On the Use of Visualization to Support Awareness of Human Activities in
Software Development:
A Survey and a Framework

Margaret-Anne D. Storey Davor Cubrani¢

Daniel M. German *

Software Engineering Group, Dept. of Computer Science
University of Victoria

Abstract

This paper proposes a framework for describing, comparing and
understanding visualization tools that provide awareness of human
activities in software development. The framework has several pur-
poses — it can act as a formative evaluation mechanism for tool
designers; as an assessment tool for potential tool users; and as a
comparison tool so that tool researchers can compare and under-
stand the differences between various tools and identify potential
new research areas. We use this framework to structure a survey of
visualization tools for activity awareness in software development.
Based on this survey we suggest directions for future research.

CR Categories: D.2.2 [Software Engineering] Tools and
Techniques—Computer-aided software engineering (CASE);
H.5.2 [Information Interfaces and Presentation] User Interfaces—
Evaluation/methodology.

General terms: Human factors, management.

Keywords: Visualization, Computer Supported Collaborative
Work, Software Development, Awareness.

1 Introduction

Software engineering is a human-driven and human-intensive ac-
tivity. Most medium- to large-scale projects involve multiple soft-
ware developers that may or may not be co-located. Recently, there
has been much work in developing collaborative development envi-
ronments that provide support for coordination and communication
during software development [Hupfer et al. 2004]. A key issue in
any collaborative activity is awareness, or “knowing what is going
on” [Endsley 1995, p. 36]. More precisely, awareness is “an un-
derstanding of the activities of others, which provides a context for
[one’s] own activity” [Dourish and Bellotti 1992]. Awareness en-
compasses knowing who else is working on the project, what they
are doing, which artifacts they are or were manipulating, and how
their work may impact other work.

In distributed collaborative work, maintaining awareness is con-
siderably more difficult. Various tools and novel techniques have
been developed by the software engineering research community to
provide awareness during software development. Several of these
tools rely on visualization techniques to either augment existing
views in the development environments or to provide specialized
views of human activities combined with software artifact informa-
tion. The reverse engineering community also investigates if visu-
alization can assist in design recovery and evolution reconstruction

*e-mail: {mstorey, cubranic, dmg} @uvic.ca

Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

© 2005 ACM 1-59593-073-6/05/0005 $5.00

193

by analyzing how human activities impact code, data, and the sys-
tem’s architecture.

Despite the prolific development of these tools by the research
community, it is difficult to understand how the various tools com-
pare or differ, and which potential research areas remain unex-
plored. In an attempt to gain better understanding of this research
and future opportunities, we present a framework of design issues
for software visualization tools that provide awareness of human
activities in software development. In Section 2 we provide back-
ground on awareness in computer-supported collaborative work in
general and distributed software development in particular. The
framework is introduced and elaborated in Section 3. Using the
main dimensions of the framework, a survey of selected awareness
tools for software development is provided in Section 4. In this
section, the framework is used to compare the characteristics and
features of the surveyed tools. Several future research directions
are proposed in the Section 5. Finally, in Section 6, we discuss the
validity, limitations and applications of the proposed framework.

2 Background and related work

Maintaining awareness becomes particularly difficult in distributed
collaborative work because one of the primary awareness mech-
anisms in face-to-face collaboration—observing colleagues’ pos-
ture and movement—is not possible when the team is not collo-
cated. Supporting this consequential communication [Segal 1995,
cited in [Gutwin and Greenberg 2002]] has been the focus of activ-
ity support in real-time groupware, with mechanisms such as radar
views [Gutwin and Greenberg 2002] or shared feedback [Dourish
and Bellotti 1992].

These solutions mimic existing face-to-face awareness mecha-
nisms in their target activities (e.g. collaborative drawing in radar
views). However, they do not transfer to distributed software de-
velopment in a straightforward way, if at all. Software develop-
ment does not involve the manipulation of physical objects; we can-
not readily tell on which artifact a developer is working just from
where he or she stands or from the lever that is being pulled. Writ-
ing a piece of software is also slower than, for example, drawing
a picture, and development teams are often too large to observe all
members. Arguably, consequential communication is not the pri-
mary awareness mechanism even in collocated software develop-
ment and is unlikely to be in the distributed case either.

An alternative source of awareness information in software de-
velopment are the artifacts themselves. Seeing how they change, or
feedthrough [Dix 1994], makes it possible to get a sense of the on-
going activity in the workspace. Feedthrough awareness has been
an unintended benefit of tools used in distributed software develop-
ment. Configuration management (CM) tools are designed to sup-
port concurrent development by multiple developers and provide
mechanisms to back out of unwanted changes, but, as Grinter [Grin-
ter 1995] reported, they also create visibility into the development
process by providing a history and authorship of all changes to the
system. In effect, the code repository becomes an organizational

memory that can be accessed to find out what other developers have
done. However, as Grinter pointed out, because CM tools provide
low-level visibility into the actions of others, it is difficult to get
from them a system-level overview or a sense of historical trends.
A number of approaches have been developed that use data from
the CM system to create a visual representation of a software’s evo-
lution and improve awareness, starting with Gulla [Gulla 1992] and
Eick et al. [Eick et al. 1992] in 1992. We will visit some of these
representative and historical examples in the following sections.

3 Framework

The framework we propose for describing visualizations of human
activities in software engineering has five key dimensions: Intent,
Information, Presentation, Interaction and Effectiveness. These di-
mensions were derived from an in-depth analysis of the papers that
describe research and tools in this area. Some of the dimensions
overlap the dimensions proposed by Price et al. in their well-known
software visualization paper from 1992 [Price et al. 1992], but as
our framework is specific to human activities we have tailored and
refined the framework accordingly. Along the lines of the Cogni-
tive Dimensions Framework proposed by Green [Green 2000], the
role of our framework is also to act primarily as a discussion tool.
It can serve several purposes: 1) as a formative evaluation tool to
guide tool designers as they develop a new tool; 2) for potential
tool users to be able to assess the value and application of a partic-
ular tool; and 3) as a comparison tool so that tool researchers can
compare and understand the differences between various tools and
identify potential new research areas. In this section, we provide
an overview of the key dimensions in the framework.

3.1 Intent

Intent captures the general purpose and the motivation that led to
the design of the visualization:

Role. The most important aspect of this dimension is identifying
who will use the tool. One key role involves the developers in a soft-
ware feam. Important attributes of the developers include whether
they are newcomers to the project, their level of involvement and
whether they are co-located with other team members. Some tools
are designed for small tight-knit teams whereas others may be de-
signed to support large distributed teams. Maintainers, reverse en-
gineers and reengineers will also want to explore human activities
that have occurred in the past to guide present and future tasks. An-
other key role is the managers who need to gain an understanding
of the human activities in the project. Testers and documenters may
also find it relevant to know who has been developing the project
and which changes were made since the last release. Finally, re-
searchers may wish to investigate human activities and processes
across the lifespan of multiple projects.

Time. Another characteristic to contemplate is whether the tool
provides awareness of activities occurring in the present or in the
recent past and whether the tools provide information about the his-
tory of the project. The level of granularity at which a tool explores
the past varies according to the software engineering activity. For
forward engineering, tools may need to communicate changes that
happen on a daily basis (such as commits to the version control sys-
tem), while for maintenance or reverse engineering support, tools
may need to reveal changes over longer periods (such as monthly
releases of the software).

Cognitive support. Cognitive support is a term used to capture
how a tool or artifact can make human cognition easier or bet-
ter [Walenstein 2003]. Tools provide cognitive support through
“redistribution” when cognitive resources or processes are moved
outside the head and onto an artifact or tool. Redistribution occurs
when a complex or cognitively tedious task is transformed into a
task that can be done more quickly or easily. Awareness can often

194

be achieved by providing answers to particular questions that a user
may have. Walenstein describes how cognitive support can be pro-
vided by visualization tools when parts of the problem space may
be reified in the visual representation. Consequently, many aware-
ness tools do provide visualizations which are geared at answering
specific questions about human activities and the artifacts manipu-
lated.

Wau et al., through a survey with developers and managers, iden-
tified specific questions that they need to be answered using aware-
ness tools [Wu et al. 2004b]. These questions were also cited as
important elements of workspace awareness in [Gutwin and Green-
berg 2002]. These questions include: Who is or has been working
on the artifacts and who is the person responsible for or expert in
a particular part of the system? What happened since a developer
last worked on the project (types of events, such as new file added,
modified, difference between files etc.)? Where did this take place
(location of the new file, deletion, etc.)? When did this happen?
Why were these changes made? How has a file changed and is there
a relationship with other files? Tools can also provide cognitive
support when the user does not have specific questions but is trying
to gain insight about the human activities in the project. The many
questions that the various user roles may ask and the reasons for
wishing to gain insight about the human activities can be roughly
classified into four categories: authorship, rationale, time and ar-
tifacts. Consequently we consider how tools can provide cognitive
support for discovering information according to these four cate-
gories.

3.2 Information

This dimension refers to the data sources that a tool uses to extract
relevant awareness information:

Change management. Most medium to large-scale software
projects are developed and maintained in association with a ver-
sion control or a configuration management tool. Configuration
management tools provide support for building systems by select-
ing specific versions of software artifacts [Grundy 2001]. Version
control tools contribute to software projects in the following ways:
software artifact management, change management and team work
support [Wu et al. 2004b]. Software artifact management involves
definition and control of software artifacts (including source files,
additional resources, and documentation). Change management
keeps a record of artifact changes and branching activities, and
allows distribution of software revisions and releases. Some en-
vironments also use information from a developer’s local history to
provide awareness to other members.

Defect tracking. Many larger software projects rely on tracking
tools to help with the management of defects and change requests.
Such systems often store metadata on who is assigned a task and
when it has been or should be completed.

Program code. Many tools present awareness information con-
cerning files, modules and components. Others give more detailed
views of syntactic units such as packages, classes, methods, func-
tions, data types etc. Semantic analysis may be used to give rel-
evant information to the developer and manager of the impact of
changes to other parts of the program code.

Documentation. Design and requirements documentation are
sometimes used to store projected and actual human roles in a
project. Architecture level documentation and fest cases may also
describe human involvment. However, many projects do not spec-
ify human involvement in these documents and hence they are sel-
dom used by awareness systems.

Informal communication. Informal communications, such as
emails and instant messages, can help support awareness during
collaboration and coordination tasks. Analysis of this information
can also help uncover the intent behind past human activities.

Derived data. Awareness tools may present derived data either
from a single data source or from multiple data sources. For ex-
ample, a tool may calculate which files were changed during a sin-
gle transaction or which files are related. If CVS is used, the notion
of a transaction may not be explicitly recorded but a transaction can
be inferred by analyzing the documentation and file check-in times.
Also, events that are similar may be aggregated and displayed as
barcharts and histograms. An analysis of the available data sources
can improve the awareness tool’s ability to answer specific ques-
tions for the different user roles.

3.3 Presentation

Presentation refers to how the tool or proposed tool presents the
extracted and derived information to the various user roles:

Form. The tool may present awareness information using a com-
bination of text, hypertext or graphics. It is important to consider
which of these three different visual electronic forms are most ap-
propriate.

Kinds of views. Many tools provide awareness information in the
form of annotations on existing views in a software environment.
They may use visual variables or icons to emphasize the owner,
state or history of a software artifact. Statistical views, such as
barcharts and histograms, can provide comparison and analysis of
human activity information. Graph views can also be used to dis-
play relationships between human and software artifacts. Nodes
may represent software artifacts, and edges may represent semantic
relationships or relationships to various versions and releases. In
some cases, humans may be represented explicitly as nodes in the
graph but more often human activity is shown as an attribute of the
software artifacts and displayed with a visual variable such as color
or shape. Some tools may also provide customized special views
to provide cognitive support for particular information seeking or
understanding tasks. An example of a special view is a matrix view
which may be used to show trends and evolution patterns.

Techniques. Whether the tool provides annotations on existing
views or specialized views, they will both use some visual vari-
ables such as colour, position, size, transparency, and map those
to appropriate human activity attributes. It is important that the
mapping from the visual variables to the attribute data types is ap-
propriate and meaningful given the human visual perception system
[Ware 2000]. Animation or motion can also be used effectively—
for example to animate the evolution of a software project. Finally,
we consider tools which rely on either user- or tool-generated ab-
stractions in communicating awareness information. A tool or user
may decide to group a set of developers into a subteam or group a
set of software files into a module for the purposes of simplifying
the visualization.

3.4 Interaction
This dimension refers to the interactivity and liveness of the tools:

Batch/Live. An important consideration is whether the tool oper-
ates offline or online [Froehlich and Dourish 2004]. Some offline
tools require that the user write scripts to batch queries on a reposi-
tory of information. The tool then displays the queried information
using static graphs. Other tools are online and provide updated dis-
plays of the information to the users on demand.

Customization. Effective interaction to suit particular user needs
will normally require a high degree of customization. This char-
acteristic addresses whether the available views can be further ma-
nipulated and to what extent they can be customized. Saving cus-
tomizations and sharing customizations across team members may
also be important.

Query mechanism. Some tools require special purpose languages
to specify queries. Others allow the user to visually specify the

195

queries through the use of specialized filter widgets (such as dou-
ble sliders, or checkboxes) or by interacting with the visualization
directly (such as selection or brushing).

View navigation. How the user navigates the displayed informa-
tion is important—especially for tools with specialized views. Suc-
cessful navigation requires that the user maintain orientation so that
they know where they are and can decide where to go next. The use
of an overview for detailed views can be used to provide orientation
and to directly support navigation in the information space. Navi-
gation can alternatively be supported by a zoomable user interface
and hypertext. Another important consideration is that the user may
need to compare two views side-by-side. The facility to see multi-
ple views at once provides cognitive support [Walenstein 2003] as
it reduces the memory load on the user and redistributes some of
the required cognition from the user to the tool. To improve the
usefulness of multiple views, views should be coupled.

3.5 Effectiveness

This dimension captures the feasibility of the proposed approach,
whether it has been evaluated and whether it has been deployed:

Status. Some researchers propose approaches that have not yet
been implemented. This characteristic captures whether the sys-
tem has been partially or fully implemented and the robustness of
the tool. Tool availability is also important—so that other tool de-
signers and researchers can evaluate it. Froehlich and Dourish also
mention the importance of interoperability [Froehlich and Dourish
2004]. The assumption is that an awareness system will have to
work in conjunction with some other tool, be it a software devel-
opment or reverse engineering environment. A typical restriction
of many tools is that they only work with, for example, CVS or
Bugzilla. For scalability we must consider if the tool supports large
software projects. If the technique does not appear to scale, it may
be the implementation which does not scale rather than the tech-
nique.

Cost. The adoption of any tool has a cost associated with it. Eco-
nomic cost is a key concern, in addition to other costs such as the
cost of installing the tool, learning how to use it, and the costs
incurred during its usage.

Evaluation. A tool that has been formally evaluated and compared
to other approaches will more likely be adopted than one that has
not. It is very common for these tools to be evaluated by the de-
signers through informal case studies. The complexity and size of
the software in the case study is very important to consider. When
a new tool has been evaluated with users other than the tool design-
ers (i.e. in user studies), confidence in the tool’s benefits will be
further increased. If the tool has been deployed and subsequently
adopted, then the tool has been evaluated through its usage. The
rate of adoption can be an important indicator of the usefulness of a
tool. However, lack of adoption does not necessarily imply that the
tool is not effective as adoption is affected by many forces.

4 A survey of tools

In this section we describe several awareness tools for software en-
gineering using our proposed framework as a template. The frame-
work highlights not only what the tools do but also what they do
not do well. The tools we review do not encompass an exhaus-
tive list, however, they are representative of the kinds of tools that
are developed in industry and academia to support awareness dur-
ing software development. Moreover, we only focus on tools that
specifically provide awareness of human activities.

4.1 Seesoft

Intent: Seesoft is one of the earliest tools that visualized program
history from version control system’s data [Eick et al. 1992]. It is
a generic tool for visualizing statistics associated with lines in text

Dimensions Characteristics Features
Intent Role Team, Developer, Maintainer, Reengineer, Manager, Tester, Documenter, Researcher
Time Present, Recent Past, Historical
Cognitive Support Authorship, Rationale, Time, Artifacts
Information Change management Local History, Releases, Branching, Revisions
Program code Modules/components, Syntactic units (e.g., files), Semantic analysis
Defect tracking Defects, Changes
Documentation Requirements, Test cases, Design, Architecture
Informal communication Email, Instant messages
Derived Single source, multiple source
Presentation Form Text, Hypertext, Graphical
Kinds of views Annotated views, Statistical views, Graph views, Special views
Techniques Visual variables (hue, transparency, position etc), Animation, Abstractions
Interaction Batch/Live Offline, Online
Customization Level of customization, sharing and saving customizations
Queries Query language, Filter widgets
View navigation Overview+detail, Zoomable views, Coupled views
Effectiveness Status Implemented, Availability, Scalability, Interoperability
Cost Economic cost, Installation, Learning, Usage
Evaluation Adopted, Case study, User study

Table 1: Summary of the framework.

files, whose goal was to develop techniques for visual representa-
tion of large amounts of code for the purposes of code exploration
and project management.

Information: For activity awareness, SeeSoft uses a version con-
trol system to provide data about authorship, age, and description
of revisions. It also uses the contents of the files to create a visual
map of the software.

Presentation: The key characteristic of Seesoft is its line-based
visualization that maps each line of source code into a thin row (as
small as one pixel high) on the screen, with files comprising the
system arranged in columns across the screen. The colour of each
row represents a value of the attribute that is being visualized, such
as age or developer who authored it (see Fig. 1).

File Bististioe Fiew aylioss Welp

Figure 1: A screenshot of Seesoft (from [Ball and Eick 1996])

Interaction: The visualization is interactive and a user can easily
select with a mouse only a subset of information to be displayed (for
example, to colour only the lines, across all files, that were created
together). The technique employed is “brushing”: simply moving
the mouse over an entity in the view (for example, a line of a file or

196

a developer in the colour scale) selects it and updates the rest of the
view. Clicking in the view serves as a zoom function and shows the
text of the corresponding lines in the files.

Effectiveness: Seesoft’s authors report informal field use in their
organization, but no details of evaluation are reported.

4.2 VRCS

Intent: VRCS [Koike and Chu 1997] was designed to facilitate
version control and module management. For developers, it pro-
vides a visual representation of file versions to facilitate building an
entire system. The implementation they describe lacks support for
multiple authors.

Information: Versions are explicitly modeled, and relationships
between file versions are shown to facilitate compilation builds.
Compilation file dependencies are extracted from make operations.

Presentation: In VRCS, each version of the history is represented
as a 3D tree showing module and file relationships in the x and y di-
mensions and time in the z-axis. Files that are in the same module
are placed close to one another in XY plane. Each major release is
represented as a sphere in the center of the version tree. Links be-
tween version nodes show which ones should be compiled together
(see Figure 2).

Z (time)

Figure 2: A graph created with VRCS (from [Koike and Chu 1997])

Interaction: For the most part the views are static, but the graphical
representation of files and versions can be used for selecting which
files to check in and out.

Effectiveness: VRCS was evaluated with 10 graduate students.
The main result was that the interface facilitated a faster check-in.
It interoperates with the RCS version control system.

4.3 Tukan

Intent: Tukan [Schiimmer and Haake 2001] provides orientation
and activity awareness. It is particularly useful at helping develop-
ers find knowledgeable people to work with and at avoiding con-
flicts.

Information: Tukan does program analysis to determine which
program artifacts are semantically related. It also extracts version
information from the ENVY version control system. This informa-
tion is aggregated to determine the severity of potential conflicts.

Presentation: This tool presents a graph of artifacts (e.g. methods,
instance variables) and weighted relationships (e.g. composition,
inheritance, creation, task). Artifacts that are related are placed next
to each other in the graph. An awareness browser uses weather
symbols to show the severity of the conflicts (see Fig. 3.) In the
resource browser, artifacts are annotated with a history of their state
to indicate how “close” they are to the user’s current focus.

47 Browser - Smalltalk
Buffers Browse Qperations Applcabion Class Proocod Selecior

=

=i
|7 appicabeC hisrarchy [instance © ciast 4] =
Defaun: Tmmormm 28, 2000 Z:15:23 pm) from Accounting

| |
Tool =]
|

El

comparing
printing

year

“year

Figure 3: A screenshot of Tukan (from [Schiimmer and Haake
2001])

Interaction: Tukan is an online system and has a synchronous co-
operative code editor which uses colour coded cursors to provide
context for other navigation. The system adapts the visual cues as
the users browse and update the code.

Effectiveness: Tukan was developed as a plug-in for the Smalltalk
system. It was evaluated by the designer’s development group only.

4.4 ADVIZOR

Intent: Eick et al. demonstrated a series of visualization techniques
to help managers understand and manage the software change pro-
cess [Eick et al. 2002]. These visualizations are built on top of the

. . . . TM .
general visualization framework called Advizor” ™, a commercial
product.

Information: The visualizations use data drawn from the version
control system, bug tracking system, and source code files.

Presentation: A wide range of views are used to present the data,
from matrix displays, to 2D and 3D bar charts, pie charts, zoomable
text displays, and graphs (see Fig. 4).

Interaction: All views are interactive and linked together, so that
selection in one view causes updates in all other views.

Effectiveness: The authors reported the tool’s application on the
full history of a 15-year-old software system for telephone switches,
comprising approximately 100 million lines of code.

197

Wi L e ek b O e

U0 a8 R T B S S

ok o I S T

o

B L L - ST R T . /I
e

T el e e S g . e

oy
el
e -

Figure 4: A screenshot of ADVIZOR (from [Eick et al. 2002])

4.5 Xia/Creole

Intent: The goal of the Xia tool is to give visual insight into version
control activities that have occurred in the past [Wu et al. 2004b].
It provides an overview of human activities in the context of archi-
tectural views of the system and displays architectural differences
between two versions. It was specifically designed to answer ques-
tions concerning the authorship, time and location of changes made
in code. Its visualizations have been integrated into the Creole visu-
alization plug-in for Eclipse [Lintern et al. 2003]. Using Creole, it
is possible to generate custom views of the human activities within
the context of the software architecture in addition to call graph and
data flow views.

Information: Creole extracts information from the CVS version
control system and combines it with semantic analysis on the pro-
gram code to infer dependencies in the software architecture.

Presentation: Xia uses hierarchical graph views to display differ-
ences between the architecture and artifacts of two versions, see the
left hand side of Fig. 5. The right hand side of Fig. 5 shows an ex-
ample of the graph-based views in Creole where visual attributes,
colour and position, are mapped to attributes of the information ex-
tracted from CVS. In this view, colour is used to distinguish new,
changed, deleted and unchanged code with previous versions.

e mwnuﬂlzm RigiDstafless

i car_shrimg. Datallosn

mwie. s 1himp adupter

ﬁ“ e urlh'lﬁi!h'n‘\‘i.n

cawicen. sl TeKlemo S Tl

ol esn Shii g ity 4 s
E

P, S e

emupic.car sheimg s eeOet el cq i cor.shrimp.Tellioan

+ abvire gt FibmBt
[

emimic.cnt ,uﬁ“.;..,a.."
e €t shio Dot llemn Picto g
[]

<0 mic o shreng e e

LGOS A

e v i FilmGip

Figure 5: Two views from Xia and Creole respectively (from [Wu
et al. 2004b; Lintern et al. 2003])

Interaction: Creole and Xia are both interactive and customizable,
however, the views do not update according to current activities
in the development environment. This tool provides a number of
query widgets to support exploration of the data. For example,
check boxes can be used to show data according to selected authors,
double sliders are used to display data according to a range of dates
and number of check-ins. Tooltips can also be customized to show
different attributes such as author, file creation date, check in time,
and number of check-ins. Creole provides overviews, a zoomable

user interface and hypertext to support navigation.

Effectiveness: The design of Xia was preceded by a survey to iden-
tify requirements for the tool features. A small user study was con-
ducted with 5 subjects. Although the results were anecdotal they
were useful in suggesting improvements for the tool. Creole and
Xia have both been integrated with Eclipse as plugins. Creole is
available for download from www.thechiselgroup.org/creole.

4.6 Palantir

Intent: The goal of the Palantir [Sarma et al. 2003] tool is to pro-
vide awareness for distributed software development teams. The
key issue they explore is how their tool can be used to avoid coding
conflicts.

Information: Palantir extracts information from a number of pop-
ular version control tools. It also extracts the difference between
files by comparing the number of lines changed.

Presentation: Palantir uses color annotations on file names in the
resource view to show the current editor of files. The resource tree
view can also be enhanced with horizontal bars indicating the sever-
ity of ongoing and committed changes. Another view is the hierar-
chical view which shows pairwise differences according to conflicts
between each possible pair of authors (see Fig. 6).

Figure 6: A screenshot of Palantir (from [Sarma et al. 2003])

Interaction: The tool is interactive and provides information as it
is needed by using a “push” mechanism rather than a “pull” ap-
proach. Cues will inform the user about completed or in progress
changes such as add, delete, remove and move activities. The tool
supports zooming within the chat view and the user can compare
two versions in the hierarchical view.

Effectiveness: Palantir has not been formally evaluated in a user
study. It is available as an Eclipse plug-in and as a standalone tool
from http://www.ics.uci.edu/“asarma/Palantir.

4.7 Jazz

Intent: Jazz [Hupfer et al. 2004] is a “collaborative development
environment” to enhance and enrich collaboration in small, infor-
mal software development teams. Jazz has several features to sup-
port awareness of team member activities in addition to screen shar-
ing.

Information: Jazz extracts activities from the environment’s user
interface and the local history to monitor how the source code is
manipulated. It also relies on informal information such as who is
online and their status.

Presentation: The key visual feature of Jazz is the Jazz band which
provides peripheral awareness of the status and activities of other
team members. The file names in the resource view in Eclipse are
enhanced using color and icons to show the status of the resources
(whether they are being edited, checked-in etc). Tooltips also pro-
vide responsibility information. Chats are visibly anchored in the
code, thereby providing collaboration in context (see Fig. 7).

198

Figure 7: A screenshot of Jazz (from [Hupfer et al. 2004])

Interaction: Jazz provides up-to-the-minute awareness informa-
tion by monitoring and displaying information as activities occur.
Team members can add or drop members from the Jazz Band on de-
mand. Jazz provides the user with limited controls for determining
what is displayed but does not provide support for running queries
or other filters. Views in Jazz are coupled and a developer can nav-
igate large chats using hypertext-like links.

Effectiveness: Since it is a fairly recent tool, it has not been evalu-
ated in a formal user study nor has it been deployed. Although it is
a plug-in for Eclipse, it is not currently available.

4.8 softChange

Intent: The main goal of softChange is to help programmers, their
management and software evolution researchers in understanding
how a software product has evolved since its conception [German
et al. 2004].

Information: softChange extracts the metadata from a version con-
trol system (CVS) and its corresponding defect tracking system
(Bugzilla) and correlates both; it also extracts the different revi-
sions of each of the files and does syntactic and semantic analysis
(extraction and comparison of semantic units and comments be-
tween two revisions of a given file). It then tries to classify changes
(defect fixes, changes in documentation, addition of new features,
etc) based on the available information.

Presentation: softChange is composed of a hypertext component
and a graphical component. The hypertext component allows the
user to navigate, search and inspect, for a given change, who made
it and when, the files modified, why the change occurred, and when
applicable, the defect that was fixed. The graphical component pro-
vides two types of views: first, it calculates statistics and presents
them in histograms where the horizontal axis is usually time, and
therefore provides an overview of the evolution of the project; and
second, it provides graphs that show files, authors and their inter-
relationships (such as which files have been modified together, or
which authors modify which files—see Fig. 8).

Interaction: softChange’s hypertext interface allows the user to
freely navigate and search the information space. The graphical
views in softChange are generated in batch mode and the user is
allowed to specify some parameters for their creation.

Effectiveness: softChange has been used by its authors in studies of
software evolution and in the analysis of global software develop-
ment practices in large open source projects. No formal user testing
has been performed. It is available on request.

wm =T

e
o

Figure 8: A graph created by softChange (from [German 2004])

4.9 Evolution Matrix

Intent: Evolution Matrix is an approach to visualizating software
evolution [Lanza 2001]. It is a specialized view within Code-
Crawler, a tool for object-oriented reverse engineering.

Information: Evolution Matrix uses program analysis to calculate
various metrics based on a set of releases of the software.

Presentation: The key characteristic of Evolution matrix is its pre-
sentation of the software as a 2D matrix with classes arranged on the
Y-axis and time-ordered releases on the X-axis. Cells of the matrix
contain rectangles that encode values of two of the class’s metrics,
one for each dimension. The tool displays the number of methods
and number of instance variables in the class, and identifies several
typical patterns of class evolution (see Fig. 9).

DAYFLES

FENAMED PULSAR

Figure 9: A screenshot of Evolution Matrix (from [Lanza 2001])

Interactivity: The view is interactive: a user can change the met-
rics that are being visualized, as well as presentation parameters
such as the mapping of colours to data values.

Effectiveness: This tool was evaluated through two case studies of
unspecified size.

410 Augur

Intent: Augur is a visualization tool designed “for the developers
participating in [distributed] software development” [Froehlich and
Dourish 2004]. Its focus is on monitoring activity in the project
and exploring it in detail both in time and in the context of artifacts
where activities occurred.

Information: Data used in Augur’s visualizations comes from the
metadata recorded in the version control system and the contents

199

of the revisions. Program analysis is conducted on the revisions to
detect syntactic units that are modified in each revision. This data
can then be combined with age information and displayed in the
primary view. Version control data are also aggregated to display
cumulative views of activity in a given time period.

Presentation: Augur builds on Seesoft’s approach to line-based vi-
sualization of code artifacts, but encodes two additional attributes
next to the line information. It also provides secondary views that
complement the line-based visualization by showing various cumu-
lative graphs and statistics (see Fig. 10). Augur also has a zoomable
user interface.

Figure 10: A screenshot of Augur. (Adapted from [Froehlich and
Dourish 20041])

Interaction: Augur is interactive and its views are coupled — a se-
lection in one view updates the presentation in all views. Informa-
tion can be selectively displayed according to authors and according
to time ranges.

Effectiveness: Augur has been applied to several medium-to-large
open source projects. Members of the open source projects reported
that they could interpret Augur’s presentations and found them use-
ful. It can be downloaded from drzaius.ics.uci.edu/ jfroehli/augur.

4.11 Beagle

Intent: The goal of Beagle tool is support for exploring software
changes, particularly how releases of a project evolve [Tu and God-
frey 2002].

Information: Beagle uses the releases of a software project, and it
extracts its functions/methods and creates call graphs. It attempts to
track functions/methods in case they are merged or renamed from
one version to the next.

Presentation: The main visualization is the call graph for every
given release. Beagle also generates some static graphs: tree views
show how a given function/method evolves, and “scatter plots”
which are 2 dimensional plots that show the structural changes of
a file or group of files (it shows if functions are deleted, moved,
renamed or merged between two different releases). Beagle also
supports zoomable views.

Interaction: It is an interactive application that allows the user to
track the call graph of a given file or function/method.

Effectiveness: Beagle was demonstrated by applying it on gcc (the
GNU C/C++ compiler) and Postgres DBMS.

4.12 Spectrograph

Intent: Spectrograph is a specialized visualization that shows
where and when changes occur in a system [Wu et al. 2004a].

Information: It uses data from software releases and CVS history.

Presentation: Spectrographs are very similar to Evolution Matrix.
The X-axis is usually time related (releases or revisions of files) and
the Y-axis varies: files, authors, directories. A metric determines
how a given point is displayed (see Fig. 11).

90 %0 %¥u T %0 B0 W00 oW g 2o Ma

Figure 11: A spectrograph (from [Wu et al. 2004a])

Interaction: Data is collected in a batch process, but a user can
interact with the view to zoom into the view, filter the data, change
presentation parameters such as mapping of colours to data values,
or issue queries.

Effectiveness: Spectrograph was demonstrated by applying it on
large open source projects but with no user evaluation.

4.13 Summary

Many of the surveyed awareness tools were developed in the past
few years and are still under active development. Given the re-
cency of the work, researchers are not always aware of parallel
work. These parallel efforts may be advantageous as they may lead
to more innovation. However, it is also important to have some
common context for presenting and comparing research results. In
Table 2 we attempt to provide an overview of the different charac-
teristics and features of the various tools we surveyed. Our inter-
pretation is based on our use of the surveyed tools (when possible,
from reading the papers that describe them and from discussions
with the tool developers). Not all of the characteristics and features
are included in this table, particularly those features which are dif-
ficult to summarize in this fashion. For a more detailed description
of the tools and for better figures please refer to the original papers.

5 Research agenda

From our detailed analysis of visualization tools that provide aware-
ness of human activities in software development, we have been
able to make a number of observations. These observations are or-
dered according to the dimensions in the framework and they point
to some possible directions for future research.

Intent: Need for requirements. There is a lack of empirical work
that sheds light on the desirable features that should be provided
by an awareness tool (notable exceptions include [Wu et al. 2004b;
Gutwin et al. 2004; Souza et al. 2004]). Without a principled de-
scription of these requirements, it is difficult to compare and evalu-
ate these tools, and it is hard to assess how different tools could be
combined to solve particular development problems. More work is
needed to better define who the tool users are and which types of
questions the tools should help answer.

Information: Fact extraction is key. A visualization will only be
useful if the underlying data serves some purpose. Many of the
questions that software developers have can be answered by deriv-
ing and aggregating facts from various data sources. Some tools
lack the facility to do more detailed analyses of the data extracted.
Moreover, few of the tools we surveyed consider potentially useful
sources of information such as defects, documentation and informal
communications. We also noticed that most of the tools use differ-
ent methods for fact extraction, and in some cases are reinventing
the wheel. It would be advantageous to have a common data model
and a standardized way to extract and share these facts.

200

Presentation: Combine views. There does not appear to be a lack
of visualization techniques that can be applied to providing activity
awareness in software development. What is lacking is how to inte-
grate the various techniques so that they can be effectively used in
combination to answer the questions the users will have. Few of the
tools discuss how various textual, hypertextual and graphical views
can be best combined to provide awareness.

Interaction: Need for improved queries and online tools. Many
of the surveyed tools were not interactive and operated in an of-
fline mode—this is, in some cases, due to the early nature of the
research. The tools support researchers as they explore which vi-
sualizations may be useful. We also conjecture that more powerful
query techniques, such as the use of a formal query language, may
be beneficial when developers and reverse engineers have specific
queries about past human activities.

Effectiveness: Need for more evaluation and benchmarks. The
most striking observation from this research is that not only is there
a lack of evaluation for these tools, but there is also a lack of well-
defined benchmarks and evaluation criteria. Most tools have only
been evaluated through case studies with the only users being the
designers of the tools. Again, this is not surprising given the re-
cency of much of this research. Tools that can be downloaded
are amenable to a more unbiased evaluation by other researchers.
Tools that interoperate with other software development tools also
increase the likelihood that they will be used and can provide feed-
back on how they work in a more realistic context. An important
criteria for evaluation is a cost-benefit analysis—although a tool may
have a high cost of installation, learning, or usage, if it provides sig-
nificant benefits then it will be more likely be used.

6 Discussion

Surveys in any research discipline play an important role as they
help researchers synthesize key research results and expose new
areas for research. The framework we propose is an initial but
well-thought out attempt at providing a mechanism for describing,
comparing and understanding awareness tools to support software
development tasks. It follows in the tradition of Price et al.’s tax-
onomy [Price et al. 1992] and there is some overlap between the
dimensions of our framework and the top-level categories of their
taxonomy. We believe building on this earlier taxonomy gives our
approach a solid grounding in the existing theoretical foundation
of the field. The divergences are mainly the result of our focus on
visualizing human activity during the development of a software
system, rather than visualizing the software itself. We also give
greater attention to people that will use the tools and the tasks for
which the tools will be used, influenced by an existing framework of
workspace awareness in groupware [Gutwin and Greenberg 2002].
We also prefer the term framework rather than taxonomy, as frame-
work captures the qualitative aspects we emphasize rather than the
need to classify particular tools.

The dimensions we propose are not pairwise-independent (just
as the Cognitive Dimensions proposed by Green are not [Green
2000]). Indeed, a tool designer would not be able to provide many
of the features suggested by the framework without making some
compromises on other features. We also do not suggest that a single
tool should provide all of these features as this could lead to a very
cumbersome tool that is difficult to use and may lack purpose.

A question that could be raised is whether the framework we pro-
pose has validity. To quote Price et al.: if our framework “provides
a meaningful way of describing software visualization technology,
then it should facilitate a clear and concise statement of the essential
features” of specific tools [Price et al. 1992, p. 602]. From our ini-
tial tool survey experiences, our framework fulfills this role. While
working on this paper, we found that the framework greatly helped
our thinking and guided our writing. We also observed that the

~
=
s
=
=p
=

Intent
Role Team size Any 1 Any Any Any Any Small Any Any Any Any Any
Developer Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Manager Yes Yes Yes Yes Yes
Tester/Documenter Yes Yes
Maintainer/Reengineer Yes Yes Yes Yes Yes Yes
Researcher Yes Yes Yes Yes Yes Yes Yes Yes
Time Present Yes Yes Yes Yes
Recent past Yes Yes Yes Yes Yes Yes Yes
Historical Yes Yes Yes Yes Yes Yes Yes Yes
Cognitive Authorship Yes Yes Yes Yes Yes Yes Yes Yes Yes
support Rationale Partial Yes Yes
Time Yes Yes Yes Yes Yes Yes Yes Yes Yes
Artifacts Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Information
Change Local history Yes
management Releases Yes Yes Yes Yes Yes
Branching Yes Yes Yes
Revisions Yes Yes Yes Yes Yes Yes Yes Yes
Tracking Defects/Changes Yes Yes Yes Yes
Program Code Syntactic units Yes Yes Yes Yes Yes Yes Yes Yes Yes
Semantic analysis Yes Yes Yes Yes Yes
Document- Requirements, tests
ation Design, Architecture
Informal Email
comms. Instant messages Yes
Derived Single source Yes Some Yes Yes
Multiple source Yes Yes Yes Yes Yes
Presentation
Form Hypertext Yes Yes Yes Yes
Graphical Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Kinds of views Annotates other views Yes Yes Yes
Graph views Yes Yes Yes Yes Yes Yes Yes Yes
Statistical views Yes Yes Yes
Other views Map Yes Yes Map Yes Matrix Matrix
Techniques Visual variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Animation
Abstractions Yes Yes Yes Yes Yes
Interaction
Batch/ Offline Yes Yes Yes Yes
Live Online Yes Yes Yes Yes Yes Yes Yes Yes Yes
Customizable Customization level Lo Hi Hi Lo Lo
Queries Query language Yes
Filter widgets Yes Yes Yes Yes Yes Yes Yes Yes
Navigation, Overview-+detail Yes Yes Yes Yes
Orientation Zoomable views Yes Yes Yes Yes
Coupled views Yes Yes Partial Yes Yes Yes Yes
Effectiveness
Status Availability Yes Yes Yes Yes Yes
Interoperability Yes Yes Yes Yes Yes Yes Yes Yes Yes
Evaluation Adopted Yes
Case study Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
User study Yes Yes

Table 2: Summary of the tools

201

framework helped us identify similar tools as well as unique tools
for the awareness of human activities in software development. For
example, we were able to determine that the Spectrograph approach
may be a special case of the Evolution-Matrix approach. We antic-
ipate that other researchers will apply the framework to evaluate
more tools, and that their experiences will further refine the frame-
work.

We see our framework primarily as a discussion tool rather than
a formal representation of the characteristics and features of an
awareness tool. Furthermore, we do not propose that it should be
used for directly comparing tools, but rather that it can be used to
discern what are the important questions to ask about these tools.
The ultimate test of its validity will be whether it resonates with
developers, tool designers and researchers. Our own initial expe-
riences are promising, and we look forward to the discussion and
exchange of ideas that we hope our framework will initiate in the
software visualization and software engineering communities.

References

BALL, T., AND EICK, S. G. 1996. Software visualization in the
large. IEEE Computer 29, 4, 33—43.

Dix, A.J. 1994. Computer-supported cooperative work—a frame-
work. In Design Issues in CSCW, D. Rosenburg and C. Hutchi-
son, Eds. Springer Verlag, 23-37.

DOURISH, P., AND BELLOTTI, V. 1992. Awareness and coordina-
tion in shared workspaces. In Proc. of the ACM Conference on
Computer-Supported Cooperative Work, 107-114.

EICK, S. G., STEFFEN, J. L., AND SUMMNER JR., E. E. 1992.
Seesoft—a tool for visualizing line oriented software statistics.
IEEE Trans. on Software Engineering 18, 11, 957-968.

EICK, S. G., GRAVES, T. L., KARR, A. F., MOCKUS, A., AND
SCHUSTER, P. 2002. Visualizing software changes. /IEEE Trans-
action on Software Engineering 28, 4, 396-412.

ENDSLEY, M. 1995. Toward a theory of situation awareness in
dynamic systems. Human Factors 37, 1, 32-64.

FROEHLICH, J., AND DOURISH, P. 2004. Unifying artifacts and
activities in a visual tool for distributed software development
teams. In Proc. of the 26th International Conference on Software
Engineering (ICSE’04), 387-396.

GERMAN, D., HINDLE, A., AND JORDAN, N. 2004. Visual-
izing the evolution of software using softChange. In Proc. of
the 16th Internation Conference on Software Engineering and
Knowledge Engineering (SEKE 2004), 336-341.

GERMAN, D. 2004. An empirical study of fine-grained software
modifications. In 20th IEEE International Conference on Soft-
ware Maintenance (ICSM’04), 316-325.

GREEN, T. 2000. Instructions and descriptions: some cognitive
aspects of programming and similar activities. In Working Con-
ference on Advanced Visual Interfaces (AVI 2000), 21-28.

GRINTER, R. E. 1995. Using a configuration management tool to
coordinate software development. In Conference on Organiza-
tional Computing Systems, 168—177.

GRUNDY, J. C. 2001. Software architecture modeling, analysis and
implementation with SoftArch. In Hawaii International Confer-
ence on System Sciences, 9051.

GULLA, B. 1992. Improved maintenance support by multi-version
visualizations. In Proc. of the International Conference on Soft-
ware Maintenance, 376-383.

202

GUTWIN, C., AND GREENBERG, S. 2002. A descriptive frame-
work of workspace awareness for real-time groupware. Com-
puter Supported Cooperative Work 11, 3/4, 411-446.

GUTWIN, C., PENNER, R., AND SCHNEIDER, K. 2004. Group
awareness in distributed software development. In Proc. of
the 2004 ACM Conference on Computer Supported Cooperative
Work, 72-81.

HUPFER, S., CHENG, L.-T., ROSS, S., AND PATTERSON, J.
2004. Introducing collaboration into an application development
environment. In Proc. of the ACM 2004 Conference on Com-
puter Supported Cooperative Work, 444-454.

KoIKE, H., AND CHU, H.-C. 1997. VRCS: Integrating ver-
sion control and module management using interactive three-
dimensional graphics. In Visual Languages VL’97, 170-175.

LANZA, M. 2001. The Evolution Matrix: recovering software
evolution using software visualization techniques. In Proc. of the
4th International Workshop on Principles of Software Evolution,
37-42.

LINTERN, R., MICHAUD, J., STOREY, M.-A., AND WU, X.
2003. Plugging-in visualization: experiences integrating a visu-
alization tool with eclipse. In Proc. of the 2003 ACM symposium
on Software visualization, 47-56.

PRICE, B. A., SMALL, I. S., AND BAECKER, R. M. 1992. A Tax-
onomy of Software Visualization. In Proc. of the 25th Hawaii

International Conference on System Sciences (HICSS), vol. 2,
597-606.

SARMA, A., NOROOZI, Z., AND VAN DER HOEK, A. 2003.
Palantir: raising awareness among configuration management
workspaces. In Proc. of the 25th International Conference on
Software Engineering, 444-454.

SCHUMMER, T., AND HAAKE, J. M. 2001. Supporting distributed
software development by modes of collaboration. In Proc. of
the European Conference on Computer Supported Collaborative
Work, 79-98.

SEGAL, L. 1995. Designing team workstations: the choreography
of teamwork. In Local Applications of the Ecological Approach
to Human-Machine Systems, P. Hancock, J. Flach, J. Caird, and
K. Vicente, Eds. 392-415.

SouzA, C. D., REDMILES, D., CHENG, L.-T., MILLEN, D., AND
PATTERSON, J. 2004. Sometimes you need to see through walls
a field study of application programming interfaces. In Proc. of
the 2004 ACM Conference on Computer Supported Cooperative
Work, 63-71.

Tu, Q., AND GODFREY, M. W. 2002. An integrated approach
for studying architectural evolution. In Proc. of the 10th In-
ternational Workshop on Program Comprehension (IWPC’02),
127-136.

WALENSTEIN, A. 2003. Observing and measuring cognitive sup-
port: Steps toward systematic tool evaluation and engineering.
In Proc. of the 11th International Workshop on Program Com-
prehension (IWPC’03), 185-195.

WARE, C. 2000. Information visualization: perception for design.
Morgan Kaufmann Publishers Inc.

Wu, J., HoLT, R. C., AND HASSAN, A. E. 2004. Exploring
software evolution using spectrographs. In Proc. 11th Working
Conference on Reverse Engineering, 80-89.

WU, X., MURRAY, A., STOREY, M.-A., AND LINTERN, R.
2004. A reverse engineering approach to support software main-
tenance: Version control knowledge extraction. In Proc. 11th
Working Conference on Reverse Engineering, 90-99.

File Betistin Tirs dptiees Salp

Y

Buffers Browse Operaions Applicabion Chiss Protocol Selector Jool
= = 2Ty El

day

§ month
month

year

fDecember 28, 2000 21523 pen) from Accounting =t

year hash {* —*

o e

Figure 3: A screenshot of Tukan (from [Schiimmer and Haake
20017)

Figure 5: Two views from Xia and Creole respectively (from [Wu
et al. 2004b; Lintern et al. 2003])

T eE— T
| -
= ettt st me it e St
b = | T — au
- — -
J— | —— p—
- D 5 T
= = e
i o
I -— I] =

Figure 6: A screenshot of Palantir (from [Sarma et al. 2003])

Figure 10: A screenshot of Augur (from [Froehlich and Dourish
2004])

-0 %01 %0 01 %N 0 0001 010 (81 0301 o401

Figure 11: A spectrograph (from [Wu et al. 2004a])

