Designing Agent Controllers using Discrete-Event Markov Models

Sridhar Mahadevan and Nikfar Khaleeli* and Nicholas Marchalleck!
Department of Computer Science
Michigan State University
East Lansing, MI 48864
(mahadeva@cps.msu.edu)

Abstract

This paper describes the use of discrete-event Markov
decision process models to design robust agent con-
trollers in complex stochastic domains. Unlike
discrete-time models, where actions are assumed to
take unit time, discrete-event models allow state tran-
sitions to take random time. Discrete-event mod-
els also provide a convenient form of temporal ab-
straction: the agent observes and controls the sys-
tem only at decision epochs. The paper summarizes
case studies using discrete-event models in two chal-
lenging application domains: mobile robot navigation
and manufacturing. The two domains also serve to
highlight the difference between probabilistic models,
where dynamic programming can be applied, and sim-
ulation models, where reinforcement learning methods
are more appropriate.

Introduction

There are many domains where agents need to syn-
thesize plans that optimize a time-based cost function.
Consider the following examples. A delivery robot nav-
igates around an indoor office environment, making pe-
riodic trips between different service locations. The
goal of the robot is to plan routes to its destinations
that minimize the travel time. The robot has to take
into consideration the time taken by the various ac-
tions (moving forward, turning), and the variation in
these times in different locations (for example, going
through a door or an intersection or a cluttered cor-
ridor usually takes more time). As a second example,
consider a manufacturing system that produces dis-
crete parts. The parts are stored in product buffers,
or inventories. Each part takes a different amount of
time to manufacture. The machine making the parts
is unreliable, and prone to periodic breakdown, unless
it is maintained regularly. The problem is to design
a maintenance schedule, which will minimize break-

Now at Windriver Systems.
Now at Cybear Corporation.

downs, and maximize satisfied demand for the various
parts.

These two examples, although arising from very dif-
ferent domains, have a lot in common. The two do-
mains are both stochastic, in that there is significant
uncertainty in perception (for example, the robot may
not know where it is), actions are non-deterministic
(for example, the size of the buffer when a production
action is completed depends on demand arrivals in be-
tween), and the number of states may be very large
(for example, the manufacturing domain involves on
the order of 10! states). The goal of the agent in
both domains is to compute (or learn) a policy map-
ping (sensed) states to actions, preferably one that op-
timizes a cost-based optimality measure (for example,
discounted sum of rewards, or the average reward per
step).

This paper describes a general framework based
on event-based Markov decision processes (Puterman
1994) to address temporal stochastic planning in the
robotics and manufacturing domains. Event-based
MDP models extend the usual discrete-time MDP
models in two key ways: actions are modeled as tem-
porally extended, with some underlying distribution;
the agent observes the environment only at certain dis-
crete points, where actions are necessary. In between
decision epochs, the state of the system may be chang-
ing in some complex manner, due to other agents or
processes. However, by only observing the system at
decision epochs, the agent can nonetheless still devise
a robust plan that optimizes a continuous cost function
over the state of the natural process (i.e. the evolution
of states over all time).

The paper summarizes experimental results from
two ongoing research projects in the area of mobile
robot navigation and stochastic manufacturing. The
two domains form a nice contrast between the use of
probabilistic event-based models, which allow the use
of dynamic programming (Puterman 1994), versus the
use of simulation models (Pegden, Sadowski, & Shan-

non 1995), where approximation-based reinforcement

learning methods are more appropriate.

Discrete-Event Models

Decision-making in many domains can be abstractly
viewed as follows. At each step, the agent perceives
(perhaps imperfectly) the underlying environment as
being in one of a (possibly very large, but finite) set
of states. The agent can choose one of a set of finite
actions in a given state, and carry it out. The ac-
tion modifies the environment in some way (or trans-
ports the agent around), thereby modifying the per-
ceived state into a new state. Much recent work
in autonomous agents, including reinforcement learn-
ing (Mahadevan & Kaelbling 1996), decision-theoretic
planning (Boutilier, Dearden, & Goldszmidt 1995),
and robot navigation (Simmons & Koenig 1995), has
adopted this framework.

In this paper, we extend this discrete-time frame-
work to a discrete-event framework, thereby general-
izing it in two ways. Time is explicitly modeled as a
continuous variable, but the agent observes the envi-
ronment and makes decisions only at certain discrete
points (or decision epochs). In between these epochs,
the state of the system can be changing in some com-
plex way, but these changes may not provide the agent
with any additional information. Furthermore, actions
take non-constant time periods, modeled by some ar-
bitrary time distribution.

Formally, the evolution of the environment at de-
cision epochs can be modeled as a semi-Markov deci-
sion process (SMDP) (Puterman 1994). It is termed
a semi-Markov model, because the transition depends
not only on the current state and action, but also on
how long the system has been in the current state. An
SMDP is defined as a five tuple (S, A, P, R, F'), where
S is a finite set of states, A is a set of actions, P is a set
of state and action dependent transition probabilities,
R is a reward function, and F' specifies the probabil-
ity distribution of transition times for each state-action
pair. P(y | z,a) denotes the probability that action a
will cause the system to transition from state z € S to
y € S. This transition probability function describes
the transitions at decision epochs only.

F is a function where F'(¢ | s,a) is the probability
that the next decision epoch occurs within t time units,
after the agent chooses action a in state s at a decision
epoch. From F', and P, we can compute () by

Qlty | a,a) = Ply | 2,0)F(t | 2,a)

where () denotes the probability that the system will
be in state y for the next decision epoch, at or before
t time units after choosing action a in state s, at the

last decision epoch. (@ can be used to calculate the
expected transition time between decision epochs.

Value Functions for SMDP

The optimality metric used to rank policies is usually
either a discounted model, or an average-reward model.
We will use both in this paper. The continuous time
discounting model is defined as follows. A reward of
1 at the current time will be worth e %t at a time t
units in the future. Thus, the expected reward be-
tween two decision epochs, given that the agent was in
state x, and chose a at the first decision epoch, may
be expressed as the sum of the lump-sum cost and the
expected discounted rate cost over the transition time

r(z,a) = k(z,a) + B* {/0 eﬁtc(Wt,az,a)dt} (1)

where 7 is the transition time to the second decision
epoch, and W; denotes the state of the natural process.
Here, E¢ represents the expectation with respect to the
transition time distribution F(t|z,a).

Let # : S — A represent a stationary (for exam-
ple, time-invariant) policy from states to actions. The
value of a state s under a stationary policy 7 can be ex-
pressed as sum of the expected immediate reward until
the next decision epoch and the expected discounted
value of the resulting new state.

Vi) =)+ [eyl Vi) @)

yeSs 0

where Q(dt, y|z,a) is the joint probability distribution
as before. Note that by defining a discounted transition
function

oo
myls.a) = [e QU ylr.a)
Jo
we can express the discounted value function in more
conventional form as simply

V() =r(z,a) + Y mlyls,a)Vi (y) (3)
yeS

In the average-reward paradigm, the discount factor
B = 0. Also, the average reward p™ for a policy m can
be defined by taking the limit of the ratio of the ex-
pected total reward up until the nth decision epoch to
the expected total time until the nth epoch. The Bell-
man optimality equation for average reward SMDP’s
is written as

V*(z) = max | r(z,a) = py(z,a) + Y Pey(a)V"(y)

“ yeSs
(4)

where the expected transition time is defined as:

y(z,a) = BiT = /thQ(dt,y | z,a) (5)

0 yeS

for each z € S, and a € A.

Temporal Modeling of Actions

Normal Model of Abstract Forward Action (mean=5.578,sigma=1.674)
03

exp(-(x - mean)**2/(2*sigma‘sigma))/(sigma’sart(2pi)) —

Probability Density
°
&

6 8
Time in seconds

Figure 1: A learned temporal model of an abstract
robot planning action, specifying the probability of the
time taken to complete the action. The figure shows a
normal distribution based temporal model, which was
learned from actual execution using the robot.

In the mobile robot navigation task, states repre-
sent locations of the robot in an office environment
(discretized at 1 meter resolution). Figure 1 shows
a generic normal distribution model that is used for
modeling an abstract action of moving forward 1 me-
ter. Here, the transition time for an action is modeled
as taking a random time that is normally distributed.
We can instantiate this model for different actions by
specifying different parameters of the distribution.

Loc. Action Mean | Std. Dev.
13.0_S | goforward | 5.578 1.674
14 0_.E | goforward | 12.475 3.968
14 0.W | turn_right | 3.543 0.396
15.0_E turn_left 3.26 0.0439

Table 1: Normal temporal models of different abstract
planning actions.

The parameters depend on what action is performed,
and where it is performed (see Table 1). For example,
a forward action taken in the middle of a corridor takes
about 3 seconds (depending on the speed of the robot).
The same forward action takes twice as long near in-
tersections, since the robot usually slows down there.
Turns take roughly the same time everywhere. Busy
corridors are modeled by increasing the variance on the
transition time (for example, anywhere from 10 to 100
seconds). The transition times can be learned from

sample execution traces through actual corridors (see
(Khaleeli 1997) for details).

The manufacturing problem we consider is a dis-
crete part production inventory system with a single
machine capable of producing multiple product types
to satisfy external demands. The system also consists
of inventories, or product buffers, one for each prod-
uct type, that store the appropriate products as their
production cycle is completed. The machine fails occa-
sionally, which can cause long interruptions in the pro-
duction process, depending on the repair time, and are
expensive due to the monetary costs associated with
repair. Failures may be avoided by performing main-
tenance on the machine.

Figure 2 illustrates the SMDP model for a very
simplified version of this problem, where the machine
makes only one part, and will fail at some unknown
point in time (characterized by a failure gamma prob-
ability distribution). The state of the machine is rep-
resented by the number of parts produced.

R(:5000)
T (2,04

» -

P(0) P P

¥(8.4)

A S e
.. Ua030) 7
M(-200)

Figure 2: An SMDP model of a machine maintenance
problem. States correspond to number of parts pro-
duced. Actions are repairs (R) and productions (P),
whose times are v distributed, and maintenances (M),
whose times are uniformly distributed (U). Repairs
carry a penalty of 5000, maintenances cost 500, and
production actions have reward 0.

Planning using Event-based Models

Given a discrete-event model, the goal of the agent is
to compute optimal plans that minimize a time-based
cost function. Usually, in realistic domains, it is not
possible to compute a provably optimal policy, but only
an approximation. There are two general approaches,
based on whether the agent has available a transition
model or a simulation model.

Dynamic Programming

A transition model of the abstract action of going for-
ward 1 meter is given in Figure 3. Here, the tempo-
ral model is a uniform distribution, allowing us to an-
alytically compute the discounted transition function
m(y|x,a) as

(0.05,[5,6])

(0.05,[10,20])

Figure 3: An SMDP model of an abstract “move-
forward” action for a mobile robot. Arcs are labeled
with the transition probability and transition time dis-
tribution.

mylz,a) = / e PQ(dt,ylz, a)

= Pwy(a)/ eiﬁtF(dt=y|w7a)
0
Pry(a)(e ¢ —e~01)
Bld —c)
The optimal value function over all states can be

computed using the value iteration algorithm for dis-
counted SMDP’s (Puterman 1994):

Vi(s) = max ((r(s, @) + m(s|s’,) Vi1 (5"))
a
This iteration is repeated over all states at each step
until some stopping criterion is reached (for example,
the values at successive iterates are close enough). We
use the following improved stopping condition

sp|Vi(s) — Viei(s)| < e (%)

where (3 is the continuous-time discount factor. sp
is the span semi-norm function (Puterman 1994).

Partially-observable SMDP

A partially-observable semi-Markov decision process
(POSMDP) extends the SMDP model by incorporat-
ing an observational model. This is necessary since
robots cannot perceive the true underlying states of the
environment, but can only make observations (which
can be viewed as a probabilistic function of the true
state). The partially observable nature of the model
results from the fact that size of S is usually much
larger than that of the observations O. For example,
in our experiments, |S| &~ 1200, but |O] = 256. The
observational model includes an observation function
w : S — II(O), which is a mapping from states to
probability distributions on the space of observations.

As the robot moves about its environment, it gen-
erates a stream of observations which can be used to
update its belief state. These updates occur at the end
of each decision epoch, which is usually when an action
(for example, move forward 1 meter) has terminated.
At any decision epoch t, if the true state of the robot
is s¢, an observation o is generated with probability
P(o] st)-

The process of state estimation refers to an algo-
rithm for maintaining a belief state or probability dis-
tribution on the underlying states, as the robot moves
about in the environment. Note that the state esti-
mation process depends on the prior belief state, the
action that was just taken, and the observation that
was generated. In our case, we will also use the transi-
tion time from one state to the next in the state esti-
mation process. To simplify the presentation, we will
explain the process of state estimation first for obser-
vations, and then for actions and time separately (al-
though one can derive a joint update equation, as done
in (Cassandra, Kaelbling, & Kurien 1996)).

We denote b to represent the belief state, and b(s) to
denote the probability of some state s as being the true
state. Given an observation o € O at some decision
epoch, the posterior belief state can be computed from
the prior belief state as follows:

) P(ols)b(s)
b(S)_P(S|O)_ P(O)

where b(s) is the prior probability of state s, and
b'(s) is the posterior probability, given observation o.
The observation function w is modeled as a table, and
is computed from the topological map. Note that the
denominator above is a normalization term that does
not depend on the state.

In the discrete-time case, if the action performed was
a, the belief state at the end of performing a can be
estimated as

1
ooy o
b(s) = scale Z

seS|lacA(s)

P(s' | 5,a)b(s)

where scale is a normalization constant that ensures
Yosesb'(s) =1

For SMDP’s, the state estimation process for updat-
ing the belief state, given an action a was performed,
which was observed to take time ¢, is more complex.
Here, the time elapsed since the action was taken can
be used as an observational input. The state estima-
tion procedure for POSMDP’s can be written as

b(s') = Z F(dt|s,a,s")P(s'|a,s)b(s)

T 2ses Fldt]s; a)b(s)

where F'(dt | ---) is the probability density function
of the temporal distributional model of taking an ac-
tion in some particular state.

Reinforcement Learning

In the manufacturing problem, it is not possible to
analytically determine the transition model, because
the underlying distributions are complex (for example,
gamma model). Also, the number of states is very
large, which makes it difficult to represent the model.
A more desirable approach is to use a simulation-based
dynamic programming (or reinforcement learning) al-
gorithm. We have developed a new average-reward
algorithm called SMART (for Semi-Markov Average
Reward Technique) (Mahadevan et al. 1997). This
algorithm is based on representing the value function
using action values R(z,a), which is the utility of do-
ing action a in state z. These action values can be
learned by running a simulation model of the manu-
facturing domain, and using a feedforward neural net
to approximate the action values.

The derivation of the SMART algorithm from the
Bellman equation for SMDP’s (Equation 4) is fairly
straightforward. The average-adjusted sum of rewards
R™(x,a) received for the non-stationary policy of do-
ing action a once, and then subsequently following a
stationary policy 7 can be defined as

r(xz,a) — p"y(z,a) + ZP(Z | z,a) max R™(z,b) (6)

The temporal difference between the action-values of
the current state and the actual next state is used to
update the action values. In this case, the expected
transition time is replaced by the actual transition
time, and the expected reward is replaced by the ac-
tual immediate reward. Therefore, the action values
are updated as follows:!

R(z,a) & (rimm(m,a) —pT + mazxR(z, b)) (7)
b

where rimm(z,a) is the actual cumulative reward
earned between decision epochs due to taking action
a in state x, z is the successor state, p is the aver-
age reward, and «,, is a learning rate parameter. Note
that p is actually the reward rate, and it is estimated
by taking the ratio of the total reward so far, to the
total simulation time.

p= Z?:g Timm (332‘7 ai)
>ico Ti

"We use the notation u & v as an abbreviation for the
stochastic approximation update rule u < (1 — a)u + aw.

(8)

where 7im (Tn, a,) is the total reward accumulated
between the nth, and (n+ 1)th decision epochs, and 7,
is the corresponding transition time. The learning rate
a, and the exploration rate p,, are both decayed slowly
to 0 (we used a Moody-Darken search-then-converge
procedure).

Value Function Approximation

In most interesting problems, such as the elevator con-
trol (Crites & Barto 1996), or the production inventory
problem described below, the number of states is quite
large, and rules out tabular representation of the action
values. In particular, the state space in our problem
is a 10-dimensional integer space. One standard ap-
proach, which we followed, is to use a feedforward net
to represent the action value function (Crites & Barto
1996). Equation 7 used in SMART is replaced by a
step which involves updating the weights of the net.
So after each action choice, in step 2(c) of the algo-
rithm, the weights of the corresponding action net are
updated according to:

A = ane(t, 2,0, Timm,) Vo Ru(z,a,¢0) (9)

where €(z, z, a, 7imm, @) is the temporal difference er-
ror

Timm ('7’.7 (l) — PnT + mazx Rn(Z, b: ¢) - RTL(’E/ a, ¢)
b
and ¢ is the vector of weights of the net, «,, is the
learning rate, and 7 ¢ Ry, (, a, @) is the vector of partial
derivatives of R, (z,a,¢) with respect to each compo-
nent of ¢.

Experimental Results

We have undertaken a detailed experimental study of
both the robotics task, and the manufacturing task.
This work is described in our recent papers and theses
(Khaleeli 1997; Mahadevan et al. 1997; Marchalleck
1997). Here, we briefly summarize the results obtained.

PAVLOV: A Mobile Robot

Recently, there has been much research on the problem
of designing robust robot navigation algorithms based
on the framework of Partially-Observable Markov De-
cision Processes (POMDP’s) (Cassandra, Kaelbling,
& Kurien 1996; Nourbakhsh, Powers, & Birchfield
1995; Simmons & Koenig 1995). We have extended
this work to event-based models, and implemented
a novel mobile robot navigation architecture based
on partially-observable semi-Markov decision processes
(POSMDP). The POSMDP model allows the robot to
explicitly model the transition time of different actions

Figure 4: The mobile robot PAVLOV uses discrete-
event models to navigate around an indoor office envi-
ronment.

in various locations in the environment (for example,
passing through intersections takes more time than go-
ing through corridors).

The principal advantage of using event-based models
in navigation is that the standard value iteration algo-
rithm can itself take into account stochastic temporal
constraints. For example, if a corridor is crowded, and
the transition times of actions have a high variance,
the policy computed by value iteration can choose a
shorter time path and avoid going through the clut-
tered corridor.

The POSMDP approach was implemented on a real
robot called PAVLOV (see Figure 4). Unlike previous
approaches, the observation model (doors, openings,
walls etc.) was learned by training a neural net. The
robot was tested over the 3rd floor of the engineer-
ing building at the University of South Florida over
a period of several months, over a total distance of
several tens of kilometers (Khaleeli 1997). Transition
times were learned by PAVLOV from actual execution
traces, by using the Viterbi algorithm to determine the
most likely sequence of states visited, and generalizing
the observed transition times over multiple runs.

Figure 5 shows an odometric plot of PAVLOV
traversing a cluttered corridor. In this run, the robot
was asked to go from node 1 to node 5. The route taken
by the robot is via node 4. Since the corridor (shown
in Figure 6) was cluttered, the robot was repeatedly
forced to go around obstacles in this run on the way to
node 5 and back. The run was repeated several times
to get sample transition times. The sample transition
times are fitted to a distributional model (chosen from
one of three possible profiles: normal, exponential, and
uniform). The learned models are subsequently used

Odometric trace around EE dept. through a cluttered coridoor

orveedad
1 FIRNN
[t $12
"
5
3¢ 6
— s Y
[i
= % |v
£ 4 e
£ 49
N -10 p,
4,
¢
o b
-15 b
$ -~
4 gn/o-e—v»oQQ»e—eooo»e..: e 5
20
0 5 10 15 20 25

X (meters)

Figure 5: Odometric plot of PAVLOV showing it
traversing a cluttered corridor.

Figure 6: This picture shows PAVLOV traversing a
cluttered corridor.

in route planning, and as shown in Figure 7, PAVLOV
is now able to plan around the cluttered corridor.

Self-Improving Factory Simulation

Many problems in industrial design and manufac-
turing, such as scheduling, queueing, inventory con-
trol, and reliability engineering, can be formulated
as continuous-time SMDP’s. Reinforcement learning
(RL) is an ideal approach to solving large SMDP’s,
since it can be easily combined with discrete-event sim-
ulation models. We now demonstrate that the SMART
algorithm (described above) can outperform two stan-
dard maintenance heuristics (age replacement (AR)
and coefficient of operational readiness (COR)) on a
realistic multi-product unreliable production inventory
system (with a state space in excess of 10 states).
We have implemented SMART using two widely avail-
able discrete-event simulation packages (in particular,
CSIM and ARENA) (Marchalleck 1997). This ap-
proach can undoubtedly also be applied to many other
factory optimization problems, for which there already

Odometric trace around EE dept. using learned distributions

I
0 oo |2
3
I3
S WS SN 6
5 - i
L 4
o o
i) St
g e
E 10 %
> 3
M
o e
ola
-15 >
4 5
-20
0 5 10 15 20 25
X (meters)

Figure 7: This plot shows PAVLOV going from node 1
to node 5, while avoiding the cluttered corridor leading
to node 4.

exist simulation models.

SMART vs COR and AR: System 1

'SMART-FIXED": —
0.4 A -
'COR"
b -
)
= 0.2 iz
2 U A
B
g
e 0
o
<)
o
g
z 02
04 |-
0 200000 400000 600000 800000

Simulation Time

Figure 8: This graph shows the median-averaged cost
rate, over 30 runs, incurred by the (fixed) policy
learned by SMART, compared to the COR and AR
heuristics.

Figures 8 compares the average reward of the main-
tenance policy learned by SMART, versus that for the
two heuristic maintenance policies, AR and COR. Ta-
ble 2 compares the average cost rate incurred by the
policy learned by SMART versus that for the COR and
AR heuristics, for all 10 systems. In all cases, SMART
produced significantly? better results than both heuris-
tics.

We undertook a further study to understand what
the SMART algorithm has actually learned. A design
of experiments study revealed maintenance cost to be
the most significant factor in the overall system re-
sponse (average reward of maintenance policy). Fig-
ure 9 compares the sensitivity of SMART vs. AR and

2The differences are all significant at the 95% confidence
level using a Wilcoxon test.

Table 2: Comparison of the average reward rate in-
curred by SMART vs. the two heuristics for the pro-

duction inventory problem.
[System | COR | AR | SMART |

1 -0.31 | 0.16 0.28
2 0.09 0.22 0.35
3 -0.2 | -0.06 -0.03
4 -0.45 | -0.35 -0.26
5 -0.7 | -0.61 -0.45
6 -1.2 | -1.14 -0.95
7 -1.5 | -1.37 -1.2
8 -2.0 -1.9 -1.7
9 -3.0 -2.7 -2.5
10 -3.7 -3.5 -2.9

COR, as the cost of maintenance is increased from a
low value of 500 to a high value of 1200. Note that
the COR heuristic is essentially insensitive to mainte-
nance cost. The total number of failures and mainte-
nance actions, as well as the total vacation time (when
the product buffers are full), for COR is essentially
flat. This insensitivity clearly reveals the reason for
the lackluster performance of the COR heuristic (for
example, as shown in the bottom graph in Figure 8).

Note that AR demonstrates a linear dependence on
maintenance cost. As the cost of maintenance is in-
creased, the number of maintenance actions performed
by AR linearly decreases, whereas the number of fail-
ures and the vacation time correspondingly increases.
Now, compare these with the situation for SMART,
which demonstrates a somewhat nonlinear dependence
on maintenance cost. The number of maintenance ac-
tions performed by SMART exhibits a nonlinear de-
crease as maintenance cost is increased. Similarly, the
number of failures and vacation time increases nonlin-
early as maintenance cost is increased. At the highest
maintenance cost, SMART incurs almost 50% percent
more failures than AR, whereas at the lowest mainte-
nance cost, the number of failures incurred by SMART
and AR are almost identical.

Figure 9 compares the fixed maintenance policy of
the two heuristics, with that learned by the SMART
algorithm. The plot shown is averaged over 30 fixed
runs of 1 million decision epochs. The graph shows
that COR is insensitive to maintenance cost. AR ex-
hibits a linear dependence, whereas SMART exhibits
a nonlinear dependence. This suggests that SMART
is more flexible than both the AR and COR heuristics
in finding appropriate maintenance schedules as the
costs are varied. Note that when maintenance costs
are high, the policy learned by SMART causes more
failures because it cuts back on maintenance.

MAINTENANCES VERSUS MAINTENANCE COST

18000
'SMART ——

17000 | COR.=
AR

16000

15000

14000

13000

12000

TOTAL MAINTENANCE ACTIONS

11000

10000
600 700 800 900 1000 1100 1200
MAINTENANCE COST

Figure 9: This figure compare the sensitivity of two
maintenance heuristics AR and COR with the mainte-
nance policy learned by the SMART algorithm.

Discussion and Future Work

This paper describes an enriched event-based proba-
bilistic decision-making model called a semi-Markov
decision process (SMDP). This model enables model-
ing actions that take non-constant time, as well as al-
lows a form of temporal abstraction since decisions are
only required at discrete points. Some experimental re-
sults in using these models in two complex application
domains, robotics and manufacturing, are provided.

Much more work needs to be done in investigating
discrete-event models as a means of controlling agents.
One key direction is to use hierarchical abstraction to
reduce the number of states in the model. In both the
robotics and manufacturing domains, hierarchical ab-
straction of the underlying event-based model would
be very useful in scaling the dynamic programming
or reinforcement learning algorithms to solve larger
problems. For example, real factories are much more
complex systems consisting of numerous inter-related
subsystems of machines (Gershwin 1994). In these
cases, instead of having a single agent governing the
whole system, it may be more appropriate to design
a hierarchical control system where each subsystem is
controlled using separate agents. The work of Crites
and Barto on an event-based Q-learning algorithm for
scheduling a team of elevators (Crites & Barto 1996)
is a nice example of such a multi-agent system, where
the agents are homogeneous and control identical sub-
systems. Global optimization in a system consisting of
heterogeneous agents poses a significantly challenging
problem.

Acknowledgements

This research is supported by an NSF CAREER Award
Grant No. TRI-9501852. We thank Billy Raulerson for
writing some of the navigational software on PAVLOV,

and Lynn Ryan for her detailed comments on a draft
of this paper.

References

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Pro-
ceedings of the Fourteenth 1JCAL

Cassandra, T.; Kaelbling, L.; and Kurien, J. 1996.
Acting under uncertainty: Discrete bayesian models
for mobile-robot navigation. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,

963-972.

Crites, R., and Barto, A. 1996. Improving elevator
performance using reinforcement learning. In Neural
Information Processing Systems (NIPS).

Gershwin, S. 1994. Manufacturing Systems Engineer-
ing. Prentice Hall.

Khaleeli, N. 1997. A robust robot navigation archi-
tecture using partially observable semi-markov deci-
sion processes. Master’s thesis, University of South
Florida, Tampa, FL.

Mahadevan, S., and Kaelbling, L. P. 1996. The NSF
workshop on reinforcement learning: Summary and
observations. AI Magazine 17(4):89 97.

Mahadevan, S.; Marchalleck, N.; Das, T.; and Gosavi,
A. 1997. Self-improving factory simulation using
continuous-time average-reward reinforcement learn-
ing. In Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kauf-
mann.

Marchalleck, N. 1997. Improving simulation tech-
nology using reinforcement learning. Master’s thesis,
University of South Florida, Tampa, FL.

Nourbakhsh, I.; Powers, R.; and Birchfield, S. 1995.
Dervish: An office-navigating robot. Al Magazine
16(2):53-60.

Pegden, D.; Sadowski, R.; and Shannon, R. 1995.
Introduction to Simulation using SIMAN. New York,
USA: McGraw Hill.

Puterman, M. L. 1994. Markov Decision Processes.
New York, USA: Wiley Interscience.

Simmons, R., and Koenig, S. 1995. Probabilis-
tic robot navigation in partially observable environ-
ments. In Proceedings of the IJCAI 1080 1087.

