
MD-HBase: A Scalable Multi-dimensional Data

Infrastructure for Location Aware Services

Shoji Nishimura∗§ Sudipto Das† Divyakant Agrawal† Amr El Abbadi†

∗Service Platforms Research Laboratories †Department of Computer Science
NEC Corporation University of California, Santa Barbara

Kawasaki, Kanagawa 211-8666, Japan Santa Barbara, CA 93106-5110, USA
s-nishimura@bk.jp.nec.com {sudipto, agrawal, amr}@cs.ucsb.edu

Abstract—The ubiquity of location enabled devices has resulted
in a wide proliferation of location based applications and services.
To handle the growing scale, database management systems
driving such location based services (LBS) must cope with high
insert rates for location updates of millions of devices, while sup-
porting efficient real-time analysis on latest location. Traditional
DBMSs, equipped with multi-dimensional index structures, can
efficiently handle spatio-temporal data. However, popular open-
source relational database systems are overwhelmed by the high
insertion rates, real-time querying requirements, and terabytes
of data that these systems must handle. On the other hand,
Key-value stores can effectively support large scale operation,
but do not natively support multi-attribute accesses needed to
support the rich querying functionality essential for the LBSs.
We present MD-HBase, a scalable data management system for
LBSs that bridges this gap between scale and functionality. Our
approach leverages a multi-dimensional index structure layered
over a Key-value store. The underlying Key-value store allows
the system to sustain high insert throughput and large data
volumes, while ensuring fault-tolerance, and high availability. On
the other hand, the index layer allows efficient multi-dimensional
query processing. We present the design of MD-HBase that
builds two standard index structures—the K-d tree and the Quad
tree—over a range partitioned Key-value store. Our prototype
implementation using HBase, a standard open-source Key-value
store, can handle hundreds of thousands of inserts per second
using a modest 16 node cluster, while efficiently processing multi-
dimensional range queries and nearest neighbor queries in real-
time with response times as low as hundreds of milliseconds.

Index Terms—location based services; key value stores; multi-
dimensional data; real time analysis;

I. INTRODUCTION

The last few years have witnessed a significant increase in

hand-held devices becoming location aware with the potential

to continuously report up-to-date location information of their

users. This has led to a large number of location based

services (LBS) which customize a user’s experience based on

location. Some applications—such as customized recommen-

dations and advertisements based on a user’s current location

and history—have immediate economic incentives, while some

other applications—such as location based social networking

or location aware gaming—enrich the user’s experience in

general. With major wireless providers serving hundreds of

§Work done as a visiting researcher at UCSB.

millions of subscribers [1], millions of devices registering

their location updates continuously is quite common. Database

management systems (DBMS) driving these location based

services must therefore handle millions of location updates

per minute while answering near real time analysis and sta-

tistical queries that drive the different recommendation and

personalization services.

Location data is inherently multi-dimensional, minimally

including a user id, a latitude, a longitude, and a time stamp.

A rich literature of multi-dimensional indexing techniques—

for instance, K-d trees [2], Quad trees [3] and R-trees [4]—

have empowered relational databases (RDBMS) to efficiently

process multi-dimensional data. However, the major challenge

posed by these location based services is in scaling the

systems to sustain the high throughput of location updates

and analyzing huge volumes of data to glean intelligence.

For instance, if we consider only the insert throughput, a

MySQL installation running on a commodity server becomes a

bottleneck at loads of tens of thousands of inserts per second;

performance is further impacted adversely when answering

queries concurrently. Advanced designs, such as staging the

database, defining views, database and application partitioning

to scale out, a distributed cache, or moving to commercial

systems, will increase the throughput; however, such optimiza-

tions are expensive to design, deploy, and maintain.

On the other hand, Key-value stores, both in-house systems

such as Bigtable [5] and their open source counterparts like

HBase [6], have proven to scale to millions of updates while

being fault-tolerant and highly available. However, Key-value

stores do not natively support efficient multi-attribute access,

a key requirement for the rich functionality needed to support

LBSs. In the absence of any filtering mechanism for secondary

attribute accesses, such queries resort to full scan of the entire

data. MapReduce [7] style processing is therefore a commonly

used approach for analysis on Key-value stores. Even though

the MapReduce framework provides abundant parallelism, a

full scan is wasteful, especially when the selectivity of the

queries is high. Moreover, many applications require near

real-time query processing based on a user’s current location.

Therefore, query results based on a user’s stale location

is often useless. As a result, a design for batched query

processing on data periodically imported into a data warehouse



is inappropriate for the real-time analysis requirement.

Fig. 1. Architecture of MD-HBase.

RDBMSs

provide rich

querying support

for multi-

dimensional

data but are not

scalable, while

Key-value stores

can scale but

cannot handle

multi-dimensional data efficiently. Our solution, called MD-

HBase, bridges this gap by layering a multi-dimensional index

over a Key-value store to leverage the best of both worlds.1

We use linearization techniques such as Z-ordering [8] to

transform multi-dimensional location information into a one

dimensional space and use a range partitioned Key-value

store (HBase [6] in our implementation) as the storage back

end. Figure 1 illustrates MD-HBase’s architecture showing

the index layer and the data storage layer. We show how this

design allows standard and proven multi-dimensional index

structures, such as K-d trees and Quad trees, to be layered

on top of the Key-value stores with minimal changes to the

underlying store and negligible effect on the operation of the

Key-value store. The underlying Key-value store provides

the ability to sustain a high insert throughput and large data

volumes, while ensuring fault-tolerance and high availability.

The overlaid index layer allows efficient real-time processing

of multi-dimensional range and nearest neighbor queries that

comprise the basic data analysis primitives for location based

applications. We evaluate different implementations of the

data storage layer in the Key-value store and evaluate the

trade-offs associated with these different implementations.

In our experiments, MD-HBase achieved more than 200K

inserts per second on a modest cluster spanning 16 nodes,

while supporting real-time range and nearest neighbor queries

with response times less than one second. Assuming devices

reporting one location update per minute, this small cluster can

handle updates from 10− 15 million devices while providing

between one to two orders of magnitude improvement over

a MapReduce or Z-ordering based implementation for query

processing. Moreover, our design does not introduce any

scalability bottlenecks, thus allowing the implementation to

scale with the underlying Key-value data store.

Contributions.

• We propose the design of MD-HBase that uses lineariza-

tion to implement a scalable multi-dimensional index

structure layered over a range-partitioned Key-value store.

• We demonstrate how this design can be used to imple-

ment a K-d tree and a Quad tree, two standard multi-

dimensional index structures.

• We present three alternative implementations of the stor-

age layer in the Key-value store and evaluate the tradeoffs

1The name MD-HBase signifies adding multi-dimensional data processing
capabilities to HBase, a range partitioned Key-value store.

associated with each implementation.

• We provide a detailed evaluation of our prototype using

synthetically generated location data and analyze MD-

HBase’s scalability and efficiency.

Organization. Section II provides background on loca-

tion based applications, linearization techniques, and multi-

dimensional index structures. Section III describes the design

and implementation of the index layer and Section IV de-

scribes the implementation of the data storage layer. Section V

presents a detailed evaluation of MD-HBase by comparing

the different design choices. Section VI surveys the related

literature and Section VII concludes the paper.

II. BACKGROUND

A. Location based applications

Location data points are multi-dimensional with spatial

attributes (e.g., longitude and latitude), a temporal attribute

(e.g., timestamp), and an entity attribute (e.g., user’s ID).

Different applications use this information in a variety of ways.

We provide two simple examples that illustrate the use of

location data for providing location aware services.

APPLICATION 1: Location based advertisements and

coupon distribution: Consider a restaurant chain, such as

McDonalds, running a promotional discount for the next hour

to advertise a new snack and wants to disseminate coupons

to attract customers who are currently near any of their

restaurants spread throughout the country. An LBS provider

issues multi-dimensional range queries to determine all users

within 5 miles from any restaurant in the chain and delivers a

coupon to their respecting devices. Another approach to run a

similar campaign with a limited budget is to limit the coupons

to only the 100 users nearest to a restaurant location. In this

case, the LBS provider issues nearest neighbors queries to

determine the users. In either case, considering a countrywide

(or worldwide) presence of this restaurant chain, the amount

of data analyzed by such queries is huge.

APPLICATION 2: Location based social applications: Con-

sider a social application that notifies a user of his/her friends

who are currently nearby. The LBS provider in this case issues

a range query around the user’s current location and intersects

the user’s friend list with the results. Again, considering the

scale of current social applications, an LBS provider must

handle data for tens to hundreds of millions of its users to

answer these queries for its users spread across a country.

Location information has two important characteristics.

First, it is inherently skewed, both spatially and temporally.

For instance, urban regions are more dense compared to

rural regions, while business and school districts are dense

during weekdays, while residential areas are dense during the

night and weekends. Second, the time dimension is potentially

unbounded and monotonically increasing. We later discuss

how these characteristics influence many of the design choices.

B. Linearization Techniques

Linearization [9] is a method to transform multi-

dimensional data points to a single dimension and is a key



aspect of the index layer in MD-HBase. Linearization allows

leveraging a single-dimensional database (a Key-value store in

our case) for efficient multi-dimensional query processing. A

space-filling curve [9] is one of the most popular approaches

for linearization. A space filling curve visits all points in the

multi-dimensional space in a systematic order. Z-ordering [8]

is an example of a space filling curve. Z-ordering loosely

preserves the locality of data-points in the multi-dimensional

space and is also easy to implement.

Linearization alone is however not enough for efficient

query processing; a linearization based multi-dimensional in-

dex layer, though simple in design, results in inefficient query

processing. For instance, a range query on a linearized system

is decomposed into several linearized sub-queries; however,

a trade-off exists between the number of sub-queries and

the number of false-positives. A reduction in the number of

linearized sub-queries results in an increase in the overhead

due to the large number of false-positives. On the other hand,

eliminating false-positives results in a significant growth in the

number of sub-queries. Furthermore, such a naı̈ve technique

is not robust to skew inherent in many real life applications.

C. Multi-dimensional Index Structures

The Quad tree [3] and the K-d tree [2] are two of the

most popular multi-dimensional indexing structures. They split

the multi-dimensional space recursively into subspaces in a

systematic manner and organize these subspaces as a search

tree. A Quad tree divides the n-dimensional space into 2n

subspaces along all dimensions whereas a K-d tree alternates

the splitting of the dimensions. Each subspace has a maximum

limit on the number of data points in it, beyond which the

subspace is split. Two approaches are commonly used to

split a subspace: a trie-based approach and a point-based

approach [9]. The trie-based approach splits the space at the

mid-point of a dimension, resulting in equal size splits; while

the point-based technique splits the space by the median of

data points, resulting in subspaces with equal number of data

points. The trie-based approach is efficient to implement as

it results in regular shaped subspaces. On the other hand, the

point based approach is more robust to skew.

Fig. 2. Space splitting in a
K-d tree.

In addition to the performance

issues, trie-based Quad trees and K-

d trees have a property that allows

them to be coupled with Z-ordering.

A trie-based split of a Quad tree

or a K-d tree results in subspaces

where all z-values in any subspace

are continuous. Figure 2 provides an

illustration using a K-d tree for two

dimensions; an example using a Quad tree is very similar.

Different shades denote different subspaces and the dashed

arrows denote the z-order traversal. As is evident, in any of the

subspaces the Z-values are continuous. This observation forms

the basis of the indexing layer of MD-HBase. Compared to

a naı̈ve linearization based index structure or a B+-Tree index

built on linearized values, K-d and Quad trees capture data

distribution statistics. They partition the target space based on

the data distribution and limit the number of data points in each

subspace, resulting in more splits in hot regions. Furthermore,

Quad trees and KD trees maintain the boundaries of sub-

spaces in the original space. This allows efficient pruning of

the space as well as reducing the number of false positive

scans during query processing and therefore is more robust

to skew. Moreover, when executing the best-first algorithm

for kNN queries, the fastest practical algorithm, a B+ tree

based index cannot be used due to the irregular sub-space

shape. MD-HBase therefore uses these multi-dimensional

index structures instead of a simple single-dimension index

based on linearization.

III. MULTI-DIMENSIONAL INDEX LAYER

We now present the design of the multi-dimensional index

layer in MD-HBase. Specifically, we show how standard

index structures like K-d trees [2] and Quad trees [3] can

be adapted to be layered on top of a Key-value store. The

indexing layer assumes that the underlying data storage layer

stores the items sorted by their key and range-partitions the key

space. The keys correspond to the Z-value of the dimensions

being indexed; for instance the location and timestamp. We

use the trie-based approach for space splitting. The index

partitions the space into conceptual subspaces that are in-turn

mapped to a physical storage abstraction called bucket. The

mapping between a conceptual subspace in the index layer and

a bucket in the data storage layer can be one-to-one, many-to-

one, or many-to-many depending on the implementation and

requirements of the application. We develop a novel naming

scheme for subspaces to simulate a trie-based K-d tree and a

Quad tree. This naming scheme, called longest common pre-

fix naming, has two important properties critical to efficient

index maintenance and query processing; a description of the

naming scheme and its properties are discussed below.

A. Longest Common Prefix Naming Scheme

Fig. 3. Binary Z-ordering.

If the multi-dimensional space is

divided into equal sized subspaces

and each dimension is enumerated

using binary values, then the z-order

of a given subspace is given by in-

terleaving the bits from the different

dimensions. Figure 3 illustrates this

property. For example, the Z-value of

the sub-space (00, 11) is represented as 0101. We name each

subspace by the longest common prefix of the z-values of

points contained in the subspace. Figure 4 provides an example

for partitioning the space in a trie-based Quad tree and K-

d tree. For example, consider a Quad tree built on the 2D

space. The subspace at the top right of Figure 4(a), enclosed

by a thick solid line, consists of z-values 1100, 1101, 1110,
and 1111 with a longest common prefix of 11∗∗; the subspace

is therefore named 11∗∗. Similarly, the lower left subspace,

enclosed by a broken line, only contains 0000, and is named

0000. Now consider the example of a K-d tree in Figure 4(b).



The subspace in the right half, enclosed by a solid line,

is represented by the longest common prefix 1, while the

subspace in the bottom left consisting of 0000 and 0001 is

named as 000∗. This naming scheme is similar to that of Prefix

Hash Tree (PHT) [10], a variant of a distributed hash table.2

(a) A Quad Tree (b) A K-d Tree

Fig. 4. The longest common prefix naming scheme

MD-HBase leverages two important properties of this

longest common prefix naming scheme. First, if subspace A

encloses subspace B, the name of subspace A is a prefix of that

of subspace B. For example, in Figure 4(a), a subspace which

contains 0000−0011 encloses a subspace which contains only

0000. The former subspace’s name, 00∗∗, is a prefix of the

latter’s name 0000. Therefore, on a split, names of the new

subspaces can be derived from the original subspace name by

appending bits depending on which dimensions were split.

Second, the subspace name is enough to determine the

region boundaries on all dimensions. This property derives

from the fact that the z-values are computed by interleaving

bits from the different dimensions and thus improves the

pruning power of a range query. Determining the range

boundary consists of the following two steps: (i) given the

name, extract the bits corresponding to each dimension; and

(ii) complete the extracted bits by appending 0s for the lower

bound and 1s for the upper bound values, both bound values

being inclusive. For instance, let us consider the Quad tree in

Figure 4(a). The subspace at the top right enclosed by a solid

lined box is named 11. Since this is a 2D space, the prefix for

both the vertical and horizontal dimensions is 1. Therefore,

using the rule for extension, the range for both dimensions is

[10, 11]. Generalizing to the n-dimensional space, a Quad tree

splits a space on all n dimensions resulting in 2n subspaces.

Therefore, the number of bits in the name of a subspace

will be an exact multiple of the number of dimensions. This

ensures that reconstructing the dimension values in step (i) will

provide values for all dimensions. But since a K-d tree splits

on alternate dimensions, the number of bits in the name is not

guaranteed to be a multiple of the number of dimensions, in

which case the prefix for different dimensions have different

lengths. Considering the K-d tree example of Figure 4(b),

for the lower left subspace named 000∗, the prefix for the

horizontal dimension is 00 while that of the vertical dimension

is 0, resulting in the bounds for the horizontal dimension as

[00, 00] and that of the vertical dimension as [00, 01].

2http://en.wikipedia.org/wiki/Distributed hash table

B. Index Layer

The index layer leverages the longest common prefix nam-

ing scheme to map multi-dimensional index structures into

a single dimensional substrate. Figure 5 illustrates the map-

ping of a Quad tree partitioned space to the index layer;

the mapping technique for K-d trees follows similarly. We

now describe how the index layer can be used to efficiently

implement some common operations and then discuss the

space splitting algorithm for index maintenance.

Fig. 5. Index layer mapping a trie-based Quad tree.

1) Subspace Lookup and Point Queries: Determining the

subspace to which a point belongs forms the basis for point

queries as well as for data insertion. Since the index layer

comprises a sorted list of subspace names, determining the

subspace to which a point belongs is efficient. Recall that

the subspace name determines the bounds of the region that

the subspace encloses. The search for the subspace finds the

entry that has the maximum prefix matched with the z-value

of the query point; this entry corresponds to the highest value

smaller that the z-value of the query point. A prefix matching

binary search, which substitutes exact matching comparison to

prefix matching comparison for the termination condition of

the binary search algorithm, is therefore sufficient. Algorithm 1

provides the algorithm for subspace lookup. To answer a point

query, we first lookup the subspace corresponding to the z-

value of the point. The point is then queried in the bucket to

which the subspace maps.

Algorithm 1 Subspace Lookup

1: /* 〈q〉 be the query point. */
2: Zq ← ComputeZ-value(q)
3: Bktq ← PrefixMatchingBinarySearch(Zp)

2) Insertion: The algorithm to insert a new data point

(shown in Algorithm 2) is similar to the point query algorithm.

It first looks up the bucket corresponding to the subspace to

which the point belongs, and then inserts the data point in

the bucket. Since there is a maximum limit to the number of

points a bucket can hold, the insertion algorithm checks the

current size of the bucket to determine if a split is needed. The

technique to split a subspace is explained in Section III-B5.

3) Range Query: A multi-dimensional range query is one

of the most frequent queries for location based applications.

Algorithm 3 provides the pseudo code for range query pro-

cessing. Let 〈ql, qh〉 be the range for the query, ql is the

lower bound and qh is the upper bound. The z-value of the



Algorithm 2 Insert a new location data point

1: /* 〈p〉 be the new data point. */
2: Bktp ← LookupSubspace(p)
3: InsertToBucket(Bktp, p)
4: if (Size(Bktp) > MaxBucketSize) then
5: SplitSpace(Bktp)

lower bound determines the first subspace to scan. All sub-

sequent subspaces until the one corresponding to the upper

bound are potential candidate subspaces. Let Sq denote the

set of candidate subspaces. Since the z-order loosely preserves

locality, some subspaces in Sq might not be part of the range.

For example, consider the Quad tree split shown in Figure 5.

Consider the range query 〈[01, 11], [10, 11]〉. The z-value range

for this query is [0110, 1111] which results in Sq equal to

{01∗∗, 10∗∗, 11∗∗}. Since the query corresponds to only the

top half of the space, the subspace named 10∗∗ is a false

positive. But such false positives are eliminated by a scan of

the index. As the subspace name only is enough to determine

the boundary of the region enclosed by the subspace, points

in a subspace are scanned only if the range of the subspace

intersects with the query range. This check is inexpensive

and prunes out all the subspaces that are not relevant. For

subspaces that are contained in the query, all points will be

returned, while subspaces that only intersect with the query

require further filtering. The steps for query processing are

shown in Algorithm 3.

Algorithm 3 Range query

1: /* 〈ql, qh〉 be the range for the query. */
2: Zlow ← ComputeZ-value(ql)
3: Zhigh ← ComputeZ-value(qh)
4: Sq ← {Zlow ≤ SubspaceName ≤ Zhigh}
5: Rq ← φ /* Initialize result set to empty set. */
6: for each Subspace S ∈ Sq do
7: 〈Sl, Sh〉 ← ComputeBounds(S)
8: if (〈Sl, Sh〉 ⊆ 〈ql, qh〉) then
9: Rq ∪ ScanBucketForSpace(S)

10: else if (〈Sl, Sh〉 ∩ 〈ql, qh〉) then
11: for each point p ∈ S do
12: if (p ∈ 〈ql, qh〉) then
13: Rq ∪ p
14: return Rq

4) Nearest Neighbor Query: Nearest neighbor queries are

also an important primitive operation for many location based

applications. Algorithm 4 shows the steps for k nearest neigh-

bors query processing in MD-HBase. The algorithm is based

on the best-first algorithm where the subspaces are scanned in

order of the distance from the queried point [9].

The algorithm consists of two steps: subspace search expan-

sion and subspace scan. During subspace search expansion we

incrementally expand the search region and sort subspaces in

the region in order of the minimum distance from the queried

point. Algorithm 4 increases the search region width to the

maximum distance from the queried point to the farthest corner

of the scanned subspaces. The next step scans the nearest

subspace that has not already been scanned and sorts points in

order of the distance from the queried point. If the distance to

(a) A Quad Tree (b) A K-d Tree

Fig. 6. Space split at the index layer.

the k-th point is less than the distance to the nearest unscanned

subspace, the query process terminates.

Algorithm 4 k Nearest Neighbors query

1: /* q be the point for the query. */
2: PQsubspace ← CreatePriorityQueue()
3: PQresult ← CreatePriorityQueue(k) /* queue capacity is k. */
4: width← 0 /* region size for subspace search */
5: Sscanned ← φ /* scanned subspaces */
6: loop
7: /* expand search region. */
8: if PQsubspace = φ then
9: Snext ← SubspacesInRegion(q, width)− Sscanned

10: for each Subspace S ∈ Snext do
11: Enqueue(S,MinDistance(q, S), PQsubspace)
12: /* pick the nearest subspace. */
13: S ← Dequeue(PQsubspace)
14: /* search termination condition */
15: if KthDistance(k, PQresult) ≤ MinDistance(q, S) then
16: return PQresult

17: /* scan and sort points by the distance from q. */
18: for each Point p ∈ S do
19: Enqueue(p,Distance(q, p), PQresult)
20: /* maintain search status. */
21: Sscanned ∪ S
22: width← max(width,MaxDistance(q, S))

Algorithm 5 Subspace name generation

1: /* Quad tree */
2: NewName ← φ
3: for each dimension in [1, . . . , n] do
4: NewName ∪ {OldName ⊕ 0, OldName ⊕ 1}
5: /* K-d tree */
6: NewName ← {OldName ⊕ 0, OldName ⊕ 1}

5) Space Split: Both K-d and Quad trees limit the number

of points contained in each subspace; a subspace is split when

the number of points in a subspace exceeds this limit. We

determine the maximum number of points by the bucket size of

the underlying storage layer. Since the index layer is decoupled

from the data storage layer, a subspace split in the data storage

layer is handled separately. A split in the index layer relies

on the first property of the prefix naming scheme which

guarantees that the subspace name is a prefix of the names

of any enclosed subspace. A subspace split in the index layer

therefore corresponds to replacing the row corresponding to

the old subspace’s name with the names of the new subspaces.

The number of new subspaces created depends on the index

structure used: a K-d tree splits a subspace only in one

dimension, resulting in two new subspaces, while a Quad tree



splits a subspace in all dimensions, resulting in 2n subspaces.

For every dimension split, the name of the new subspaces

is created by appending the old subspace name with a 0

and 1 at the position corresponding to the dimension being

split. Algorithm 5 provides the pseudocode for subspace name

generation following a split. Figure 6 provides an illustration

of space splitting in the index layer for both Quad and K-d

trees in a 2D space.

Even though conceptually simple, there are a number of

implementation intricacies when splitting a space. These intri-

cacies arise from the fact that the index layer is maintained as a

table in the Key-value store and most current Key-value stores

support transactions only at the single key level. Since a split

touches at least three rows (one row for the old subspace name

and at least two rows for the new subspaces), such a change

is not transactional compared to other concurrent operations.

For instance, an analysis query concurrent to a split might

observe an inconsistent state. Furthermore, additional logic is

needed to ensure the atomicity of the split. Techniques such

as maintaining the index as a key group as suggested in [11]

can be used to guarantee multi-key transactional consistency.

We leave such extensions as future work. In addition, since

deletions are not very common in LBSs, so we leave out the

delete operation. However, deletion and resulting merger of

subspaces can be handled as straightforward extension of the

Space Split algorithm.

C. Implementing the Index Layer

Fig. 7. Index layer Implementation on Bigtable.

The index layer

is a sorted sequence

of subspace names.

Since the subspace

names encode

the boundaries,

the index layer

essentially imposes

an order between

the subspaces.

In our prior

discussion, we

represented the

index layer as a monolithic layer of sorted subspace names. A

single partition index is enough for many application needs.

Assume each bucket can hold about 106 data points. Each row

in the index layer stores very little information: the subspace

name, the mapping to the corresponding bucket, and some

additional metadata for query processing. Therefore, 100

bytes per index table row is a good estimate. The underlying

Key-value store partitions its data across multiple partitions.

Considering the typical size of a partition in Key-value stores

is about 100 MB [5], the index partition can maintain a

mapping of about 106 subspaces. This translates to about 1012

data points using a single index partition. This estimate might

vary depending on the implementation or the configurations

used. But it provides a reasonable estimate of the size.

Our implementation also partitions the index layer for better

scalability and load balancing. We leverage the B+ tree style

metadata access structure in Bigtable to partition the index

layer without incurring any performance penalty. Bigtable, and

its open source variant HBase used in our implementation, uses

a two level structure to map keys to their corresponding tablets.

The top level structure (called the ROOT) is never partitioned

and points to another level (called the META) which points

to the actual data. Figure 7 provides an illustration of this

index implementation. This seamless integration of the index

layer into the ROOT - META structure of Bigtable does not

introduce any additional overhead as a result of index accesses.

Furthermore, optimizations such as caching the index layer and

connection sharing between clients on the same host reduces

the number of accesses to the index. Adding this additional

level in the index structure, therefore, strikes a good balance

between scale and the number of indirection levels to access

the data items. Using an analysis similar to that used above, a

conservative estimate of the number of points indexed by this

two level index structure is 1021.

IV. DATA STORAGE LAYER

The data storage layer of MD-HBase is a range partitioned

Key-value store. We use HBase, the open source implementa-

tion of Bigtable, as the storage layer for MD-HBase.

A. HBase Overview

A table in HBase consists of a collection of splits, called

regions, where each region stores a range partition of the

key space. Its architecture comprises a three layered B+ tree

structure; the regions storing data constitute the lowest level.

The two upper levels are special regions referred to as the ROOT

and META regions, as described in Section III-C. An HBase

installation consists of a collection of servers, called region

servers, responsible for serving a subset of regions. Regions

are dynamically assigned to the region servers; the META table

maintains a mapping of the region to region servers. If a

region’s size exceeds a configurable limit, HBase splits it into

two sub-regions. This allows the system to grow dynamically

as data is inserted, while dealing with data skew by creating

finer grained partitions for hot regions.

B. Implementation of the Storage Layer

A number of design choices exist to implement the data

storage layer, and it is interesting to analyze and evaluate

the trade-offs associated with each of these designs. Our

implementation uses different approaches as described below.

1) Table share model: In this model, all buckets share a

single HBase table where the data points are sorted by their

corresponding Z-value which is used as the key. Our space

splitting method guarantees that data points in a subspace are

contiguous in the table since they share a common prefix.

Therefore, buckets are managed by keeping their start and end

keys. This model allows efficient space splitting that amounts

to only updating the corresponding rows in the index table. On

the other hand, this model restricts a subspace to be mapped

to only a single bucket.



2) Table per bucket model: This model is another extreme

where we allocate a table per bucket. The data storage layer

therefore consists of multiple HBase tables. This model pro-

vides flexibility in mapping subspaces to buckets and allows

greater parallelism by allowing operations on different tables

to be dispatched in parallel. However, a subspace split in this

technique is expensive since this involves moving data points

from the subspaces to the newly created buckets.

3) Hybrid model: This hybrid model strikes a balance

between the table share model and the table per bucket model.

First, we partition the space and allocate a table to each

resulting subspace. After this initial static partitioning, when a

subspace is split as a result of an overflow, the newly created

subspaces share the same table as that of the parent subspace.

4) Region per bucket model: A HBase table comprises of

many regions. Therefore, another approach is to use a single

table for the entire space and use each region as a bucket.

A region split in HBase is quite efficient and is executed

asynchronously. This design therefore has a low space split

cost while being able to efficiently parallelize operations across

the different buckets. However, contrary to the other three

models discussed, this model is intrusive and requires changes

to HBase; a hook is added to the split code to determine the

appropriate split point based on the index structure being used.

C. Optimizations

Several optimizations are possible that further improve

performance of the storage layer.

1) Space Splitting pattern learning: Space splitting intro-

duces overhead that affects system performance. Therefore,

advanced prediction of a split can be used to perform an

asynchronous split that will reduce the impact on the inserts

and queries executing during a split. One approach is to learn

the split patterns to reduce occurrences of space split. Location

data is inherently skewed, however, as noted earlier, such skew

is often predictable by maintaining and analyzing historical in-

formation. Since MD-HBase stores historical data, the index

structure inherently maintains statistics of the data distribution.

To estimate the number of times a new bucket will be split in

the future, we lookup how many buckets were allocated to the

same spatial region in the past. For example, when we allocate

a new bucket for region ([t0, t1], [x0, x1], [y0, y1]), we lookup

buckets for region ([t0 − ts, t1 − ts], [x0, x1], [y0, y1]) in the

index table. The intuition is that the bucket splitting pattern in

the past is a good approximate predictor for the future.

2) Random Projection: Data skew makes certain subspaces

hot, both for insertion and querying. An optimization is to map

a subspace to multiple buckets with points in the subspace

distributed amongst the multiple buckets. When the points

are distributed randomly, this technique is called random

projection. When inserting a data point in a subspace, we

randomly select any one of the buckets corresponding to the

subspace. A range query that includes the subspace must scan

all the buckets mapped to the subspace. Thus, the random

projection technique naturally extends our original algorithm;

it, however, presents a trade-off between load balancing and a

potential increase in query cost.

V. EXPERIMENTAL EVALUATION

We now present a detailed evaluation of our prototype im-

plementation of MD-HBase. We implemented our prototype

using HBase 0.20.6 and Hadoop 0.20.2 as the underlying

system. We evaluate the trade-offs associated with the different

implementations for the storage layer and compare our tech-

nique with a MapReduce style analysis and query processing

using only linearization over HBase. Our experiments were

performed on an Amazon EC2 cluster whose size was varied

from 4 to 16 nodes. Each node consists of 4 virtual cores,

15.7GB memory, 1,690 GB HDD, and 64bit Linux (v2.6.32).

We evaluate the different implementations of the storage layer

as described in Section IV: table per bucket design simulating

the K-d and Quad trees (TPB/Kd and TPB/Quad), table

sharing design simulating the K-d and Quad trees (TS/Kd

and TS/Quad), and a region per bucket design for K-d

trees (RPB/Kd)3. The baseline is an implementation using z-

ordering for linearization (ZOrder) without any specialized

index. We also implemented the queries in Map Reduce

to evaluate the performance of a MapReduce system (MR)

performing a full parallel scan of the data; our evaluation

used the Hadoop runtime. Our evaluation uses synthetically

generated data sets primarily due to the need for huge data

sets (hundreds of gigabytes) and the need to control different

aspects, such as skew and selectivity, to better understand the

behavior of the system. Evaluation using real data is left for

future work.

A. Insert throughput

Supporting high insert throughput for location updates is

critical to sustain the large numbers of location devices. We

evaluated the insert performance using five different imple-

mentations of the storage layer on a cluster with 4, 8, and 16
commodity nodes. Figure 8 plots the insert throughput as a

function of the load on the system. We varied the number of

load generators from 2 to 64; each generator created a load

of 10, 000 inserts per second. We used a synthetic spatially

skewed data set using a Zipfian distribution with a Zipfian

factor of 1.0 representing moderately skewed data. Using

a Zipfian distribution allows us to control the skew while

allowing quick generation of large data sets. Both the RPB/Kd

system and the ZOrder systems showed good scalability; on

the 16 node cluster, the RPB/Kd and ZOrder implementation

sustained a peak throughput of about 220K location updates

per second. In a system where location devices register a

location update every minute, this deployment can handle

10−15 million devices. The main reason for the low scalability

of the table per bucket and table sharing designs is the cost

associated with the splitting a bucket. On the other hand,

the region per bucket design splits buckets asynchronously

using the HBase region split mechanism which is relatively

3Since in HBase, a region can only be split into two sub-regions, we could
not implement RPB for Quad trees as our experiments are for a 3D space.



0 20 40 60
0

0.5

1

1.5

2

2.5
x 10

5

T
h
ro

u
g
h
p
u
t 
(i
n
s
e
rt

s
/s

e
c
)

4 nodes

 

 

0 20 40 60
0

0.5

1

1.5

2

2.5
x 10

5

Number of Load Generators

8 nodes

0 20 40 60
0

0.5

1

1.5

2

2.5
x 10

5 16 nodes

ZOrder

TPB/Kd

TPB/Quad

TS/Kd

TS/Quad

RPB/Kd

Fig. 8. Insert throughput (location updates per second) as a function of load on the system. Each load generator creates 10,000 inserts per second.

0.01 0.1 1.0 10.0
10

−1

10
0

10
1

10
2

10
3

Selectivity (%)

R
e
s
p
o
n
s
e
 T

im
e
(s

e
c
)

 

 

TPB/Kd TPB/Quad TS/Kd TS/Quad RPB/Kd ZOrder MapReduce

Fig. 9. Response times (in log scale) for range query as function of selectivity.

TABLE I
FALSE POSITIVE SCANS ON THE ZORDER SYSTEM

Selectivity (%)

0.01 0.1 1.0 10.0

No. of buckets scanned 7 28 34 45

False positives 3 22 16 16

Percentage false positive 42.9% 78.5% 47.1% 35.5%

inexpensive. The TPB/TS systems block other operations until

the bucket split completes. In our experiments, the TPB design

required about 30 to 40 seconds to split a bucket and the TS

design required about 10 seconds. Even though these designs

result in more parallelism in distributing the insert load on the

cluster, the bucket split overhead limits the peak throughput

sustained by these designs.

B. Range Query

We now evaluate range query performance using the dif-

ferent implementations of the index structures and the storage

layer and compare performance with ZOrder and MR. The

MR system filters out points matching the queried range and

reports aggregate statistics on the matched data points.

We generated about four hundred million points using a

network-based model by Brinkhoff et al. [12]. Our data set

simulates 40, 000 objects moving 10, 000 steps along the

streets of the San Francisco bay area. Since the motion paths

are based on a real map, this data set is representative of

real world data distributions. Evaluation using other models

to simulate motion is proposed future work. We executed the

range queries on a four-node cluster in Amazon EC2.

Figure 9 plots the range query response times for the

different designs as a function of the varying selectivity. As

is evident from Figure 9, all the MD-HBase design choices

outperform the baseline systems. In particular, for highly

selective queries where our designs show a one to two orders

of magnitude improvement over the baseline implementations

using simple Z-ordering or using MapReduce. Moreover, the

query response time of our proposed designs is proportional

to the selectivity, which asserts the gains from the index layer

when compared to brute force parallel scan of the entire data

set as in the MR implementation whose response times are the

worst amongst the alternatives considered and is independent

of the query selectivity.

In the design using just Z-ordering (ZOrder), the system

scans between the minimum and the maximum Z-value of the

queried region and filters out points that do not intersect the

queried ranges. If the scanned range spans several buckets,

the system parallelizes the scans per bucket. Even though the

ZOrder design shows better performance compared to MR,

response time is almost ten times worse when compared to

our proposed approaches, especially for queries with high

selectivity. The main reason for the inferior performance of the

ZOrder is the false positive scans resulting from the distortion

in the mapping of the points introduced by linearization.

Table I reports the number of false positives (buckets that

matched the queried range but did not contain a matching

data point) of the ZOrder design. For example, in case of 0.1

percent selectivity query, 22 out of 28 buckets scanned are

false positive. The number of false positive scans depends on

the alignment of the queried range with the bucket boundaries.

In the ideal situation of a perfect match, query performance

is expected to be close to that of our proposed designs;

however, such ideal queries might not be frequently observed

in practice. Our proposed designs can further optimize the scan

range within each region. Since we partition the target space

into the regular shaped subspaces, when the queried region

partially intersects a subspace, MD-HBase can compute the

minimum scan range in the bucket from the boundaries of the

queried region and the subspace. In contrast, the ZOrder design

partitions the target space into irregular shaped subspaces and

hence must scan all points in the selected region.

A deeper analysis of the different alternative designs for

MD-HBase shows that the TPB designs result in better

performance. The TS designs often result in high disk con-

tention since some buckets are co-located in the same data



1 10 100 1K 10K
0

5

10

15

Number of Nearest Neighbours

R
e
s
p
o
n
s
e
 T

im
e
(s

e
c
)

 

 

TPB/Kd TPB/Quad TS/Kd TS/Quad RPB/Kd

Fig. 10. Response time for kNN query processing as a function of the
number of neighbors returned.

partition of the underlying Key-value store. Even though we

randomize the bucket scan order in the TS design, significant

reduction in disk access contention is not observed. The TPB

designs therefore outperform the TS designs. For queries with

high selectivity, the RPB design has a longer response time

compared to other designs; this however is an artifact of our

implementation choice for the RPB design. In the RPB design,

we override the pivot calculation for a bucket split and delegate

the bucket maintenance task to HBase which minimizes the

insert overhead. However, since HBase stores bucket boundary

information in the serialized form, the index lookup for query

processing must de-serialize the region boundaries. As a result,

for queries with very high selectivity, the index lookup cost

dominates the total response time.

Comparing the K-d and the Quad trees, we observed better

performance of K-d trees for queries with high selectivity.

However, as the selectivity decreases, the response times for

Quad trees are lower. The K-d tree creates a smaller number of

buckets while the Quad tree provides better pruning compared

to the K-d tree. In the case of high selectivity queries, sub-

query creation cost dominates the total response time; each

sub-query typically scans a short range and the time to scan a

bucket comprises a smaller portion of the total response time.

As a result, the K-d tree has better performance compared to

the Quad tree. On the other hand, in case of low selectivity

queries, the number of points to be scanned dominates the

total response time since each sub-query tends to scan a

long range. The query performance therefore depends on the

pruning power of the index structure.

We also expect the bucket size to potentially effect overall

performance. Selecting a bucket size is a trade-off between the

insertion throughput and query performance. Larger buckets

reduce the frequency of bucket splits thus improving insertion

throughput but limits sub-space pruning power during query

processing.

C. kNN Query

We now evaluate the performance of MD-HBase for k

Nearest Neighbor (kNN) queries using the same dataset as

the previous experiment. Figure 10 plots the response time

(in seconds) for kNN queries as a function of the number

of neighbors to be returned; we varied k as 1, 10, 100,

1,000, and 10,000. In this experiment, expansion of the search

region did not occur for k ≤ 100, resulting in almost similar

performance for all the designs. The TPB/Quad design has the

best performance where the response time was around 250ms

while that of other designs is around 1500ms to 2000ms. As

we increase k to 1K and 10K, the response times also increase;

however, the increase is not exponential, thanks to the best-

first search algorithm used. For example, when we increased

k from 1K to 10K, the response time increased only by three

times in the worst case.

The TPB/Quad design outperformed the other designs for

k ≤ 100. Due to the larger fan-out, the bucket size of a Quad

tree tends to be smaller than that of a K-d tree. As a result,

TPB/Quad has smaller bucket scan times compared to that of

the TPB/Kd design. However, both TS designs have almost

similar response times for small k. We attribute this to other

factors like the bucket seek time. Since the TPB designs use

different tables for every bucket, a scan for all points in a

bucket does not incur a seek to the first point in the bucket.

On the other hand, the TS designs must seek to the first entry

corresponding to a bucket when scanning all points of the

bucket. As mentioned earlier, the RPB design has a high index

lookup overhead which increases the response time, especially

when k is large. This however is an implementation artifact;

in the future, we plan to explore other implementation choices

for RPB that can potentially improve its performance.

Comparing between the K-d tree and the Quad tree, Quad

trees have smaller response times for smaller k, while K-d

trees have smaller response times for larger k. For small values

of k, the search region does not expand. Smaller sized buckets

in a Quad tree result in better performance compared to larger

buckets in a K-d tree. On the other hand, for larger values of

k, the probability of a search region expansion is higher. Since

a Quad tree results in smaller buckets, it results in more search

region expansions compared to that of K-d tree, resulting in

better performance of K-d tree.

Since the ZOrder and the MR systems do not have any index

structure, kNN query processing is inefficient. One possible

approach is to iteratively expand the queried region until the

desired k neighbors are retrieved. This technique is however

sensitive to a number of parameters such as the initial queried

range and the range expansion ratio. Due to the absence

of an index, there is no criterion to appropriately determine

the initial query region. We therefore do not include these

baseline systems in our comparison; however, the performance

of ZOrder and MR is expected to be significantly worse than

the proposed approaches.

VI. RELATED WORK

Scalable data processing–both for large update volumes and

data analysis–has been an active area of interest in the last

few years. When dealing with a large volume of updates,

Key-value stores have been extremely successful in scaling to

large data volumes; examples include Bigtable [5], HBase [6]

etc. These data stores have a similar design philosophy where

they have made scalability and high availability as the primary

requirement, rich functionality being secondary. Even though



these systems are known to scale to terabytes of data, the

lack of efficient multi-attribute based access limits their ap-

plication for location based applications. On the other hand,

when considering scalable data processing, MapReduce [7],

[13] has been the most dominant technology, in addition to

parallel databases [14]. Such systems have been proven to

scale to petabytes of data while being fault-tolerant and highly

available. However, such systems are suitable primarily in

the context of batch processing. Furthermore, in the absence

of appropriate multi-dimensional indices, MapReduce style

processing has to scan through the entire dataset to answer

queries. MD-HBase complements both Key-value stores and

MapReduce style processing by providing an index structure

for multi-dimensional data. As demonstrated in our prototype,

our proposed indexing layer can be used directly with Key-

value stores. Along similar lines, the index layer can also

be integrated with MapReduce to limit the retrieval of false

positives.

Our use of linearization for transforming multi-dimensional

data points to a single dimensional space has been used

recently in a number of other techniques. For instance, Jensen

et al. [15] use Z-ordering and Hilbert curves as space filling

curves and construct a B+ tree index using the linearized

values. Tao et al. [16] proposed an efficient indexing technique

for high dimensional nearest neighbor search using a collection

of B-tree indices. The authors first use locality sensitive

hashing to reduce the dimensionality of the data points and

then apply Z-ordering to linearize the dataset, which is then

indexed using a B-tree index. Our approach is similar to these

approaches, the difference being that we build a K-d tree and

a Quad tree based index using the linearized data points. The

combination of the index layer and the data storage layer in

MD-HBase however resembles a B+ tree, reminiscent of the

Bigtable design. Subspace pruning in the index layer is key

to speeding up the range query performance which becomes

harder for data points with high dimensionality. In such cases,

dimensionality reduction techniques, as used by Tao et al. [16],

can be used to improve the pruning power.

Another class of approaches make the traditional multidi-

mensional indices more scalable. Wang et al. [17] and Zhang

et al. [18] proposed similar techniques where the systems

have two index layers: a global index and a local index.

The space is partitioned into several subspaces and each sub-

space is assigned a local storage. The global index organizes

subspaces and the local index organizes data points in the

subspace. Wang et al. [17] construct a content addressable

network (CAN) over a cluster of R-tree indexed databases

while Zhang et al. [18] use an R-tree as the global index and

a K-d tree as the local index. Along these lines, MD-HBase

only has a global index; it can however be extended to add

local indices within the data storage layer.

VII. CONCLUSION

Scalable location data management is critical to enable the

next generation of location based services. We proposed MD-

HBase, a scalable multi-dimensional data store supporting
efficient multi-dimensional range and nearest neighbor queries.

MD-HBase layers a multi-dimensional index structure over

a range partitioned Key-value store. Using a design based

on linearization, our implementation layers standard index

structures like K-d trees and Quad trees. We implemented

our design on HBase, a standard open-source key-value store,

with minimal changes to the underlying system. The scalability

and efficiency of the proposed design is demonstrated through

a thorough experimental evaluation. Our evaluation using a

cluster of nodes demonstrates the scalability of MD-HBase by

sustaining insert throughput of over hundreds of thousands of

location updates per second while serving multi-dimensional

range queries and nearest neighbor queries in real time with

response times less than a second. In the future, we plan to

extend our design by adding more complex analysis operators

such as skyline or cube, and exploring other alternative designs

for the index and data storage layers.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their helpful comments. This work is partly funded by NSF

grants III 1018637 and CNS 1053594.

REFERENCES

[1] http://en.wikipedia.org/wiki/List of mobile network operators, 2010.
[2] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.
[3] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval

on composite keys,” Acta Inf., vol. 4, pp. 1–9, 1974.
[4] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”

in SIGMOD, 1984, pp. 47–57.
[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” in OSDI, 2006, pp. 205–218.

[6] “HBase: Bigtable-like structured storage for Hadoop HDFS,” 2010, http:
//hadoop.apache.org/hbase/.

[7] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[8] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” IBM Ottawa, Canada, Tech. Rep., 1966.

[9] H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[10] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker,
“Prefix hash tree: An indexing data structure over distributed hash
tables,” Intel Research, Berkeley, Tech. Rep., 2004.

[11] S. Das, D. Agrawal, and A. El Abbadi, “G-Store: A Scalable Data Store
for Transactional Multi key Access in the Cloud,” in SOCC, 2010, pp.
163–174.

[12] T. Brinkhoff and O. Str, “A framework for generating network-based
moving objects,” Geoinformatica, vol. 6, p. 2002, 2002.

[13] “The Apache Hadoop Project,” http://hadoop.apache.org/core/, 2010.
[14] D. DeWitt and J. Gray, “Parallel database systems: the future of high

performance database systems,” CACM, vol. 35, no. 6, pp. 85–98, 1992.
[15] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update efficient b+-

tree based indexing of moving objects,” in VLDB. VLDB Endowment,
2004, pp. 768–779.

[16] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in high
dimensional nearest neighbor search,” in SIGMOD, 2009, pp. 563–576.

[17] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in SIGMOD, 2010, pp. 591–602.

[18] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An efficient multi-
dimensional index for cloud data management,” in CloudDB, 2009, pp.
17–24.


