my workforce to different assignments around the world? Which drug treatments should

I test? When xt is a vector, then we have to draw on the field of mathematical programming, whether

it be linear or nonlinear programming, integer programming, or a messy combinatoric problem that

requires your favorite metaheuristic.

An elegant way to circumvent the imbedded expectation is to use a concept called the post-

decision state variable. The post-decision state captures the state of the system immediately after

we make a decision but before any new information has arrived. This means that the post-decision

state is a deterministic function of St (also known as the pre-decision state) and the decision xt.

To our knowledge, the term “post-decision state” was first introduced in Van Roy et al. (1997),

but the concept has been widely used, although without much attention given to its importance
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to handling problems that exhibit vector-valued decision, information and state variables. Judd

(1998) refers to the post-decision state as the end-of-period state, while in the reinforcement learning

community, it is called the after-state variable (Sutton and Barto (1998)). The decision tree literature

has used it extensively when it breaks down problems into decision nodes (which represent pre-

decision states) and outcome nodes (which represent post-decision states). We have found that when

dealing vector-valued decision, information and state variables (the three curses of dimensionality),

the post-decision state variable takes on critical importance.

Since we are using xt as our decision variable, we let Sxt represent our post-decision state variable.

We assume that we are given a deterministic function SM,x(St, xt) that returns Sxt . Examples of

post-decision state variables include

Tic-tac-toe - The pre-decision state is the board just before we make our move. The post-decision

state is the board immediately after we make our move, but before our opponent makes his

move.

Inventory problems - Classical inventory problems are described using the equation St+1 =

max{0, St + xt − D̂t+1} where St is a scalar giving the amount of inventory, xt is the new

product we have just ordered and D̂t+1 is the random demand (unknown at time t). St is the

pre-decision state. We would write Sxt = St + xt as the post-decision state.

Blood management - Let Rti be the number of units of blood of type i, and let Dtj be the demand

for blood of type j. For our illustration, assume that unsatisfied demands are lost to our system

(they obtain blood supplies elsewhere). Our state variable would be St = (Rt, Dt). Let xtij

be the number of units of blood supply of type i that are assigned to demands of type j. The

leftover blood would be

Rxti = Rti −
∑
j

xtij .

Since unsatisfied demands are lost, our post-decision state variable is Sxt = Rxt .

It takes some time to get used to defining the post-decision state. The most important feature is

that it has to be a deterministic function of St and xt. This does not prevent us from using a forecast

of future information. For example, let R̂t+1,i be a random variable giving us the donations of blood

that arrive between t and t+ 1. Now let R̄t,t+1,i be a forecast of what will be donated between t and
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t + 1. Of course, this forecast is known at time t, and is based on information that arrived before

time t. We can write the post-decision state variable as

Rxti = Rti −
∑
j

xtij + R̄t,t+1,i.

Another form of post-decision state variable is Sxt = (St, xt), which is a concatenation of the pre-

decision state and the decision vector. For problems in operations research, this looks hopelessly

clumsy. However, this is precisely what is done in a branch of the reinforcement learning community

that uses a concept known as Q-learning which focuses on learning the value of being in a state St

and taking an action xt.

Once we have defined our post-decision state, we then have to fit our value function approximation

around the post-decision state instead of the pre-decision state. Let V̄ x,n
t (Sxt ) be our estimate of the

value of being in post-decision state after n observations. If we are using a lookup-table representation

(one value per state), then instead of using the update given in Equation (8), we would use

V̄ x,n
t−1 (Sx,nt−1) = (1− αn−1)V̄ x,n−1

t−1 (Sx,nt−1) + αn−1v̂
n
t . (10)

Comparing (8) and (10), we see that the update is almost the same, except that we use v̂nt (mea-

sured at time t) to update the value function approximation V̄ x,n
t−1 around the previous post-decision

state variable Sx,nt−1. We note that the smoothing of v̂nt into V̄ x,n−1
t−1 (·) represents the step where we

approximate the expectation. This means that we make decisions using

Xπ(Snt ) = max
xt

(
C(Snt , xt) + γV̄ x,n−1

t (Sxt )
)
. (11)

Note that the right hand side of (11) is deterministic (everything is indexed by t). This makes it

much easier to use the large library of solvers for deterministic problems. We just have to use some

care when designing the value function approximation. For example, if maxxt C(Snt , xt) is a linear

program, then we would ideally like to choose an approximation architecture for V̄ x,n−1
t (Sxt ) that

does not destroy this structure. If it is a concave nonlinear program (note that we are maximiz-

ing), then the value function approximation should retain concavity (and perhaps differentiability).

Lookup-table representations can only be used if our search procedure is something like a local search

heuristic.
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The post-decision state variable provides at least a path for solving problems which can handle

vector-valued states, information and decisions. This returns us to the central challenge of approxi-

mation dynamic programming which is designing and estimating the value function approximation.

3 Fitting a value function approximation

Central to approximate dynamic programming is the use of an approximation of the value function

for making decisions. The holy grail of ADP is to define an approximation strategy that works for

any problem, without tuning. Since we have not reached this goal, we tend to seek approximation

strategies that work for the broadest possible classes. Below, we describe three very general strategies,

but recognize that ADP remains an art form which requires taking advantage of problem structure.

3.1 Multilevel aggregation

Aggregation is a powerful technique that requires perhaps the least amount of problem structure

among the family of statistical tools available. We assume that we have a state variable St that is

usually multidimensional, and may include discrete, continuous and categorial elements. We are going

to make no assumptions about the behavior of the value function itself (e.g., concavity, monotonicity

or even continuity). But we are going to assume that there is a natural way to aggregate the state

space into successively coarser representations.

Let S be the original state space, and let S(g) be the state space at the gth level of aggregation.

Let Gg be a function mapping S to S(g), and let G be the set of indices corresponding to the levels

of aggregation. We assume that g = 0 is the most disaggregate level, but even at this level we

assume the state space has been aggregated into a set of discrete values. But the number of possible

aggregated values may be too large to enumerate (even at higher levels of aggregation).

Our value function approximation estimates a single value for a discrete state s at each level of

aggregation, but these values are only updated for states that we actually visit. Assume that we are

at time t, iteration n and we are visiting state Snt where the value of being in this state is given by

v̂nt (see Equation (7)). We let V̄ (g,n)
t (s) be an estimate of the value of being in state s at the gth level

of aggregation. This is updated using

V̄
(g,n)
t (s) =

{
(1− αn−1)V̄ (g,n−1)

t (s) + αn−1v̂
n
t if Gg(Snt ) = s,

V̄
(g,n)
t (s(g)) otherwise.

(12)
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We note that the stepsize αn−1 is not just a function of the iteration counter, but is typically a

function of the number of times that we have visited a particular state at a particular level of

aggregation.

Aggregation has been widely used to overcome the problem of large state spaces (see Rogers et

al. (1991) for a review). The most common strategy is to choose a single level of aggregation, which

raises the issue of determining the right level of aggregation. The problem with aggregation is that

the right level changes with the number of times you observe a set of states. Some authors have

suggested changing the level of aggregation with the number of iterations (Bertsekas and Castanon

(1989), Luus (2000)).

A more flexible strategy is to use a weighted sum of estimates from different levels of aggregation,

given by

V̄ n(s) =
∑
g∈G

w(g,n)(s)V̄ (g,n)(s). (13)

Note that the weight we put on the gth level of aggregation depends on both the iteration counter

and the state. Since there are many states, this means that we have to estimate a large number of

weights. A simple strategy is to weight estimates in inverse proportion to the total variation of the

error, given by

w(g)(s) ∝
(
σ̂2(s)(g,n)

Ng,n(s) +
(
µ̄(g,n)(s)

)2)−1
. (14)

where σ̂2(s))(g,n) is an estimate of the variance of the observations of state s after n iterations, at the

gth level of aggregation. Ng,n(s) is the number of times we have observed state s at the gth level of

aggregation, and µ̄(g,n)(s) is an estimate of the bias between the value at the gth level of aggregation,

and the more disaggregate level (g = 0). σ̂2(s)(g,n)/Ng,n(s) is an estimate of the variance of V̄ (g,n)(s)

which declines as we have more observations of state s. If there are states that we do not visit very

often, the variance tends to remain high because of this term. If we visit a state many times, the

total variation may decline considerably, or it may remain high if our estimate of the bias remains

high. The weights are then normalized so they sum to one. The computations are quite simple, and

requires only that we accumulate some statistics for every state we visit, at each level of aggregation

(see Powell (2007), Section 7.1 for a complete presentation).

This strategy is very easy to implement, and scales to very large problems. If a state has never
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Figure 2: The weights given to two levels of aggregation, showing how they put increasingly more
weight on disaggregate estimates as more information becomes available.

been observed at a particular level of aggregation, then it is simply assigned a weight of zero. This

logic tends to put higher weights on more aggregate estimates early in the process. As there are more

observations for certain states, the weight put on the disaggregate levels increases, although generally

not for all states. The effect of this logic is shown in Figure 2, which displays the objective function

if the value function is approximated at a single aggregate level, a single disaggregate level, or using

a weighted combination of both levels of aggregation with weights given by (14). The aggregate

value function gives faster initial convergence, while the disaggregate estimates give a better overall

solution, but the weighted combination gives the best results overall.

3.2 Basis functions

Perhaps the most widely publicized strategy for approximating value functions is to capture impor-

tant quantities from the state variable, and build an approximation around these quantities. These

quantities are captured using basis functions, φf (s), f ∈ F where f is referred to as a feature, and

φf (s) is a function that captures some particular quality from the state variable that is felt to provide

explanatory power. We might then write a value function using

V̄t(St|θ) =
∑
f∈F

θfφf (St).

This is referred to as a linear model because it is linear in the parameters. The basis functions may

capture different types of nonlinear behaviors. Returning to our product management application
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where Sti is the number of units of product type i, we might start with basis functions φf (St) = (Sti)2

(one feature per product type), and φf (St) = StiStj (one feature per pair of product types).

The challenge now is estimating the parameter vector θ. A simple strategy is to use a stochastic

gradient algorithm, given by

θn = θn−1 − αn−1

(
V̄t(Snt |θn−1)− v̂nt

)
∇θV̄t(Snt |θn−1)

= θn−1 − αn−1

(
V̄ (Snt |θn−1)− v̂n(Snt )

)


φ1(Snt )
φ2(Snt )

...
φF (Snt )

 . (15)

This method requires that we start with an initial estimate θ0, after which θ is updated following

each observation v̂nt , typically calculated using (7). This method of updating θ is popular because

it is simple, but it can be unstable. One challenge is that the stepsize α has to be scaled to handle

the difference in units between θ and the gradient, but it may be necessary to use different scaling

factors for each feature. More effective algorithms use recursive least squares (described in Bertsekas

and Tsitsiklis (1996) and Powell (2007), Chapter 7). The Kalman filter is a particularly powerful

algorithmic framework, although it is more difficult to implement (see Choi and Van Roy (2006) for

a nice discussion).

Basis functions are appealing because of their relative simplicity, but care has to be put into the

design of the features. It is tempting to make up a large number of functions φf (S) and throw them

into the model, but putting some care into the choice of functions is generally time well spent. The

challenge with any choice of basis functions is demonstrating that they actually contribute to the

quality of the solution.

3.3 Other statistical methods

It is important to draw on the widest possible range of techniques from statistics and machine

learning. An excellent reference is Hastie et al. (2001), which covers a broad range of methods for

statistical learning. Bertsekas and Tsitsiklis (1996) and Haykin (1999) provide in-depth discussions

on the use of neural networks, and Chapters 6 and 12 in Judd (1998) provide a very thorough

overview of approximation methods for continuous functions.

A major issue that arises when adapting these methods to approximate dynamic programming is
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the importance of using recursive methods, and developing methods that produce “good” approxi-

mations as quickly as possible. The value of being in a state depends on the quality of decisions that

are being made which in turn depend on the quality of the value function approximation. A poor

initial approximation can yield poor decisions which bias the estimates v̂nt being used to estimate the

value function. Not surprisingly, it is easy to develop ADP algorithms that either do not converge

at all, or converge to very poor solutions.

3.4 Approximations for resource allocation

Aggregation and basis functions are two methods that have the advantage of being quite general.

But with ADP, it is especially important to take advantage of problem structure. One very broad

problem class can be referred to as “resource allocation” where decisions involve the management of

people, equipment, energy and agricultural commodities, consumer goods and money. Examples of

these problems arise in transportation (allocation of vehicles), supply chain management, financial

portfolios, vaccine distribution, emergency response management and sensor management (to name

just a handful).

A simple but flexible mathematical model consists of

a = vector of attributes describing a resource, where a ∈ A,

Rta = number of resources available with attribute a at time t,

Rt = (Rta)a∈A,

d = a type of decision that acts on a single type of resource, where d ∈ D,

xtad = the number of times we act on resources with attribute a using a
decision of type d at time t,

xt = (xtad)a∈A,d∈D,

C(Rt, xt) = contribution earned by implementing decision vector xt given the
resource state vector Rt.

Resources are often reusable, which means if we act on a resource with attribute a using decision d,

we obtain a resource with attribute a′ (this can be random, but this is not central to our discussion).

Let RM (Rt, xt,Wt+1) be the resource transition function, comparable to our state transition function

we defined earlier. We can also assume that we have a post-decision resource transition function that
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returns Rxt = RM,x(Rt, xt). Further assume for illustrative purposes that we are using a linear value

function approximation of the form

V̄t(Rxt ) =
∑
a∈A

v̄taRta.

If we are in state Rnt , we would make a decision using

xnt = arg max
xt

(
C(Rnt , xt) + γV̄ n−1

t (Rxt )
)
. (16)

This problem generally has to be solved subject to constraints that include

∑
d∈D

xtad = Rta (17)

xtad ≥ 0.

Earlier (Equation (7)) we used the objective function value v̂nt to update our estimate of the value of

being in a state. When we are solving resource allocation problems, a much more effective technique

recognizes that we are not so much interested in the value of being in a state as we are interested

in the marginal value of a resource. Furthermore, we can obtain estimates of the marginal value of

each type of resource from the dual variables of the flow conservation constraints (17). Let v̂nta be the

dual variable associated with Equation (17). Note that this returns a vector (v̂nta)a∈A rather than a

single scalar, as was the case before. If we are in fact using a linear value function approximation,

we can update the slopes using

v̄nt−1,a = (1− αn−1)v̄n−1
t−1,a + αn−1v̂

n
ta.

Updating these marginal values using dual variables is extremely powerful. Not only do we get an

entire vector of marginal values, but we also get information on slopes (which is what we really

need) rather than an estimate of the value of being in a state. This logic can be extended to a

range of value function approximation strategies, including piecewise-linear separable, continuously

differentiable concave functions, and multidimensional cuts (see Powell (2007), Chapter 11 for a

more complete discussion). We note that this general strategy includes techniques such as stochastic

decomposition (see Higle and Sen (1991), Birge and Louveaux (1997)) which are traditionally thought

of as belonging to the field of stochastic programming.
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Resource allocation is one problem class where the dimensionality of xt can be particularly large,

and there may also be integrality requirements. For these problems, it is particularly important to

design value function approximations which work well with commercial solvers or particular algo-

rithmic strategy suited to the problem.

4 Other algorithmic issues

Assuming that you have found a way to approximate the value function that captures the important

characteristics of your problem, you now know enough to get yourself into some serious trouble. Even

applied to simple problems, the techniques above can work well, but may work very poorly. You

would not be the first person to run some experiments and conclude that “approximate dynamic

programming does not work.” Below, we address two issues that can be described as how fast we

learn, and what we learn.

4.1 The challenge of stepsizes

Up to now, we have routinely smoothed old estimates with new observations to produce updated

estimates (see Equation (8)). This smoothing is done with a quantity αn−1 that we have referred to

as a stepsize. For the purposes of our discussion, we assume that we are using the stepsize to smooth

between old and new estimates (as in (8)), where we can assume that the stepsize is between 0 and

1, rather than in an equation such as (15), where the stepsize has to perform a scaling function.

The smoothing step in Equation (8) is needed only because we have to resort to Monte Carlo

sampling to compute v̂nt . This would not be necessary if we could compute the expectation in

Bellman’s Equation (4) (or (5)). If we could compute the expectation, we would use αn−1 = 1, giving

us traditional value iteration (Puterman (1994)). In such a setting, the value of a state typically

increases over time, representing the approximation of the summation in Equation (3). However, we

generally depend on Monte Carlo sampling when we are not able to compute the expectation, as is

typically the case.

Imagine now that we can only measure contributions with uncertainty. The uncertainty might be

in the contribution function itself, or in the constraints that govern the choice of a decision. Further

imagine that the discount factor γ = 0, which means we do not even care about the downstream

impact of decisions made now. If this were the case, the best possible stepsize would be αn−1 = 1/n,
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which is equivalent to simply averaging different sample observations. The so-called “one over n”

stepsize rule is well-known to satisfy important conditions for convergence, but it can also produce

a rate of convergence so slow that it should never be used (see Section 9.3 of Powell (2007)). Care

has to be used when applying recursive least squares to estimate the parameter vector θ, since this

uses an implicit 1/n stepsize (see Section 7.3.3 of Powell (2007) for a way of overcoming this).

Choosing the best stepsize, then, requires performing a difficult balancing act between the need

to add up contributions over an extended horizon against the need to smooth out the noise from

sampling error. There is a wide range of stepsize formulas that have been proposed, coming from

different communities (see George and Powell (2006) for a review), but our work has suggested that

it is useful to consider three classes of formulas:

Constant stepsize - Start by simply choosing a constant stepsize αn = α0, and then experiment

with α0.

Harmonic stepsize sequence - The problem with a constant stepsize is that it does not decline,

which means you will never get strong convergence results. A good alternative is

αn−1 =
a

a+ nβ − 1

Start with β = 1, but try β = 0.7. Choose a after performing experiments with a constant

stepsize. There are problems where 100 iterations produces very good results, while others need

100,000 iterations (or millions). Choose a so that you get a “small” stepsize as the algorithm

appears to be converging, based on your experiments with a constant stepsize. There are

problems where a = 5 works well, while other problems need a = 5000.

Stochastic stepsizes - These are stepsizes that adjust themselves to the actual behavior of the

algorithm. A strategy called the bias-adjusted Kalman filter (BAKF) stepsize rule minimizes

the total variation between the actual and predicted value functions, given by

αn−1 = 1− σ2

(1 + λn−1)σ2 + (βn)2
(18)

where λn, σ2 and βn are computed using simple recursions (see Powell (2007), section 7.1).

Because σ2 and βn have to be estimated from data, the stepsize is stochastic. If the noise

σ2 = 0, we get α = 1. As σ2 grows (relative to the bias βn, the stepsizes tends to 1/n.
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Figure 3: The stepsizes produced by the BAKF stepsize rule and the 1/n rule for a typical nonsta-
tionary series.

Stochastic stepsize formulas are appealing because they adapt to the data, avoiding the need to tune

parameters such as a and β. But they do not work well when there is too much noise. Figure 3

illustrates the BAKF stepsize rule (18) for a nonstationary series typical of approximate dynamic

programming. The stepsize is initially larger, declining as the data stabilizes. Note that the stepsizes

never fall below 1/n, which is critical to avoid stalling. But if the data is very noisy, what can happen

is that the stepsize can be fooled into thinking that the underlying signal is changing, producing a

larger stepsize when we really need a smaller stepsize.

4.2 Exploration vs. exploitation

One of the best-known challenges in approximate dynamic programming is famously referred to

as the exploration vs. exploitation problem. Throughout our presentation (as in the algorithm in

Figure 1), we have presented ADP as a procedure where we find an action xnt , and then use this to

determine the next state. For most problems, this is not going to work, although the issues depend

very much on the nature of how you are approximating the value function.

Imagine that you are using a lookup table, and that you only update the value of a state if you

visit the state. Further assume that you initialize the value of being in a state to a number that is

lower than what you would expect in the limit. Each time you visit a state, the value of being in

that state tends to rise, producing a situation where you are biased toward revisiting states that you

have already visited. Quickly, the procedure can become stuck cycling between a relatively small

number of states. If values are initialized too high, the algorithm tends to endlessly explore.
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Striking a balance between exploration and exploitation remains one of the fundamentally un-

solved problems in approximate dynamic programming (and since ADP mimics life, we would argue

that this stands alongside one of the unsolved problems of life). There are simple heuristics that

are often used. For example, before choosing the state to visit next, you might flip a coin. With

probability ρ, you choose the next state at random. Otherwise, you visit the state determined by the

action xnt . This works well on small problems, but again, if the state space is large, an exploration

step has almost no meaning.

We refer the reader to Chapter 10 of Powell (2007) for a more in-depth discussion of strategies to

balance exploration and exploitation, as well as the strategies for state sampling that are presented

in Sutton and Barto (1998). However, we feel that this general problem area represents many

opportunities for research.

4.3 Evaluating an ADP strategy

The last challenge in the designing of an ADP algorithm is deciding how to evaluate it. While

there is no single answer to the question of how to do this, it is very important that some sort of

benchmark be prepared, since it is possible for an improperly ADP algorithm to work very poorly.

Some strategies that might be considered include:

Compare to an optimal MDP - In some cases, it is possible to simplify a problem (but not to the

point where it becomes meaningless) so that it can be solved optimally as a standard backward

Markov decision process (Puterman (1994)). If this is possible, then apply the ADP algorithm,

designed for the more complicated problem, to this simpler problem. If the ADP reasonably

approximates the optimal solution, then we have more confidence that it is doing a good job

on the real problem.

Compare to an optimal deterministic problem - In some cases, a deterministic version of the

problem is meaningful and can be solved optimally using a commercial solver. ADP can

handle uncertainty, but it should also be possible to apply to a deterministic version of the

same problem (Topaloglu and Powell (2006) and Godfrey and Powell (2002) provide examples

of this type of comparison).

Comparison to a myopic or rolling horizon policy - We opened this article with a description

of three broad strategies for solving stochastic optimization problems. Sometimes, the best

19



95

100100

85

90

95

un
d

90

tim
al

75

80

er
ce

nt
 o

f p
os

te
rio

r b
ou

80

os
te

rio
r o

pt

65

70
Pe

Rolling horizon procedure

70
er

ce
nt

 o
f p

o

55

60

g p

Approximate dynamic programming60Pe

50
Base I_10 I_40 S_II S_III S_IV R_100 R_400 c_1.6 c_8

Dataset

50
A        B         C         D         E          F        G         H         I          J

Dataset

Figure 4: The objective function produced using approximate dynamic programming and a rolling
horizon procedure compared against a posterior bound for 10 different datasets, from Topaloglu and
Powell (2006).

competition will be one of these other strategies.

Figure 4 illustrates the evaluation of policy based on approximate dynamic programming where it is

compared to a rolling horizon procedure. Both methods are reported relative to a posterior bound

where an optimal solution is computed after all random quantities become known. Of course, this is

not possible with all problems, but it is a useful benchmark when available.

5 Applications and implementations

Approximate dynamic programming is an exceptionally powerful modeling and algorithmic strategy

that makes it possible to design practical algorithms for a wide range of complex, industrial-strength

problems. This probably explains its broad appeal with the computer science and control theory

communities under names that include reinforcement learning and neuro-dynamic programming.

Our own personal experience began with projects in freight transportation which has produced

practical tools that have been implemented and adopted in industry. These applications include

managing freight cars for Norfolk Southern Railroad (Powell and Topaloglu (2005)), planning drivers

for Schneider National (Simao et al. (2008)), managing high-value spare parts for Embraer (Simao and

Powell (2009)), and optimizing locomotives for Norfolk Southern. These are production applications,

adopted by industry.
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However, approximate dynamic programming is also famous for its laboratory successes but field

failures, not unlike other areas of science and technology. It is not hard to find people who have

tried ADP, only to report that it did not work. Others complain that it requires substantial tuning.

These complaints are valid, but can be avoided if care is given to the following issues:

a) ADP is a powerful modeling and algorithmic technology. Not all problems need this. If you can

solve your problem using policy optimization (tuning a myopic policy), then this is usually

going to work better, but this typically only works well when you can obtain good solutions

using a relatively simple policy.

b) It is useful to understand what behavior you are looking for from a value function. For example,

if you set the value function to zero, what is wrong with the solution? As you design a value

function approximation, be sure that it directly addresses whatever issue you raise.

c) The value function approximation should capture the structure of your problem. Blindly making

up basis functions is unlikely to work. You have to have a good understanding of the important

elements of the state variable that impact the future in a way that you feel is important.

d) If you have a resource allocation problem (which describes a large number of problems in oper-

ations research), use approximations that reflect the unique behaviors of resource allocation

problems. In particular, make sure you take advantage of derivative information where avail-

able.

e) The wrong stepsize formula can ruin an ADP algorithm. If the stepsizes decrease too quickly, the

algorithm can appear to converge when in fact it is far from the correct solution. A stepsize

that is too large can produce unstable behavior. This is particularly problematic when using

basis functions where a small change in the regression vector θ can change the entire value

function approximation. These updates have to be carefully designed.

f) A topic that we only touched on is the exploration vs. exploitation problem (Chapter 10 of Powell

(2007)). The importance of this issue is problem-dependent, and for many problems remains

unresolved.

ADP seems to work best when there is natural problem structure that guides the choice of the value

function approximation, but this alone is not enough. Our work in resource allocation problems work

well because the value function is naturally concave (when posed as a maximization problem), which
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also avoids issues associated with exploration (the algorithm naturally seeks out the maximum of

the function).

The good news is that ADP solves problems the way people do, which is a reason why it has

been so popular in the artificial intelligence community. Getting ADP to work well teaches you how

to think about a problem. The most important dimension of ADP is “learning how to learn,” and

as a result the process of getting approximate dynamic programming to work can be a rewarding

educational experience.

Acknowledgements

This research was supported in part by grant AFOSR-F49620-93-1-0098 from the Air Force Office

of Scientific Research.

References

Bellman, R. (1957), Dynamic Programming, Princeton University Press, Princeton.

Bellman, R. and Dreyfus, S. (1959), ‘Functional Approximations and Dynamic Programming’, Math-
ematical Tables and Other Aids to Computation 13(68), 247–251.

Bertsekas, D. and Castanon, D. (1989), ‘Adaptive aggregation methods for infinite horizon dynamic
programming’, IEEE Transactions on Automatic Control 34(6), 589–598.

Bertsekas, D. and Tsitsiklis, J. (1996), Neuro-Dynamic Programming, Athena Scientific, Belmont,
MA.

Birge, J. and Louveaux, F. (1997), Introduction to Stochastic Programming, Springer-Verlag, New
York.

Boutilier, C., Dean, T. and Hanks, S. (1999), ‘Decision-theoretic planning: Structural assumptions
and computational leverage’, Journal of Artificial Intelligence Research 11, 1–94.

Chang, H., Fu, M., Hu, J. and Marcus, S. (2007), Simulation-Based Algorithms for Markov Decision
Processes, Springer, Berlin.

Choi, D. P. and Van Roy, B. (2006), ‘A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning’, Discrete Event Dynamic Systems 16, 207–239.

Fu, M. (2002), ‘Optimization for simulation: Theory vs. practice’, INFORMS Journal on Computing
14(3), 192–215.

George, A. and Powell, W. B. (2006), ‘Adaptive stepsizes for recursive estimation with applications
in approximate dynamic programming’, Machine Learning 65(1), 167–198.

Godfrey, G. and Powell, W. B. (2002), ‘An adaptive, dynamic programming algorithm for stochastic
resource allocation problems I: Single period travel times’, Transportation Science 36(1), 21–39.

22



Hastie, T., Tibshirani, R. and Friedman, J. (2001), The Elements of Statistical Learning, Springer
series in Statistics, New York, NY.

Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall.

Higle, J. and Sen, S. (1991), ‘Stochastic decomposition: An algorithm for two stage linear programs
with recourse’, Mathematics of Operations Research 16(3), 650–669.

Judd, K. (1998), Numerical Methods in Economics, MIT Press.

Luus, R. (2000), Iterative Dynamic Programming, Chapman and Hall/CRC, New York.

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the curses of dimensionality,
John Wiley and Sons, New York.

Powell, W. B. and Topaloglu, H. (2005), Fleet management, in S. Wallace and W. Ziemba, eds, ‘Ap-
plications of Stochastic Programming’, Math Programming Society - SIAM Series in Optimization,
Philadelphia.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley and Sons, New York.

Rogers, D., Plante, R., Wong, R. and Evans, J. (1991), ‘Aggregation and disaggregation techniques
and methodology in optimization’, Operations Research 39(4), 553–582.

Simao, H. P. and Powell, W. B. (2009), ‘Approximate dynamic programming for management of
high value spare parts’, J. of Manufacturing Technology Management 20(9), 00–00.

Simao, H. P., Day, J., George, A. P., Gifford, T., Nienow, J. and Powell, W. B. (2008), ‘An ap-
proximate dynamic programming algorithm for large-scale fleet management: A case application’,
Transportation Science.

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation and
Control, John Wiley and Sons, Hoboken, NJ.

Sutton, R. and Barto, A. (1998), Reinforcement Learning, The MIT Press, Cambridge, Mas-
sachusetts.

Topaloglu, H. and Powell, W. B. (2006), ‘Dynamic programming approximations for stochastic,
time-staged integer multicommodity flow problems’, Informs Journal on Computing 18(1), 31–42.

Van Roy, B., Bertsekas, D. P., Lee, Y. and Tsitsiklis, J. N. (1997), A neuro-dynamic programming
approach to retailer inventory management, in ‘Proceedings of the IEEE Conference on Decision
and Control’, Vol. 4, pp. 4052–4057.

23


