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Abstract

We describe the motivation behind the recent formulation of a nonperturbative
path integral for Lorentzian quantum gravity defined through Causal Dynamical Tri-
angulations. In the case of two dimensions the model is analytically solvable, leading
to a genuine continuum theory of quantum gravity whose ground state describes a
two-dimensional “universe” completely governed by quantum fluctuations. One ob-
serves that two-dimensional Lorentzian and Euclidean quantum gravity are distinct.
In the second part of the thesis we address the question of how to incorporate a sum
over space-time topologies in the gravitational path integral. It is shown that, pro-
vided suitable causality restrictions are imposed on the path integral histories, there
exists a well-defined nonperturbative gravitational path integral including an explicit
sum over topologies in the setting of Causal Dynamical Triangulations. A complete
analytical solution of the quantum continuum dynamics is obtained uniquely by
means of a double scaling limit. We show that in the continuum limit there is a finite
density of infinitesimal wormholes. Remarkably, the presence of wormholes leads
to a decrease in the effective cosmological constant, reminiscent of the suppression
mechanism considered by Coleman and others in the context of a Euclidean path
integral formulation of four-dimensional quantum gravity in the continuum. In the
last part of the thesis universality and certain generalizations of the original model
are discussed, providing additional evidence that Causal Dynamical Triangulations
define a genuine continuum theory of two-dimensional Lorentzian quantum gravity.
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4 1 INTRODUCTION

1 Introduction

Finding a consistent theory of quantum gravity which gives a fundamental quantum de-
scription of space-time geometry and whose classical limit is general relativity lies at the
root of our complete understanding of nature. However, nearly one century has passed
by since Einstein’s invention of general relativity, and still very little is known about the
ultimate structure of space-time at very small scales such as the Planck length. Because
of the enormous energy fluctuation predicted by the Heisenberg uncertainty relation, the
geometry at such short scales will have a non-trivial microstructure governed by quantum
laws. The difficulty of finding a description of this microstructure is on the one hand due
to the lack of experimental tests and further complicated by the fact that four-dimensional
quantum gravity is perturbatively non-renormalizable. This also holds for supergravity or
perturbative expansions in the string coupling in string-theoretic approaches. One road to
take is therefore to try to define quantum gravity nonperturbatively.

Within those nonperturbative approaches of quantum gravity there are several attempts
which suggest that the ultraviolet divergences can be resolved by the existence of a minimal
length scale, commonly expressed in terms of the characteristic Planck length. A famous
example is loop quantum gravity [1, 2, 3]; in this canonical quantization program the dis-
crete spectra of area and volume operators are interpreted as an evidence for fundamental
discreteness. Other approaches, such as four dimensional spin-foam models [4] or causal set
theory [5, 6], postulate fundamental discreteness from the outset. Unfortunately, neither
of these quantization programs has succeeded so far in recovering the right classical limit.

A recent alternative is Lorentzian quantum gravity defined through Causal Dynamical
Triangulations (CDT). In this path integral formulation a theory of quantum gravity is
obtained as a continuum limit of a superposition of space-time geometries. Thereby, in
analogy to standard path integral formulations of quantum mechanics and quantum field
theory, one uses an intermediate regularization through piecewise flat simplicial geome-
tries.1

Causal dynamical triangulations were first introduced in two dimensions [7, 8] as a
nonperturbative path integral over space-time geometries with fixed topology which can
be explicitly solved, leading to a continuum theory of two-dimensional Lorentzian quantum
gravity. Later it was extended to three [9, 10, 11] and four dimensions [9, 12, 13, 14, 15].
Among those recent developments there are very promising results regarding the large scale
structure of space-time [12, 13]: Firstly, the scaling behavior as a function of space-time
volume is that of a genuine isotropic and homogeneous four-dimensional universe; this is
the first step towards recovering the right classical limit. Moreover, after integrating out
all dynamical variables apart from the scale factor a(τ) as a function of proper time τ , it
describes the simplest minisuperspace model used in quantum cosmology.

Very interesting is the analysis of the microstructure of space-time: recent numerical
results showed [14, 15] that in this setting space-time does not exhibit fundamental dis-

1However, whereas in quantum theory the piecewise straight paths are imbedded in a higher-dimensional
space, this is not the case for the piecewise flat geometries whose geometric properties are intrinsic.
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creteness. Instead, one observes a dynamical reduction of the dimension from four at large
scales to two at small scales. This gives an indication that nonperturbative Lorentzian
quantum gravity provides an effective ultraviolet cut-off through a dynamical dimensional
reduction of space-time.

In this thesis we give a pedagogical introduction into CDT in two dimensions. The sim-
ple structure of two-dimensional gravity serves as a good playground to address fundamen-
tal concepts of the model which are also of significant relevance for the higher-dimensional
realizations of CDT.

One interesting fundamental question we want to address here is whether a sum over
different space-time topologies should be included in the gravitational path integral. Since
topology changes [16] naturally violate causality, the sum over topologies is usually con-
sidered in Euclidean quantum gravity, where this issue does not arise. However, even in
the simplest case of two-dimensional geometries the number of configurations contributing
to the path integral grows faster than exponentially which makes the path integral badly
divergent. Various attempts to solve this problem in the Euclidean context have so far
been unsuccessful [17], which leaves this approach at a very unsatisfactory stage.

Other attempts to define a path integral including a sum over topologies are either
semiclassical or assume that a certain handpicked class of configurations dominates the path
integral, without being able to check that they are saddle points of a full, nonperturbative
description [18]. However, we are not aware of any nonperturbative evidence supporting
these ideas.

For another attempt to include the sum over topologies in the context of three-
dimensional quantum gravity the reader is referred to [19].

In the context of two-dimensional CDT it has recently been shown that one can unam-
biguously define a nonperturbative gravitational path integral over geometries and topolo-
gies [20, 21]2. The idea of how to tame the divergences is to use certain causal constraints
to restrict the class of contributing topologies to a physically motivated subclass. In the
concrete setting these are geometrically distinguished space-times including an arbitrary
number of infinitesimal “wormholes”, which violate causality only relatively mildly. By
this we mean that they do not necessarily exhibit macroscopic causality violations in the
continuum limit. According to observable data this is a physically motivated restriction.
This makes the nonperturbative path integral well defined. As an interesting result one
observes that in the resulting continuum theory of quantum gravity the presence of worm-
holes leads to a decrease in the effective cosmological constant. This connects nicely to
former attempts to devise a mechanism, the so-called Coleman’s mechanism, to explain the
smallness of the cosmological constant in the Euclidean path integral formulation of four-
dimensional quantum gravity in the continuum in the presence of infinitesimal wormholes
[24, 25].

Another interesting aspect is the discussion of universality of two-dimensional
Lorentzian quantum gravity defined through CDT. We provide explicit evidence for uni-
versality of the model which ensures that CDT defines a genuine continuum theory of

2Also see [22, 23] for additional information.
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two-dimensional quantum gravity and does not depend on the details of the regularization
procedure.

The remainder of this thesis is structured a follows. In Section 2 we give an intro-
duction to two-dimensional Lorentzian quantum gravity defined through CDT. We show
that it gives rise to a well-defined continuum theory of two-dimensional quantum grav-
ity, whose time evolution is unitary. Further, the restriction to the causal geometries in
the path integral leads to a physically interesting ground state of a quantum “universe”
which also shows that quantum gravity with Euclidean and Lorentzian signature are dis-
tinct theories. In Section 3 we address the question of how to incorporate the sum over
topologies in the gravitational path integral. After restricting the contributing topologies
to a physically motivated subclass including arbitrary numbers of infinitesimal wormholes,
the path integral is well-behaved. The continuum theory can be obtained by means of a
well-defined double scaling limit of the couplings. We observe a finite density of worm-
holes which leads to a decrease in the effective cosmological constant. In Section 4 we
show evidence for universality of the two-dimensional model. Further, we develop several
one-to-one correspondences between two-dimensional CDTs and certain one-dimensional
combinatorial structures, such as heaps of dimers and random walks. Appendices A-D
provide supplementary information for Section 2. In Appendix A we give a brief summary
of the results on Lorentzian angles which naturally appear in the framework of CDT. In
Appendix B triangulations with different boundary conditions are discussed. In Appendix
C we give an alternative derivation of the continuum quantum Hamiltonian obtained in
Section 2. Regarding the calculation of continuum quantities further details are given in
Appendix D. In Appendix E we discuss other double scaling limits related to the model in
Section 3, which we discarded as unphysical.

2 2D Lorentzian quantum gravity

In this section we give an introduction to two-dimensional Lorentzian quantum gravity de-
fined through causal dynamical triangulations (CDT). The section is structured as follows:
In Section 2.1 we introduce the reader to the concepts and problems of how to define a
nonperturbative path integral for quantum gravity. In Section 2.2 an explicit definition
of the gravitational path integral as a regularized sum over space-time triangulations is
presented. The problem of how to incorporate Lorentzian space-times in this framework
and how to give a well-defined prescription for a Wick rotation is discussed in Section 2.3;
this leads to the notion of causal dynamical triangulations. In Section 2.4 a complete ana-
lytic solution to the discrete problem is presented. Performing the continuum limit of the
discretized model, as done in Section 2.5, leads to a continuum theory of two-dimensional
Lorentzian quantum gravity, which we will interpret in terms of its physical observables in
Section 2.6.
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2.1 A nonperturbative path integral for quantum gravity

In this section a notion of a nonperturbative path integral for quantum gravity is intro-
duced. In contrast to usual path integral formulations in quantum mechanics and quantum
field theory the gravitational path integral is more involved due to the diffeomorphism-
invariance of the theory, which in terms of local coordinate charts are smooth invertible
coordinate transformations xµ 7→ yµ(xµ), and due to the absence of a preferred metric
background structure.

The aim of this section is to expose this problem and to give first indications on how
to define a gravitational path integral. Most of the arguments presented in this section
can be found in [26]. For a more comprehensive account of path integrals in quantum field
theory and the connection to critical phenomena the reader is referred to [27].

Before going into the conceptual details of the problems one encounters when defin-
ing a gravitational path integral, let us first recall the path integral representation of an
one-dimensional (non-relativistic) quantum mechanical problem described by the time de-
pendent Schrödinger equation

− i
∂

∂t
|ψ, t〉 = Ĥ(t) |ψ, t〉. (1)

The time evolution of the wave function is given by

|ψ, t′′〉 = Û(t′′, t′) |ψ, t′〉, Û(t, t) = 1, (2)

where Û(t, t′) is defined by Ĥ(t) = −i
[
∂t Û(t, t′)

]
t=t′

. In the position representation, the

time evolution, (2), can be written as

ψ(x′′, t′′) =

∫
dx′G(x′′, x′; t′′, t′)ψ(x′, t′), (3)

where G(x′′, x′; t′′, t′) ≡ 〈x′′ | Û(t′′, t′) | x′〉 is the so-called propagator or Feynman kernel.
For the case that the Hamiltonian Ĥ(t) is bounded from below, Û(t, t′) satisfies the semi-
group property

Û(t′′, t′) = Û(t′′, t) Û(t, t′), t′ 6 t 6 t′′. (4)

This property (4) allows us to define the propagator as a limiting procedure of products
of evolution operators corresponding to infinitesimal time intervals ε = (t′′− t′)/N (Figure
1),

G(x′′, x′; t′′, t′) = lim
ε→0

A−N

N−1∏
k=1

∫
dxk

N−1∏
j=0

〈xj+1 | Û(tj+1, tj) |xj〉

= lim
ε→0

A−N

N−1∏
k=1

∫
dxk exp

{
i

N−1∑
j=0

εL(xj+1, (xj+1 − xj)/ε)

}
, (5)
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t

t′′ ≡ tN

t′ ≡ t0

tk

tk−1

tk+1

x

xk

xk+1

xk−1

x′ ≡ x0

x′′ ≡ xN

Figure 1: Illustration of the path integral for a one-dimensional non-relativistic quantum
mechanical problem, e.g. a propagating particle. One possible path of the configuration
space (path space) is drawn. The “virtual” particle is propagating from x0 to xN in a
piecewise linear path of N steps of time ε = (t′′ − t′)/N each.

where A is a normalization factor and L is the Lagrangian corresponding to H(t). The
integral in (5) is taken over piecewise linear paths x(t) from x′ ≡ x0 to x′′ ≡ xN . The right
hand side of (5) is called the path integral and is often written symbolically as

G(x′′, x′; t′′, t′) =

∫
P
D[x(t)]eiS[x(t)], (6)

where D[x(t)] is a functional measure on the path space P [28]. The weight of each path
is given by the classical action S[x(t)].

Note that (6) is mathematically not well-defined. To actually perform the integral in
(6) one usually does an analytic continuation on the time variable t from the real to the
imaginary axis, i.e. t 7→ τ = it. This so-called Wick-rotation makes the integrals real [29]
by mapping i S[x(t)] 7→ −Seu[x(t)], where Seu[x(t)] is the Euclidean action. After having
performed the integration in the Euclidean sector one applies the inverse Wick rotation
τ 7→ −it to get back to the physically meaningful results.

The question which arises now is: Can one define a path integral for quantum gravity
using a similar strategy like the one used to arrive at (6)? The first step to answer this ques-
tion is to find the analogue of path and the path space in a gravitational sense. One might
think that the equivalent of the path space P in the case of the one-dimensional quantum
mechanical problem is the space of all geometries in the gravitational case. To clarify this,
let us become more precise and provide a definition of these concepts. Classically, a geom-
etry is a space-time (M, g), a smooth manifold M equipped with a metric tensor field gµν
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with Lorentzian signature [30]. Due to the diffeomorphism invariance of the theory any
two metrics are equivalent if they can be mapped onto each other by a coordinate trans-
formation. Therefore all physical degrees of freedom are encoded in the equivalence class
[gµν ] = gµν/Diff(M) which we simply refer to as a geometry. From this follows a natural
notion of the space of all geometries as the coset space Geom(M) = Metrics(M)/Diff(M).

t

Σ

[g′
ij]

[g′′
ij]

t′

t′′

[gµν]

Figure 2: Illustration of the gravitational path integral; one geometry of the configuration
space is drawn. The geometry [gµν ] has a time-sliced structure with respect to proper time
t; it has an initial spatial geometry [g′ij] at proper time t′ and final spatial geometry [g′′ij]
at proper time t′′. Note that in the case of two dimensions the spatial hypersurface Σ is
one-dimensional and the spatial geometry [gij] is totally characterized by its length L.

Having defined the space of all geometries we can use a foliation of the space of geome-
tries to schematically define the gravitational path integral from an initial spatial geometry
[g′ij] at proper time t′ to a final spatial geometry [g′′ij] at proper time t′′ (Figure 2) by

G([g′′ij], [g
′
ij]; t

′′, t′) =

∫
Geom(M)

D[gµν ]e
iSEH[gµν ]. (7)

Here, D[gµν ] is the functional measure on the space of all geometries Geom(M) and each
geometry is weighted by the classical Einstein-Hilbert action SEH[gµν ].

3 Before trying to
give a concrete meaning to (7) in the next section, let us first discuss the conceptional
problems of how to define and actually evaluate (7).

First of all, D[gµν ] has to be defined in a covariant way to preserve the diffeomorphism
invariance. Since there is no obvious way to parametrize geometries, one would have to

3We assume that each geometry is weighted by the classical Einstein-Hilbert action including a term
with a positive cosmological constant. One might also include higher curvature terms in the action.
However, as we will see in Section 4.1, the resulting continuum theory belongs to the same universality
class as the continuum theory obtained from SEH.
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introduce covariant metric field tensor. Unfortunately, to perform further calculations one
would then have to gauge fix the field tensors which would give rise to Faddeev-Popov
determinants [31] whose nonperturbative evaluation is exceedingly difficult.4

The second problem is due to the complex nature of the integrand. In quantum field
theory this problem is solved by doing the Wick rotation t 7→ τ = it, where t is the time
coordinate in Minkowski space (t, ~x). Clearly, a prescription like this does not work out in
the gravitational setting, since all components of the metric field tensor depend on time.
Further t 7→ τ = it is certainly not diffeomorphism invariant (as a simple example consider
the coordinate transformation t 7→ t2 for t > 0). Hence, the question arises: What is the
natural generalization of the Wick rotation in the gravitational setting?

Finally, since we are working in a field theoretical context, some kind of regularization
and renormalization will be necessary, and again, has to be formulated in a covariant way.
In quantum field theory the use of lattice methods provides a powerful tool to perform
nonperturbative calculations, where the lattice spacing a serves as a cutoff of the theory. An
important question to ask at this point is whether or not the theory becomes independent
of the cutoff. Consider for example QCD and QED on the lattice. All evidence suggests
that QCD in four space-time dimensions is a genuinely continuum quantum field theory.
By genuine continuum quantum field theory we mean a theory which needs a cutoff at
an intermediate step, but whose continuum observables will be independent of the cutoff
at arbitrary small scales. In QED the situation seems to be different, one is not able
to define a non-trivial theory with the cut-off removed, unless the renormalized coupling
eren = 0 (trivial QED). Therefore, QED is considered as a low-energy effective theory of
an elaborate theory at the Planck scale. However, as we will in Section 2.5, for the case
of the gravitational path integral the continuum limit exists and the resulting theory is
independent of the cutoff, in the same way as QCD is.

2.2 Geometry from simplices

As motivated in the previous section, regularization through lattice methods might be a
powerful tool for a nonperturbative path integral formulation of quantum gravity. This
obviously requires some kind of discretization of the geometries.

The use of discrete approaches to quantum gravity has a long history [35]. In classical
general relativity, the idea of approximating a space-time manifold by a triangulation of
space-time goes back to the early work of Regge [36] and was first used in [37, 38] to
give a path integral formulation of gravity. By a triangulation we mean a piecewise linear
space-time obtained by a gluing of simplicial building blocks. This one might think of as
the natural analogue of the piecewise linear path we used to describe the path integral
of the one-dimensional quantum mechanical problem. In two dimensions these simplicial
building blocks are flat Euclidean or Minkowskian triangles, where flat means isomorphic

4See [32, 33] for an evaluation in the setting of two-dimensional Euclidean quantum gravity in the
light-cone gauge. In [34] a calculation for three- and four-dimensional Lorentzian quantum gravity in the
proper-time gauge is presented. It is anticipated there that the Faddeev-Popov determinants cancel the
divergences coming from the conformal modes of the metric nonperturbatively.
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to a piece of Euclidean or Minkowskian space respectively. One could in principle assign a
coordinate system to each triangle to recover the metric space (M, gµν), but the strength
of this ansatz lies just in the fact that even without the use of coordinates, each geometry
is completely described by the set of edges length squared {l2i } of the simplicial building
blocks. This provides us with a regularized parametrization of the space of all geometries
Geom(M) in a diffeomorphism invariant way, and hence, is the first step towards defining
the gravitational path integral (7).

For the further discussion it is essential to understand how a geometry is encoded in
the set of edges length squared {l2i } of the simplicial building blocks of the corresponding
triangulation. In the case of two dimensions this can be easily visualized, since the trian-
gulation consists just of triangles. Further, the Riemann scalar curvature R(x) coincides
with the Gaussian curvature K(x) up to a factor of 1/2. There are several ways to reveal
curvature of a simplicial geometry. The most convenient method is by parallel transporting
a vector around a closed loop. Since all building blocks are flat, a vector parallel trans-
ported around a vertex v always comes back to its original orientation unless the angles θi

of the surrounding triangles do not add up to 2π, but differ by the so-called deficit angle
εv = 2π−

∑
i⊃v θi (Figure 3). The Gaussian curvature located at the vertex v is then given

by

Kv =
εv
Vv

, (8)

where Vv is the volume associated to the vertex v; more precisely, the dual volume of the
vertex. Note that the curvature at each vertex takes the form of a conical singularity.
Then one can write the simplicial discretization of the usual curvature and volume terms
appearing in the two-dimensional Einstein-Hilbert action,

1

2

∫
M

d2x
√
| det g|R(x) →

∑
v∈R

εv, (9)∫
M

d2x
√
| det g| →

∑
v∈R

Vv, (10)

where R ≡ {l2i } is a triangulation of the manifold M described by the set of edge length
squared. From this one can write down the simplicial discretization of the two-dimensional
Einstein-Hilbert action, the so-called Regge action,

SRegge(R) =
∑
v∈R

Vv

(
λ− k

εv
Vv

)
, (11)

where k is the inverse Newton’s constant and λ the cosmological constant. It is then an
easy exercise of trigonometry to evaluate the right hand side of (11) in terms of the squared
edge lengths.

The treatment explained above can also be generalized to an arbitrary dimension d in
a straightforward way [39].

From this notion of triangulations one can now write the gravitational path integral as
the integral over all possible edge lengths

∫
Dl, where each configuration R is weighted by
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x x

y y

v vεv εv

(a) (b)

Figure 3: Illustration of a positive (a) and negative (b) space-like deficit angle εv at a
vertex v.

the corresponding Regge action (11). A potential problem one encounters with this ansatz
is an overcounting of possible triangulations, due to the fact that one can continuously
vary each edge length. Further, one still has to introduce a suitable cut-off for the length
variable l. Among other things, this motivated to the approach of “rigid” Regge calculus or
dynamical triangulations where one considers a certain class T of simplicial space-times as
an explicit, regularized version of Geom(M), where each triangulation T ∈ T only consists
of simplicial building blocks whose space-like edges have all the same edge length squared
l2s = a2 and whose time-like edges have all the same edge length squared l2t = −a2. Here,
the geodesic distance a serves as the short-distance cutoff, which will be sent to zero later.
At this point it is important to notice that fixing the edge length squared is not a restriction
on the metric degrees of freedom. One can still achieve all kinds of deficit angles of either
sign or directions by a suitable gluing of the simplicial building blocks.

From this one is able to give a definite meaning to the formal continuum path integral
(7) as a discrete sum over inequivalent triangulations,∫

Geom(M)

D[gµν ]e
iSEH[gµν ] →

∑
T∈T

1

C(T )
eiSRegge(T ), (12)

where 1/C(T ) is the measure on the space of discrete geometries, with C(T ) = |Aut(T )|
the dimension of the automorphism group of the triangulation T .

2.3 Lorentzian nature of the path integral

After we have given an explicit meaning to gravitational path integral as a sum over
inequivalent triangulations (12), there still remains the problem of how to actually perform
the sum, since it is up to now unclear what the prescription of a Wick rotation looks like,
i.e. how we are going to analytically continue to the Euclidean sector of the theory.



2.3 Lorentzian nature of the path integral 13

To avoid this problem one first considered dynamical triangulations [40, 8] on Euclidean
geometries made up of Euclidean simplicial building blocks, where one does the ad hoc
substitution ∫

Geom(M lor)

D[glor
µν ]eiS[glor

µν ] →
∫

Geom(Meu)

D[geu
µν ]e

−S[geu
µν ], (13)

where one simply replaced by hand the Lorentzian geometries with their Euclidean coun-
terparts. The reason for doing so was not necessarily that one thought that Euclidean
manifolds are more fundamental than Lorentzian manifolds, it was just that one had no a
priori prescription for a Wick rotation.

The potential problem with the substitution (13) is that one integrates over geometries
which know nothing about time, light cones and causality. Hence, there is no a priori
prescription of how to recover causality in the full quantum theory. It is unlikely that this
can be done by just performing the inverse Wick rotation t 7→ −it. Another thing which
fails is that Geom(M eu) has too many configurations and one integrates over a large class
of highly degenerate acausal geometries. This problem exists in higher dimensions d > 3,
where it causes the absence of a well defined continuum theory. More precisely, due to the
degenerate geometries, Euclidean dynamical triangulations in d = 3, 4 has an “unphysical”
phase structure, where neither of the phases seems to have a ground state that resembles
an extended geometry.5

This led to the approach of Lorentzian dynamical triangulations or causal dynamical
triangulations (CDT) which was first introduced in two dimensions in [7], further elabo-
rated in [8, 9] and has recently produced interesting results in d = 4 [15, 14, 12, 13], as
presented in the introduction. The main point of CDT is to insist in taking the Lorentzian
structure, i.e. the inherent light-cone structure, seriously from the outset. Due to the
triangulated structure one is able to find a well-defined Wick rotation on the full path
integral (12) as we will discuss in the following. Once having defined the Wick rotation all
calculations, including the continuum limit, are performed in the Euclidean sector, where
at the end one goes back to the physical signature by performing the inverse Wick rotation
(in the continuum theory).

Due to the inherent causal structure, the Lorentzian model is generally inequivalent
to the Euclidean model.6 One might think of the causal structure as being equivalent
to choosing a measure on the path integral (12) which suppresses acausal geometries and
therefore also some of the highly degenerate geometries.

To be able to define the Wick rotation in this context, let us first clarify which are the
causal triangulations T that contribute to the sum in the path integral (12).

We consider “globally hyperbolic” simplicial manifolds with a sliced structure, where
the one-dimensional spatial hypersurfaces have fixed topology of S1; this will lead to a
de-Sitter space-time in the continuum theory. Further we will not allow for topology
changes of the spatial slices; in how far topology changes can be incorporated within this

5See [35] and references therein for a detailed discussion of the phase structure of four-dimensional
dynamical triangulations.

6In two dimensions the Euclidean model can be related to the Lorentzian one by a non-trivial procedure
of integrating out baby universes [9].
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Figure 4: Illustration of the causal structure in a flat triangulated manifold. The triangles
are glued according to the sliced structure. Due to the inherent causal structure of the
Minkowskian triangles, the whole simplicial manifold has a causal structure.

framework will be discussed in Section 3. The sliced structure of the simplicial manifold
provides us with a preferred notion of “proper time”, namely, the parameter labeling
successive spatial slices. Note that this use of time is not a gauge choice, since proper
time is naturally defined in a diffeomorphism invariant way. Several spatial slices are then
connected by Minkowskian triangles7 with one space-like edge of length squared l2s = +a2

and two time-like edges of length squared l2t = −a2. Since all simplicial building blocks are
Minkowskian triangles which have an intrinsic light-cone structure, we have local causality
relations which, if one uses certain gluing rules, imply a global causal structure on the
whole manifold (Figure 4).

From this notion, one is now able to define the Wick rotation on a very elementary
geometric level. By virtue of the triangulated structure one can define a Wick rotation on
each simplicial building block respectively by performing a Wick rotation on all time-like
edges lt of the Lorentzian triangles, i.e. lt 7→ i lt. The Wick rotation acting on the whole
simplicial manifold T is then defined by the following injective map

W : Tlor = {T, l2s = a2, l2t = −a2} 7→ Teu = {T, l2s = a2, l2t = a2}. (14)

In Appendix A it is shown how to implement W in a mathematically clean way. Further,
it is shown there that in the path integral, the Wick rotation W implements precisely the
desired analytic continuation on the Regge action,

W : ei SRegge(T
lor) 7→ e−SRegge(T

eu). (15)

Now we have all ingredients in hand to define the path integral of the regularized
model. As we will see in the following sections, evaluation of the propagator then reduces
to a simple combinatorial problem and applications of the theory of critical phenomena.

7A brief description of how to assign angles and volumes to Minkowskian triangles is given in Appendix
A.
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t

t + 1

t + 2

−a2

+a2

Figure 5: Section of a 2d Lorentzian triangulation consisting of space-time strips of height
∆t = 1. Each spatial slice is periodically identified, such that the simplicial manifold
has topology [0, 1]×S1. One sees that a single strip with lower boundary length l1 and
upper boundary length l2 consists exactly of l1 up pointing triangles and l2 down pointing
triangles.

2.4 Discrete solution: The transfer matrix

In this section we evaluate the gravitational path integral of the two dimensional CDT
model following the procedure explained above [7].

The space-time manifolds we are considering consist of just one type of simplicial build-
ing blocks, namely, flat Minkowskian triangles with one space-like edge of length squared
l2s =a2 and two time-like edges of length squared l2t =−a2. Each triangle then has a volume

of
√

5
4
a2 (Appendix A). Our globally hyperbolic simplicial manifold is built up of space-time

strips of height ∆t= 1, where each strip consists of up and down pointing Minkowskian
triangles (Figure 5). The foliation parameter t is interpreted as the discretized version of
“proper” time T = a · t. Each spatial slice at time t is chosen to have periodic boundary
conditions with fixed topology S1 of the sphere. (Different boundary conditions are dis-
cussed in Appendix B-C). Note that each spatial geometry is completely characterized by
its discrete length l, where L=a · l is the spatial length. Further, due to the S1 topology,
the symmetry factor of a spatial slice of length l is just C(l)= l.

After we have defined the triangulations contributing to the path integral, the next
step is to determine their corresponding weights, i.e. the Regge action. Recall that the
Einstein-Hilbert action in two dimensions is given by

SEH[g] =

∫
M

d2x
√
| det g| (Λ−K R(x)) , (16)

where K = G−1
N is the inverse Newton’s constant. A simplification occurs due to the

topological character of the curvature term in two dimension,∫
M

d2x
√
| det g|R(x) = 2πχ(M), (17)
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where χ(M) = 2−2g is the Euler characteristic of the manifold M and g is the genus of
M . Hence, since we are not allowing for spatial topology changes, the exponential of i
times this term is just a constant phase factor which does not influence the dynamics and
therefore can be pulled out of the path integral. If one actually allows for topology changes
this term will be more involved as we will see in Section 3. Since all triangles have the
same volume, the Regge action (11) takes the following simple form

SRegge(T ) = λ̃ a2N(T ), (18)

where λ̃ is the bare cosmological constant and N(T ) the number of triangles in the tri-

angulation T . Note that a factor of
√

5
4

coming from the volume term has been absorbed

into λ̃. Using (12) and (18), the discrete gravitational path integral over the set of two
dimensional causal simplicial manifolds T with an initial boundary lin and a final boundary
lout, consisting of t= tout − tin time steps, can be written as

G
(1)

λ̃
(lin, lout; t) =

∑
T∈T :

lin→lout

1

lin
ei λ̃ a2 N(T ). (19)

For simplicity we can remove the symmetry factor 1/lin by marking a vertex on the initial
boundary, hence define

Gλ̃(lin, lout; t) = linG
(1)

λ̃
(lin, lout; t). (20)

The unmarked propagator can be easily recovered at a later stage.
The next step of the calculation will be to Wick rotate Gλ̃(lin, lout; t) to the Euclidean

sector. Following the prescription for the Wick rotation W as defined in (14), we get

Gλ̃(lin, lout; t) =
∑
T∈T :

lin→lout

ei λ̃ a2 N(T ) W−→ Gλ(lin, lout; t) =
∑

T∈W(T ):
lin→lout

e−λ a2 N(T ), (21)

where λ and λ̃ differ by a O(1) constant, due to the volume difference of the Euclidean
and Minkowskian triangles (Appendix A).

An essential quantity for the solution of the model is the transfer matrix T̂ which
contains all dynamical information of the system. The transfer matrix can be represented
by its matrix elements with respect to the initial state | lin〉 and the final state | lout〉, i.e.
the kernel

Gλ(lin, lout; t = 1) = 〈lout | T̂ | lin〉, (22)

which is often referred to as the one-step propagator. From the semi-group property of the
propagator,

Gλ(l1, l2; t1 + t2) =
∑

l

Gλ(l1, l; t1)Gλ(l, l2; t2), (23)

Gλ(l1, l2; t1 + 1) =
∑

l

Gλ(l1, l; t1)Gλ(l, l2; 1), (24)
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it follows that the propagator Gλ(lin, lout; t) for an arbitrary time t is obtained by iterating
(22) t times, yielding

Gλ(lin, lout; t) = 〈lin | T̂t | lout〉. (25)

In the continuum language this expression is closely related to the continuum partition
function,

ZT = lim
a→0
t→∞

Tr T̂t, (26)

where in the limit the product T = t ·a is kept fixed. One sees that knowing the eigenvalues
of the transfer matrix is the key to solving the general problem.

Let us therefore concentrate on triangulations T of just one single time step: For such a
strip with initial boundary of length lin and final boundary of length lout the total number
of triangles is just N(T )= lin+lout (cf. Figure 5). Evaluating the eigenvalues of the transfer
matrix then reduces to a simple counting problem,

Gλ(lin, lout; t = 1) = e−λ a2 (lin+lout)
∑

T∈W(T ):
lin→lout

1 = e−λ a2 (lin+lout)
lin

lin + lout

(
lin + lout

lin

)
. (27)

For later purposes it is convenient to introduce the generating function for the propa-
gator Gλ(lin, lout; t), defined as

G(x, y; g; t) =
∑

lin,lout

Gλ(lin, lout; t)x
linylout , (28)

where we used the notation g = e−λ a2
. This expression can also be used to rewrite the

semi-group property or composition law (24), yielding

G(x, y; g; t1 + t2) =

∮
dz

2πiz
G(x, z−1; g; t1)G(z, y; g; t2). (29)

The quantities x and y can be seen as purely technical tools of the generating function
formalism, but one can also view them as boundary cosmological constants

x = e−λin a, y = e−λout a. (30)

This interpretation is useful in the context of renormalization as we will see in the next
section. The generating function of the one-step propagator can be obtained from (27) and
(28) by usual techniques, yielding8

G(x, y; g; 1) =
g2xy

(1− gx)(1− g(x+ y))
(31)

8Note that the asymmetry in x and y is due to the marking in the initial spatial boundary. “Unmarking”
at a later stage will recover symmetry.
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The joint region of convergence of (31) is given by

|x| < 1, |y| < 1, |g| < 1

2
. (32)

Another way of obtaining (31) is by graphical methods. Associating a factor of gx to
every up pointing triangle “4” and a factor of gy to every down pointing triangle “5”,
the sum over all possible triangulations of one strip with circular boundary conditions can
be written as

G(x, y; g; 1) = + + + ...

=
∞∑

k=0

(
gx

∞∑
l=0

(gy)l

)k

−
∞∑

k=0

(gx)k. (33)

The subtraction of the last summand has been performed to remove the degenerate cases
where either entrance or exit loop have length zero. Evaluation of (33) shows the equiva-
lence to (31).

2.5 Continuum limit

In this section we want to construct the continuum limit of the discretized model, by
making use of standard techniques of the theory of critical phenomena. Note that all the
calculations are performed in the Euclidean sector of the theory.

In terms of critical phenomena the continuum limit is obtained by fine-tuning the
coupling constants, generally denoted by λ, to the critical point λc of the phase transition.
This means a divergence of the correlation length ξ in the scaling limit

ξ(λ) ∼ 1

|λ− λc|ν
λ→λc−−−→∞, (34)

while the cutoff a goes to zero

a(λ) ∼ |λ− λc|ν
λ→λc−−−→ 0, (35)

where ν is a critical exponent. In terms of the cutoff a and the correlation length ξ the
physical correlation length is given by L=ξ(λ) · a(λ) and the continuum limit is defined as
the simultaneous limit

a(λ) → 0, ξ(λ) →∞ for fixed L = ξ(λ) · a(λ). (36)

Having defined the general scheme to perform the continuum limit, let us now come back
to the concrete problem of the discretized model described by the one-step propagator (31).

From standard techniques of renormalization theory, we expect the couplings with
positive mass dimension, i.e. the cosmological constant λ and the boundary cosmological
constants λin and λout to undergo an additive renormalization,

λ =
Aλ

a2
+ Λ, λin =

Aλin

a
+X, λout =

Aλout

a
+ Y, (37)
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where Λ, X and Y denote the corresponding renormalized values. Introducing the critical
values

gc = e−Aλ , xc = e−Aλin , yc = e−Aλout , (38)

it follows that

g = gc e
−a2 Λ, x = xc e

−a X , y = yc e
−a Y . (39)

The continuum limit can be performed by fine-tuning to the critical values
(x, y, g) 7→ (xc, yc, gc), as explained above. Further, it can be shown [7], that the only
sensible continuum theory can be obtained by choosing (xc, yc, gc)=(1, 1, 1

2
) or (xc, yc, gc)=

(−1,−1,−1
2
), which both lead to the same continuum theory. Hence, performing the con-

tinuum limit can be done by simultaneously fine-tuning to the critical values with use of
the following scaling relations:

g =
1

2
(1− a2 Λ) +O(a3), (40)

x = 1− aX +O(a2), (41)

y = 1− a Y +O(a2). (42)

Let us now show how we can reveal the continuum Hamiltonian in this scaling limit.
First note that, as we have rewritten the composition law in terms of generating functions,
i.e. (29), we can also rewrite the time evolution of the wave function (the analogue of (3))
in a similar manner,

ψ(x, t+ 1) =

∮
dz

2πiz
G(x, z−1; 1)ψ(z, t). (43)

Introducing the scalings (40)-(42) and t= T
a

into (43) and expanding both sides to order a
gives (

1− aĤ(X, ∂X) +O(a2)
)
ψ(X)

=

∫ i∞

−i∞

dZ

2πi

{(
1

Z −X
+ +a

2X2 − 4XZ + Z2 + 2 Λ

(Z −X)2

)
+O(a2)

}
ψ(Z), (44)

where we have defined ψ(X)≡ψ(x= 1 − aX) and respectively for Z. For the expansion
of the left hand side of (44) we used the formula for an infinitesimal time evolution of the
wave function which is also used in the fundamental definition of the path integral,

ψ(X,T + a) = e−a Ĥ(X,∂X)ψ(X,T ). (45)

Notice that the first term on the right hand side of (43), 1
Z−X

, is the inverse Laplace
transformed delta function δ(Z −X) as expected. Performing the integration in (44), one
can extract the Hamiltonian

Ĥ(X,
∂

∂X
) = X2 ∂

∂X
+ 2X − 2 Λ

∂

∂X
. (46)
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It is important to notice at this point that the Hamiltonian (46) does not depend on
possible higher order terms of the scaling relations (40)-(42). One might check this by
explicitly introducing higher order terms in the scaling relations, hence

x = 1− aX +
1

2
γ a2X2 +O(a3), (47)

y = 1− a Y +
1

2
γ a2 Y 2 +O(a3). (48)

Following the above procedure with the new scaling relations (47)-(48), one sees that the
resulting Hamiltonian does not depend on γ and is still described by (46).

Having obtained the effective quantum Hamiltonian in “momentum”-space X, one can
go back to the Hamiltonian in length-space L by performing an inverse Laplace transfor-
mation on the wave functions,

ψ(L) =

∫ ∞

0

dX eXLψ(X). (49)

The inverse Laplace transformation is the continuum counterpart of the defining equation
for the generating functions, formula (28), which one can think of as a discrete Laplace
transformation. The effective quantum Hamiltonian for the marked propagator then reads

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
+ 2ΛL, (marked). (50)

This operator is selfadjoint on the Hilbert spaceH=L2(R+, L
−1dL). The effective quantum

Hamiltonian corresponding to the unmarked propagator can then be obtained as

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− 2

∂

∂L
+ 2ΛL, (unmarked), (51)

which is selfadjoint on the Hilbert space H = L2(R+, LdL). Notice that both Hamilton
operators describe the same physical system.9 In the following we want to analyze the
effective quantum Hamiltonian (51), calculate the spectrum, the eigenfunctions and from
this further quantities like the partition function and the finite time propagator. A detailed
calculation of these results is presented in Appendix D.

The Hamiltonian consists of a kinetic term which depends on the spatial length of
the “universe” and a potential term which depends on the (renormalized) cosmological
constant. Further, it is important to notice that the Hamiltonian is bounded from below
and therefore leads to a well-defined quantum theory. The spectrum of the Hamiltonian is
discrete with equidistant eigenvalues,

En = 2
√

2Λ(n+ 1) n = 0, 1, 2, .. (52)

9Consider the symmetric matrix element for the Hamiltonian of the marked case L−1
1 dL1〈L1 | Ĥ |L1〉.

From (60) it follows that unmarking can be done by absorbing a factor L−1
1 into the wave function,

i.e. | L1〉 7→| Lu
1 〉 = L−1 | L1〉. The unmarked Hamiltonian can then be obtained by evaluating

dL−1
1 dL1〈L1 | Ĥ |L1〉=L1dL1〈Lu

1 | Ĥu |Lu
1 〉.
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The corresponding eigenfunctions are given by

ψn(L) = Ane
−
√

2ΛL
1F1(−n; 2; 2

√
2ΛL), dµ(L) = LdL, (53)

where 1F1(−n, µ+ 1; z) are the confluent hypergeometric functions. In this case the power
series of the confluent hypergeometric function is truncated to a polynomial of degree n,
namely, the generalized Laguerre polynomials, here denoted by Lµ

n(z),

1F1(−n;µ+ 1; z) =
Γ(n+ 1)Γ(µ+ 1)

Γ(n+ µ+ 1)
Lµ

n(z) (54)

=
n∑

k=0

(−1)k

(
n

k

)
1

(µ+ 1)(µ+ 2)...(µ+ k)

zk

k!
. (55)

From this one can see that the eigenfunctions ψn(L) form an orthonormal basis of the
Hilbert space H, where the normalization factor is given by

An = 2
√

2Λ(n+ 1). (56)

Having obtained the spectrum of the Hamiltonian one can easily calculate the (Euclidean)
partition function by using

ZT = Tr(e−TĤ) =
∞∑

n=0

e−TEn . (57)

Hence, inserting (52) into (57) yields

ZT =
1

e2
√

2ΛT − 1
=

1

2

(
coth(

√
2ΛT )− 1

)
. (58)

Another interesting quantity to calculate is the finite time propagator or loop-loop corre-
lator which is defined by

GΛ(L1, L2;T ) = 〈L2 | e−TĤ |L1〉 (59)

=
∞∑

n=0

e−TEnψ∗n(L2)ψn(L1), (60)

where in the second line we used that the eigenstates form a complete orthonormal basis
of the Hilbert space. Upon inserting (53) into (60) one obtains the unmarked finite time
continuum propagator (cf. Appendix D)

GΛ(L1, L2;T ) =

√
2Λ

L1L2

e−
√

2Λ(L1+L2) coth(
√

2ΛT )

sinh(
√

2ΛT )
I1

(
2

√
2ΛL1L2

sinh(
√

2ΛT )

)
, (61)

where I1(x) denotes the modified Bessel function of the first kind. The corresponding
propagator with a marking on the initial (final) spatial boundary can then be obtained by
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multiplying (61) with L1 (L2). The finite time propagator (61) of two-dimensional CDT
was first obtained in [7].

A remarkable fact to mention at this point is that, up to some marking ambiguities,
the finite time propagator (61) agrees with the result of the propagator obtained from a
continuum calculation in proper-time gauge of two-dimensional pure gravity [41].

Since all continuum results presented so far were calculated in the Euclidean sector,
the remaining task is to define an inverse Wick rotation to relate the Euclidean sector
with the Lorentzian sector of the theory. A natural proposal is to analytically continue
the continuum proper time T 7→ −iT . Under this prescription the effective quantum
Hamiltonian corresponds to a unitary time evolution,

Û(T, T ′) = eiĤ(T−T ′), with Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− 2

∂

∂L
+ 2ΛL. (62)

Further, the Euclidean partition function (58) and the Euclidean finite time propagator
(61) can then be simply related to their corresponding Lorentzian expressions. For the
case of the finite time propagator, the expression in the Lorentzian sector reads,

GΛ(L1, L2;T ) =

√
2Λ

L1L2

ei
√

2Λ(L1+L2) cot(
√

2ΛT )

i sin(
√

2ΛT )
I1

(
2

√
2ΛL1L2

i sin(
√

2ΛT )

)
(Lorentzian s.). (63)

Here one can clearly see that the propagator possesses oscillation modes in the time variable
T .

As a final remark, notice that the definition of the inverse Wick rotation is not a priori
clear. Besides the definition given above, one might also consider the analytic continuation
in the cosmological constant Λ 7→ −iΛ, which would also correspond to a continuation
at 7→ −iat on the time-like cutoff. Unfortunately, it does not lead to a unitary theory, for
which reason we prefer the analytic continuation on the proper time variable T 7→ −iT as
the physically sensible inverse Wick rotation.

2.6 Physical observables

Having calculated the effective quantum Hamiltonian, the partition function and the prop-
agator, there remains the question: What is the physics behind those expressions? As one
can see from (17), the classical Einstein equations in two dimensions are empty. Neverthe-
less, we obtained a non-trivial expression for the effective quantum Hamiltonian. Therefore,
whatever dynamics it describes will be purely quantum, without a physical non-trivial clas-
sical limit. More precisely, we will see that it corresponds to quantum fluctuations of the
spatial length of the “universe”.

Interesting observables to calculate are the expectation values of the spatial length and
higher moments. Since the only dimensionful constant in the model is the cosmological con-
stant with dimension [Λ]=length−2, all dimensionful quantities will appear in appropriate
units of Λ. Using the expression of the wave function (53), one can calculate expectation
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values of spatial length and all moments

〈Lm〉n ≡ 〈n | L
m |n〉 =

∫ ∞

0

dµ(L)ψ∗n(L)Lm ψn(L). (64)

A general expression for (64) is presented in Appendix D. Let us just state the first two
expressions here, namely,

〈L〉n =
n+ 1√

2Λ
,
〈
L2
〉

n
=

3

4

(n+ 1)2

Λ
. (65)

Generally, the moments scale as 〈Lm〉n = Λ−
m
2 as shown in the appendix. From (65) one

can also calculate the variance 〈∆L〉n of the spatial length,

〈∆L〉n =

√
〈L2〉n − 〈L〉

2
n =

1

2

n+ 1√
Λ
. (66)

One can see that for the “universe” in a certain state |n〉, for example, the ground state
| 0〉, it possesses fluctuations around the average value 〈L〉0 with variance 〈∆L〉0. This
behavior is illustrated in Figure 6 by a numerical Monte-Carlo simulation. What is also
good to see in the figure is that the fluctuations are roughly of the same order as the spatial
length of the “universe”, i.e. 〈∆L〉∼〈L〉.

Other useful quantities to calculate are certain critical exponents of the continuum
theory, which, due to the gravitational setting, will all have a geometrical interpretation.
Among those critical exponents, there is one of special interest, namely, the Hausdorff
dimension dH (cf. [40]). In particular, dH can be calculated for each geometry [gµν ], but
what we will consider here is the ensemble average over the entire class Geom(M), that is,
the leading order scaling behavior of the expectation value

〈V 〉T ∼ T dH . (67)

To calculate this quantity we use the partition function (58), whose behavior for large T
is given by

ZT (Λ) ∼ e−2
√

2ΛT for T →∞. (68)

From this we can define a typical energy scale M(Λ) of the “universe”,

M(Λ) = lim
T→∞

(
− logZT (Λ)

T

)
∼ Λ

1
2 . (69)

On the other hand, we can use the partition function ZT (Λ) to calculate the ensemble
average of the volume, by taking derivatives with respect to the corresponding coupling,
namely, the cosmological constant Λ,

〈V 〉T = − 1

ZT (Λ)

∂ZT (Λ)

∂Λ
. (70)
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Figure 6: A typical two-dimensional Lorentzian space-time. The compactified direction
shows the spatial hypersurfaces of length 〈L〉 and the vertical axis labels proper time T .
Technically, the picture was generated by a Monte-Carlo simulation, where a total volume
of N = 18816 triangles and a total proper time of t = 168 steps was used. Further, initial
and final boundary has been identified.

Upon inserting (68) into (70), we can determine the scaling behavior of the volume at large
scales T�1/M(Λ),

〈V 〉T ∼ T · Λ−
1
2 for T � 1

M(Λ)
. (71)

This shows that at large scales T � 1/M(Λ), the typical universe has a volume which is
proportional to T and therefore looks like a long tube of length T . Further, from (71) one
can read off that the spatial length scales as

〈L〉 =
〈V 〉
T

∼ 1√
Λ
, (72)

as we have already found in (65). More interesting than the scaling of the volume at large
scales is the typical scaling at small scales, namely, those of order T ∼ 1/M(Λ). In the
same procedure one obtains

〈V 〉T ∼ T 2 for T ∼ 1

M(Λ)
. (73)

From definition (67), one then sees that the Hausdorff dimension of 2d Lorentzian quantum
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gravity or CDT is given by
dH = 2 (CDT). (74)

Naively this looks trivial, since we were considering two-dimensional CDT which in the
construction uses two-dimensional building blocks. However, the Hausdorff dimension is
truly a dynamical quantity and is a priori not the same as the dimension of the simplicial
building blocks. An example of this is two-dimensional Euclidean quantum gravity
defined through dynamical triangulations which has a Hausdorff dimension of dH = 4.10

This non-canonical value of the Hausdorff dimension is due to the highly degenerate,
acausal geometries contributing to the ensemble average. At this point one can clearly
see, as already mentioned in Section 2.3, that the continuum theories of two-dimensional
quantum gravity with Euclidean and Lorentzian signature are distinct and cannot be
related in a trivial manner (cf. footnote 6)!

To conclude, we have seen that CDT gives a powerful method to define a nonperturba-
tive path integral for quantum gravity. In the considered two-dimensional model with fixed
cylindrical topology, it led to a well-defined continuum quantum theory, whose time evolu-
tion was unitary. Further, we have seen that the restriction to the causal geometries in the
path integral led to a physically interesting ground state of a quantum “universe”, which
also showed that quantum gravity with Euclidean and Lorentzian signature are distinct
theories.

One can now ask the question whether or not causal constraints might be a helpful tool
to implement topology changes and the sum over topologies in the path integral. Finding
a detailed answer to this question will be the topic of the following Section 3.

Another aspect we have not considered so far is the question of universality of the
theory: In general one would expect that the continuum theory should be independent of
the details of the discretization procedure we use, e.g., whether we build up our space-time
from triangles, squares or p-polygons should not affect any continuum physical observable.
A discussion of this point will be the topic of Section 4.

3 2D Lorentzian quantum gravity with topology

change

In this section we construct a combined path integral over geometries and topologies for
two-dimensional Lorentzian quantum gravity. The section is structured as follows: In
Section 3.1 we introduce the reader to the general concepts of a path integral formulation for
quantum gravity including a sum over topologies and discuss certain problems, especially
in the context of Euclidean formulations. In Section 3.2 we demonstrate qualitatively how
the Lorentzian structure can be used to exclude certain geometries from the path integral
which lead to macroscopic causality violation; this makes the path integral well-behaved. In

10One can rapidly check this by noting that the partition function in this case scales as ZT (Λ) ∼ e−c
4√

ΛT

for T →∞ [7].
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Section 3.3 an explicit realization of this construction in the framework of two-dimensional
CDT and the discrete solution thereof is presented. The difficulty in the construction of
the continuum limit is to find a suitable double scaling limit for both the cosmological and
Newton’s constant, which we address in Section 3.4. The resulting continuum theory of
quantum gravity describes a quantum “universe” with fluctuating geometry and topology,
as we will discuss in Section 3.5 in terms of its physical observables. Further, we show in
Section 3.6 that the presence of infinitesimal wormholes in space-time leads to a decrease
in the effective cosmological constant.

3.1 Sum over topologies in quantum gravity

In Section 2 we have given a concrete meaning to the nonperturbative gravitational path
integral as an integral over all possible geometries Geom(M),

Z =

∫
Geom(M)

D[gµν ]e
iSEH[gµν ], (75)

which by virtue of the approach of causal dynamical triangulations led to a well defined
continuum theory of quantum gravity in two dimensions.

Nevertheless, many other attempts of constructing a nonperturbative gravitational path
integral start from the ansatz that one should not only consider all geometries of a manifold
M of a certain fixed topology, but further include the sum over all space-time topologies
in the gravitational path integral, formally written as

Z =
∑
M

∫
Geom(M)

D[gµν ]e
iSEH[gµν ]. (76)

But how should we think about summing over topologies and further about the associated
topology changes [16] of space as a function of time? Clearly, theories which predict topol-
ogy changes at macroscopic scales are unlikely to be consistent with observational data.
A suggestion for how one should think about topology changes is therefore as topological
excitations of space-time at very short scales such as the Planck scale. This leads to the
notion of space-time foam [42, 43], according to which space-time is a smooth manifold at
macroscopic scales, but at small scales is dominated by roughly fluctuating geometries and
topologies. Whether nature really admits this behavior and one should include the sum
over topologies into the path integral is still unclear.

The gravitational path integral including the sum over topologies has been the subject
of intensive study in the context of four-dimensional Euclidean quantum gravity [44, 45].
However, in nonperturbative quantum gravity models, where one can analyze the problem
explicitly, it turns out that topology changing configurations completely dominate the path
integral (76), since the number of contributing geometries grows super-exponentially with
the volume N , i.e. at least ∼N !, which makes the path integral badly divergent.

Moreover, this problem is still present in Euclidean quantum gravity in dimensions
d<4. In the case of two dimensions, Euclidean quantum gravity without topology changes
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is well understood analytically, as mentioned in Section 2 in the context of dynamical
triangulations. Furthermore, the sum over topologies takes a very simple form, as a sum
over a single parameter, g>0, the genus of the space-time manifold M , i.e. the number of
space-time handles. Including the sum over topologies, the Euclidean analogue of (76) has
been studied intensively, also because it can be interpreted as a nonperturbative sum over
worldsheets of a bosonic string with zero-dimensional target space [46]. There it turns out
that the divergence of the path integral still persists, moreover, the topological expansion
of (76) is not even Borel-summable [17]. Further attempts to solve this problem in the
Euclidean context have so far been unsuccessful.

To draw a lesson from Section 2, we have seen that in pure Lorentzian quantum gravity
or CDT (we will from now on refer to the CDT model with fixed topology as the “pure”
model) the restriction to causal geometries in the gravitational path integral (75) leads to
a physically interesting ground state of a quantum “universe” which is distinct from the
Euclidean case. Inspired by this, one might now ask the question whether implementing
the (almost everywhere) causal structure into the gravitational path integral including
the sum over topologies might restrict the state space in such a way that the number of
geometries does not grow super-exponentially anymore. That this is indeed the case, and
that one can unambiguously define (76) in the setting of CDT has been shown in [20, 21]11

and will be discussed in the following sections.

3.2 Implementing topology changes

Having adopted the notion of space-time foam and the sum over topologies in the path
integral, we have to face the question, what kind of topology changing geometries should
contribute to the sum in (76).

From observational data we tend to exclude all topology changing geometries which
lead directly to a macroscopic acausal behavior. In our implementation we therefore con-
sider only topology changes which are of an infinitesimal duration, so-called infinitesimal
wormholes. In terms of the framework of CDT this means that wormholes do only exist
within one time step ∆t= 1 of discrete proper time. Further, the total number of worm-
holes per such discrete time step can be arbitrary in the continuum limit. Using this notion
of infinitesimal wormholes, we consider triangulations whose spatial slices have topology
S1 for integer values of t, whereas in the interval ]t, t+1[ it splits into gt+1 S1-components,
where gt is the number of wormholes or equivalently the genus of this space-time strip.

The setting with infinitesimal wormholes in a path integral formulation of quantum
gravity with a sum over topologies has been studied before in the context of Euclidean
quantum gravity in four dimensions [24, 25]. Nevertheless, as we will show in the fol-
lowing, even generic space-times adopting this mildest form of topology change can cause
a super-exponential growth in the number of configurations in the path integral or lead
to a macroscopic acausal structure. The essential difference between Euclidean quantum
gravity and CDT is the (almost everywhere) Lorentzian structure, which enables us to

11Also see [22, 23] for additional information.
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(a1) (a2) (a3)

(b1) (b2)(a4)

t+   t∆

t

t+   t∆

t

Figure 7: (a1) A spatial slice of topology S1 at time t splits into three components giving
rise to two saddle points pt. (a2) A merging of two components at time t + 1, where the
saddle points pt and pt+1 are time-like related. This gives rise to a “untwisted” wormhole,
as shown in (a3). Parallel light rays passing this wormhole are unaffected unless they are
not scattered directly by the wormhole, as emphasized in (a4). For the case of a twisted
regluing (b1), where the saddle points pt and pt+1 are space-like separated, parallel light
beams passing this wormhole split into two parts with a relative separation (b2).

classify how badly causality is violated and to exclude certain “badly” causality violating
geometries from the path integral. To be more precise on this point, clearly the metric
of the topology changing geometries becomes degenerate at the saddle points p, where
space-time splits or merges. Nevertheless, one is still able to assign a light-cone to these
so-called Morse points by analysis of the neighboring points as discussed in [47, 48, 49, 50].

Let us now give some qualitative arguments for excluding certain classes of geometries
with “bad” topology changes, and then present the concrete realization of how to implement
the remaining “not-so-bad” topology changes in the framework of CDT in the next section.

The creation of wormholes is illustrated in Figure 7. At discrete proper time t the
spatial slice of topology S1 splits into gt+1 S1-components giving rise to gt saddle points
(a1). After a time lapse ∆t=1, the S1-components merge again to a single S1, which leads
to gt wormholes in the space-time strip [t, t+1]. An important point in this construction is
the question of how one is going to reglue the different S1-components at time t+1. It is not
difficult to see that arbitrary regluings at time t+1 give again rise to a super-exponential
growth of the number of configurations. However, most of these regluings are very ill-
behaved with respect to their “causal structure”, in the sense that part of light beams can
get a global rearrangement when passing through the wormholes. Fortunately, the imposed
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(almost everywhere) Lorentzian structure enables us to restrict ourselves to a subclass of
topology changes which does not admit this behavior, namely, regluings without a relative
rearrangement or twist of the corresponding S1-components. These topology changes are
characterized by the fact that the upper saddle point pt+1 is time- or light-like related to
the lower saddle point pt, as indicated in Figure 7, (a2)-(a3), where for simplicity only one
merging of two S1-components is shown.

To illustrate the qualitative difference between those untwisted and twisted topology
changes, consider light beams propagating through the resulting space-times, as shown in
Figure 7, (a4) and (b2). In both cases light beams which hit the wormhole scatter non-
trivially. However, in the twisted case another effect takes place, namely, due to the relative
spatial shift ∆l between the saddle points pt and pt+1, parallel light beams passing this
wormhole will split into two parts with a relative separation ∆l. While the effect due to
the non-trivial light scattering goes to zero in the continuum limit, the relative separation
in the twisted case persists, even after the wormhole has disappeared. We therefore discard
these twisted mergings as “bad” topology changes and exclude them from the path integral.
Thus, we only consider geometries with untwisted wormholes in the sum over topologies.
Note that even though the effect of light scattering at such an untwisted wormhole goes to
zero in the continuum limit, this does not mean that the contribution of several wormholes
will not lead to a measurable effect; in fact, this is precisely what we will observe in the
resulting theory.

3.3 Discrete solution: The transfer matrix

In this section we discuss how wormholes of the type explained above can be introduced
in the setting of CDT. Further, we present the combinatorial solution of the one-step
propagator including the sum over topologies in the discrete setting.

Consider a typical space-time strip of topology [0, 1]×S1, as used in the discrete setting
of the pure CDT model, which is illustrated in Figure 8, (i). An “untwisted” wormhole of
infinitesimal duration ∆t=1, as associated to a “not-so-bad” geometry, can be created by
identifying two time-like edges of this space-time strip (ii) and cutting open the geometry
perpendicular to this line (iii). Clearly, the resulting saddle points pt and pt+1 are time-like
related. The curvature singularities at those saddle points will be of the standard conical
type after we have performed the Wick rotation and we can assign the Boltzmann weight
accordingly.12 A space-time strip of arbitrary genus g can then be generated by repeating
this procedure g-times, where the g arrows identifying time-like edges are not allowed to
intersect, as illustrated in Figure 9. This type of identification ensures that we obtain just
an exponential growth in the volume, which leads to a well-defined continuum theory, in
contrast to the super-exponential growth in the Euclidean model.

As in the pure CDT model, all dynamical information is encoded in the transfer matrix
and it therefore suffices to investigate the combinatorics of a single space-time strip. Hence,
following the prescriptions of Section 2.4 and including the topological term (17) in the

12See [51] for a related discussion.
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(i) (ii)

(iii)

pt+1

pt

wormhole

Figure 8: Construction of a wormhole: starting from a space-time strip of topology
[0, 1]×S1 as in the pure CDT model (i), one identifies two time-like edged (ii) and then
cuts open the geometry perpendicular to this line (iii). The two resulting saddle points at
time t and t+1 are labeled with pt and pt+1.

Regge action, we obtain the Wick rotated one-step propagator

Gλ,κ(lin, lout; 1) = e−λ a2 (lin+lout)
∑

T∈W(T ):
lin→lout

e−2κ g(T ), (77)

where the sum is taken over all possible triangulations T of height ∆t = 1 with fixed
initial boundary lin and final boundary lout, but arbitrary genus 0 6 g(T ) 6 [N/2] (here
N = lin + lout is the number of triangles in T , which coincides with the number of time-
like edges). Further, κ is the bare inverse Newton’s constant and λ the bare cosmological
constant. As in the pure model we have omitted an overall constant phase factor.

Let us now perform the sum in (77) for fixed genus. Consider first the case without
wormholes. To simplify the combinatorial expressions, we will use the combinatorial factor
belonging to a space-time strip with open boundary conditions, instead of circular boundary
conditions. As shown in Appendix B-C, the resulting continuum theories in the pure CDT
model are very similar for both boundary conditions, which enables us to recover the result
for circular boundary conditions at a later stage. Hence, the combinatorial factor assigned
to the sum over all possible triangulations without wormholes reads (Appendix B)

G̃(lin, lout) =

(
lin + lout

lin

)
. (78)

For a given strip with fixed number of triangles N= lin+lout, wormholes are created by the
procedure explained above. Thereby, to construct a space-time strip with 06g(T )6 [N/2]
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Figure 9: Identification of time-like edges: Displayed is a cut through a space-time of
topology [0, 1]×S1 halfway between time t and t+1. The N = lin + lout time-like edges
appear as dots on a circle in the cutting plane. Pairwise identification of the 2g time-like
edges (dots) is illustrated by the non-intersecting arches, where maximally one arch can
connect to each dot.

wormholes, one first has to choose 2g out of N time-like edges; the combinatorial factor
assigned to this is simply given by (

N

2g

)
. (79)

For a given set of 2g time-like edges we have to count the number of possibilities to pairwise
identify these edges, where the arches belonging to the identifications are not allowed to
intersect, as illustrated in Figure 9. This is a well-known combinatorial problem whose
solution is given by the Catalan numbers

cg =
(2g)!

g!(g + 1)!
=

1

g + 1

(
2g

g

)
. (80)

Thus, the complete formula for the one-step propagator (77), after the fixed genus part of
the sum has been performed, reads

Gλ,κ(lin, lout; 1) = e−λ a2 (lin+lout)

[N/2]∑
g=0

(
N

lin

)(
N

2g

)
(2g)!

g!(g + 1)!
e−2κg. (81)

From this one can obtain the propagator Gλ,κ(lin, lout; t) for arbitrary time t by iterating
(81) t times according to the composition law

Gλ,κ(lin, lout, t1 + t2) =
∑

l

Gλ,κ(lin, l, t1)Gλ,κ(l, lout, t2), (82)

Gλ,κ(lin, lout, t+ 1) =
∑

l

Gλ,κ(lin, l, 1)Gλ,κ(l, lout, t). (83)

To give a complete solution of the discrete problem we still have to explicitly perform the
sum over all genus in (81). We will obtain this result in Laplace transformed “momentum”
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space, by introducing generating functions for the one-step propagator

G(x, y; g, h; 1) =
∞∑

lin,lout=0

Gλ,κ(lin, lout, 1)xlinylout , (84)

where we have defined g = e−λ, as in the pure model, and h= e−κ. Upon inserting (81)
into (84) and evaluating the summations over the l’s, one obtains the generating function
of the one-step propagator

G(x, y, g, h, 1) =
1

1− g (x+ y)

2

1 +
√

1− 4u2
, (85)

with

u =
h

1− 1
g (x+y)

. (86)

Note that in order to arrive at this expression, we have explicitly performed the sum over
all (not-so-bad) topologies! The fact that this infinite sum converges for appropriate values
of the bare couplings has to do with the restriction to the “not-so-bad” topology changes
according to the imposed causality constraints, as motivated in the previous section.

In (85) one recognizes the generating function Cat(u2) for the Catalan numbers,

Cat(u2) =
2

1 +
√

1− 4u2
=

1−
√

1− 4u2

2u2
. (87)

For h=0 one has Cat(u2)=1 and expression (85) reduces to the generating function of the
one-step propagator with open spatial boundary conditions of the pure CDT model (cf.
Appendix B),

G(x, y; g, h = 0; 1) =
1

1− gx− gy
. (88)

3.4 Continuum and double scaling limit

Taking the continuum limit in the case of pure CDT is fairly straightforward, as we have
seen in Section 2.5. The joint region of convergence of the one-step propagator (88) is
given by

|x| < 1, |y| < 1, |g| < 1

2
. (89)

The continuum limit was then obtained by simultaneously fine-tuning to the critical values
with use of the following canonical scaling relations

g =
1

2
(1− a2 Λ) +O(a3), (90)

x = 1− aX +O(a2), (91)

y = 1− a Y +O(a2), (92)
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where X, Y and Λ denoted the renormalized couplings. The difficulty which arises when
taking the continuum limit in the case with topology changes is to find a suitable double
scaling limit for both the gravitational and cosmological coupling, which leads to a phys-
ically sensible continuum theory. By this we mean that the one-step propagator should
yield the Dirac delta-function to lowest order in a, and that the Hamiltonian should be
bounded below and not depend on higher-order terms of the scaling relations for all cou-
plings, in a way that would introduce a non-trivial dependence on new couplings in the
continuum theory. Difficulties in finding such a double scaling limit arise due to the fact
that Newton’s constant is dimensionless in two dimensions, whence there is no preferred
canonical scaling for h. One can make the multiplicative ansatz13

h =
1√
2
hren(ad)β, (93)

where hren depends on the renormalized Newton’s constant GN according to

hren = e−2π/GN . (94)

In order to compensate the powers of the cut-off a in (93), d must have dimensions of
inverse length. The most natural ansatz in terms of the dimensionful quantities available
is

d = (
√

Λ
α
(X + Y )1−α), (95)

where the constants α and β have to be chosen such that one obtains a physical sensible
continuum theory according to the above considerations.

To calculate the effective quantum Hamiltonian one can follow a similar procedure as
the one used in the case of the pure CDT model in Section 2.5. Thereby, we start off with
the one-step time evolution of the discrete wave function, recall (43),

ψ(x, t+ 1) =

∮
dz

2πiz
G(x, z−1; g, h; 1)ψ(z, t). (96)

Upon inserting the scaling relations (90)-(92) and t= T
a

into this equation and using

ψ(X,T + a) = e−a Ĥ(X,∂X)ψ(X,T ), (97)

one can expand both sides to first order in a, yielding(
1− aĤ +O(a2)

)
ψ(X) =

∫ i∞

−i∞

dZ

2πi

{(
1

Z −X
+ a

2Λ−XZ

(Z −X)2

)
Cat(u2)

}
ψ(Z), (98)

with ψ(X) ≡ ψ(x=1− aX). For convenience, we treated separately the first factor in the
one-step propagator (85), which is nothing but the expansion of the one-step propagator

13Here the factor 1√
2

is chosen to give a proper parametrization of the number of holes in terms of
Newton’s constant (see Section 3.5).
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without topology changes, and the second factor, the Catalan generating function (87),
which contains all information on the new couplings. Note that the first term on the right-
hand side of (98), 1

Z−X
, is the Laplace-transformed delta-function. This gives us sensible

information of the values of α and β in the expansion of the Catalan generating function.
Inserting the scaling relations (90)-(93) into Cat(u2) and expanding, one obtains

Cat(u2) = 1 +
2 d2β h2

ren

(Z −X)2 a
2β−2 +O(a2β−1). (99)

Thus, in order to preserve the delta-function to lowest order in (98) and to have a non-
vanishing contribution to the Hamiltonian one is naturally led to β = 3/2. For suitable
choices of α it is also possible to obtain the delta-function by setting β = 1, but the
resulting Hamiltonians turn out to be unphysical or at least do not have an interpretation
as gravitational models with wormholes, as we will discuss in Appendix E.14

Considering β = 3/2 and inserting (99) into (98), the right hand side of this equation
becomes ∫ i∞

−i∞

dZ

2πi

{
1

Z −X
+ a

(
2Λ−XZ

(X − Z)2
− 2

√
Λ

3α
h2

ren

(X − Z)3α

)}
ψ(Z). (100)

Observe that to have a non-trivial dependence on the new couplings in the continuum
theory, one should not allow for values α60. Hence, performing the integration for α>0
and discarding possible fractional poles in (100), the effective quantum Hamiltonian in
“momentum” space reads

Ĥ(X,
∂

∂X
) = X2 ∂

∂X
+X − 2Λ

∂

∂X
+ 2Λ

3α
2 h2

ren

(−1)3α

Γ(3α)

∂3α−1

∂X3α−1
, α =

1

3
,
2

3
, 1, ... . (101)

For all possible values of α, these Hamiltonians do not depend on higher order terms in the
scaling relations (90)-(93). One might check this, as explained in Section 2.5, by explicitly
introducing higher order terms in the scaling relations and observing that the resulting
Hamiltonians are independent of them.

One can now perform the inverse Laplace transformation on the wave function,
ψ(L)=

∫∞
0
dXeX Lψ(X), to obtain the effective quantum Hamiltonian in length space,

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− ∂

∂L
+ 2 ΛL− 2 Λ

m+1
2 h2

ren

Γ(m+ 1)
Lm, m = 0, 1, 2, ... , (102)

where we defined m=3α−1. Since Ĥ is unbounded below for m>2, we are left with m=0
and m=1 as possible choices for the scaling. However, setting m=0 merely has the effect
of adding a constant term to the Hamiltonian, leading to a trivial phase factor for the wave
function. Hence, we conclude that the only continuum theory with non-trivial dependence
on the new couplings corresponds to m=1, i.e. to the following double scaling limit

h2 =
1

2
h2

ren Λ (X + Y ) a3, (103)

14One might also consider scalings of the form h → c1hren(ad)+c2hren(ad)3/2, but they can be discarded
by arguments similar to those of Appendix E.
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with the Hamiltonian given by

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− ∂

∂L
+
(
1− h2

ren

)
2 ΛL. (104)

Note that for all valuesGN ≥ 0 of the renormalized Newton’s constant (93) the Hamiltonian
is bounded from below and therefore well defined. Further, the Hamilton operator is
selfadjoint on the Hilbert space H = L2(R+, dL). Note that (104) corresponds to the
propagator with open boundary conditions. It is not difficult to recover the Hamilton
operator for the case of circular boundary conditions

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− 2

∂

∂L
+
(
1− h2

ren

)
2 ΛL. (topology S1×[0, 1]), (105)

which is selfadjoint on the Hilbert space H = L2(R+, LdL). The spectrum of this Hamil-
tonian is discrete with equidistant eigenvalues,

En = 2
√

2Λ(1− h2
ren)(n+ 1) n = 0, 1, 2, .. (106)

The corresponding eigenfunctions are given by

ψn(L) = Ane
−
√

2Λ(1−h2
ren)L

1F1(−n; 2; 2
√

2Λ(1− h2
ren)L), dµ(L) = LdL, (107)

where 1F1(−n, µ+ 1; z) are the confluent hypergeometric functions, defined in (55). As in
the case of pure CDT, the eigenfunctions ψn(L) form an orthonormal basis of the Hilbert
space H, where the normalization factor is given by

An = 2
√

2Λ(1− h2
ren)(n+ 1). (108)

Having obtained the spectrum of the Hamiltonian one can easily calculate the (Eu-
clidean) partition function

ZT (Λ, GN) =
∞∑

n=0

e−TEn =
1

e2
√

2Λ(1−h2
ren)T − 1

, hren = e−2π/GN . (109)

Further the time propagator or loop-loop correlator can be obtained as (cf. Appendix D)

GΛ,GN
(L1, L2;T ) =

∞∑
n=0

e−TEnψ∗n(L2)ψn(L1) (110)

=
ω√
L1L2

e−ω(L1+L2) coth(ωT )

sinh(ωT )
I1

(
2ω
√
L1L2

sinh(ωT )

)
, (111)

where we have used the short hand notation ω=
√

2Λ(1− h2
ren). As expected, for hren→0

the results reduce to those of the pure two-dimensional CDT model, as obtained in Section
2.5.
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3.5 Physical observables

In the following we want to analyze the new model of CDT with topology changes in
terms of its physical observables. As in the pure model, there are certain geometric
observables such as the expectation values of the spatial length and higher moments,
〈Lm〉n≡〈n | Lm |n〉, which can be calculated using the expressions for the wave functions
(107), as obtained in the previous section. The first results read

〈L〉n =
n+ 1√

2Λ(1− h2
ren)

,
〈
L2
〉

n
=

3

4

(n+ 1)2

Λ(1− h2
ren)

, (112)

where a general expression for higher moments is presented in Appendix D. Generally, the
moments scale as 〈Lm〉n = Λ−

m
2 as in the pure CDT model. From (112) one can then also

calculate the variance 〈∆L〉n of the spatial length,

〈∆L〉n =

√
〈L2〉n − 〈L〉

2
n =

1

2

n+ 1√
Λ(1− h2

ren)
. (113)

One can still interpret these observables in terms of a fluctuating universe, as done in the
pure CDT model, where the quantum fluctuations are now governed by the “effective”
cosmological constant Λeff = Λ(1−h2

ren). A detailed discussion on this point in terms of
some new “topological” observables will be given in the next section.

Another geometrical observable is the Hausdorff dimension dH , which can be calculated
from the ensemble average over all geometries with arbitrary genus. Since the partition
function scales as

ZT (Λ, GN) ∼ e2
√

2Λ(1−h2
ren)T as T →∞, (114)

a similar calculation, like the one performed in Section 2.6, reveals that the Hausdorff
dimension is given by

dH = 2. (115)

This is the same result as obtained in the case of pure two-dimensional CDT.
In addition to these well-known geometric observables, the system possesses a new type

of “topological” observable which involves the number of wormholes Ng, as already antici-
pated in Section 3.2, where we mentioned that the presence of wormholes in the quantum
geometry and their density can be determined from light scattering. An interesting quan-
tity to calculate is the average number of wormholes in a piece of spacetime of duration
T , with initial and final spatial boundaries identified. Because of the simple dependence
of the action on the genus this is easily computed by taking the derivative of the partition
function ZT (Λ, GN) with respect to the corresponding coupling, namely,

〈Ng〉 =
1

ZT (Λ, GN)

hren

2

∂ ZT (Λ, GN)

∂hren

. (116)

Upon inserting (109) this yields

〈Ng〉 = T h2
renΛ

coth
(√

2Λ(1− h2
ren)T

)
− 1√

2Λ(1− h2
ren)

. (117)
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Figure 10: The density of wormholes n in units of Λ as a function of Newton’s constant
GN .

In an analogous manner we can also calculate the average spacetime volume

〈V 〉 = − 1

ZT (Λ, GN)

∂ ZT (Λ, GN)

∂Λ
, (118)

leading to

〈V 〉 = T

√
(1− h2

ren)

2Λ

(
coth

(√
2Λ(1− h2

ren)T
)
− 1
)
. (119)

Dividing (117) by (119) we find that the spacetime density of wormholes n is finite,

n =
〈Ng〉
〈V 〉

=
h2

ren

1− h2
ren

Λ. (120)

The density of holes in terms of the renormalized Newton’s constant is given by

n =
1

e
4π

GN − 1
Λ. (121)

The behaviour of n in terms of the renormalized Newton’s constant is shown in Figure
10. The density of holes vanishes as GN → 0 and the model reduces to the case without
topology change.

3.6 Taming the cosmological constant

We have already seen in the last section that fluctuations in the geometry gave rise to
the notion of the “effective” cosmological constant Λeff = Λ(1−h2

ren). In the following we
want to interpret this effect in terms of the physical quantities, namely, the cosmological
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Figure 11: The coefficient of the effective potential, f(η) = 1/(1 + η), as function of the
density of holes in units of Λ, η = n

Λ
.

scale Λ and the density of wormholes in units of Λ, i.e. η = n
Λ
. These can be seen as the

two scales of the model, in contrast to the pure CDT model which just has a single scale.
As in the latter, the cosmological constant, as the only dimensionful quantity, defines the
global length scale of the two-dimensional “universe” through 〈L〉 ∼ 1√

Λ
. The new scale

in the model with topology change is the relative scale η between the cosmological and
topological fluctuations, which is parametrized by Newton’s constant GN . Both together
govern the effective fluctuations in the quantum geometry.

One can nicely observe this when rewriting and interpreting the Hamiltonian (104) in
terms of the new physical quantities, Λ and η, resulting in

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− ∂

∂L
+

1

1 + η
2 ΛL. (122)

One sees explicitly that the topology fluctuations affect the dynamics since the effective
potential depends on η, as illustrated by Figure 11. From the coefficient of the effective
potential, f(η) = 1/(1− η), one also observes that the presence of wormholes in our model
leads to a decrease of the “effective” cosmological constant Λeff =f(η)Λ.

This connects nicely to former attempts to devise a mechanism, the so-called Coleman’s
mechanism, to explain the smallness of the cosmological constant in the Euclidean path
integral formulation of four-dimensional quantum gravity in the continuum with the pres-
ence of infinitesimal wormholes [24, 25]. The wormholes considered there resemble those
of our toy model in that both are non-local identifications of the spacetime geometry of
infinitesimal size. The counting of our wormholes is of course different since we are working
in a genuinely Lorentzian setup where certain causality conditions have to be fulfilled. This
enables us to do the sum over topologies explicitly.

Further, in Coleman’s mechanism for driving the cosmological constant Λ to zero,
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an additional sum over different baby universes is performed in the path integral,
which leads to a distribution of the cosmological constant that is peaked near zero.
We do not consider such an additional sum over baby universes, but instead have
an explicit expression for the effective potential which shows that an increase in the
number of wormholes is accompanied by a decrease of the “effective” cosmological constant.

To conclude, we have seen that two-dimensional Lorentzian quantum gravity including a
sum over topologies leads to a well-defined unitary continuum quantum theory, different to
the one of the pure CDT model. The presence of causality constraints imposed on the path-
integral histories – physically motivated in Section 3.2 – enabled us to derive a new class of
continuum theories by taking an unambiguously defined double-scaling limit of a statistical
model of simplicially regularized space-times. These causality constraints were crucial to
resolve the problem of super-exponential growth in the number of configurations, as present
in the model of two-dimensional Euclidean quantum gravity with topology changes. The
resulting model of two-dimensional CDT with topology changes has, besides the well-
known geometrical observables, new “topological” observables, such as the finite space-
time density of wormholes. Further, we observed that the presence of wormholes in our
model leads to a decrease of the “effective” cosmological constant, which nicely connected
to former attempts of driving the cosmological constant Λ to zero in the formulation of
four-dimensional quantum gravity in the continuum through the presence of infinitesimal
wormholes, as described by Coleman’s mechanism.

4 Universality: Its physical and mathematical impli-

cations

In this section we discuss generalizations and implications of the “pure” two-dimensional
CDT model, as described in Section 2. In doing this, we use the techniques of the formalism
developed in Section 2. The section is structured as follows: In Section 4.1 we introduce a
higher curvature term in the pure model and show that the resulting theory is equivalent to
a two-dimensional Lorentzian quantum gravity model whose discrete space-times consist of
squares and triangles. Further we show that it belongs to the universality class of the pure
two-dimensional CDT model. In Section 4.2 a model is introduced which only allows for
minimal curvature weights per space-time strip, where we see that the resulting model also
shares the same universality class with the pure two-dimensional CDT model. This makes
it clear that two-dimensional CDT define a rather broad universality class and is thus a
genuine continuum theory independent of the details of the regularization. In Section 4.3
we discuss bijections between CDTs, heaps of dimers and Dyck paths. Such connections
can be a useful mathematical tool to reduce the two-dimensional counting problem to an
effective one-dimensional problem.
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(a) (b)

Figure 12: (a) A typical triangulation with staircase boundary conditions. The dashed
lines show the relation to the corresponding dual triangulation which is drawn in (b).

4.1 2D Lorentzian quantum gravity with a higher curvature term

Following [52] we introduce a higher curvature term in the pure model of 2D Lorentzian
quantum gravity. We will see that the resulting theory preserves universality of the pure
model. Further, the higher curvature term can be interpreted as being equivalent to in-
serting squares in the triangulation of the pure model.

In the pure two-dimensional CDT model we attached a “cosmological” weight g =
e−λ to every triangle face resulting to the factor gN(T ) in the Boltzmann weight of each
triangulation T , where N(T )= lin+lout is the number of triangles in the triangulation. Since
the usual curvature term in the Einstein-Hilbert action is trivial in 2d for fixed topology,
there was no curvature weight in the propagator.

We now want to generalize the pure model by explicitly introducing a higher curvature
weight into the propagator which suppresses or enhances local curvature. To still be able
to use the powerful techniques of the transfer matrix formalism, we require that this higher
curvature weight is defined locally within one strip of height ∆t=1. A convenient way to
define such a higher curvature weight is by assigning a weight Θ to each pair of adjacent
triangles pointing both up or pointing both down [52, 53]. The resulting effect of this higher
curvature term in the eigenvalues of the transfer matrix can most easily be calculated
using the dual graphical representation of the triangulation. For convenience we consider
a triangulation with “staircase” boundary conditions15, as illustrated in Figure 12 (a). In
the dual representation (b) a space-time strip of height ∆t=1 translates into a sequence of
half-edges attached to the dual constant time line, where the half-edges above (below) this
line correspond to the up-pointing (down-pointing) triangles in the triangulation (a). In
terms of the dual triangulation we assign a cosmological weight g to every vertex (which is

15The resulting theory for “staircase” boundary conditions is closely related to the one with periodic
boundary conditions as shown in Appendix B.
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in fact the dual of the triangle face) and in addition each pair of neighboring up-pointing
half-edges or down-pointing half-edges receives a factor Θ,

g g 1 Θ1 Θ
. (123)

Using these weights we can calculate the eigenvalues of the transfer matrix
Gg,Θ(lin, lout; t = 1) = 〈lout | T̂ | lin〉 by summing over possible configurations of a dual
time line with lin half-edges below and lout half-edges above. In spirit of the higher cur-
vature weight this is done by first summing over the number k > 0 of blocks of nr > 1
neighboring lower half-edges and mr > 1 neighboring upper half edges, with r = 1, ...k,
and summing over all partitions of lower half-edges, lin =

∑
r nr, and upper half-edges ,

lout =
∑

r mr, yielding

Gg,Θ(lin, lout; t = 1) = (gΘ)lin+lout
∑
k>1

1

Θ2k

(
lin − 1

k − 1

)(
lout − 1

k − 1

)
. (124)

Introducing the generating function on the propagator Gg,Θ(lin, lout; t=1) one obtains

G(x, y; g,Θ; 1) =
∑

lin,lout

Gg,Θ(lin, lout; t=1)

=
g2xy

1− gΘ(x+ y)− g2(1−Θ2)xy
. (125)

As expected, for Θ = 1 one recovers the one-step propagator of the pure model (B.8),
whereas for Θ=0 curvature is fully suppressed and one gets the one-step propagator for a
flat triangulation.

It is very interesting to see that the discrete one step-propagator (125) can be reinter-
preted as the one-step propagator of a CDT model whose discrete space-times consists of
triangles and squares.

Expanding the denominator of (125), one only gets sequences of the terms gΘx, gΘy
and g2(1−Θ2). We can now assign a factor gΘx (gΘy) to a lower (upper) half-edge which
both have a weight gΘ. The factor g2(1 − Θ2) then belongs to a pair of upper and lower
half-edge which can be merged to a crossing. The resulting new weights read,

g2(1−Θ2)gΘ gΘ
. (126)

The corresponding space-time is shown in Figure 13 (a). The dual of this space-time is
made up of triangles and squares, as illustrated in (b). In the following we want to look at
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(a) (b)

Figure 13: Reinterpretation of the resulting model with higher curvature terms. We assign
a weight gΘ to isolated half-edges, ⊥ and >, and a weight g2(1 − Θ2) to crossings +. A
typical triangulation corresponding to these weights is drawn in (a). The dual triangulation
(b) consists of up- and down-pointing triangles and squares.

the continuum theory of such a two-dimensional Lorentzian quantum gravity model whose
space-times are made up of triangles and squares in the discrete setting.

Performing the continuum limit of (125) is straightforward. The joint region of conver-
gence of (125) is given by

|x| < 1, |y| < 1, |g| < 1

1 + Θ
. (127)

One can fine-tune to the critical point (xc, yc, gc) = (1, 1, 1
1+Θ

) by use of the following
scaling relations

g =
1

1 + Θ
(1− a2 Λ) +O(a3), (128)

x = 1− aX +O(a2), (129)

y = 1− a Y +O(a2). (130)

Upon inserting (128)-(130) into (125) and following the formalism developed in Section 2
one obtains the effective quantum Hamiltonian of the resulting continuum theory,

Ĥ(L,
∂

∂L
) = −ΘL

∂2

∂L2
−Θ

∂

∂L
+ 2ΛL, (131)

which is self-adjoint on the Hilbert space H=L2(R+, dL). Further, using (D.28), one can
read off the finite time propagator

GΛ,Θ(L1, L2, T ) =

√
Λ

Θ

e−
√

Λ
Θ

(L1+L2) coth(
√

ΘΛT )

sinh(
√

ΘΛT )
I0

(
2√
Θ

√
ΛL1L2

sinh(
√

ΘΛT )

)
. (132)
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One sees that the resulting higher curvature model is equivalent to the pure CDT model
(with staircase boundary conditions) up to a global rescaling of the coordinates, Λ 7→ Λ

Θ
,

L1 7→ΘL1 and L2 7→ΘL2. Hence, the new discretization of the two-dimensional Lorentzian
quantum gravity model whose space-times are made up out of triangles and squares belongs
to the same universality class as the pure CDT model which is discretized with triangles
only.

In [52] it is shown that one can generalize this treatment to discrete space-times which
incorporate p-polygons, where the resulting continuum theory still belongs to the same
universality class as the pure two-dimensional CDT model.

4.2 2D Lorentzian quantum gravity with minimal curvature
weights

In this section we want to discuss another generalization of the pure two-dimensional
CDT model, where one only allows for minimal (positive or negative) curvature weights
per space-time strip of height ∆t= 1. By this we mean that the number of neighboring
triangles pointing in the same direction is not allowed to exceed two.

In terms of the discrete setting the construction is very simple: to calculate the eigen-
values of the transfer matrix, GΛ(lin, lout; t=1)= 〈lout | T̂ | lin〉, one sums over all possible
triangulations of a space-time strip of height ∆t=1 with lin up-pointing triangles and lout

down-pointing triangles, where in addition one restricts the maximal number of neighbor-
ing triangles pointing in the same direction to Nmax =2. In the continuum limit this means
that we only consider an infinitesimal amount of curvature per infinitesimal space-time
strip. However, we expect that in a small, but finite region of space-time we can still
generate arbitrarily large values of curvature. More precisely, we expect that the result-
ing continuum theory will be equivalent to the one obtained in Section 4.1, with a fixed
curvature suppressing factor Θ∈(0, 1).

To solve the discrete problem we introduce the generating function for the one-step
propagator GΛ(lin, lout; t=1). Hereby one can take advantage of graphical methods, where
one assigns a factor of gx to every up pointing triangle “4” and a factor of gy to every down
pointing triangle “5”. The one-step propagator for the case of open boundary conditions
then reads

G(x, y; g; 1) =
∞∑

k=0

(
+ + +

)k

=
1

1− g2xy(1 + gx)(1 + gy)
. (133)

The joint region of convergence of (133) is given by

|x| < 1, |y| < 1, |g| < 1

2
(
√

5− 1). (134)
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To perform the continuum limit we fine-tune to the critical point
(xc, yc, gc)=(1, 1, 1

2
(
√

5− 1)) by use of the following scaling relations

g =
1

2
(
√

5− 1)(1− a2 Λ) +O(a3), (135)

x = 1− aX +O(a2), (136)

y = 1− a Y +O(a2). (137)

Inserting the scaling relations (135)-(137) into the one-step propagator (133) and following
the standard procedure one obtains the effective quantum Hamiltonian of the resulting
continuum theory,

Ĥ(L,
∂

∂L
) = −ΘL

∂2

∂L2
−Θ

∂

∂L
+ 2ΛL, with Θ =

√
5− 1√
5 + 5

≈ 0.17, (138)

which is self-adjoint on the Hilbert space H = L2(R+, dL). One sees that, as in Section
4.1, the resulting model is equivalent to the pure CDT model (with staircase boundary
conditions) up to a global rescaling of the coordinates, Λ 7→ Λ

Θ
and L 7→ ΘL and hence

belongs to the same universality class as the pure CDT model.
The above examples demonstrate that two-dimensional CDT define an entire univer-

sality class, implying that it is independent of the subtleties of the regularization and is a
genuine continuum theory of Lorentzian quantum gravity, without evidence of a discretiza-
tion of space-time in a physical sense.

4.3 Causal dynamical triangulations as heaps of dimers and Dyck
paths

In this section we want to discuss bijections between CDTs, heaps of dimers and Dyck paths
which were first established in [52] in a slightly modified form. Such connections can be
useful to reduce the two-dimensional counting problem to a one-dimensional combinatorial
problem.

In the “pure” two-dimensional CDT model, as discussed in Section 2, we considered
space-time triangulations to have the topology [0, 1]×S1 of a cylinder. Further, for combi-
natorial reasons, we introduced a marking on the initial spatial boundary. One can follow
the right-most time-like edge connected to the marking to trace a unique path through
the entire triangulation which can be described by a sequence of up-pointing triangles.
Cutting open the geometry along this path one can establish a one-to-one correspondence
between cylindrical triangulations with a marking on the initial spatial boundary and tri-
angulations of topology [0, 1]× [0, 1] whose left-most triangles are all pointing upwards,
but without restrictions on the right-most triangles (cf. Appendix B). A triangulation
with such boundary conditions and the corresponding dual triangulation are illustrated in
Figure 14.

Starting from a dual triangulation with this type of boundary conditions (Figure 14
(b)) we can remove the space-like links and view the remaining time-like links as dimers.
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(a) (b)

Figure 14: (a) A triangulation of topology [0, 1]×[0, 1] with all left-most triangles pointing
upwards and no restrictions on the right-most triangles. Triangulations with these bound-
ary conditions are in one-to-one correspondence with triangulations of topology [0, 1]×S1

with a marking on the initial spatial boundary. (b) The corresponding dual triangulation.

Putting a base line to the left and pushing all dimers to the left until they touch the
base line or another dimer we get a so-called heap of dimers, as illustrated in Figure
15 (b). The dual of this heap of dimers is a tiling of diamonds (Figure 15 (a)), which
one can obtain by extending the original triangulation to a vertex below and above and
then removing all space-like links. The combinatorial structure of heaps of dimers was
first introduced in [54]. Usually heaps of dimers are illustrated with the base line on the
bottom as shown in Figure 15 (c). If the orthogonal projection of the dimers onto the
base line is connected the heap is connected. Further, we call dimers touching the base
line minimal and heaps with just one minimal dimer are called pyramids. If, moreover,
this one minimal dimer lies in the right-most column, the heap is a half-pyramid. It is
not difficult to see that heaps of dimers corresponding to CDTs of all types of boundary
conditions are connected. Moreover, for the type of boundary conditions considered above
the corresponding heap of dimers is a half-pyramid, as shown in Figure 15 (c). This leads
to a one-to-one correspondence between CDTs of topology [0, 1]×S1 and half-pyramids of
dimers. One can therefore enumerate CDTs and obtain the discrete finite-time propagator
Gλ(x, y; t) using the generating functions for connected heaps of dimers [55, 56]. Hence,
the solution of the discrete problem in two-dimensional CDT reduces to a one-dimensional
counting problem.

There exists another interesting bijection between half-pyramids of dimers and Dyck
paths. Consider a regular square lattice in the positive quadrant in the plane. A Dyck
path is a one-dimensional random walk which starts at zero and finishes at zero without
leaving the positive quadrant and only consisting of north-east steps ↗ and south-east
steps ↘ (Figure 15 (d)). The number of Dyck paths of length 2n is given by the nth

Catalan number Cn.
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Figure 15: (a) The tiling of diamonds corresponding to the triangulation shown in Figure
14 (a) is obtained by extending the triangulation to a new vertex below and above and
removing all space-like links. (b) Starting from the dual triangulation (Figure 14 (b))
one obtains a half-pyramid of dimers by removing all space-like edges and pushing all
remaining time-like edges (dimers) to the left until they touch each other. (c) Illustration
of a half-pyramid of dimers with the base line on the bottom. One sees that only the
right-most dimer is minimal. (d) Dyck path corresponding to the half-pyramid of dimers
shown in (b). There is an one-to-one correspondence, where each up-wards step in the
Dyck path corresponds to dimer in (b) with the respective ordering. (e) To obtain the
original triangulation from the Dyck path one places a diamond (pair of triangles) under
each upwards step of the Dyck path. Then, gluing together the triangles horizontally and
removing the upper and lower row of triangles, one recovers the original triangulation.
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The correspondence between half-pyramids of dimers and Dyck paths is illustrated in
Figure 15 (d). Each dimer of the half-pyramid corresponds uniquely to an upwards step
in the corresponding level of the Dyck path with the same relative ordering as in the half-
pyramid. This gives a one-to-one correspondence between half-pyramids of dimers and
Dyck paths.

To obtain the original triangulation from the corresponding Dyck path one places a
diamond (pair of triangles) under each upwards step in the Dyck path. Gluing together
these triangles horizontally and removing the upper and lower row of triangles, one recovers
the original triangulation.

In summary, we have shown the following bijections

CDT ↔ half-pyramid of dimers ↔ Dyck path, (139)

which relate two-dimensional CDT to other well-known one-dimensional combinatorial
structures.

5 Conclusion

In this thesis we have described the motivations and concepts behind the recent approach of
Causal Dynamical Triangulation. In the case of two dimensions the model is analytically
solvable as we demonstrated by explicit calculations. After the solution in the discrete
setting was obtained, we showed the existence of a continuum limit, leading to a well-
defined continuum theory of two-dimensional Lorentzian quantum gravity. We calculated
several continuum quantities such as the effective quantum Hamiltonian, its spectrum
and eigenfunctions, the finite time partition function and the loop-loop correlator. Using
these results we obtained physical observables such as the expectation value of the length,
higher moments and the effective Hausdorff dimension. In terms of these observables the
resulting theory described a fluctuating two-dimensional quantum “universe”. Further
we have seen in this context that two-dimensional quantum gravity with Euclidean and
Lorentzian signature are distinct theories.

In the second part of the thesis we discussed the possibility of including a sum over
topologies in the path integral. The presence of causality constraints imposed on the path-
integral histories enabled us to derive a new class of continuum theories by taking an un-
ambiguously defined double-scaling limit of the bare cosmological and Newton’s constant.
These causality constraints were crucial to resolve the problem of super-exponential growth
in the number of configurations which usually appears in the context of two-dimensional
Euclidean quantum gravity with topology changes. The resulting model of two-dimensional
Lorentzian quantum gravity with topology changes has, besides the well-known geomet-
rical observables, new “topological” observables, such as the finite space-time density of
wormholes. Further, we observed that the presence of wormholes in our model leads to a
decrease of the “effective” cosmological constant, reminiscent of the suppression mechanism
considered by Coleman and others in the context of a Euclidean path integral formulation
of four-dimensional quantum gravity in the continuum.
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In the last part we discussed aspects of universality of the two-dimensional model. We
saw that including a higher curvature term in the action does not affect the continuum the-
ory. Further, this higher curvature term could be interpreted as be equivalent to including
squares in the space-time triangulation. This provided evidence that the same continuum
theory can be obtained unambiguously without dependence on the details of the discrete
building blocks. Thus two-dimensional Lorentzian quantum gravity defined through CDT
is a well-defined nonperturbative continuum theory. Further, we established certain one-
to-one correspondences between CDTs, half-pyramids of dimers and Dyck paths. This
provided a relation between the counting problem appearing in the discrete setting of
CDT and certain well-known one-dimensional combinatorial structures.

In conclusion, we have seen that Causal Dynamical Triangulations is a promising non-
perturbative approach to quantum gravity. It might be the right candidate for the chal-
lenging quest of quantizing gravity.
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A Lorentzian angles and simplicial building blocks

In this appendix, a brief summary of results on Lorentzian angles is presented, where we
follow the treatment and conventions of [57].

Since in CDT one considers simplicial manifolds consisting of Minkowskian triangles,
Lorentzian angles or “boosts” naturally appear in the Regge action as rotations around
vertices. Recall from Section 2.2 that the definition of the Gaussian curvature at a vertex
v is given by (8),

Kv =
εv
Vv

, (A.1)

where εv = 2π −
∑

i⊃v θi is the deficit angle at a vertex v and Vv is the dual volume of the
vertex v. Recall that the space-like deficit angle εv can be positive or negative as illustrated
in Figure 3. Furthermore, if the deficit angle is time-like, as shown in Figure 16, it will
be complex. The time-like deficit angles are still additive, but contribute to the curvature
(A.1) with the opposite sign. Hence, both space-like defect and time-like excess increase
the curvature, whereas space-like excess and time-like defect decrease it.

The complex nature of the time-like deficit angles can be seen explicitly by noting that
the angles θi between two edges ~ai and ~bi (as vectors in Minkowski space) are calculated
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Figure 16: Illustration of a space-like (a) and a time-like (b) Lorentzian deficit angle εv at
a vertex v.

using

cos θi =
〈~ai,~bi〉

〈~ai,~ai〉
1
2 〈~bi,~bi〉

1
2

, sin θi =

√
〈~ai,~ai〉〈~bi,~bi〉 − 〈~ai,~bi〉2

〈~ai,~ai〉
1
2 〈~bi,~bi〉

1
2

, (A.2)

where 〈·, ·〉 denotes the flat Minkowskian scalar product and by definition, the square roots
of negative arguments are positive imaginary.

Having given a concrete meaning to Lorentzian angles, we can now use (A.2) to calculate
the volume of Minkowskian triangles which we will then use to explicitly compute the
volume terms of the Regge action.

The triangulations we are considering consist of Minkowskian triangles with one space-
like edge of length squared l2s = a2 and two time-like edges of length squared l2t = −αa2 with
α > 0. The general argument α > 0 is used to give a mathematically precise prescription of
the Wick rotation, but it can be set to α = 1 after the Wick rotation has been performed.
With the use of (A.2) we can calculate the volume of such a Minkowskian triangle, yielding

Vol(triangle) =
a2

4

√
4α+ 1. (A.3)

Now one can define the Wick rotation W as the analytic continuation of α 7→ −α
through the lower-half plane. One then sees that for α > 1

2
under this prescription

iVol(triangle) 7→ −Vol(triangle) (up to a O(1) constant which can be absorbed in the
corresponding coupling constant in the action). This ensures that

W : ei SRegge(T
lor) 7→ e−SRegge(T

eu), α >
1

2
. (A.4)

In the following we set α = 1 again. Generalizations of this treatment to dimension d = 3, 4
can be found in [9].
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B Different boundary conditions and generating func-

tions

In this section we want to investigate different spatial boundary conditions of the simplicial
manifolds considered in the construction of CDT. As we have seen in Section 2.4, the key
to the solution of the model is knowing the eigenvalues of the transfer matrix,

Gλ(lin, lout; t = 1) = e−λ a2 (lin+lout)
∑

T∈W(T ):
lin→lout

1, (B.1)

where all triangulations T are single strips of height ∆t = 1. Considering a certain bound-
ary condition on the simplicial manifold then reduces, in terms of the transfer matrix, to a
simple combinatorial counting problem of evaluating the number of all possible configura-
tions of a single strip with the same boundary conditions. The results for strips of different
boundary conditions can be summarized in the following expression [58]:

Gλ,k(lin, lout; t = 1) =
lkin
in lkout

out

(lin + lout)kr(lin + lout − 1)krr

(
lin + lout

lin

)
e−λ a2 (lin+lout), (B.2)

where k denotes the multi index k = (kin, kout, kr, krr) ∈ {0, 1}4. Let us now discuss which
cases of boundary condition we have considered:

1. Topology [0, 1]×S1 (as already considered in Section 2.4), corresponding to kr = 1 and
krr = 0. Furthermore, one can mark (not mark) the initial loop by setting kin = 1
(kin = 0) and respectively for kout for the final loop.

2. Topology [0, 1]×[0, 1] without restrictions on the orientation of the left- and rightmost
triangle, corresponding to ki = 0, for all i ∈ {in, out, r, rr}.

3. Topology [0, 1]×[0, 1] without restriction of the triangle orientation on one side and
with one up pointing triangle on the other side, corresponding to kout, krr = 0 and
kin, kr = 1.

4. Topology [0, 1]×[0, 1] without restriction of the triangle orientation on one side and
with one down pointing triangle on the other side, corresponding to kin, krr = 0 and
kout, kr = 1.

5. Topology [0, 1]× [0, 1] with one up pointing triangle on the one side and one down
pointing triangle on the other side (“staircase”), corresponding to ki = 1, for all
i ∈ {in, out, r, rr}.

Another useful way of characterizing cases (1)-(5) is by their generating functions.
Hereby one can take advantage of graphical methods, where one assigns a factor of gx to
every up pointing triangle “4” and a factor of gy to every down pointing triangle “5”.
Considering the same cases as above:



51

1. The generating function of the propagator for triangulations of topology [0, 1]×S1

with one mark on the initial loop we have already obtained in Section 2.4, namely

Gcircular
in (x, y; g; 1) =

g2xy

(1− gx)(1− gx− gy)
, (B.3)

and analogously for one mark on the final loop by interchanging x and y. The
corresponding propagator with both loops marked then reads

Gcircular
in,out (x, y; g; 1) =

g2xy

(1− gx− gy)2
. (B.4)

2. The generating function of the propagator for triangulations of topology [0, 1]× [0, 1]
without restrictions on either side is in most of the literature used in its “degenerate”
form (where initial and final boundary of length zero are allowed),

Gopen(x, y; g; 1) = 1 +4+5+ ... =
∞∑
l=0

(4+5)l =
1

1− gx− gy
. (B.5)

3. The case of open boundary on one side and one up pointing triangle on the other
side can then easily be generated by

Gopen
4 (x, y; g; 1) = 4 ·Gopen(x, y; g; 1) =

gx

1− gx− gy
, (B.6)

which includes the zero loop in the final spatial boundary.

4. The case of open boundary on one side and one down pointing triangle on the other
side is respectively generated by

Gopen
5 (x, y; g; 1) = 5 ·Gopen(x, y; g; 1) =

gy

1− gx− gy
, (B.7)

which includes the zero loop in the initial spatial boundary.

5. The generating function of the propagator for triangulations of topology [0, 1]× [0, 1]
with one up pointing triangle on one side and one up pointing triangle on the other
side is given by

Gopen
staircase(x, y; g; 1) = 4 ·Gopen(x, y; g; 1) · 5 =

g2xy

1− gx− gy
, (B.8)

which has obviously no degeneracies.

Triangulations with staircase boundaries can be related to triangulations of topology
[0, 1]×S1 with both spatial boundaries marked [52].
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(I)(II)

(I) (II) S1 × [0, 1]

Figure 17: Construction of a triangulation of topology [0, 1]×S1 with both spatial bound-
aries marked by a composition of two triangulations with staircase boundary (I) and (II).

Therefore consider two triangulations with staircase boundary, one which has the se-
quence of up pointing triangle on the left (I) and one which has the sequence of down
pointing triangles on the left (II) (Figure 17). The triangulation of topology [0, 1]×S1 with
both spatial boundaries marked can then be obtained by gluing triangulations (I) and (II)
to a cylinder, where one superimposes the respective left and right most triangles. Both of
the sequences of up and down pointing triangles uniquely define both of the markings on
the initial and final spatial boundary (Figure 17). In terms of generating functions of the
one-step propagator, the correspondence can easily be seen by noting that the triangula-
tions (I) and (II) both have the same one-step propagator (B.8). The one-step propagator
of the composition reads

Gcircular
in,out (x, y; g; 1) =

1

g2xy
(Gopen

staircase(x, y; g; 1))
2

=
g2xy

(1− gx− gy)2
, (B.9)

where the division by g2xy is due to the overlap of the left and right most triangles of
(I) and (II). The composition (B.9) is sometimes denoted as two-seamed correlator. A
generalization of this treatment, where one considers more than two strips (of either type
(I) or (II)) in the construction of a cylindrical triangulation can be found in [52].

C An alternative derivation of the Hamiltonian

In this appendix an alternative derivation of the Hamiltonian is presented, where in contrast
to Section 2.5, the continuum limit is obtained in length space instead of the Laplace
transformed “momentum space”.
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Starting point of the derivation is the one-step propagator for general boundary condi-
tions (in the Euclidean sector), as presented in Appendix B,

Gλ,k(l1, l2; t = 1) = 〈l2 | T̂ | l1〉 =
lkin
1 lkout

2

(l1 + l2)kr(l1 + l2 − 1)krr

(
l1 + l2
l1

)
e−λ a2 (l1+l2). (C.1)

To obtain the continuum limit we use the following canonical scaling relations

L1 = l1 · a, L2 = l2 · a, T = t · a, (C.2)

where the physical correlation lengths L1, L2 and T stay fixed under the simultaneous limit
a→ 0 and l1, l2, t→∞. Further, one has to introduce an additive renormalization for the
bare cosmological constant λ (cf. Section 2.5)

λ =
log 2

a2
+ Λ, (C.3)

where Λ denotes the renormalized cosmological constant. The continuum propagator can
then be obtained by

GΛ,k(L1, L2;T )
a→0−−→ aη Gλ= log 2

a2 +Λ,k

(
l1 =

L1

a
, l2 =

L2

a
; t =

T

a

)
, (C.4)

where aη is a wave function renormalization. To extract the Hamiltonian we consider the
infinitesimal time evolution of the wave function,

ψ(L2, T + a) =

∫ ∞

0

dµ(L1)GΛ,k(L1, L2;T = a)ψ(L1, T )

=

∫ ∞

0

dµ(L1) 〈L2 | (1− a Ĥ +O(a2)) |L1〉ψ(L1, T ), (C.5)

with the measure dµ(L1)=Lµ
1dL1. For the further calculation it will be useful to introduce

a new length variable D :=L2−L1. In terms of this variable we can rewrite (C.5) as

ψ(L2, T + a) =

∫ L2

−∞
dD(L2 −D)µGΛ,k(L2 −D,L2;T = a)ψ(L2 −D,T ). (C.6)

In the following we want to determine GΛ,k(L2−D,L2;T = a) up to first order in a.
Therefore we start expanding (C.1) for large li and introduce new variables l := l1 + l1
and d := l2− l1. We first consider the binomial factor in (C.1) making use of Stirling’s
approximation n!=

√
2πn

(
n
e

)n (
1 + 1

12n
+O( 1

n2 )
)

[59], hence

A :=

(
l1 + l2
l1

)
e−λ a2 (l1+l2) =

l!(
l
2

(
1− d

l

))
!
(

l
2

(
1 + d

l

))
!
e−λ a2 l =

= e−a2λ l

√
2

πl
2l(1− d2

l2
)−

1
2

(
1 +

1

12l
− 1

6l(1− d
l
)
− 1

6l(1 + d
l
)

+O(
1

l2
)

)
F (l, d), (C.7)
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with

F (l, d) =

(
1− d

l

)− l
2(1− d

l )(
1 +

d

l

)− l
2(1+ d

l )
= e−

l
2(1− d

l ) log(1− d
l )−

l
2(1+ d

l ) log(1+ d
l ). (C.8)

Introducing the scaling relations (C.2) into (C.8), one can see that to lowest order it behaves
like F (L2, D)∼ exp(− D2

4aL2
). Since we want to obtain a delta function to lowest order, i.e.

F (L2, D)∼ δ(D), we can conclude that D must scale as D∼
√
a as a → 0. Keeping this

in mind, we can introduce the scaling relations (C.2)-(C.3) into (C.7) and collect all terms
up to first order in a, yielding

A =

√
a

πL2

e
− D2

4aL2

(
1 +

D

4L2

− D3

8aL2

− 2aΛL2 −

− a

8L2

+
7

32

D2

L2
2

− 10

96

D4

aL3
2

+
D6

128a2L4
2

+O(a
3
2 )

)
(C.9)

In an analogous way one can also expand the remaining part of the propagator including
the measure factor and the wave function renormalization factor,

B := aη lkin+µ
1 lkout

2 (l1 + l2)
−kr(l1 + l2 − 1)−krr

= 2−kr−krraη

(
L2

a

)µ+kin+kout−kr−krr
{

1 +
D

2L2

(kr + krr − 2kin − 2µ)+

+ krr
a

2L2

+
D2

8L2
2

[2(kr + krr + krkrr) + 4(kin + µ)(kin + µ− 1)−

− 4(kr + krr)(kin + µ)] +O(a
3
2 )
}
, (C.10)

where we used that ki = k2
i . Having obtained the continuum propagator up to first order

in a, we can now write (C.6) in the limit a→ 0 as

ψ(L2, T + a) =

∫ ∞

−∞
dDA(L2, D)B(L2, D)

(
1−D ∂

∂L2

+
D2

2

∂2

∂L2
2 +O(a

3
2 )

)
ψ(L2, T ). (C.11)

Upon introducing A(L2, D) and B(L2, D) as obtained above, one can then simply perform
the gaussian integrals in (C.11) by doing the variable substitution D 7→ D̃ =D/

√
2aL2.

The final result reads

ψ(L2, T + a) = 21−kr−krra1+η

(
L2

a

)µ+kin+kout−kr−krr(
1− aĤ +O(a

3
2 )
)
ψ(L2, T ), (C.12)

where the Hamiltonian is given by

Ĥ(L2,
∂

∂L2

) = −L2
∂2

∂L2
2

− c1
∂

∂L2

− c2
1

L2

+ 2 ΛL2 (C.13)
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with the coefficients

c1 = 1 + 2(kin + µ)− kr − krr (C.14)

c2 = (kin + µ)2 − (kr + krr)(kin + µ) +
1

2
krkrr +

1

2
krr. (C.15)

From (C.12) one can further see that to obtain the right behavior to lowest order we must
have η =−1 and µ= kr +krr−kin−kout (the remaining constant factor can be absorbed
into the measure). For the Hamiltonian (C.13) to be selfadjoint on the Hilbert space
H=L2(R+, L

µ
2dL2) with µ= kr+krr−kin−kout, we must symmetrize the Hamiltonian by

setting kin =kout.
Consider for example the case of topology [0, 1]×S1, corresponding to krr =0 and kr =1;

formula (C.12) then reduces to the Hamiltonian for the case with one marking on the initial
spatial boundary, i.e. kin =1,

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
+ 2 ΛL, dµ(L) = L−1dL (top. [0, 1]× S1, marked) (C.16)

and the unmarked case, kin =0,

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
−2

∂

∂L
+2 ΛL, dµ(L) = LdL (top. [0, 1]×S1, unmarked), (C.17)

which coincides with the results obtained in Section 2.5. Another Hamiltonian one en-
counters frequently is the one belonging to topology [0, 1]× [0, 1] without restrictions on
the time-like boundaries, i.e. ki =0,

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− ∂

∂L
+ 2 ΛL, dµ(L) = dL (top. [0, 1]× [0, 1]), (C.18)

One sees that the Hamiltonian for open boundary conditions is very similar to the one for
cylindrical boundary conditions. Further, the spectra are the same up to some difference
in the zero point energy (cf. Appendix D). Therefore, one often uses the open boundary
conditions instead of cylindrical boundary conditions for simplicity (as we partly do in
Section 3).

D Generalizations and the Calogero Hamiltonian

In this appendix we want to analyze the properties and spectrum of Hamiltonians which
one usually encounters when studying two-dimensional Lorentzian quantum gravity. In
the previous appendix we have already seen that for different boundary conditions and
different topology of the spatial slices the Hamiltonians differ slightly, but are generally of
the form

Ĥ(L,
∂

∂L
) = −c1L

∂2

∂L2
− c2

∂

∂L
+ 2ΛL (D.1)
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where c1 and c2 are real constants. In the following we therefore want to investigate this
generalized class of Hamiltonians.

It is immediately checked that the Hamiltonian (D.1) is selfadjoint on the Hilbert space
H=L2(R+, dµ(L)), where the measure dµ(L) is given by

dµ(L) = LµdL, µ =
c2
c1
− 1. (D.2)

Further, for the boundary components of the partial integration in 〈Ĥψ | φ〉=〈ψ | Ĥφ〉 to
vanish, the wave functions on the Hilbert space must satisfy[

Lµ+1ψ(L)
∂

∂L
ψ(L)

]∞
0

= 0 (D.3)

To have a Hilbert space with flat measure, one can pull the measure into the wave
function by substituting Ψ(L)=L−

µ
2ψ(L), where ψ(L) is the wave function corresponding

to (D.1). Commuting L−
µ
2 through the Hamiltonian gives

Ĥflat(L,
∂

∂L
) = −c1L

∂2

∂L2
− c1

∂

∂L
+ 2ΛL+

(c1 − c2)
2

4c1

1

L
, dµ(L) = dL (D.4)

This pulling in and out of the measure is similar to what one does when introducing
markings on the boundary loops.

We now consider the eigenvalue problem of the Hamiltonian (D.4),(
−c1L

∂2

∂L2
− c1

∂

∂L
+ 2ΛL+

(c1 − c2)
2

4c1

1

L
− E

)
Ψ(L) = 0. (D.5)

Let us perform a change of variables and wave functions,

L =
c1
2
ϕ2, Φ(ϕ) =

√
ϕΨ

(
ϕ2

2

)
, (D.6)

where the latter guarantees a flat measure dµ(ϕ)= dϕ for Φ(ϕ). The eigenvalue problem
then reads (

−1

2

∂2

∂ϕ2
+

1

2
ω2ϕ2 − 1

8

A

ϕ2
− E

)
Φ(ϕ) = 0, (D.7)

where we set ω =
√

2c1Λ and A= 1−4µ2 ∈ (−∞, 1). This is nothing but the eigenvalue
problem corresponding to the Hamiltonian of the one-dimensional Calogero model,

ĤCalogero(ϕ,
∂

∂ϕ
) = −1

2

∂2

∂ϕ2
+

1

2
ω2ϕ2 − 1

8

A

ϕ2
, dµ(ϕ) = dϕ. (D.8)

Note that the parameter range A=1−4µ2∈ (−∞, 1) is the maximum range for which the
Calogero Hamiltonian is selfadjoint. Two-dimensional Lorentzian quantum gravity with
open boundary conditions corresponds to the value A = 1, whereas for circular boundary
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conditions it corresponds to A = −3. In Appendix E an integrable model is introduced
which continuously covers the parameter range −36A61. The first connection between
2d CDT and the Calogero model was established in [60], where a generalized CDT model
was introduced which continuously covered the parameter range 06A61.

The spectrum of the Calogero Hamiltonian is well-known, further it can be related to
the spectrum of the radial solution of the three-dimensional Schrödinger equation with
potential U(r) = D1/r

2 + D2r
2 [61]. Explicitly, the solution of the eigenvalue problem

(D.7) can be obtained by doing a variable transformation L̃=ωϕ2, yielding(
L̃
∂2

∂L̃2
+

1

2

∂

∂L̃
− 1

4
L̃+

E

2ω
+

A

16L̃

)
Φ(L̃) = 0. (D.9)

Note that L̃ is just a scaled version of L, so we could have directly arrived here from (D.5),
using the wave function transformation from Ψ(L) to Φ(L̃). From (D.9) one can see that
asymptotically for L̃→∞ the solution should be proportional to exp(−L̃/2) and for small
L̃→ 0 it behaves like L̃1/4+µ/2. Note that these are the only asymptotics compatible with
the requirement (D.3) on the wave functions. Hence, we make the following ansatz for the
wave functions Φ(L̃) ∝ exp(−L̃/2)L̃1/4+µ/2η(L̃). Substituting this into (D.9) yields

L̃η′′(L̃) + (1 + µ− L̃)η′(L̃) +

(
E

2ω
− 1

2
(µ+ 1)

)
η(L̃) = 0 (D.10)

This equation is known as Kummer’s equation [59], whose solutions are the confluent
hypergeometric functions,

η(L̃) = 1F1(−n; 1 + µ; L̃), (D.11)

where n= E
2ω
− 1

2
(1+µ) must be a nonnegative integer. In this case the power series of the

confluent hypergeometric function is truncated to a polynomial of degree n, namely, the
generalized Laguerre polynomials [62],

1F1(−n;µ+ 1; z) =
Γ(n+ 1)Γ(µ+ 1)

Γ(n+ µ+ 1)
Lµ

n(z), (D.12)

with

Lµ
n(z) =

1

n!
ezz−µ d

n

dzn

(
e−zzn+µ

)
(D.13)

=
n∑

k=0

(−1)k Γ(n+ µ+ 1)

Γ(n− k + 1)Γ(µ+ k + 1)

zk

k!
, (D.14)

yielding the final expression,

1F1(−n;µ+ 1; z) =
n∑

k=0

(−1)k

(
n

k

)
1

(µ+ 1)(µ+ 2)...(µ+ k)

zk

k!
. (D.15)
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Since n = E
2ω
− 1

2
(1+µ) must be a nonnegative integer, the spectrum of the Calogero

Hamiltonian ĤCalogero reads

En = ω(2n+ µ+ 1), n = 0, 1, 2, ... (D.16)

The corresponding eigenfunctions are given by

Φn(ϕ) = Cne
−ω

2
ϕ2

ϕ
1
2
+µ

1F1(−n; 1 + µ;ωϕ2), dµ(ϕ) = dϕ. (D.17)

Further, since the Laguerre polynomials are orthogonal functions, the wave functions form
an orthonormal basis of the Hilbert space, where the normalization constant is given by

Cn =

√
2ωµ+1Γ(n+ µ+ 1)

Γ(n+ 1)Γ(µ+ 1)2
, (D.18)

where we used the following orthogonal relation for the generalized Laguerre polynomials
[62], ∫ ∞

0

dL̃e−L̃L̃µ Lµ
n(L̃)Lµ

m(L̃) =

{
0 for n 6= m,
Γ(µ+n+1)

Γ(n+1)
for n = m,

(D.19)

which is valid for µ>0 .
Let us now come back to the original problem, analyzing the Hamiltonian

Ĥ(L,
∂

∂L
) = −c1L

∂2

∂L2
− c2

∂

∂L
+ 2ΛL, dµ(L) = LµdL, µ =

c2
c1
− 1. (D.20)

The spectrum is obviously the same as for the Calogero Hamiltonian, hence from (D.16)
we get

En =
√

2c1Λ(2n+ µ+ 1), n = 0, 1, 2, ... (D.21)

Further, the eigenfunctions of Ĥ(L, ∂L) can be obtained from (D.17) by a simultaneous
variable and wave function transformation, yielding

ψn(L) = Ane
−

q
2Λ
c1

L
1F1(−n; 1 + µ; 2

√
2Λ

c1
L), dµ(L) = LµdL (D.22)

where the normalization factor is given by

An = 2
µ
2 c
−µ+1

2
1 Cn =

(
8Λ

c1

)µ+1
4

√
Γ(n+ µ+ 1)

Γ(n+ 1)Γ(µ+ 1)2
. (D.23)

Having obtained the eigenfunctions for the class of Hamiltonians Ĥ(L, ∂L), we are now
able to give an explicit expression for the (Euclidean) finite time propagator or loop-loop
correlator, as defined in Section 2.5,

GΛ(L1, L2;T ) = 〈L2 | e−TĤ |L1〉. (D.24)
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Since the eigenfunctions form an orthonormal basis of the Hilbert space, we can insert the
unit operator I=

∑
n>0 |n〉〈n |, yielding

GΛ(L1, L2;T ) =
∞∑

n=0

〈L2 | n〉e−TEn〈n | L1〉

=
∞∑

n=0

e−TEnψ∗n(L2)ψn(L1) (D.25)

Upon inserting the energy eigenvalues (D.21) and eigenfunctions (D.22) into (D.25) one
obtains

GΛ(L1, L2;T ) =

(
8Λ

c1

)µ+1
2

e
−

q
2Λ
c1

∞∑
n=0

zn+µ+1
2

Γ(n+ µ+ 1)

Γ(n+ 1)Γ(µ+ 1)2
×

×1F1(−n; 1 + µ; 2

√
2Λ

c1
L1) 1F1(−n; 1 + µ; 2

√
2Λ

c1
L2), (D.26)

where we used the notation z=e−2
√

2c1ΛT . To evaluate the above summation we make use
of the following quadratic relation satisfied by the confluent hypergeometric function [62],

∞∑
n=0

zn Γ(n+ µ+ 1)

Γ(n+ 1)Γ(µ+ 1)2 1F1(−n; 1 + µ;x) 1F1(−n; 1 + µ; y) =

=
1

1− z
e−

z(x+y)
1−z (xyz)

−µ
2 Iµ

(
2

√
xyz

1− z

)
, (D.27)

where Iµ(x) denotes the modified Bessel function of the µ-th kind. Gathering all terms
together leads to the final expression for the (Euclidean) finite time propagator

GΛ(L1, L2, T ) =

√
Λ

c1
(L1L2)

−µ
2
e
−

q
Λ
c1

(L1+L2) coth(
√

c1ΛT )

sinh(
√
c1ΛT )

Iµ

(
2
√
c1

√
ΛL1L2

sinh(
√
c1ΛT )

)
. (D.28)

For µ=1, (D.28) corresponds to the “unmarked” propagator for the 2d CDT model with
circular boundary conditions, as obtained in (61).

In Section 2.6 we were interested in calculating expectation values of the length and
higher moments with respect to a certain eigenstate |n〉,

〈Lm〉n ≡ 〈n | L
m |n〉 =

∫ ∞

0

dµ(L)ψ∗n(L)Lm ψn(L). (D.29)

The result can also be obtained for the generalized class of Hamiltonians (D.1), as consid-
ered above. Inserting the eigenfunctions (D.22) into (D.29) yields

〈Lm〉n =
( c1

4Λ

)m
2 Γ(n+ 1)

Γ(n+ µ+ 1)

∫ ∞

0

dL̃ L̃µ+m e−L̃
[
Lµ

n(L̃)
]2
. (D.30)
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For the evaluation of the integral we use the following integral expression [63],∫ ∞

0

dL̃ L̃µ+m e−L̃
[
Lµ

n(L̃)
]2

=
(1 + µ)n (−m)n Γ(µ+m+ 1)

Γ(n+ 1)2
×

× 3F2(−n, µ+m+ 1,m+ 1; 1 + µ, 1 +m− n; 1), µ > −m− 1, (D.31)

where 3F2(a1, a2, a3; b1, b2; z) are the generalized hypergeometric functions, defined by

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑

k=0

zk

k!

∏p
i=1(ai)k∏p
j=1(bj)k

, (D.32)

and (a)n are the usual Pochhammer polynomials,

(a)n =
Γ(a+ n)

Γ(a)
. (D.33)

Hence, inserting (D.31) into (D.30) gives the final expression for the moments,

〈Lm〉n =
( c1

4Λ

)m
2 Γ(n−m)Γ(µ+m+ 1)

Γ(n+ 1)Γ(µ+ 1)Γ(−m)
×

× 3F2(−n, µ+m+ 1,m+ 1; 1 + µ, 1 +m− n; 1). (D.34)

Note that the poles of Γ(−m) cancel with those of the hypergeometric function leading to
a finite expression. Further, it is easy to see that all moments scale as 〈Lm〉n∼Λ−

m
2 .

E Discarding unphysical double scaling limits

In this appendix we discuss certain double scaling limits of the CDT model with topology
change, which we discarded as unphysical in Section 3.4. In terms of the parameters α
and β in the scaling relation (95), these were the scalings with β=1, instead of the scaling
with β= 3

2
which led to a physical sensible continuum theory, as discussed in Section 3.4.

Hence, for β=1 the scaling relation (95) reads

h =
1

4
hren a

√
Λ

α
(X + Y )1−α, (E.1)

where the normalization factor on the right-hand side has been chosen for later convenience.
To obtain the effective quantum Hamiltonian we follow the same procedure as the one used
in Section 3.4. Upon inserting (90)-(92) and (E.1) into the time evolution of the discrete
wave function (96), and expanding both sides to first order in a one obtains

(1− aĤ +O(a2))ψ(X) =

∫ i∞

−i∞

dZ

2πi

{
A(X,Z) +B(X,Z)a+O(a2)

}
ψ(Z), (E.2)
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where the leading-order contribution is given by

A(X,Z) =
2

(Z −X) (1 + C(X,Z))
(E.3)

with
C(X,Z) =

√
1− h2

ren(X − Z)−2αΛα. (E.4)

For the Laplace transform of A(X,Z) to yield a delta-function, the scaling should be chosen
such that α60. Consider now the terms on the right hand side of (E.2), which are of first
order in a,

B(X,Z) =
h2

ren(X + Z − 4Zγ)Λα

(X − Z)1+2αC(X,Z) (1 + C(X,Z))2

− 2
XZ − 2Λ + γ(X − Z)2

(X − Z)2C(X,Z) (1 + C(X,Z))
, (E.5)

one finds that for α6−1 the continuum limit is independent of any new coupling associated
to the contribution of the wormholes and therefore leads to the usual Lorentzian model.
This becomes clear when one expands the last term of (E.5) in (X − Z), which yields

XZ − 2Λ

(X − Z)2C (1 + C)
=

1

2

XZ − 2Λ

(X − Z)2

(
1 +

3

4
h2

renΛα(X − Z)−2α +O((X − Z)−4α)

)
. (E.6)

For α 6 −1 the term depending on hren does not have a pole and therefore does not
contribute to the Hamiltonian. Since we are only considering non-fractional poles, this
leaves as possible α-values only α = 0 and α = −1

2
.

E.1 The case β = 1, α = 0

For α = 0 the Hamiltonian retains a γ-dependence contained in the first line of (E.5).
Since there is no immediate physical interpretation of γ in our model, it seems natural to
choose γ = 0, although strictly speaking this does not resolve the problem of explaining
the γ-dependence of the continuum limit. Setting this question aside, one may simply
look at the resulting model as an interesting integrable model in its own right.

In order to obtain a delta-function to leading order, one still needs to normalize the
transfer matrix by a constant factor 2/(1 + s), with s :=

√
1− h2

ren. After setting γ = 0
and performing an inverse Laplace transformation, the Hamiltonian reads

Ĥ(L,
∂

∂L
) =

1

s

(
−L ∂2

∂L2
− s

∂

∂L
+ 2ΛL

)
. (E.7)

It is self-adjoint on the Hilbert space H = L2(R+, L
s−1dL). Further setting L = ϕ2

2 s
one

encounters the one-dimensional Calogero Hamiltonian (cf. Appendix D)

Ĥ(ϕ,
∂

∂ϕ
) = −1

2

∂2

∂ϕ2
+

1

2
ω2ϕ2 − 1

8

A

ϕ2
, (E.8)
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with ω =
√

2Λ
s

and A= 1 − 4(1 − s)2, which implies that the model covers the parameter
range −36A6 1. The maximal range for which the Calogero Hamiltonian is self-adjoint
is −∞<A6 1. It is interesting to see that the usual Lorentzian model without topology
changes corresponds to A= 1 in the case of open boundary conditions, and to the value
A = −3 for circular boundary conditions (cf. Appendix D). This selects the parameter
range −3 6 A 6 1 as a natural choice. The Hamiltonian (E.8) has already appeared
in a causal dynamically triangulated model where the two-dimensional geometries were
decorated with a certain type of “outgrowth” or small “baby universes” [60]. This model
covered the parameter range 0 6 A 6 1.

The spectrum of the Hamiltonian (E.7) is given by

En =

√
2Λ

s
(2n+ s), n = 0, 1, 2, ... . (E.9)

The corresponding eigenfunctions read

ψn(L) = Ane
−
√

2ΛL
1F1(−n, s, 2

√
2ΛL), dµ(L) = Ls−1dL, (E.10)

where 1F1(−n, a, b) is the confluent hypergeometric function, as defined in (55). The
eigenfunctions {ψn(L), n = 0, 1, 2, ...} form an orthonormal basis with the normalization
factors

An = (8Λ)
s
4

√
Γ(n+ s)

Γ(n+ 1).Γ(s)2
(E.11)

Let us for completeness also state the finite time partition function or loop-loop correlator

GΛ,s(L1, L2, T ) =
√

2Λ (L1L2)
− s−1

2
e−
√

2Λ(L1+L2) coth(
√

2Λ
s

T )

sinh(
√

2Λ
s
T )

Is−1

( √
8ΛL1L2

sinh(
√

2Λ
s
T )

)
. (E.12)

with s ∈ [0, 1]. One sees explicitly that the case s=1 or, equivalently, A=1 corresponds
to the pure two-dimensional CDT model with open boundary conditions.

E.2 The case β = 1, α = −1
2

For α=−1
2

the result does not depend on γ and therefore on the detailed manner in which
we approach the critical point. However, the Hamiltonian

Ĥ(L,
∂

∂L
) = −L ∂2

∂L2
− ∂

∂L
+ 2 ΛL− 3

4
h2

renΛ−1/2 ∂2

∂L2
(E.13)

cannot be made self-adjoint with respect to any measure dµ(L) because the boundary part
of the partial integration always gives a nonvanishing contribution. We therefore discard
this possibility.



REFERENCES 63

References

[1] T. Thiemann, “Lectures on loop quantum gravity,” in Quantum gravity: From
theory to experimental search, D. Giulini, C. Kiefer, and C. Lämmerzahl, eds.,
vol. 631 of Lect. Notes Phys., pp. 41–135. 2003. gr-qc/0210094.

[2] C. Rovelli, Quantum gravity. Cambridge University Press, Cambridge, UK, 2004.

[3] H. Nicolai, K. Peeters, and M. Zamaklar, “Loop quantum gravity: An outside view,”
hep-th/0501114.

[4] A. Perez, “Spin foam models for quantum gravity,” Class. Quant. Grav. 20 (2003)
R43, gr-qc/0301113.

[5] L. Bombelli, J.-H. Lee, D. Meyer, and R. Sorkin, “Space-time as a causal set,” Phys.
Rev. Lett. 59 (1987) 521.

[6] R. D. Sorkin, “Causal sets: Discrete gravity,” Notes for the Valdivia Summer School,
Valdivia, Chile (2003) gr-qc/0309009.

[7] J. Ambjørn and R. Loll, “Non-perturbative Lorentzian quantum gravity, causality
and topology change,” Nucl. Phys. B536 (1998) 407–434, hep-th/9805108.

[8] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Lorentzian and Euclidean quantum gravity:
Analytical and numerical results,” in M-Theory and Quantum Gravity, L. Thorlacius
and T. Jonsson, eds., NATO Sience Series, pp. 382–449. Kluwer Academic
Publishers, 2000. hep-th/0001124.

[9] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Dynamically triangulating Lorentzian
quantum gravity,” Nucl. Phys. B610 (2001) 347–382, hep-th/0105267.

[10] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Nonperturbative 3d Lorentzian quantum
gravity,” Phys. Rev. D76 (2001) 044011, hep-th/0011276.

[11] J. Ambjørn, J. Jurkiewicz, and R. Loll, “3d Lorentzian quantum gravity,
dynamically triangulated quantum gravity,” Nucl. Phys. Proc. Suppl. 106 (2002)
980–982, hep-lat/0201013.

[12] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Semiclassical universe from first principles,”
Phys. Lett. B607 (2005) 205–213, hep-th/0411152.

[13] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Emergence of a 4D world from causal
quantum gravity,” Phys. Rev. Lett. 93 (2004) 131301, hep-th/0404156.

[14] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Spectral dimension of the universe,”
hep-th/0505113.

http://www.arXiv.org/abs/gr-qc/0210094
http://www.arXiv.org/abs/hep-th/0501114
http://www.arXiv.org/abs/gr-qc/0301113
http://www.arXiv.org/abs/gr-qc/0309009
http://www.arXiv.org/abs/hep-th/9805108
http://www.arXiv.org/abs/hep-th/0001124
http://www.arXiv.org/abs/hep-th/0105267
http://www.arXiv.org/abs/hep-th/0011276
http://www.arXiv.org/abs/hep-lat/0201013
http://www.arXiv.org/abs/hep-th/0411152
http://www.arXiv.org/abs/hep-th/0404156
http://www.arXiv.org/abs/hep-th/0505113


64 REFERENCES

[15] J. Ambjørn, J. Jurkiewicz, and R. Loll, “Reconstructing the universe,”
hep-th/0505154.

[16] F. Dowker, “Topology change in quantum gravity,” in The future of theoretical
physics and cosmology, G. Gibbons, E. Shellard, and S. Rankin, eds. Cambridge
Univ. Press, Cambridge, UK, 2002. gr-qc/0206020.

[17] P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, “2-D gravity and random
matrices,” Phys. Rept. 254 (1995) 1–133, hep-th/9306153.

[18] S. W. Hawking, “Information loss in black holes,” hep-th/0507171.

[19] L. Freidel and D. Louapre, “Non-perturbative summation over 3D discrete
topologies,” Phys. Rev. D68 (2003) 104004, hep-th/0211026.

[20] R. Loll and W. Westra, “Sum over topologies and double-scaling limit in 2D
Lorentzian quantum gravity,” hep-th/0306183.

[21] R. Loll, W. Westra, and S. Zohren, “Taming the cosmological constant in 2D causal
quantum gravity with topology change,” hep-th/0507012.

[22] R. Loll and W. Westra, “Space-time foam in 2D and the sum over topologies,” Acta
Phys. Polon. B34 (2003) 4997–5008, hep-th/0309012.

[23] R. Loll, W. Westra, and S. Zohren, “Nonperturbative sum over topologies in 2D
Lorentzian quantum gravity.” to appear in Proceedings of the Einstein Century
International Conference. Paris.

[24] S. R. Coleman, “Why there is nothing rather than something: A theory of the
cosmological constant,” Nucl. Phys. B310 (1988) 643.

[25] I. R. Klebanov, L. Susskind, and T. Banks, “Wormholes and the cosmological
constant,” Nucl. Phys. B317 (1989) 665–692.

[26] R. Loll, “A discrete history of the Lorentzian path integral,” in Quantum gravity:
From theory to experimental search, D. Giulini, C. Kiefer, and C. Lämmerzahl, eds.,
vol. 631 of Lect. Notes Phys., pp. 137–171. 2003. hep-th/0212340.

[27] J. Zinn-Justin, Quantum field theory and critical phenomena. No. 113 in Int. Ser. of
Monogr. on Phys.,. Qxford University Press, Oxford, UK, fourth ed., 2002.

[28] G. Roepstorff, Path integral approach to quantum physics: An Introduction. Texts
and Monographs in Physics. Springer-Verlag, Berlin, Germany, 1994.

[29] M. Reed and B. Simon, Methods Of Modern Mathematical Physics. II: Fourier
Analysis, Selfadjointness. Academic Press, New York, USA, 1975.

[30] R. M. Wald, General Relativity. University Press, Chicago, USA, 1984.

http://www.arXiv.org/abs/hep-th/0505154
http://www.arXiv.org/abs/gr-qc/0206020
http://www.arXiv.org/abs/hep-th/9306153
http://www.arXiv.org/abs/hep-th/0507171
http://www.arXiv.org/abs/hep-th/0211026
http://www.arXiv.org/abs/hep-th/0306183
http://www.arXiv.org/abs/hep-th/0507012
http://www.arXiv.org/abs/hep-th/0309012
http://www.arXiv.org/abs/hep-th/0212340


REFERENCES 65

[31] L. D. Faddeev and A. A. Slavnov, Gauge fields: Introduction to quantum theory,
vol. 50 of Front. Phys. Addison-Wesley Publishing Comp., 1980.

[32] J. Distler and H. Kawai, “Conformal field theory and 2-D quantum gravity or who’s
afraid of Joseph Liouville?,” Nucl. Phys. B321 (1989) 509.

[33] E. Mottola, “Functional integration over geometries,” J. Math. Phys. 36 (1995)
2470–2511, hep-th/9502109.

[34] A. Dasgupta and R. Loll, “A proper-time cure for the conformal sickness in quantum
gravity,” Nucl. Phys. B606 (2001) 357–379, hep-th/0103186.

[35] R. Loll, “Discrete approaches to quantum gravity in four dimensions,” Living Rev.
Rel. 1 (1998) 13, gr-qc/9805049.

[36] T. Regge, “General relativity without coordinates,” Nuovo Cim. 19 (1961) 558–571.
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