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Fuzzy Decision Tree for User Modeling 

From Human-Computer Interactions 

Abstract 
Providing helpful analysis of cognitive process is one of the main concerns for user modeling and adaptive 
hypermedia conception. In this paper, a work is presented that looks very closely to the Human Computer 
Interactions and exploits these interactions to help novice computer users. We think that all the cognitive 
actions involved in a task resolution reflect the level of expertise that the user has with the interface [1]. In 
this paper, we describe an application that learns these cognitive processes by fuzzy decision tree 
technique and discriminates novice from experimented user automatically. Once the discrimination is done, 
the system can provide an advice to the novice computer user with a contextual help. 
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I. Introduction 
Providing helpful analysis of cognitive process is one of the main concerns for user modeling and adaptive 
hypermedia conception. In this paper, we present the TAFPA (Tree Analysis For Providing Advices) 
software (called hereafter TAFPA for short). This system uses a learning agent, a fuzzy decision tree 
builder, which works on traces of human-computer interactions. 
As defined in [9], approaches used in several Adaptive Education Hypermedia Systems (AEHS) reported in 
the literature can be divided in two kinds: (i) systems that use the learning style information in order to 
design the content of instructions, and (ii) systems that use the learning style information to adapt to the 
learners “forms” of cognitive activity. The TAFPA software is based on the first kind as an analysis of the 
cognitive activity of a user is completed to provide hints. These hints are related to the design of the 
environment and provide the user tips to use helpful functions of the interface. 
TAFPA is thus provided with a learning agent that is trained and that is used to give advices to make easier 
the use of the given software. 
In a first phase, the training phase, the learning agent is trained by using a set of interactions that have been 
stored when well-known computer-skilled users have interacted with the given environment. Thus, this 
agent learns the cognitive characteristics that these users’ interactions could give. 
Afterwards, during the operational phase, TAFPA handles the interactions of a user with the environment 
and uses the learned agent to classify the user as experimented or not. If necessary an advice could be 
suggested by TAFPA to the user to solve better the task he is faced with. This advice is based on techniques 
more experimented users are familiar with. 
This paper is organized as follow, in Section II, the application methodology is presented. In this part, the 
presentation of the system that collects traces of user/computer interactions is done. In Section III the 
training algorithm, the construction of fuzzy decision trees, used by the learning agent is presented briefly. 
In Section IV, an experiment is presented where TAFPA is faced with a concrete application. In Section V, 
the results of the experiment are presented and commented. Finally, we conclude on this methodology and 
we present some future works. 

II. Application Methodology 
As presented in the Introduction, TAFPA processes in two phases: the training phase and the operational 
one. 
The training phase is concerned with the training of the learning agent of TAFPA. This learning agent is 
built from data that come from log files (called logs for short) of human-computer interactions when using 
the given environment. These logs contain descriptions of the user interface interactions. By means of these 
logs, the agent learns the differences between an experimented computer user and a novice computer user. 
During the operational phase TAFPA uses the characteristics that have been previously learned during the 
training process. The framework of TAFPA is organized as proposed in [5]. 



Recording of traces.  
Logs are composed of traces of the interactions of the user with the environment. Traces are built from 
events produced by the Graphic User Interface (GUI) of the environment. As much as possible events 
should be produced in order to have the best representation of the human computer interactions stored in 
the logs. These events are highly connected to the components (widgets) of the GUI of the interface and 
their recording takes advantages of the X-Window manager used to execute the environment. For each 
event, a set of descriptors is kept: their target, their container (the context of the event) and of course the 
date of their occurrence and all the descriptive values that theses widgets could offer (label of the button, 
description text …). 
For instance, if the environment is a web browser, recorded events are the moves of the mouse, the clicks 
on a button (with its name “File”, “Back”, “Forward”, “Reload”,…), the uses of the scrollbar (up/down), 
the clicks in text area (to write an URL or in a particular text area of a web page), the uses of the keyboard 
(and set of keys used), the clicks on links, the closing of the browser,… 
TAFPA records all these events to make up logs. In these logs, events are represented as a tree by means of 
a XML structure that has been introduced for this purpose. 
For instance, a click on a button labeled “Show first question” and a click into a text area to type the answer 
can be represented as the XML structure (or XML tree) given in Figure 1. 
 

- <context role="HTML" uri="file:///D:/Expelip6/Experience_fichiers/question.html">
     - <target role="INPUT" value=" Show first question ">
          - <eventMotif type="Mouse" duration="130" time="51153532">

<event type="mousedown" time="51153532" />
<event type="mouseup" time="51153652" />
<event type="click" time="51153662" />

            </eventMotif>
       </target>
     - <target role="TEXTAREA">
          - <eventMotif type="Mouse" duration="120" time="51156697">

<event type="mousedown" time="51156697" />
<event type="mouseup" time="51156817" />

            </eventMotif>
        </target>
...
</context>  

Figure 1. Example of TAFPA’s traces 

From such logs, TAFPA automatically builds a graph to represent the whole interactions (see Figure 10 for 
such a graph). This graph shows, as an UML scenario schema, all the different targets that occur during the 
interactions. 
For instance, in Figure 10, the targets of two traces have been placed on the parallel horizontal bars. The 
arrows represent the path of the user between these targets. The arrow’s length projected on the horizontal 
axis shows the duration between the beginnings of two interactions with the targets on the base and on the 
end of the arrow. 
With such a representation, it can be easier to analyze logs from different users. For instance, it can be 
found automatically that some users were doing a step when some others were doing another step. 

Training phase.  
The system has been given the capacity to distinguish the descriptors that are skill dependant and those 
which are issued from the cognitive process involved in the task resolution. As we place ourselves in a 
supervised learning system (see Section III for more details), the training of the learning agent in TAFPA 
should take into account the more convenient variables for the description of the cognitive process of the 
user.  
To be more precise in the description of the cognitive process, TAFPA has been added a “Task File” (see 
Figure 2) that describes the steps that all the users need to accomplish within the interface. 
Many papers were published about estimating these tasks automatically, but no real option is more accurate 
than to use a predefined one [3]. As the aim is to find a correct and precise model of the user’s cognitive 
activity, a big amount of XML traces has been produced that contains all the interactions. 
All these traces are stored in a SQL database in order to be easily recovered. This SQL database can be 
organized as trees, where each table defines a level of the tree. 
 



 
Figure 2. TAFPA’s training phase. 

For instance, a table of this database contains the more general descriptor of an event: the container. In the 
case of a hypermedia, it is the pages visited by the user. So on, this table is composed of the whole 
elementary events, at a cognitive level, like “mouse down”, “mouse up”, “key pressed”, etc… 
There are two kinds of descriptors: the global ones and the specialized ones.  
The global descriptors are pumped from either experimented or novice users. They will enable the learning 
agent to classify the user during the operational phase. They are composed of all the characteristics that 
define cognitive process. For instance, the frequency of switches between the two devices (mouse and 
keyboard) will tell if the user is comfortable and/or experimented within the interface.  
The specialized descriptors contain the hints that will be suggested during the operational phase. So they 
are actions that the experimented user does easily and that the novice user does not know about or does not 
use at all. The final aim of TAFPA is to detect automatically these actions but in the experiment presented 
in this paper they are known variables. 
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Figure 3. TAFPA’s operational phase. 

 
 



Operational phase.  
During this phase (see Figure 3), the GUI events collected by TAFPA as “XML Traces” are given as input 
for the learning agent that uses the Fuzzy Decision Tree (FDT) built in the previous step to classify these 
events. 
In fact, the training phase gives the important cognitive descriptors that are useful for the classification. As 
soon as the classifier gets an answer of the users categories, TAFPA takes the decision to “Give Hint” or 
possibly finds a new “Descriptor” to rebuild the FDT. 
By doing so, two major properties of Fuzzy Decision Trees are highlighted: the faculty to learn and classify 
inputs, and the explanation provided when classifying new cases. 

Construction of cognitive descriptors. 
Many works have been done by interface designers to find out the way of limiting cognitive process. For 
instance, the GOMS family techniques analyze that process and try to find out the best path of actions to 
reach a task [7]. In our case we look for some general descriptors categorizing actions. To be more precise 
in the description of our actions, we propose two methods for cutting the general task in steps in which the 
actions occurred: 

- With an expert. In this method an expert has to look at the general task and find the different 
steps that all the people have to accomplish to reach the goal.  

- Automatically. This method consists of looking for the Longest Common Sequence (LCS) of 
events (the lowest level in the log traces). Many approaches have been developed in the literature for such a 
task. However, in our application, as the log files are in tree format, we propose to use the algorithm of 
“Extracting recurrent patterns from stratified ordered trees” presented in [4]. The longest pattern with 
support 1 obviously gives the LCS. Then we can build n+1 steps, with n equals the length of the LCS. In 
this case, the descriptors need to be more accurate for each step, but in the same way as previously we look 
for general attributes categorizing the actions.  
When the steps are built, the descriptors will be as much as possible pattern attributes and/or items 
attributes: frequency, durations, number of iterations, etc…  
During the operational phase of TAFPA, the learning agent is asked for a class (novice or expert for 
example) at each step. This means that one FDT is constructed for each step. At step n, all the descriptors 
of the data collected at previous steps (n-1, n-2…, 0) can be used to construct the FDT. As soon as the 
answer is enough accurate, the system makes a decision to give or not a hint to the user. 

III. Fuzzy Decision Trees 
Fuzzy decision trees are a combination of decision tree [10] and fuzzy set theory [14] to improve the 
performance of decision tree (see Figure 9 for an instance of  Fuzzy Decision Tree).  
Inductive learning is based on a training set of examples described by means of a number of attributes, each 
one belongs to a class corresponding for instance to a decision to make. It is made of two steps. The first 
one is the construction of a so-called decision tree, which corresponds to a ranking of the attributes 
according to their influence on the belonging to a class. The second step consists in classifying a new 
example only known through the attributes, in order to determine which class it must be assigned to. 
The induction of decision trees is an efficient way of learning from examples. It has been shown to be 
interpretable, scalable and simple to construct. Many methods have been developed for constructing 
decision trees. The main method to construct a decision tree is the so-called Top Down Induction method. 
The tree is constructed from its root to its leaves by successive partitioning of the training set into subsets. 
Each partition is done thanks to the values of a selected attribute which is usually chosen as the most 
informative with regard to the identification of the class of an example, and leads to the definition of a node 
of the tree labelled by this attribute. The values of the selected attribute are assigned to the branches of tree. 
A leaf is constructed from a set that contains only examples with the same class or more generally from a 
set that is enough homogenous. It is labelled by the name of the major class or by the probability 
distribution of all examples associated to this leaf. 
Usually, the Shannon entropy is used as a measure of selection for the choice of the best attribute by which 
the training set is partitioned [10]. 
Most real-world classification problems involve continuous-valued attributes. Decision trees should be 
extended to deal with such attributes. One solution for overcoming these problems is the introduction of the 
discretization of numerical attributes before or on the fly. The discretization on the fly is usually considered 
as a sub-step of the selection of the best attribute. A good discretization technique allows also to exploit the 
proximity between numerical values and thus to reduce the noises in the data. Many discretization 



techniques have been developed such as the families of entropy-based and purity-based methods, 
unsupervised method (equal width discretization, equal frequency discretization...), statistic-based methods 
like Chi-merge and CHI2 [8].  
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Figure 4. Construction of fuzzy decision tree 

Due to the existence of vague and imprecise information in real-world applications, the values of attribute 
and then the class boundaries may not be defined clearly. The introduction of fuzzy theory in the decision 
tree technique allows resolving efficiently this kind of problem. It also improves certain qualities of 
decision tree such as precision, robustness and it is nearer to the human thinking.  
Fuzzy Decision trees have been introduced by [11] in order to improve the capabilities of decision trees to 
handle numerical data. The aim of the introduction of the Fuzzy Sets Theory of Zadeh [14] was to enable 
the taking into account of imprecise and uncertain values. Several works on fuzzy decision trees have been 
further done. We can cite for instance [6][13].  
A fuzzy decision tree is a generalization of the crisp case. Each node is associated to a fuzzy set of 
examples and labelled by an attribute. Each branch from the node is associated to a fuzzy set defined on the 
domain of the attribute (fuzzy value). Each leaf is labelled by a set of labels of classes with different 
membership degrees instead of the label of one class.  
In general, induction of fuzzy decision trees follows the same steps as that of a classical decision tree.  
Among theses steps, the fuzziness is incorporated in the following: 

• the fuzzy discretization of numerical attributes 
• the choice of the best attribute by a fuzzy measure of selection of attributes 
• the verification of the stopping criteria  
• the use of the fuzzy decision tree for classifying new examples 

Let  be a set of examples, a so-called training set. Each example e is described by means of 
a set of values for N attributes {  and belongs to a class  from a set of classes 

. Each attribute 

{ neeeL ,..,, 21= }
}

}
NAAA ,..,, 21 c

{ mCCCC ,..,, 21= A takes its value in the set { }
Amvvv ,..,, 21  where the values can be iv



symbolic, numerical, or fuzzy. The induction of a fuzzy decision tree from the training set enables us to 
obtain a general law to point out the relation between the values of attributes and the classes in C.  

Definition of fuzzy probability and Shannon fuzzy entropy 
The probability of fuzzy events (or fuzzy probability for short) has been introduced formally by Zadeh[15]. 
Given a fuzzy set X of examples { }nneeeX μμμ ,..,, 2211=  with μi is the membership degree of 
example ei in the set X.  

Firstly, the probability of fuzzy event Ci in X is defined by: ( )
∑
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This formula combines a measure of uncertainty (probability) and a measure of imprecision (fuzziness).  
The fuzzy entropy (entropy star) of X is an extension of Shannon entropy to fuzzy event then defined 

by[11]: .  ( ) ( ) ( )∑
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m

i
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For more details on fuzzy entropy, see [11].  

Fuzzy discretization of numerical attributes 
At each node, before each selection of the best attribute, all numerical attributes should be discretized into 
several fuzzy intervals (2 intervals in our system). Each cut point is described by a triple of real values [c-δ, 
c, c+δ] generally chosen by maximizing the homogeneity of all fuzzy partitions separated by it. Suppose 
that at the input of the discretization step of attribute Ak, the sub-training set L contains n examples: {e1/μ1, 
e2/μ2, .., en/μn} with μi (μi > 0) the membership degree of example ei in L. Initially, the training set contains 
all examples with membership degree that equals 1 ( ε=L ). In the next times, the membership degrees 
may not be 1.  
Let vi be the value of the actual considered attribute Ak of example ei. Without generalization problem, we 
can suppose that v1 ≤  v2  ≤ .. ≤ vn. The fuzzy cut point [c-δ, c, c+δ] is selected among {[ci-δi, ci, ci+δi], 
0<i<n} where: 

2
1++

= ii
i
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c  and iii vv −= +1δ (δi can be parameterized).  

This cut point partitions the domain value of the attribute into 2 fuzzy partitions and  the 
membership degrees of which are defined as follows. 
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Figure 5. Fuzzy cut point 
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The sub-training set is then partitioned into 2 fuzzy-partitions  (partition on the left of the fuzzy cut 
point)

LL

 and RL  (partition on the right of the fuzzy cut point). The membership degrees of  and  are 
defined as follows:  and 

LL RL
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The selected fuzzy cut point is the one that minimizes: ( ) ( ) ( )R
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is the fuzzy entropy of the set ( )XI * X  defined above. This is the entropy of the sub-training set 
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L
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Choice of the best attribute by a fuzzy measure of discrimination 
After the discretization of all numerical attributes, the gain of information brought out by numerical 
attribute Ak, is valued: )AL(I)L(I)A(Gain K

**
K −= . For nominal attribute, the gain of information is 

valued by means of the same formula but ( ) ( )i
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 with is the fuzzy sub-set of all 

examples from  whose value of A

iL

L k is vi.  The best attribute is selected as the most informative one which 
maximizes the gain of information. 
The sub-training set is then partitioned thanks to the value of the selected attribute into 2 fuzzy partitions. 
Each example may belong to both partitions with different membership degrees. The selected attribute 
becomes the label of the node associated with the sub-training set L and , are considered as fuzzy 
values and assigned as labels of the 2 edges from the mentioned node. 

LD RD

The stopping criteria  
The partitioning of training at each node should end when the sub-training set is enough homogeneous or 
its fuzzy cardinal is too small (less than 1). In fact, all examples belonging to the sub-training set with very 
little membership degree are eliminated before considering to partition.  

Use of the fuzzy decision tree for classifying new example 
The fuzzy decision tree constructed is used for classifying new examples. It is used as a set of fuzzy rules; 
each one has the form: “If [A1 is d1] and [A2 is d2] … then [C is dc]”. 
 
 

Node r ( kA ) 

)(erμ  

Node q 
( ) ( ) ( )kdrq vee

ki
μμμ =  

kid  

( )kv
kid

μ  

… 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Node membership 



As the values associated to the branches of the tree can be fuzzy, at each internal node each example can be 
transmitted to many edges by different membership degrees. Let the membership degree of an example e in 
a node r  which is labelled by attribute  be kA )(erμ . Let the membership degree of the value of attribute 

 of in a branch of kA e r  be . Then the membership degree of in the child node q  of  ( )kd v
ki

μ e r  

corresponding to the branch is valued as: ( ) ( ) ( )kdrq vee
ki

μμμ = . 
Many leaves can be reached with different degrees. Moreover each leaf can be associated to several classes. 
Therefore an aggregation operator is needed to make a final decision the class of example if needed. In 
regarding our experiment, we used the aggregation operator called max-product: each leaf is labelled by the 
name of the major class and the class of example is the label of the leaf, to which the example belongs with 
maximal membership degree. 
If in the construction of fuzzy decision trees, the spreading out of fuzzy cut point (fuzzy zone) is always 
small enough such that all examples belong to each node with membership degree equal to 0 or 1, the form 
of fuzzy decision tree is identical to the crisp one constructed by the crisp measure of discrimination.  
The DTGen (Decision Tree Generator) is a software [12] that has been developed in our research group. It 
implements a generic TDIDT algorithm for the construction of decision trees (crisp and fuzzy) from a 
training set and allows using decision trees (one or many) for classifying the new examples. In addition, it 
enables the selection of different measures of selection: Shannon entropy, other classical entropies and the 
fuzzy version of these measures. Moreover, it implements the presented algorithm to discretize 
automatically on the fly a set of numerical values by means of the chosen entropy. DTGen works with 
symbolic attributes, numerical attributes and fuzzy attributes described in certain forms like triangular or 
trapezoidal. 

IV. Experiment 
Browsing a hypertext is subject to a lot of cognitive processes [2]. As the aim is to model these cognitive 
actions, the experiment is based on the use of a web-browser, and users have to accomplish some tasks on a 
given web page and to answer a set of questions. The screen of this hypertext is given in Figure 7. 
 

 
 

Figure 7. The web page of the experiment. 

The first part of the webpage presents the task to the user. It asks him to read the text given within two 
parallel frames and to answer some questions. The user is also told that the two frames will stay on the 
interface so that he could return further to have a look at it. So the task was to read or just look at the two 
texts and click on the button “Show First Question”. Then a question, a text area for the answer, and a 
button “Next Question” appears. So on, four questions are asked. 
This experiment is conducted on two sets of users: a set of experimented users well-adapted to the use of 
browser, and a set of novice users which are not graphical interface friendly. This skill difference is used by 
the learning agent as the class to recognize (experimented / novice). 



For this experiment, the two kinds of decomposition described in Section II have been studied, and the 
results are presented in the next Section. 
For the decomposition with an expert, a step is delimited by means of a click on the button “Next 
Question”. That way, four steps of the same kind (answering a question) have been built that can be 
analyzed with the same descriptors as the actions. A preliminary step is introduced that corresponds to the 
reading of texts that ends with the click on the button “Show First Question”. 
For the decomposition with the LCS, the learnt sequence is presented in the Next part. 

V. Results 
Nearly 30 people have been doing the experiment. Less than half of them were real novices and the others 
were colleagues experimented with graphical interface. The learning agent has been trained with the same 
proportion of novice and experimented user traces, and the remaining traces have been used for the 
validation.  
Finding the LCS of all traces shows three more steps that correspond to the click on the text area where the 
answer is typed. Four new steps were expected as four questions were asked, but that made us notice that 
one user missed a question by double-clicking accidentally on the button “Show next question”. As we 
previously said, it can lead to some mistakes to use the LCS, but as the Figure 8 shows, the results are 
much better.  
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Figure 8. Results.  

In this Figure, we recall that, in the “5 steps” graphic, each step is associated with a question of the 
questionnaire. For each step, the decision tree, fuzzy or not, performs a high good classification rate. 
Moreover, it performs better for more complex questions (4 and 5) where being experimented is an 
advantage. 
We recall also that, in the “8 steps” graphic, seminal steps are defined as events between 2 clicks on button 
or text area. Here again, we can observe the performance of the trees when the user faced with complex 
question.  
Even tough, the advice could be given sooner. In our experience, advices that could have been displayed 
automatically are the “Ctrl-F” function for users accurate with the keyboard, and the “find” function in the 
menu “Edition” that have been use by some mouse friendly experimented users. These two actions have 
been added in the cognitive descriptors as the answer to deliver was referring to a name to find in the pages. 
Their utility is verified in the graph on step 4 (with the LCS) or step 3 (with the expert decomposition) 
where the jump in the classification rate is observed. 
For these experiments, a 10-fold cross-validation on the entire dataset was performed. DTGen constructs a 
fuzzy decision tree from training sets by using fuzzy entropy. The test sets is then classified by the fuzzy 
decision tree described (see Figure 9 for one example).  
Using a Fuzzy Decision Tree (Fuzzy Entropy) instead of a classic ID3 Decision Tree (Shannon entropy) 
can seem unjustified in this case. But it is very important to notice that, in this experiment, the learning 
machine needs to be trained with more examples. 
Another justification is that the classes are too well separated. Expert and novice users are really using 
differently the interface and the devices, and their cognitive actions are very different. The use of the FDT 



is really justified regarding the categorization of cognitive actions. It allows a more flexible classification 
and seems naturally more appropriate. If a lot of data are incorporated during the training phase, it is 
expected to have better result with the fuzzy entropy.  
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Figure 9. Example of fuzzy decision tree with definition of fuzzy sets.  

VI. Conclusion 
Providing helpful analysis of cognitive process is one of the main concerns for user modeling and adaptive 
hypermedia conception. In this paper, we presented the TAFPA (Tree Analysis For Providing Advices) 
system. This software uses a learning agent, a fuzzy decision tree, which works on traces of human-
computer interactions. It can provide advices that come from people who have the same cognitive behavior. 
This methodology can be applied to Adaptive Hypermedia Educational Systems. It is domain independent 
and can be used for providing help to teachers as it builds a cognitive model of the student.  
Future work will be oriented on incorporating more cognitive descriptors and especially to cognitive 
sequence descriptors. Making a clustering on these attributes could help to build an unsupervised learning 
system.  
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Figure 10. A representation of the sequences of targets in the traces 


