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Overview of MIMO and STBC

Wireless systems of communication have recently turned to a strategy known as Multi-
ple Input Multiple Output (MIMO) to improve the quality (bit-error rate) and data rate
(bits/sec). This advantage can increase the quality of service and revenues of the opera-
tor. This is done by using multiple transmit and receive antennas, as well as appropriate
coding techniques. They take advantage of spatial and temporal diversity to combat the
random fading induced by multi-path propagation of the signal and maximize efficient use
of bandwidth. There is also a fundamental gain in transmitting data over a matrix rather
than vector channel. Transmission of data over MIMO channels has traditionally focused
on data rate maximization or diversity maximization, and space-time codes were developed
as a means to the latter. Two types of STCs have been developed, Trellis Codes and Block
Codes. “The decoding complexity of space-time trellis decoding (measured by number of
trellis states at the decoder) increases exponentially as a function of the diversity level and
transmission rate” p. 288 in [5]. The Space-Time Block Codes we’ll discuss here are often
preferred because, under the assumption of flat fading Rayleigh channels (whose coefficients
are constant and scalar), they can be decoded using simple linear processing at the receiver
(the Maximal Likelihood Sphere Decoder) [5].

Space-Time Coding Model

Suppose we have a MIMO system with n transmit antennas and m receive antennas. At the
transmitter, information symbols belonging to a constellation set, such as QAM or HEX,
are parsed into blocks: s(n) = [s(nK), . . . , s(nK + K − 1)]T of size K × 1. The block s(n)
is encoded by the ST encoder which maps s(n) to column vectors in the following n× m ST
code matrix

c =


c11 c12 · · · c1P

c21 c22 · · · c2P
...

...
...

...
cn1 cn2 · · · cnP

 (1)

where the coded symbol cij belong to the constellation set and P is the frame(block) length.
At each time slot t, signals cit, i = 1, 2, . . . , n are transmitted simultaneously from the n
transmit antennas [6]. Ultimately, each transmit antenna sees a differently encoded version
of the same signal. Upon being received, these signals are resolved by the receiver into a
single signal. This has the effect of combatting multi-path fading that has occurred in the
separate channels. There have been many approaches to STBCs , the scheme of Alamouti
being the first [1]. Very recently [2] and [7] have developed what they call Perfect STCs.
These codes are so called because they satisfy a number of design criteria and only occur in
a few cases. Simulation results suggest that these PSTBCs often outperform other STBCs
p. 26 in [7].
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Creation of Perfect Space-Time Block Codes

The basic tool for constructing Perfect codes is the cyclic division algebra. The first step to

full diversity (of which we’ll say more shortly) is in making the code a group with respect to

multiplication (and addition). That is m = n and we take additional steps to ensure that

each block of code has an inverse. One way to do this is to use diagonal matrices, whose

multiplicative group is that of a field, but a more general method is to include our code in

a noncommutative division ring. Given a field F, let K be a cyclic extension of F of degree

n, that is Gal(K/F) =< σ >' Z/n. Then we define an algebra from K

D , K · 1⊕K · e⊕ . . . K · en−1 (2)

so that for some γ ∈ F∗, en = γ and ∀x ∈ K, e−1xe = σ(x).

•D is a division algebra ⇐⇒ γk 6= NK/F(y) for any y ∈ K and 1 ≤ k ≤ n− 1.

• This e may seem somewhat nebulous. The reason for this is that e is the source of
noncommutativity of D and as such can’t be fully described in terms of the (commutative)
fields F or K. However, matrix groups are naturally noncommutative objects; e finds its
natural expression there. The reason for developing D as we are, rather than as a matrix
ring, is that it is easier on the eye and it is simpler to see γ as a parameter of D which must
be chosen carefully.

Next, we obtain the left regular representation of D as follows. For x ∈ D,
(x = x0 + x1e + . . . + xne

n−1 with xi ∈ K) let λx be the linear map that sends D to itself
via multiplication by x. If we then write out the matrix that represents λx, we get a matrix
for each x ∈ D.

x =


x0 x1 x2 . . . xn−1

γσ(xn−1) σ(x0) σ(x1) . . . σ(xn−2)
... . . . ...

γσ(x2) γσ(x3) γσ(x4) . . . σn−2(x1)
γσn−1(x1) γσn−1(x2) γσn−1(x3) . . . σn−1(x0)

 (3)

We have thus embedded D in GLn(K) via x 7−→ x and call the image C∞ or the infinite
code. By only using xi which belong to an ideal I of the ring of integers OK of K, we obtain
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the Space-Time Block Code CI as a restriction of the codewords in C∞. More about I later.

Of course, when constructing such a code, the devil’s in the details. We have F, K, γ
and I to determine in order to optimize this code. Presently, we’ll look at design criteria
that come from the engineering side of things and how they define a Perfect code. We’ll also
explain how these criteria determine the above parameters and define Perfect codes so that
they only occur for 2,3,4 and 6 antennas.

Engineering Requirements

Rank Criterion and Diversity

In order for a code to be easily decoded and fully diverse, the strict rank criterion
must be fulfilled. That is

ζ(CI) = min
x,y∈CI ,x6=y

| det(x− y)|2 > 0. (4)

Decoding is becomes easier if our codewords are invertible matrices, and the rank criterion
is effectively determinable if the sum of any two codewords is again a codeword. This gives
us reason to place the code inside a division algebra. In this situation, the rank criterion
becomes

ζ(CI) = min
x∈CI ,x6=0

| det(x)|2 > 0. (5)

Since the determinant of any invertible matrix is nonzero, we can satisfy the rank
criterion for the infinite code (and hence for CI) by slightly restricting our choice of γ and
satisfying a necessary criteria for F.

Theorem 1: Suppose γ ∈ OF. Then ∀x ∈ C∞, det(x) ∈ OF.

proof: That det(x) ∈ F can by seen by noticing that the determinant of (3) is invariant
under σ, and det(x) is clearly in OK if γ ∈ OF. Then det(x) ∈ F ∩ OK = OF.

Theorem 2: OF is discrete in C ⇐⇒ F is an imaginary quadratic extension of Q (i.e.
F = Q(

√
−d) for d a positive square-free integer).

proof: See [4]
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If we choose γ ∈ OF, Theorems 1 and 2 give us that

ζ(CI) ≥ ζ(C∞) ≥ min
z∈OF,z 6=0

(z) > 0 (6)

where the strict inequality holds ⇐⇒ F = Q(
√
−d).

In addition, to be fully diverse the code must have uniform average transmitted energy
per antenna in all time slots. This means that all the coded symbols in the code matrix
should have the same average energy.

Because of this, |γ| = 1 and so γ must be a unit in OF. But the only units in F = Q(
√
−d)

are ±1 unless F = Q(i) or Q(j) where j is a nonreal third root of unity. For such F, the
rank criterion is satisfied since det(x) ∈ OF implies | det(x)| ≥ 1 where equality holds if we
let x0 = 1 and all other xi = 0. Thus,

ζ(C∞) = 1 (7)

It turns out that at this point, we have enough information to restrict the number of
antennas for which a PSTBC exists.

γ, F and the Existence of PSTBCs

By the arguments above, we have that γ can only be −1, ±i, ±j, ±j2. Then γk = 1 for
k ≤ 6, and hence γ is a norm for such k (NK/F(1) = 1n = 1). Thus D can only be a division
algebra for n ≤ 6. From this meager information we get:

γ smallest k possible n F

-1 2 2 Q(
√
−d)

±i 4 2,3,4 Q(i)
j, j2 3 2,3 Q(j)

−j, −j2 6 2,3,4,5,6 Q(j)

(8)

If n = 5, by (8) γ would have to be −j or −j2, and F would be Q(j). However, 1 + j
lies inside F (and hence any extension thereof). Thus the relative norm (from K to F) of
j + 1 is (1 + j)5 = −j, and that of j2 + 1 is −j2. Thus our only choices for γ are norms,
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preventing D from being a division algebra and any code constructed from D from being
fully diverse. There can be no PSTBC for 5 antennas.

Now that we have shown which PSTBCs are prevented from existing, let’s show that
what went wrong for n=5 does not always happen for other numbers of antennas; we can
actually choose F, γ, K so that we get a fully diverse infinite code (i.e γ is not a relative
norm from K to F). Later, we’ll go into how the choice of I is made.

n=2

For 2 antennas we’ll reproduce here what [2] call the Golden Code. This name refers to

the use of θ = 1+
√

5
2

, known as the Golden Number, in the construction of the code. Let

F = Q(i), K = F(θ) = Q(i,
√

5). Since θ has minimal polynomial x2 − x − 1 over Q,
[Q(θ) : Q] = 2. Also, Q(θ) ⊂ R, so the minimal polynomial of i, x2 + 1, remains irreducible
over Q(θ). Thus, [K : Q] = 4, which implies that [K : Q(θ)] = 2. We then have OF = Z[i]
and OK = Z[i][θ] = {a + bθ|a, b ∈ Z[i]}.

claim: γ = i is not a relative norm from K to F

proof: Let z ∈ K: z = a + b
√

5 with a, b ∈ F. Its relative norm is

NK/F(z) = (a + b
√

5)(a− b
√

5) = a2 − 5b2

To show that a2 + 5b2 = i has no solutions in Q(i), we’ll first embed Q(i) in Q5. We’ll
then show that the existence of solutions in Q5 is determined by the existence of solutions
in Z/5 which we can determine explicitly.

To show that this embedding can be accomplished, we need i ∈ Z5. This is true if x2 +1,
the minimal polynomial of i has roots in Z5. By Hensel’s Lemma, we only need to find roots
in Z/5. But this is obvious: (2)2 + 1 ≡ 0 (mod 5). Thus, i maps to y + 5x where x, y ∈ Z5

and y2 = −1. Now we can naturally think of Q(i) sitting inside of Q5 and so consider a, b
to be in Q5.

If such a, b exist, in terms of the 5-adic valuation we have

ν5(a
2 − 5b2) = ν5(y + 5x) = 0 (9)

where we have the equality on the right since 5 cannot divide x + 5y when
y is a unit and x ∈ Z5. Since the left side of (9) = min{2ν5(a), 2ν5(b) + 1},
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a must be in Z5, and then so must b.
Now we can once more use Hensel’s Lemma to say that the existence of Z5 solutions to

a2 − 5b2 = y + 5x (10)

is tantamount to the existence of solutions in Z/5. If we reduce this equation mod 5,
we get a2 ≡ y (mod 5). However, since y2 = −1, y (mod 5) must be 2 which has no square
root mod 5. Thus there are no solutions to (7) and so i cannot be a relative norm.

• In designing an infinite Perfect Code for 2 antennas we are not restricted to the Golden
Code. The same construction will work, word for word, if we choose θ to be

1+
√

p

2
where p is

a prime ≡ 5 (mod 8). In fact, only the very last step in the proof of that i is not a relative
norm (that a2 ≡ y (mod 5) implies no solutions to a2 + 5b2 = y + 5x) depends on more than
p ≡ 1 (mod 4).

n=3

The choice for F, K, γ is similar for other numbers of antennas. For n=3, let F = Q(j),
K = F(θ) where θ = ζ7 + ζ−1

7 = 2cos(2πi
7

) and γ = j. In order to show that D is a division
algebra, we need to show j, j2 are not relative norms. This is considerably more involved
than for the case of 2 antennas. Details are given on p.22, 29, 30 of [7]

n=4

For n=4, let F = Q(i), K = F(θ) where θ = ζ15 + ζ−1
15 = 2cos(2πi

15
) and γ = i. In order to

show that D is a division algebra, we need to show that γ, γ2, γ3 = ±i, -1 are not relative
norms. Details are given on p.20, 30,31 of [7]

n=6

For n=6, let F = Q(j), K = F(θ) where θ = ζ28 + ζ−1
28 = 2cos(2πi

28
) and γ = −j. In order to

show that D is a division algebra, we need to show γ, γ2, γ3, γ4 = ±j, ±j2 and -1 are not
relative norms. Details are given on p.24, 31, 32 of [7]

Shaping and I
We now have a division algebra D for 2, 3, 4 and 6 antennas. Each D corresponds to an
infinite code C∞ via the matrix representation shown earlier. We obtain the Perfect Code as
a subset of C∞ by restricting the xi to be in an ideal I of OK and specifying a normalizing
constant c:
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CI =


x = c


x0 x1 x2 . . . xn−1

γσ(xn−1) σ(x0) σ(x1) . . . σ(xn−2)
...

. . .
...

γσ(x2) γσ(x3) γσ(x4) . . . σn−2(x1)
γσn−1(x1) γσn−1(x2) γσn−1(x3) . . . σn−1(x0)


∣∣∣∣∣xi ∈ I ⊂ OK, c ∈ K


(11)

The second major engineering requirement for a Perfect Code, shaping, concerns which
ideal of OK is chosen. Basically, in order for the code to be energy efficient, we want the
ideal from which it is derived to have the simplest ”shape” as possible. What is meant by
”shape” should become clear presently.

We can think of OK as a lattice in Cn as follows. In each case above,

OK = {a1 + a2θ + . . . + anθ
n−1|ai ∈ OF} (12)

where F = Q(i) for n=2,4 and Q(j) for n=3,6. We say that OK has basis {1, θ, . . . , θn−1}
over OF. Recall that Gal(K/F) = < σ > ' Z/n, and define an embedding:

ϕ :OK 7−→ Cn

x 7−→ ϕ(x) = (x, σ(x), . . . , σn−1(x))
(13)

The image of this embedding is a lattice in Cn with basis ϕ(basis of OK). For every ideal
I of OK we can restrict the embedding to provide a lattice Λ(I) with basis ϕ(basis of I).
Note: every such ideal has an integral basis over OF. More specifically, suppose I has basis
{βk}n

k=1. Then {ϕ(βk)} is a collection of n vectors in Cn. We form a matrix M with the
ϕ(βk) as columns so that the l, kth entry is σl−1(βk):

M = c


β1 β2 . . . βn

σ(β1) σ(β2) . . . σ(βn)
... . . . ...

σn−1(β1) σn−1(β2) . . . σn−1(βn)

 (14)

Next we form the Hermitian Transpose of M , M∗:
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M ∗ = c


β1 σ(β1) . . . σn−1(β1)

β2 σ(β2) . . . σn−1(β2)
... . . . ...

βn σ(βn) . . . σn−1(βn)

 (15)

where the bar denotes the nontrivial automorphism of F over Q. For F = Q(i), the map
is given by i 7→ −i, and for F = Q(j), j 7→ j2.

G = M∗M is called the Gram Matrix. Its l, kth entry is

|c|2
n−1∑
m=1

σm(βlβk) = |c|2TrK/F(βlβk) (16)

The computation of G is instrumental in determining whether we’ve chosen I so that
Λ(I) is a rotated, scaled version of Λ(OF): Z[i]n (for n=2,4) and Z[j]n (for n=3,6). This is
what we meant earlier by the correct ”shape”. This criterion is turn equivalent to asking if
G = c2Id. In this situation, we say there is no shaping loss in the signal constellation. In
order for the codes we defined above to be perfect, for each we need an ideal I with basis
{βk}n

k=1 and a c so that

|c|2TrK/F(βlβk) = δlk (17)

Before proceeding to a proof that a particular I satisfies the shaping constraint, let’s
look at the heuristics that would permit us to guess what I is. The key here is the relation
between the volume of a fundamental region of the lattice, the discriminant of a field and
the norm of an ideal. First, we want our lattice to have the same volume as a scaled version
of Λ(OF). For some k we have:

vol(Λ(I)) = vol(Λ(OF)) =

{
k2n if OF = Q(i)

(k2
√

3
2 )n if OF = Q(j)

(18)

Furthermore,

vol(Λ(I)) = N (I)vol(Λ(OK)) (19)
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vol(Λ(OK)) = 2−n
√
|dK| (20)

where N (I) is the norm of I and dK is the absolute discriminant of K.

Guessing I for n=2 The Golden Code

Recall K = F(θ) = Q(i,
√

5) where Gal(K/F) =< σ >' Z/n with σ given by
√

5 7→ −
√

5.
dK = 2452 so (20) becomes

vol(Λ(OK)) = 5

While (18) gives us that vol(Λ(I)) = k2. Putting these together with (19) we get

k2 = 5N (I)

And so we look in OK for an ideal with norm 5. Since 5 ≡ 1 (mod 4), 5 splits in Z[i],
and since dQ(θ) = 5, 5 ramifies in OQ(θ). This means that as an ideal in OK, (5) = (I1)

2(I2)
2.

Upon inspection, we find

I1 = (α) = (1 + i− iθ) (21)

I2 = (σ(α)) = (1 + i− iσ(θ)) (22)

N (I1) = NK/Q)(α) = N (I2) = NK/Q(σ(α)) = 5 (23)

Verification of the shape of I

Next, we verify that (17) holds for I = (α).

claim: Λ(α) = (
√

5Z[i])2

proof: (α) has basis {α, ασ} over OK = Z[i]. α = 1 + i− iθ = 1− i + iθ.

αα = (1 + i− iθ)(1− i + iθ) = 5
2
−

√
5

2

ααθ = αθα = ααθ = 3
√

5
2

αθαθ = ααθ2 = αα(θ + 1) = 5
2
−

√
5

4

Thus

9



TrK/F(αα) = TrK/F(αθαθ) = 5

TrK/F(ααθ) = TrK/F(αθα) = 0

Hence G = 5Id. Thus Λ(α) is a rotated version of (Z[i])2, scaled by
√

5. We choose our
normalizing constant to be 1√

5
and have verified

C(α) =

{
1√
5

(
x0 x1

iσ(x0) σ(x1)

) ∣∣∣∣xi ∈ (α)

}
is a Perfect Code (24)

We can rewrite this Golden Code as

C(α) =

{
1√
5

(
α(a + bθ) α(c + dθ

iσ(α)(c + dσ(θ)) σ(α)(a + bσ(θ))

) ∣∣∣∣∣a, b ∈ Z[i]

}
(25)

Other numbers of Antennas

The heuristics for finding such an I are similar for n = 3,4 and 6, but verification becomes
more complex. For n = 6, the ideal chosen is no longer principal (i.e. generated by a single
element), and so this makes even finding the right basis a difficult matter. See [7] for
details.

Conclusion

Above, we have outlined the construction of Space-Time Block Codes that satisfy both the
strict rank criterion and the cubic shaping constraint as the spectral efficiency increases.
These codes thus maximize the diversity and coding advantages postulated by a MIMO
system. Moreover, these codes deserve the name Perfect in that the requirements
postulated from the engineering side fit so nicely certain number theoretic properties
encountered in the algebraic construction of the codes. Their applicability however is
limited, like all STBCs, in that they are postulated for flat fading Rayleigh channels where
all channel coefficients are known.

This model is valid for the case when the delay spread is small enough
compared to the symbol duration. As we discuss earlier, if the delay spread is
comparable or larger than the symbol duration, the channel will distort the
signal resulting in what is known as frequency-selective channels. The channel
response is no longer constant and not all frequency components fade
simultaneously. In this case, the delayed paths overlap will cause intersymbol
interference (ISI) p. 5 in [6]
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It has been shown that the diversity gain of STBCs can be preserved under these
circumstances, but the coding advantage is another story. Linear ML decoding is not
possible in the presence of frequency selectivity at the channel; the transition from 4 to 5
enabled by linear decoding is only possible if we can assume that the channels fade
independently [3], [5]. One possible solution is to employ a channel equalizer along with
the space-time decoder. Yet, “the nonlinear and noncausal nature of the [STB] code makes
the use of classical equalization methods a challenging problem” p. 291 in [5]. One
approach has been to combine the Alamouti STBC with OFDM. OFDM is applied to
convert the frequency selective channel into into a set of independent parallel frequency-flat
subchannels. The Alamouti scheme is then applied to successive subcarriers. Unfortunately
this strategy is expensive computationally at the receiver.

One hope for these MIMO systems and STBCs is that they could help to resolve the
bottleneck of traffic capacity in current and future wireless applications. And for
low-power, peer-to-peer and multiple-access applications, ultra-wideband transmissions
have demonstrated several advantages. One would like to see the two marry happily. In
some ways, this is the case. UWB communications are rather sensitive to timing jitter,
something that is alleviated by MIMO systems [9]. But other aspects present natural
difficulties. For example, in UWB transmission, the inverse bandwidth is not large in
comparison to the delay spread; the receiver cannot resolve the different subpaths that the
signal takes because they arrive within too short a time of one another. This leaves us in
the frequency selective situation above [6]. It is unclear what will become the dominant
coding strategy in these UWB applications, but it seems unlikely anything so Perfect as
the PSTBCs will emerge.

11



References

[1] S. Alamouti. A simple transmit diversity technique for wireless communications. IEEE
Journal on Selected Areas in Communications, 16:1451–1458, Oct 1998.

[2] J.-C. Belfiore, G. Rekaya, and E. Viterbo. The goldencode: A 2 x 2 full-rate space-time
code with non-vanishing determinants. 2004.

[3] M. O. Damen, A. Tewfik, and J. C. Belfiore. A construction of a space-time code based
on number theory. IEEE Trans. Inform. Theory, 48:753–760, Mar 2002.

[4] A. Fr0̈lich and M. Talylor. Algebraic Number Theory. Cambridge University Press,
1991.

[5] D. Gesbert, M. Shafi, D. shan Shiu, P. J. Smith, and A. Naguib. From theory to
practice: An overview of mimo space–time coded wireless systems. IEEE Journal on
Selected Areas in Communications, 21(3):281–302, Apr 2003.

[6] K. Hao. Untitled draft. 2004.

[7] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo. Perfect space time block codes.
2004.

[8] L. Poo. Space-time coding for wireless communication: A survey.

[9] L. Yang and G. B. Giannakis. Analog space-time coding for multi-antenna
ultra-wideband transmissions. IEEE Trans. on Communications, 52(3):507–517, Mar
2004.

12


