
Designing Agent Controllers using Discrete-Event Markov ModelsSridhar Mahadevan and Nikfar Khaleeli� and Nicholas MarchalleckyDepartment of Computer ScienceMichigan State UniversityEast Lansing, MI 48864(mahadeva@cps.msu.edu)AbstractThis paper describes the use of discrete-event Markovdecision process models to design robust agent con-trollers in complex stochastic domains. Unlikediscrete-time models, where actions are assumed totake unit time, discrete-event models allow state tran-sitions to take random time. Discrete-event mod-els also provide a convenient form of temporal ab-straction: the agent observes and controls the sys-tem only at decision epochs. The paper summarizescase studies using discrete-event models in two chal-lenging application domains: mobile robot navigationand manufacturing. The two domains also serve tohighlight the di�erence between probabilistic models,where dynamic programming can be applied, and sim-ulation models, where reinforcement learning methodsare more appropriate.IntroductionThere are many domains where agents need to syn-thesize plans that optimize a time-based cost function.Consider the following examples. A delivery robot nav-igates around an indoor o�ce environment, making pe-riodic trips between di�erent service locations. Thegoal of the robot is to plan routes to its destinationsthat minimize the travel time. The robot has to takeinto consideration the time taken by the various ac-tions (moving forward, turning), and the variation inthese times in di�erent locations (for example, goingthrough a door or an intersection or a cluttered cor-ridor usually takes more time). As a second example,consider a manufacturing system that produces dis-crete parts. The parts are stored in product bu�ers,or inventories. Each part takes a di�erent amount oftime to manufacture. The machine making the partsis unreliable, and prone to periodic breakdown, unlessit is maintained regularly. The problem is to designa maintenance schedule, which will minimize break-�Now at Windriver Systems.yNow at Cybear Corporation.

downs, and maximize satis�ed demand for the variousparts.These two examples, although arising from very dif-ferent domains, have a lot in common. The two do-mains are both stochastic, in that there is signi�cantuncertainty in perception (for example, the robot maynot know where it is), actions are non-deterministic(for example, the size of the bu�er when a productionaction is completed depends on demand arrivals in be-tween), and the number of states may be very large(for example, the manufacturing domain involves onthe order of 1015 states). The goal of the agent inboth domains is to compute (or learn) a policy map-ping (sensed) states to actions, preferably one that op-timizes a cost-based optimality measure (for example,discounted sum of rewards, or the average reward perstep).This paper describes a general framework basedon event-based Markov decision processes (Puterman1994) to address temporal stochastic planning in therobotics and manufacturing domains. Event-basedMDP models extend the usual discrete-time MDPmodels in two key ways: actions are modeled as tem-porally extended, with some underlying distribution;the agent observes the environment only at certain dis-crete points, where actions are necessary. In betweendecision epochs, the state of the system may be chang-ing in some complex manner, due to other agents orprocesses. However, by only observing the system atdecision epochs, the agent can nonetheless still devisea robust plan that optimizes a continuous cost functionover the state of the natural process (i.e. the evolutionof states over all time).The paper summarizes experimental results fromtwo ongoing research projects in the area of mobilerobot navigation and stochastic manufacturing. Thetwo domains form a nice contrast between the use ofprobabilistic event-based models, which allow the useof dynamic programming (Puterman 1994), versus theuse of simulation models (Pegden, Sadowski, & Shan-

non 1995), where approximation-based reinforcementlearning methods are more appropriate.Discrete-Event ModelsDecision-making in many domains can be abstractlyviewed as follows. At each step, the agent perceives(perhaps imperfectly) the underlying environment asbeing in one of a (possibly very large, but �nite) setof states. The agent can choose one of a set of �niteactions in a given state, and carry it out. The ac-tion modi�es the environment in some way (or trans-ports the agent around), thereby modifying the per-ceived state into a new state. Much recent workin autonomous agents, including reinforcement learn-ing (Mahadevan & Kaelbling 1996), decision-theoreticplanning (Boutilier, Dearden, & Goldszmidt 1995),and robot navigation (Simmons & Koenig 1995), hasadopted this framework.In this paper, we extend this discrete-time frame-work to a discrete-event framework, thereby general-izing it in two ways. Time is explicitly modeled as acontinuous variable, but the agent observes the envi-ronment and makes decisions only at certain discretepoints (or decision epochs). In between these epochs,the state of the system can be changing in some com-plex way, but these changes may not provide the agentwith any additional information. Furthermore, actionstake non-constant time periods, modeled by some ar-bitrary time distribution.Formally, the evolution of the environment at de-cision epochs can be modeled as a semi-Markov deci-sion process (SMDP) (Puterman 1994). It is termeda semi-Markov model, because the transition dependsnot only on the current state and action, but also onhow long the system has been in the current state. AnSMDP is de�ned as a �ve tuple (S;A; P;R; F), whereS is a �nite set of states, A is a set of actions, P is a setof state and action dependent transition probabilities,R is a reward function, and F speci�es the probabil-ity distribution of transition times for each state-actionpair. P (y j x; a) denotes the probability that action awill cause the system to transition from state x 2 S toy 2 S. This transition probability function describesthe transitions at decision epochs only.F is a function where F (t j s; a) is the probabilitythat the next decision epoch occurs within t time units,after the agent chooses action a in state s at a decisionepoch. From F , and P , we can compute Q byQ(t; y j x; a) = P (y j x; a)F (t j x; a)where Q denotes the probability that the system willbe in state y for the next decision epoch, at or beforet time units after choosing action a in state s, at the

last decision epoch. Q can be used to calculate theexpected transition time between decision epochs.Value Functions for SMDPThe optimality metric used to rank policies is usuallyeither a discounted model, or an average-rewardmodel.We will use both in this paper. The continuous timediscounting model is de�ned as follows. A reward of1 at the current time will be worth e��t at a time tunits in the future. Thus, the expected reward be-tween two decision epochs, given that the agent was instate x, and chose a at the �rst decision epoch, maybe expressed as the sum of the lump-sum cost and theexpected discounted rate cost over the transition timer(x; a) = k(x; a) +Eax �Z �0 e��tc(Wt; x; a)dt� (1)where � is the transition time to the second decisionepoch, andWt denotes the state of the natural process.Here, Eax represents the expectation with respect to thetransition time distribution F (tjx; a).Let � : S ! A represent a stationary (for exam-ple, time-invariant) policy from states to actions. Thevalue of a state s under a stationary policy � can be ex-pressed as sum of the expected immediate reward untilthe next decision epoch and the expected discountedvalue of the resulting new state.V �� (x) = r(x; a)+Xy2S Z 10 e��tQ(dt; yjx; a)V �� (y) (2)where Q(dt; yjx; a) is the joint probability distributionas before. Note that by de�ning a discounted transitionfunction m(yjs; a) = Z 10 e��tQ(dt; yjx; a)we can express the discounted value function in moreconventional form as simplyV �� (x) = r(x; a) +Xy2Sm(yjs; a)V �� (y) (3)In the average-reward paradigm, the discount factor� = 0. Also, the average reward �� for a policy � canbe de�ned by taking the limit of the ratio of the ex-pected total reward up until the nth decision epoch tothe expected total time until the nth epoch. The Bell-man optimality equation for average reward SMDP'sis written asV �(x) = maxa 0@r(x; a) � �y(x; a) +Xy2S Pxy(a)V �(y)1A(4)

where the expected transition time is de�ned as:y(x; a) = Eas � = Z 10 tXy2SQ(dt; y j x; a) (5)for each x 2 S, and a 2 A.Temporal Modeling of Actions
0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

D
en

si
ty

Time in seconds

Normal Model of Abstract Forward Action (mean=5.578,sigma=1.674)

exp(-(x - mean)**2/(2*sigma*sigma))/(sigma*sqrt(2*pi))

Figure 1: A learned temporal model of an abstractrobot planning action, specifying the probability of thetime taken to complete the action. The �gure shows anormal distribution based temporal model, which waslearned from actual execution using the robot.In the mobile robot navigation task, states repre-sent locations of the robot in an o�ce environment(discretized at 1 meter resolution). Figure 1 showsa generic normal distribution model that is used formodeling an abstract action of moving forward 1 me-ter. Here, the transition time for an action is modeledas taking a random time that is normally distributed.We can instantiate this model for di�erent actions byspecifying di�erent parameters of the distribution.Loc. Action Mean Std. Dev.I3 0 S go forward 5.578 1.674I4 0 E go forward 12.475 3.968I4 0 W turn right 3.543 0.396I5 0 E turn left 3.26 0.0439Table 1: Normal temporal models of di�erent abstractplanning actions.The parameters depend on what action is performed,and where it is performed (see Table 1). For example,a forward action taken in the middle of a corridor takesabout 3 seconds (depending on the speed of the robot).The same forward action takes twice as long near in-tersections, since the robot usually slows down there.Turns take roughly the same time everywhere. Busycorridors are modeled by increasing the variance on thetransition time (for example, anywhere from 10 to 100seconds). The transition times can be learned from

sample execution traces through actual corridors (see(Khaleeli 1997) for details).The manufacturing problem we consider is a dis-crete part production inventory system with a singlemachine capable of producing multiple product typesto satisfy external demands. The system also consistsof inventories, or product bu�ers, one for each prod-uct type, that store the appropriate products as theirproduction cycle is completed. The machine fails occa-sionally, which can cause long interruptions in the pro-duction process, depending on the repair time, and areexpensive due to the monetary costs associated withrepair. Failures may be avoided by performing main-tenance on the machine.Figure 2 illustrates the SMDP model for a verysimpli�ed version of this problem, where the machinemakes only one part, and will fail at some unknownpoint in time (characterized by a failure gamma prob-ability distribution). The state of the machine is rep-resented by the number of parts produced.
0 1 50 100

P PP(0)
γ(8,4)

γ(2,.04)
R(-5000)

U(10,30)
M(-200)Figure 2: An SMDP model of a machine maintenanceproblem. States correspond to number of parts pro-duced. Actions are repairs (R) and productions (P),whose times are distributed, and maintenances (M),whose times are uniformly distributed (U). Repairscarry a penalty of 5000, maintenances cost 500, andproduction actions have reward 0.Planning using Event-based ModelsGiven a discrete-event model, the goal of the agent isto compute optimal plans that minimize a time-basedcost function. Usually, in realistic domains, it is notpossible to compute a provably optimal policy, but onlyan approximation. There are two general approaches,based on whether the agent has available a transitionmodel or a simulation model.Dynamic ProgrammingA transition model of the abstract action of going for-ward 1 meter is given in Figure 3. Here, the tempo-ral model is a uniform distribution, allowing us to an-alytically compute the discounted transition functionm(yjx; a) as

(0.05,[10,20])

(0.05,[5,6])

(0.9,[5,10])Figure 3: An SMDP model of an abstract \move-forward" action for a mobile robot. Arcs are labeledwith the transition probability and transition time dis-tribution.m(yjx; a) = Z 10 e��tQ(dt; yjx; a)= Pxy(a) Z 10 e��tF (dt; yjx; a)= Pxy(a)(e��c � e��d)�(d� c)The optimal value function over all states can becomputed using the value iteration algorithm for dis-counted SMDP's (Puterman 1994):Vk(s) = maxa ((r(s; a) +m(sjs0; a)Vk�1(s0))This iteration is repeated over all states at each stepuntil some stopping criterion is reached (for example,the values at successive iterates are close enough). Weuse the following improved stopping conditionsp jVk(s)� Vk�1(s)j � ��1� e��e�� �where � is the continuous-time discount factor. spis the span semi-norm function (Puterman 1994).Partially-observable SMDPA partially-observable semi-Markov decision process(POSMDP) extends the SMDP model by incorporat-ing an observational model. This is necessary sincerobots cannot perceive the true underlying states of theenvironment, but can only make observations (whichcan be viewed as a probabilistic function of the truestate). The partially observable nature of the modelresults from the fact that size of S is usually muchlarger than that of the observations O. For example,in our experiments, jSj � 1200, but jOj = 256. Theobservational model includes an observation function! : S ! �(O), which is a mapping from states toprobability distributions on the space of observations.

As the robot moves about its environment, it gen-erates a stream of observations which can be used toupdate its belief state. These updates occur at the endof each decision epoch, which is usually when an action(for example, move forward 1 meter) has terminated.At any decision epoch t, if the true state of the robotis st, an observation o is generated with probabilityP (o j st).The process of state estimation refers to an algo-rithm for maintaining a belief state or probability dis-tribution on the underlying states, as the robot movesabout in the environment. Note that the state esti-mation process depends on the prior belief state, theaction that was just taken, and the observation thatwas generated. In our case, we will also use the transi-tion time from one state to the next in the state esti-mation process. To simplify the presentation, we willexplain the process of state estimation �rst for obser-vations, and then for actions and time separately (al-though one can derive a joint update equation, as donein (Cassandra, Kaelbling, & Kurien 1996)).We denote b to represent the belief state, and b(s) todenote the probability of some state s as being the truestate. Given an observation o 2 O at some decisionepoch, the posterior belief state can be computed fromthe prior belief state as follows:b0(s) = P (s j o) = P (ojs)b(s)P (o)where b(s) is the prior probability of state s, andb0(s) is the posterior probability, given observation o.The observation function ! is modeled as a table, andis computed from the topological map. Note that thedenominator above is a normalization term that doesnot depend on the state.In the discrete-time case, if the action performed wasa, the belief state at the end of performing a can beestimated asb0(s0) = 1scale Xs2Sja2A(s)P (s0 j s; a)b(s)where scale is a normalization constant that ensuresPs2S b0(s) = 1.For SMDP's, the state estimation process for updat-ing the belief state, given an action a was performed,which was observed to take time t, is more complex.Here, the time elapsed since the action was taken canbe used as an observational input. The state estima-tion procedure for POSMDP's can be written asb0(s0) =Xs2S F (dtjs; a; s0)P (s0ja; s)b(s)Ps2S F (dtjs; a)b(s)

where F (dt j � � �) is the probability density functionof the temporal distributional model of taking an ac-tion in some particular state.Reinforcement LearningIn the manufacturing problem, it is not possible toanalytically determine the transition model, becausethe underlying distributions are complex (for example,gamma model). Also, the number of states is verylarge, which makes it di�cult to represent the model.A more desirable approach is to use a simulation-baseddynamic programming (or reinforcement learning) al-gorithm. We have developed a new average-rewardalgorithm called SMART (for Semi-Markov AverageReward Technique) (Mahadevan et al. 1997). Thisalgorithm is based on representing the value functionusing action values R(x; a), which is the utility of do-ing action a in state x. These action values can belearned by running a simulation model of the manu-facturing domain, and using a feedforward neural netto approximate the action values.The derivation of the SMART algorithm from theBellman equation for SMDP's (Equation 4) is fairlystraightforward. The average-adjusted sum of rewardsR�(x; a) received for the non-stationary policy of do-ing action a once, and then subsequently following astationary policy � can be de�ned asr(x; a) � ��y(x; a) +Xz P (z j x; a)maxb R�(z; b) (6)The temporal di�erence between the action-values ofthe current state and the actual next state is used toupdate the action values. In this case, the expectedtransition time is replaced by the actual transitiontime, and the expected reward is replaced by the ac-tual immediate reward. Therefore, the action valuesare updated as follows:1R(x; a) �n �rimm(x; a) � �� + maxb R(z; b)� (7)where rimm(x; a) is the actual cumulative rewardearned between decision epochs due to taking actiona in state x, z is the successor state, � is the aver-age reward, and �n is a learning rate parameter. Notethat � is actually the reward rate, and it is estimatedby taking the ratio of the total reward so far, to thetotal simulation time.� = Pni=0 rimm(xi; ai)Pni=0 �i (8)1We use the notation u � v as an abbreviation for thestochastic approximation update rule u (1� �)u+ �v.

where rimm(xn; an) is the total reward accumulatedbetween the nth, and (n+1)th decision epochs, and �nis the corresponding transition time. The learning rate�n and the exploration rate pn are both decayed slowlyto 0 (we used a Moody-Darken search-then-convergeprocedure).Value Function ApproximationIn most interesting problems, such as the elevator con-trol (Crites & Barto 1996), or the production inventoryproblem described below, the number of states is quitelarge, and rules out tabular representation of the actionvalues. In particular, the state space in our problemis a 10-dimensional integer space. One standard ap-proach, which we followed, is to use a feedforward netto represent the action value function (Crites & Barto1996). Equation 7 used in SMART is replaced by astep which involves updating the weights of the net.So after each action choice, in step 2(c) of the algo-rithm, the weights of the corresponding action net areupdated according to:�� = �n�(x; z; a; rimm; �)5� Rn(x; a; �) (9)where �(x; z; a; rimm; �) is the temporal di�erence er-ror�rimm(x; a)� �n� + maxb Rn(z; b; �)�Rn(x; a; �)�and � is the vector of weights of the net, �n is thelearning rate, and5�Rn(x; a; �) is the vector of partialderivatives of Rn(x; a; �) with respect to each compo-nent of �. Experimental ResultsWe have undertaken a detailed experimental study ofboth the robotics task, and the manufacturing task.This work is described in our recent papers and theses(Khaleeli 1997; Mahadevan et al. 1997; Marchalleck1997). Here, we briey summarize the results obtained.PAVLOV: A Mobile RobotRecently, there has been much research on the problemof designing robust robot navigation algorithms basedon the framework of Partially-Observable Markov De-cision Processes (POMDP's) (Cassandra, Kaelbling,& Kurien 1996; Nourbakhsh, Powers, & Birch�eld1995; Simmons & Koenig 1995). We have extendedthis work to event-based models, and implementeda novel mobile robot navigation architecture basedon partially-observable semi-Markov decision processes(POSMDP). The POSMDP model allows the robot toexplicitly model the transition time of di�erent actions

Figure 4: The mobile robot PAVLOV uses discrete-event models to navigate around an indoor o�ce envi-ronment.in various locations in the environment (for example,passing through intersections takes more time than go-ing through corridors).The principal advantage of using event-based modelsin navigation is that the standard value iteration algo-rithm can itself take into account stochastic temporalconstraints. For example, if a corridor is crowded, andthe transition times of actions have a high variance,the policy computed by value iteration can choose ashorter time path and avoid going through the clut-tered corridor.The POSMDP approach was implemented on a realrobot called PAVLOV (see Figure 4). Unlike previousapproaches, the observation model (doors, openings,walls etc.) was learned by training a neural net. Therobot was tested over the 3rd oor of the engineer-ing building at the University of South Florida overa period of several months, over a total distance ofseveral tens of kilometers (Khaleeli 1997). Transitiontimes were learned by PAVLOV from actual executiontraces, by using the Viterbi algorithm to determine themost likely sequence of states visited, and generalizingthe observed transition times over multiple runs.Figure 5 shows an odometric plot of PAVLOVtraversing a cluttered corridor. In this run, the robotwas asked to go from node 1 to node 5. The route takenby the robot is via node 4. Since the corridor (shownin Figure 6) was cluttered, the robot was repeatedlyforced to go around obstacles in this run on the way tonode 5 and back. The run was repeated several timesto get sample transition times. The sample transitiontimes are �tted to a distributional model (chosen fromone of three possible pro�les: normal, exponential, anduniform). The learned models are subsequently used

-20

-15

-10

-5

0

0 5 10 15 20 25

Y
 (

m
et

er
s)

X (meters)

Odometric trace around EE dept. through a cluttered coridoor

1 2

3

4 5

6

Figure 5: Odometric plot of PAVLOV showing ittraversing a cluttered corridor.

Figure 6: This picture shows PAVLOV traversing acluttered corridor.in route planning, and as shown in Figure 7, PAVLOVis now able to plan around the cluttered corridor.Self-Improving Factory SimulationMany problems in industrial design and manufac-turing, such as scheduling, queueing, inventory con-trol, and reliability engineering, can be formulatedas continuous-time SMDP's. Reinforcement learning(RL) is an ideal approach to solving large SMDP's,since it can be easily combined with discrete-event sim-ulation models. We now demonstrate that the SMARTalgorithm (described above) can outperform two stan-dard maintenance heuristics (age replacement (AR)and coe�cient of operational readiness (COR)) on arealistic multi-product unreliable production inventorysystem (with a state space in excess of 1015 states).We have implemented SMART using two widely avail-able discrete-event simulation packages (in particular,CSIM and ARENA) (Marchalleck 1997). This ap-proach can undoubtedly also be applied to many otherfactory optimization problems, for which there already

-20

-15

-10

-5

0

0 5 10 15 20 25

Y
 (

m
et

er
s)

X (meters)

Odometric trace around EE dept. using learned distributions

1 2

3

4 5

6

Figure 7: This plot shows PAVLOV going from node 1to node 5, while avoiding the cluttered corridor leadingto node 4.exist simulation models.
-0.4

-0.2

0

0.2

0.4

0 200000 400000 600000 800000

A
ve

ra
ge

 R
ew

ar
d

R
at

e

Simulation Time

SMART vs COR and AR: System 1

’SMART-FIXED’
’AR’

’COR’

Figure 8: This graph shows the median-averaged costrate, over 30 runs, incurred by the (�xed) policylearned by SMART, compared to the COR and ARheuristics.Figures 8 compares the average reward of the main-tenance policy learned by SMART, versus that for thetwo heuristic maintenance policies, AR and COR. Ta-ble 2 compares the average cost rate incurred by thepolicy learned by SMART versus that for the COR andAR heuristics, for all 10 systems. In all cases, SMARTproduced signi�cantly2 better results than both heuris-tics.We undertook a further study to understand whatthe SMART algorithm has actually learned. A designof experiments study revealed maintenance cost to bethe most signi�cant factor in the overall system re-sponse (average reward of maintenance policy). Fig-ure 9 compares the sensitivity of SMART vs. AR and2The di�erences are all signi�cant at the 95% con�dencelevel using a Wilcoxon test.

Table 2: Comparison of the average reward rate in-curred by SMART vs. the two heuristics for the pro-duction inventory problem.System COR AR SMART1 -0.31 0.16 0.282 0.09 0.22 0.353 -0.2 -0.06 -0.034 -0.45 -0.35 -0.265 -0.7 -0.61 -0.456 -1.2 -1.14 -0.957 -1.5 -1.37 -1.28 -2.0 -1.9 -1.79 -3.0 -2.7 -2.510 -3.7 -3.5 -2.9COR, as the cost of maintenance is increased from alow value of 500 to a high value of 1200. Note thatthe COR heuristic is essentially insensitive to mainte-nance cost. The total number of failures and mainte-nance actions, as well as the total vacation time (whenthe product bu�ers are full), for COR is essentiallyat. This insensitivity clearly reveals the reason forthe lackluster performance of the COR heuristic (forexample, as shown in the bottom graph in Figure 8).Note that AR demonstrates a linear dependence onmaintenance cost. As the cost of maintenance is in-creased, the number of maintenance actions performedby AR linearly decreases, whereas the number of fail-ures and the vacation time correspondingly increases.Now, compare these with the situation for SMART,which demonstrates a somewhat nonlinear dependenceon maintenance cost. The number of maintenance ac-tions performed by SMART exhibits a nonlinear de-crease as maintenance cost is increased. Similarly, thenumber of failures and vacation time increases nonlin-early as maintenance cost is increased. At the highestmaintenance cost, SMART incurs almost 50% percentmore failures than AR, whereas at the lowest mainte-nance cost, the number of failures incurred by SMARTand AR are almost identical.Figure 9 compares the �xed maintenance policy ofthe two heuristics, with that learned by the SMARTalgorithm. The plot shown is averaged over 30 �xedruns of 1 million decision epochs. The graph showsthat COR is insensitive to maintenance cost. AR ex-hibits a linear dependence, whereas SMART exhibitsa nonlinear dependence. This suggests that SMARTis more exible than both the AR and COR heuristicsin �nding appropriate maintenance schedules as thecosts are varied. Note that when maintenance costsare high, the policy learned by SMART causes morefailures because it cuts back on maintenance.

10000

11000

12000

13000

14000

15000

16000

17000

18000

600 700 800 900 1000 1100 1200

T
O

T
A

L
M

A
IN

T
E

N
A

N
C

E
 A

C
T

IO
N

S

MAINTENANCE COST

MAINTENANCES VERSUS MAINTENANCE COST

’SMART’
’COR’

’AR’

Figure 9: This �gure compare the sensitivity of twomaintenance heuristics AR and COR with the mainte-nance policy learned by the SMART algorithm.Discussion and Future WorkThis paper describes an enriched event-based proba-bilistic decision-making model called a semi-Markovdecision process (SMDP). This model enables model-ing actions that take non-constant time, as well as al-lows a form of temporal abstraction since decisions areonly required at discrete points. Some experimental re-sults in using these models in two complex applicationdomains, robotics and manufacturing, are provided.Much more work needs to be done in investigatingdiscrete-event models as a means of controlling agents.One key direction is to use hierarchical abstraction toreduce the number of states in the model. In both therobotics and manufacturing domains, hierarchical ab-straction of the underlying event-based model wouldbe very useful in scaling the dynamic programmingor reinforcement learning algorithms to solve largerproblems. For example, real factories are much morecomplex systems consisting of numerous inter-relatedsubsystems of machines (Gershwin 1994). In thesecases, instead of having a single agent governing thewhole system, it may be more appropriate to designa hierarchical control system where each subsystem iscontrolled using separate agents. The work of Critesand Barto on an event-based Q-learning algorithm forscheduling a team of elevators (Crites & Barto 1996)is a nice example of such a multi-agent system, wherethe agents are homogeneous and control identical sub-systems. Global optimization in a system consisting ofheterogeneous agents poses a signi�cantly challengingproblem. AcknowledgementsThis research is supported by an NSF CAREERAwardGrant No. IRI-9501852. We thank Billy Raulerson forwriting some of the navigational software on PAVLOV,

and Lynn Ryan for her detailed comments on a draftof this paper. ReferencesBoutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.Exploiting structure in policy construction. In Pro-ceedings of the Fourteenth IJCAI.Cassandra, T.; Kaelbling, L.; and Kurien, J. 1996.Acting under uncertainty: Discrete bayesian modelsfor mobile-robot navigation. In IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems,963{972.Crites, R., and Barto, A. 1996. Improving elevatorperformance using reinforcement learning. In NeuralInformation Processing Systems (NIPS).Gershwin, S. 1994. Manufacturing Systems Engineer-ing. Prentice Hall.Khaleeli, N. 1997. A robust robot navigation archi-tecture using partially observable semi-markov deci-sion processes. Master's thesis, University of SouthFlorida, Tampa, FL.Mahadevan, S., and Kaelbling, L. P. 1996. The NSFworkshop on reinforcement learning: Summary andobservations. AI Magazine 17(4):89{97.Mahadevan, S.; Marchalleck, N.; Das, T.; and Gosavi,A. 1997. Self-improving factory simulation usingcontinuous-time average-reward reinforcement learn-ing. In Proceedings of the Fourteenth InternationalConference on Machine Learning. Morgan Kauf-mann.Marchalleck, N. 1997. Improving simulation tech-nology using reinforcement learning. Master's thesis,University of South Florida, Tampa, FL.Nourbakhsh, I.; Powers, R.; and Birch�eld, S. 1995.Dervish: An o�ce-navigating robot. AI Magazine16(2):53{60.Pegden, D.; Sadowski, R.; and Shannon, R. 1995.Introduction to Simulation using SIMAN. New York,USA: McGraw Hill.Puterman, M. L. 1994. Markov Decision Processes.New York, USA: Wiley Interscience.Simmons, R., and Koenig, S. 1995. Probabilis-tic robot navigation in partially observable environ-ments. In Proceedings of the IJCAI, 1080{1087.

