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1. Introduction
Data uncertainties prevail in many real-world linear opti-
mization models. If ignored, the so-called “optimal solu-
tion” obtained by solving a model using the “nominal data”
or point estimates can become infeasible in the model when
the true data differs from the nominal one. To overcome
such infeasibility, Soyster (1973) introduced a worst-case
model that ensures feasibility of its solution for all possible
realization of the uncertain data. Let A�z̃�x � b�z̃� be an
m× n linear constraint system that depends on a random
vector z̃. Soyster proposed the following model (Soyster
1973):

min c′x

s.t. A�z̃�x� b�z̃� ∀ z̃ ∈� �
(1)

where

� = �z� − z� z� z̄� for some z� z̄> 0

is the support of the primitive uncertainty vector z̃. Soyster
(1973) showed that the model can be represented as a poly-
nomially sized linear optimization model. However, this
model can be extremely conservative in addressing models
where the violation of constraints may be tolerated as a
trade-off for better attainment in objective.

Perhaps the most natural way of safeguarding a con-
straint is to restrict its violation probability. Such a con-
straint is known as a probabilistic or a chance constraint,

which was introduced by Charnes et al. (1958). A chance-
constrained model is defined as follows:

Z� =min c′x

s.t. P�A�z̃�x� b�z̃��� 1− ��
x ∈X�

(2)

where x ∈ X represents a set of additional deterministic
constraints. Problem (2) requires all the m linear constraints
A�z̃�x� b�z̃� to be jointly feasible with probability at least
1− �, where � ∈ �0�1� is a desired safety factor.

Chance-constrained problems can be classified as an indi-
vidual chance-constrained problem when m= 1, and a joint
chance-constrained problem when m > 1. One fundamen-
tal issue on the chance-constrained problem is to deter-
mine the distributional condition under which the problem
is convex. It is well known that under multivariate nor-
mal distribution, an individual chance-constrained problem
is second-order cone representable. In other words, the opti-
mization model becomes a second-order cone optimiza-
tion problem (SOCP), which is computationally tractable,
both in theory and practice (see, for example, Alizadeh and
Goldfarb 2003). In addition, Lagoa (1999) proved that the
individual chance-constrained problem is convex under the
condition that the distribution of the random parameters
is uniform over a convex symmetric set. More generally,
Calafiore and El Ghaoui (2006) showed that the individual

1
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chance constraint can be converted to second-order cone
constraints when the random parameters are under radial
distributions. However, for general distributions, chance-
constrained problems are computationally intractable. For
example, Nemirovski and Shapiro (2006) noted that evalu-
ating the distribution of a weighted sum of uniformly dis-
tributed independent random variables is already NP-hard.

Needless to say, joint chance-constrained problems are
clearly harder than individual

A3
chance-constraint problems.

For example, with only right-hand side disturbances, we
can transform an individual chance-constrained problem
to an equivalent linearly constrained problem. In contrast,
with only right-hand side disturbances, a joint chance-
constrained problem is known to be convex only when the
distributions are log-concave (cf. Prékopa 1995).

It is possible to incorporate joint probabilistic constraints
using a discrete representation obtained by Monte Carlo
sampling (for example, in Ruszczynski 2002). Indeed,
sampling approximation of the chance-constrained prob-
lem has been studied theoretically in Calafiore and Campi
(2005, 2006), Ergodan and Iyengar (2006), and Luedtke
and Ahmed (2008). These methods require roughly about
O�n/�� constraint duplications to yield a highly reliable
solution with respect to its feasibility (see Calafiore and
Campi 2006) as well as optimality (see Luedtke and Ahmed
2008). However, it may be computationally prohibitive to
solve large problems or to solve problems under high feasi-
bility requirement. The effectiveness of sampling approxi-
mation has also been challenged in the computation studies
of Nemirovski and Shapiro (2006) and Chen et al. (2007).

The intractability of a chance-constrained problem using
exact probability distributions has spurred recent inter-
ests in robust optimization in which data uncertainties
are described using uncertainty sets. Moreover, robust
optimization often requires only a mild assumption on
probability distributions such as known supports, covari-
ances, and/or other forms of deviation measures, notably
the directional deviations derived from moment-generating
functions proposed by Chen et al. (2007). For some prac-
titioners, this could be viewed as an advantage over hav-
ing to obtain the entire joint probability distributions of
the uncertain data. One of the goals of robust optimization
is to provide a tractable approach for obtaining a solution
that remains feasible in the chance-constrained model (2)
for all distributions that conform to the mild distributional
assumption. Hence, such solutions are viewed as “safe”
approximations to the chance-constrained problem.

Robust optimization has been fairly successful in
constructing safe approximation of individual chance-
constrained problems. Given an uncertainty set �, the
robust counterpart of an individual linear constraint
with affinely dependent primitive uncertainty vector z̃ is
defined as

a�z̃�′x� b�z̃� ∀ z̃ ∈��

Clearly, Soyster’s model (1) is a special case of the robust
counterpart in which the uncertainty set � is chosen to be
the support set � . For computational tractability, the cho-
sen uncertainty set � is usually in the form of tractable
convex representable sets such as these with second-order
cone and linear constraints. Various symmetric uncertainty
sets have been proposed by

A4
Ben-Tal and Nemirovski (1998,

1999),
A5
El-Ghaoui et al. (1998), and Bertsimas and Sim

(2004). Calafiore and El Ghaoui (2006) also provided
explicit results for enforcement of the individual chance
constraint based on moments, bounds, or symmetry infor-
mation. More recently, Chen et al. (2007) proposed an
asymmetrical uncertainty set that generalizes the symmet-
ric ones. All these models are computationally attractive
in the form of SOCPs or even in the form of linear
programs (LPs). In the recent work of Nemirovski and
Shapiro (2006), the moment-generating functions are incor-
porated for providing safe and tractable approximations
of an individual chance-constrained problem. Despite the
improved approximation, the approximation is not read-
ily second-order cone representable, and hence compu-
tationally more expensive. Other forms of deterministic
approximation of an individual chance-constrained problem
includes using Chebyshev’s inequality, Bernstein’s inequal-
ity, or Hoeffding’s inequality to bound the probability of
violating individual constraints. See, for example, Pintér
(1989).

Although robust optimization has been pretty successful
in approximating individual chance-constrained problems,
it is rather unsatisfactory in approximating joint chance-
constrained problems. The “standard method” for approxi-
mating a joint constrained problem is to decompose a joint
chance-constrained problem into a problem with m individ-
ual chance constraints. Clearly, by Bonferroni’s inequality,
a sufficient condition for ensuring feasibility in the joint
chance-constrained problem is to ensure that the total sum
of violation probabilities of the individual chance con-
straints is less than �. The natural choice proposed in
Chen et al. (2007)

A6
and Nemirovski and Shapiro (2006) is

to divide the violation probability equally among the m
individual chance constraints. To the best of our knowl-
edge, prior to this work, we do not know of any system-
atic approach for selecting better allocation of the safety
factors among the individual chance constraints. Unfor-
tunately, even when the individual chance constraints are
independent, the Bonferroni inequality is only an approxi-
mation at best.1 In the events when the individual chance
constraints are correlated, the approximation obtained using
Bonferroni’s inequality could be even more conservative.

The above motivates our research to achieve better
approximations of joint chance-constrained problems. We
build instead on a classical result on order statistics
(cf. Meilijson and Nadas 1979) to bound the probability
of violation for the joint chance constraint. We show that
by choosing the right multipliers in conjunction with this
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classical inequality, we can derive an improved approxima-
tion to the above method for the joint chance constraint-
problem.

Our specific contributions in this paper include the
following.

1. We review the different tractable approximations to
individual chance-constraint problems used in robust opti-
mization and, by using the bounds of E��·�+� developed
in Chen and Sim (2009), show their interesting connec-
tions with bounds on the conditional-value-at-risk (CVaR)
measure.

2. We propose a new formulation for approximating
joint chance-constrained problems that improves upon the
standard approach using Bonferroni’s inequality.

3. We provide an application of the model on a net-
work resource allocation problem with uncertain demand
and study the performance of the new chance-constrained
formulation over the standard approach.

The rest of this paper is organized as follows. In §2, we
focus on robust optimization approximation of individual
chance-constrained problems. Our work is closely related
to Chen and Sim (2009), which is discussed in §2.1. In
particular, we adopt the same model of data uncertainty
(in Assumption U) and the bounding functions of E��·�+�.
In §3, we propose a new approximation of the joint chance-
constrained problem. In §4, we analyze the efficacy of this
approximation through a computational study of emergency
supply allocation network. Finally, we conclude this paper
in §5.

Notations. We denote random variables with the tilde
sign, such as x̃. Boldface lower-case letters represent vec-
tors such as x, and boldface upper-case letters represent
matrices such as A. In addition, we denote x+ =max�x�0�
and use E�·� to stand for the expectation.

2. Individual Chance-Constrained
Problems

In this section, we will establish the relation between
bounds on the CVaR measure popularized by Rockafellar
and Uryasev (2000) and the different tractable approxima-
tions of individual chance-constrained problems used in
robust optimization. For simplicity, we consider a linear
individual chance constraint as follows:

P�y�z̃�� 0
A7
��� 1− �� (3)

where y�z̃� are affinely dependent of z̃,

y�z̃�= y0 +
N∑
k=1

ykz̃k�

and �y0� y1� � � � � yN � are the decision variables. To illus-
trate the generality, we can represent the following chance
constraint

P�a�z̃�′x� b�z̃�A8
��� 1− ��

where

a�z̃�= a0 +
N∑
k=1

akz̃k�

b�z̃�= b0 +
N∑
k=1

bkz̃k�

by enforcing the following affine relations

yk =−�ak�′x+ bk ∀k= 0� � � � �N �

The chance constraint (3) is not necessarily convex in its
decision variables, �y0� y1� � � � � yN �. A step toward tractabil-
ity is by convexifying the individual chance constraint (3)
using the CVaR measure, �1−��ṽ�, which is a functional on
a random variable ṽ defined as follows:

�1−��ṽ��min
�

{
�+ 1

�
E��ṽ−��+�

}
� (4)

The CVaR measure is a special class of optimized certainty
equivalent (OCE) risk measure introduced by Ben-Tal and
Teboulle (1986) and is popularized by Rockafellar and
Uryasev (2000) as a tractable alternative for solving value-
at-risk problems in financial applications. Recent works of
Bertsimas and Brown (2009) and Natarajan et al. (2009)
have uncovered the relation between financial risk mea-
sures and uncertainty sets in robust optimization. The CVaR
constraint,

�1−��y�z̃��� 0� (5)

is a convex approximation of an individual chance con-
straint. Indeed, if the random variable y�z̃� satisfies
inequality (5), then there exists �� 0 such that

�+ 1
�
E��y�z̃�−��+�� 0�

Note that if �= 0, then the inequality necessarily implies
E��y�z̃��+�� 0 and hence,

P�y�z̃�� 0�= 1� 1− ��
On the other hand, if �< 0, then by Markov inequality, we
have

P�y�z̃� > 0�= P�y�z̃�−�>−��
� P��y�z̃�−��+ >−��
� E��y�z̃�−��+�/�−��
� ��

Therefore, the random variable y�z̃�will satisfy (5). It is also
well known (e.g., Föllmer and Schied 2004, Nemirovski and
Shapiro 2006) that CVaR is the tightest convex approxima-
tion to the individual chance constraint (3).
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Despite its convexity, however, it is generally difficult to
evaluate the CVaR measure because the expectation E��·�+�
involves multidimensional integration. Such evaluation is
computationally prohibitive above the fourth dimension.
Although it is possible to approximate CVaR using sam-
pling average approximation, the solution obtained may
not be a safe approximation of the chance-constrained
problem (3). Furthermore, sampling average approxima-
tion of the CVaR measure relies on full knowledge of the
underlying distributions, z̃, which may become a practi-
cal concern due to the limited availability of independent
stationary historical data.

2.1. Bounding E��·�+�
Providing bounds on E��·�+� is pivotal in developing
tractable approximations to individual and joint chance-
constrained problems.

A9
We show next that different ways

of bounding E��·�+� using mild distributional information
of z̃, such as supports, covariances, and deviation measures.
The results in bounding E��·�+� have also been presented in
Chen and Sim (2009). For ease of reference, we list some
of the known bounds on E��·�+�.

The primitive uncertainties z̃ may be partially character-
ized using the forward and backward deviations (together,
they are called directional deviations), which were recently
introduced by Chen et al. (2007).

Definition 2.1. Given a random variable z̃ with zero
mean, the forward deviation is defined as

�f �z̃�� sup
�>0

{√
2 ln�E�exp��z̃���/�2

}
(6)

and backward deviation is defined as

�b�z̃�� sup
�>0

{√
2 ln�E�exp�−�z̃���/�2

}
� (7)

The directional deviations are derived from the moment-
generating functions of z̃ and may not be finite. Nev-
ertheless, for a random variable with finite support, the
respective deviations can be bounded as follows.

Theorem 2.2 (Chen et al. 2007). If z̃ has zero mean and
is distributed in �−z� z̄�, z� z̄ > 0, then

�f �z̃�� ��f �z̃�=
z+ z̄
2

√
g

(
z− z̄
z+ z̄

)

and

�b�z̃�� ��b�z̃�=
z+ z̄
2

√
g

(
z̄− z

z+ z̄
)
�

where

g� �= 2max
s>0

{
" �s�− s

s2

}

and

" �s�= ln
(
es + e−s

2
+ es − e−s

2
 

)
�

Moreover, the bounds are tight in the sense that there exists
a probability distribution on z̃ such that �f �z̃�= ��f �z̃� and
�b�z̃�= ��b�z̃�.
A10
Assumption U. We assume that the uncertainties �z̃j�j=1�N

are zero mean random variables, with a positive definite
covariance matrix �. Let � be the smallest closed convex
set containing the support of z̃. We denote a subset, � ⊆
�1� � � � �N �, which can be an empty set, such that z̃j , j ∈�
are stochastically independent. Moreover, the correspond-
ing forward and backward deviations (or their bounds used
in Theorem 2.2) are given by pj = �f �z̃j � and qj = �b�z̃j �
respectively, for j ∈� and

A11
that pj = qj =� for j �� .

The choice of the set � (with a little abuse of terminol-
ogy, we call it the “support set”) can influence the compu-
tational tractability of the problem. Henceforth, we assume
that the support set is a second-order conic representable
set (a.k.a. conic quadratic representable set) proposed in
A12
Ben-Tal and Nemirovski (1998), which includes polyhedral
and ellipsoidal sets. A common support set is the inter-
val set, given by � = �−z� z̄�, in which z� z̄> 0.

For notational convenience, we define the following sets:

�1 � �i� pj <��� ��1 � �i� pj =���
�2 � �i� qj <��� ��2 � �i� qj =���

We also denote P = diag�p1� � � � � pN � and Q =
diag�q1� � � � � qN �. If pj = � (respectively, qj = �), then
we stipulate p−1

j = 0 (respectively, q−1
j = 0). Moreover, the

product of any pj with zero remains zero, i.e., pj × 0 = 0
(respectively, qj × 0= 0).

Theorem 2.3 (Chen and Sim 2009). Suppose that the
primitive uncertainty z̃ satisfies Assumption U. The follow-
ing functions are upper bounds of E��y0 + y′z̃�+�, where
y= �y1� � � � � yN �′:

�a� E��y0 + y′z̃�+��(1�y0�y��
(
y0 +max

z∈�
z′y
)+
�

The bound is tight whenever y0 + y′z� 0 for all z ∈� .

�b� E��y0 + y′z̃�+�

= y0 +E��−y0 − y′z̃�+�

�(2�y0�y�� y0 +
(
− y0 +max

z∈�
�−y�′z

)+
�

The bound is tight whenever y0 + y′z� 0 for all z ∈� .

�c� E��y0 + y′z̃�+�= 1
2 �y0 +E�y0 + y′z̃A13

���
�(3�y0�y��

1
2y0 + 1

2

√
y2
0 + y′�y�
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�d� E��y0 + y′z̃�+�

� inf
 >0

 

e
E
(

exp
(
y0 + y′z̃
 

))

�(4�y0�y�� inf
 >0

{
 

e
exp
(
y0
 

+ �u�2
2

2 2

)}
�

where uj = max�pjyj�−qjyj�, j = 1� � � � �N . The bound is
finite if and only if yj � 0 ∀ j ∈ ��1 and yj � 0 ∀ j ∈ ��2.

�e� E��y0 + y′z̃�+�

� y0 + inf
 >0

 

e
E
(

exp
(−y0 − y′z̃

 

))

�(5�y0�y�� y0 + inf
 >0

{
 

e
exp
(
− y0
 

+ �v�2
2

2 2

)}
�

where vj = max�−pjyj� qjyj�, j = 1� � � � �N . The bound is
finite if and only if yj � 0 ∀ j ∈ ��1 and yj � 0 ∀ j ∈ ��2.

Remark. Observe that (i�y0�y�, i = 1� � � � �5 are con-
vex, proper (i.e., the function is nowhere −� and is not
everywhere +�), and closed (i.e., lower semicontinuous).
A closed convex function is necessarily continuous on its
domain dom f � �x� f �x� < +�� (cf. Rockafellar 1970).
In addition, (i�y0�y�, i = 1� � � � �5 are positively homoge-
neous functions, that is,

(i�ky0� ky�= k(i�y0�y� ∀k� 0� (8)

Furthermore,

(i�y0�0�= y+0 � (9)

Chen and Sim (2009) showed that the epigraph of (i�y0�y�
is second-order cone representable and that the bound can
be strengthened further by suitably decomposing �y0�y�
into �yi0�y

i� and by using a linear combination of the
bounds (i�yi0�y

i�.

Theorem 2.4 (Chen and Sim 2009). Suppose that
(i�y0�y� for all i ∈� is an upper bound to E��y0+y′z�+�,
A14
and (i�y0�y� is convex and positively homogeneous. Define

(��y0�y�� min
yl0�yl

∑
l∈�
(l�yl0�yl�

s�t�
∑
l∈�
yl0 = y0�

∑
l∈�

yl = y�

Then,

0� E��y0 + y′z̃�+��(��y0�y��min
l∈�

(l�y0�y�� (10)

Moreover, (��y0�y� inherits the second-order cone rep-
resentability and positively homogeneous properties of the
individual functions (i�y0�y�, i ∈�.

For details, the interested reader may refer to Chen and
Sim (2009).

Proposition 2.5. Under Assumption U and
A15
supposing that

(�y0�y� is an upper bound to E��y0 + y′z�+� for all
�y0�y� ∈�N+1, then

(�y0�y�= 0 (11)

only if

y0 +max
z∈�

y′z� 0� (12)

Proof. Note that

0=(�y0�y�� E��y0 + y′z̃�+�� 0�

Suppose that

y0 + y′z∗ = y0 +max
z∈�

y′z> 0

for some z∗ ∈� . Because the objective function is linear,
we can assume WLOG that z∗ is an extreme point in � .

Let B��z
∗� denote an open ball with radius � around z∗,

with

y0 + y′z> 0 for all z ∈ B��z∗��
Because E��y0 + y′z̃�+�= 0, we must have

P��z̃ ∈ B��z∗���= 0�

Thus, the support for z̃ lies in the convex hull � ′ of the
(closed) set � \B��z∗�. Because z∗ is an extreme point
in � , we have z∗ � � ′. This contradicts our earlier
assumption that � denotes the smallest convex set con-
taining the support for z̃. �

2.2. Bounds on CVaR and Robust Optimization

There are several attractive proposals for approximating
individual chance-constrained problems, in which the solu-
tion �y0�y� to the following problem

y0 +max
z∈�

y′z� 0

guarantees that

P�y0 + y′z̃� 0�� 1− �� (13)

Clearly, the choice of uncertainty set � depends on the
underlying assumption on primitive uncertainty.

Another approach of approximating the chance con-
straint is to provide an upper bound of the CVaR func-
tion �1−��y0 +y′z̃�, so that if the bound is nonnegative, the
chance constraint (13) will also be satisfied. For a given
upper bound (�y0�y� to E��·�+�, we define

,1−��y0�y��min
�

{
�+ 1

�
(�y0 −��y�

}
�
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Clearly,

�1−��y0 + y′z̃�=min
�

{
�+ 1

�
E��y0 + y′z̃−��+�

}
� ,1−��y0�y��

and a sufficient condition for satisfying (13) is

,1−��y0�y�� 0� (14)

Note that if the epigraph of (�·� ·� can be approximated by
a second-order cone, constraint (14) is also approximately
second-order cone representable.

We next show that the two approaches are essentially
equivalent.

Theorem 2.6. Suppose that (�y0�y� is convex, closed,
and positively homogeneous, and is an upper bound to
E��y0+y′z�+� with (�y0�0�= y+0 . Then, under Assumption
U and given � ∈ �0�1�, it holds that for all �y0�y� such that
(�y0�y� <�, we have

,1−��y0�y�= y0 + max
z∈����

y′z

for some convex uncertainty set ����.

The proof of Theorem 2.6 is based on the follow-
ing strong duality theorem, which can be found, e.g., in
Ben-Tal and Nemirovski (2001).

Theorem 2.7 (Theorem 2.4.1, Ben-Tal and Nemirovski
2001). Let � be a nonempty closed convex cone. Consider
the primal problem

p∗ =min
x
�c′x� Ax−b ∈��

and its dual

d∗ =max
�
�b′�� A′�= c� � ∈�∗��

If the primal problem is bounded below and is strictly fea-
sible (i.e., Ax−b ∈ ri��� for some x, where ri��� denotes
the relative interior of the cone �), then the dual problem
is solvable and −�<d∗ = p∗ <+�.2

We now prove Theorem 2.6.

Proof. The set � � ��u� y0�y�� u � (�y0�y�� is a non-
empty closed convex cone

A16
because it is the epigraph of a

convex, closed, and positively homogeneous function with
(�y0�0�= y+0 . Let �y0�y� ∈ dom(. Define

c= ��−1�−1�′� b= �0�−y0�−y′�′�

x= �u�−��′� �= �.�−z0�−z′�′�

and

A=

1 0

0 1
0 0


 �

We apply Theorem 2.7 with the above c�x�b���A, and �.
The primal problem is strictly feasible because there

exists u such that u > (�y0�y� and that (�y0�y� < �;
i.e., ∃x such that Ax − b ∈ ri���� If � � 0, then because
u� (�y0 − ��y�� E��y0 − �+ z̃′y�+�� 0, one has c′x =
�−1u + � � 0/ whereas if � < 0, then c′x = �−1u + � �
�−1(�y0 − ��y�+ � � �−1E�y0 − �+ y′z̃�+ � = �−1y0 −
��−1 − 1�� > �−1y0, which shows that the primal problem
is bounded below. Thus, by Theorem 2.7,

,1−��y0�y�=min
��u
��+ u/�� �u� y0 −��y� ∈��

=min
x
�c′x� Ax−b ∈��

=max
�
�b′�� A′�= c�� ∈�∗�

= max
�� z0� z

{
y0z0 + y′z� �.�−z0�−z′�′

= �1/��−1�−z′�′ ∈�∗}�
Hence,

,1−��y0�y�= y0 + max
z∈����

y′z�

with

����� �z� �1/��−1�−z′� ∈�∗�� �

For the functions (i�y0�y�, i= 1� � � � �5, the correspond-
ing uncertainty sets can be computed explicitly. Consider
the following uncertainty sets:

�1����� �

�2���� �z� z= �1− 1/��� for some � ∈� ��

�3����

{
z� ��−1/2z�2 �

√
1− �
�

}
�

�4����
{
z� ∃s� t ∈�N � z= s− t� �P−1s+Q−1t�2

�
√−2 ln �

}
�

�5����

{
z� ∃s� t ∈�N � z= s− t� �Q−1s+P−1t�2

�
1− �
�

√−2 ln�1− ��
}
�

Note that, in general, the matrixes P−1 and Q−1 may not
be positive definite. Hence, except for �3, the rest of the
uncertainty sets may be unbounded.

Corollary 2.8.

,i1−��y0�y��min
�

{
�+ 1

�
(i�y0 −��y�

}
= y0 + max

z∈�i���
y′z�

Proof.

Uncertainty Set �1���:

,1
1−��y0�y�=min

�

(
�+ (1�y0 −��y�

�

)

=min
�

(
�+ 1

�

(
y0 −�+max

z∈�
y′z
)+)

= y0 + max
z∈�1���

y′z�
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Uncertainty Set �2���:

,2
1−��y0�y�

=min
�

(
�+ (2�y0 −��y�

�

)

= y0 +min
�

(
�+ (2�−��y�

�

)

= y0 +min
�

{
�+ 1

�

((
max
z∈�

�−y�′z+�
)+ −�

)}

= y0 +min
�

{
��1− 1/��+ 1

�

((
max
z∈�

�−y�′z+�
)+)}

= y0 + �1/�− 1�min
�

{
−�+ 1

1− �
((

max
z∈�

�−y�′z+�
)+)}

= y0 + �1/�− 1�max
z∈�

y′�−z�

+ �1/�− 1�min
�

(
−�+ 1

1− � ���
+
)

= y0 + max
z∈�2���

y′z�

Uncertainty Set �3���:

,3
1−��y0�y�=min

�

(
�+ (3�y0 −��y�

�

)

=min
�

(
�+ y0 −�+√�y0 −��2 + y′�y

2�

)

= y0 +
√

1− �
�

√
y′�y

= y0 + max
z∈�3���

y′z�

where the second equality follows from choosing the
optimum �,

�∗ = y0 +
√

y′�y�1− 2��

2
√
��1− �� �

Uncertainty Set �4���: Observe that

uj �max�pjyj�−qjyj� if and only if p−1
j uj � yj and

q−1
j uj �−yj .
,4

1−��y0�y�

=min
�

(
�+ (4�y0 −��y�

�

)

= min
�� �u

(
�+ � /e� exp��y0 −��/ +�u�2

2/�2 
2��

�∣∣∣P−1u� y�Q−1u�−y
)

=min
 �u

(
y0 +

�u�2
2

2 
− ln �

∣∣∣P−1u� y�Q−1u�−y
)

=min
u

(
y0+

√−2ln�u0

∣∣∣P−1u�y�Q−1u�−y��u�2�u0

)
= y0 + max

z∈�4���
y′z�

where the second and third equalities follow from choosing
the tightest �∗ and  ∗, that is,

�∗ = y0 +
�u�2

2

2 
− ln �− �

 ∗ = �u�2√−2 ln �
�

The last equality is the result of conic duality. See, for
example, Chen et al. (2007).

Uncertainty Set �5���: Following from the above
exposition,

,5
1−��y0�y�

=min
�

(
�+ (5�y0 −��y�

�

)

= min
�� �v

(
�+ y0−�+� /e�exp�−�y0−��/ +�v�2

2/�2 
2��

�∣∣∣P−1v�−y�Q−1v� y
)

=min
 �v

(
y0 +

(
1
�
− 1
)(�v�2

2

2 
− ln�1− ��

)
∣∣∣P−1v�−y�Q−1v� y

)

=min
v

(
y0 +

1− �
�

√−2 ln�1− ���v�2∣∣∣P−1v�−y�Q−1v� y
)

= y0 + max
z∈�5���

y′z� �

We show next that the uncertainty set corresponding to
the stronger bound (��y0�y� can also be obtained in a
similar way.

Theorem 2.9. Suppose that z̃ satisfies Assumption U. Let

������
⋂
l∈�

�l����

and suppose that ����� is compact and has a nonempty
interior. Then,

,�
1−��y0�y�= y0 + max

z∈�� ���
y′z�

Proof.

,��y0�y�

=min
�

(
�+ (��y0 −��y�

�

)

= min
�� yl0�yl � l∈�

(
�+∑

l∈�

(
(l�yl0 −�l�yl�

�

)
∣∣∣ ∑
l∈�

yl = y�
∑
l∈�
yl0 = y0�

∑
l∈�
�l = �

)
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= min
yl0�yl � l∈�

(∑
l∈�

min
�l

(
�l+

(l�yl0 −�l�yl�
�

)
∣∣∣ ∑
l∈�

yl = y�
∑
l∈�
yl0 = y0

)

= min
yl0�yl � l∈�

(∑
l∈�

(
yl0 + max

z∈�l���
y′
lz
) ∣∣∣ ∑

l∈�
yl = y�

∑
l∈�
yl0 = y0

)

= y0 + min
yl � l∈�

(∑
l∈�

(
max

z∈�l���
y′
lz
) ∣∣∣ ∑

l∈�
yl = y

)
= y0 + max

z∈�� ���
y′z�

where the last inequality is due to infimum convolution
of support functions. See Corollary 16.4.1 of Rockafellar
(1970). �

Hence, the different approximations to individual
chance-constrained problems used in robust optimization
are the consequences of applying different bounds on
E��·�+�. Notably, when the primitive uncertainties are char-
acterized only by their means and covariance, the corre-
sponding uncertainty set is an ellipsoid of the form �3���.
See, for example, Bertsimas et al. (2004) and

A17
El-Ghaoui

et al. (2003). When I =N , that is, all the primitive uncer-
tainties are independently distributed, Chen et al. (2007)
proposed the asymmetrical uncertainty set

�A���= �︸︷︷︸
=�1���

∩�4����

which generalizes the uncertainty set proposed by Ben-Tal
and Nemirovski (2000). With the independence assump-
tion, it suffices to consider the interval set given by � =
�−z� z̄�.

Noting that �A��� ⊇ ��1�2�4�5����, we can therefore
improve upon the approximation using the uncertainty
set ��1�2�4�5����. However, in most application of chance-
constrained problems, the safety factor � is relatively small,
in which case the uncertainty sets of �2��� and �5���
are usually exploded to engulf the uncertainty sets of �
and �4���, respectively. For example, under symmetric dis-
tributions, that is P = Q and z̄ = z, it is easy to establish
that for � < 0�5, we have

��1�2�4�5����=�1���︸ ︷︷ ︸
=�

∩�2���︸ ︷︷ ︸
⊇�

∩�4���∩�5���︸ ︷︷ ︸
⊇�4

=�A����

3. Joint Chance-Constrained Problems
Unfortunately, the notion of uncertainty set in classical
robust optimization does not carry forward as well in
addressing joint chance-constrained problems. We consider
a linear joint chance constraint as follows:

P�yj�z̃�� 0� j ∈��� 1− �� (15)

where �= �1� � � � �m�, yj�z̃� are affinely dependent of z̃,

yj�z̃�= yj0 +
N∑
k=1

y
j
kz̃k� j ∈��

A18
and �y1

0� � � � � y
1
N � � � � � y

m
0 � � � � � y

m
N � being the decision vari-

ables. For notational convenience, we represent

yj = �yj1� � � � � yjN ��
so that yi�z̃�= yi0 + y′

iz̃, and denote

Y= �y1
0� � � � � y

1
N � � � � � y

m
0 � � � � � y

m
N �

as the collection of decision variables in the joint chance
constraint. By suitable affine constraints imposed on
the decision variables Y and x, we can represent the
joint chance constraint in model (2) in the form of
constraint (15).

It is not surprising that a joint chance constraint is more
difficult to solve than an individual one. For computational
tractability, the common approach is to decompose the joint
constraint into a problem with m individual constraints of
the form

P�yi�z̃�� 0�� 1− �i� i ∈�� (16)

By enforcing Bonferroni’s inequality on their safety factors,∑
i∈�
�i � �� (17)

any feasible solution that satisfies (16) and (17) will also
satisfy (15). See, for example, Chen et al. (2007) and
Nemirovski and Shapiro (2006). Consequently, using the
techniques discussed in the previous section, we can then
build tractable safe approximations as follows:

,1−�i �y
i
0�yi�� 0� i ∈�� (18)

The main issue with using Bonferroni’s inequality is the
choice of �i. Unfortunately, the problem becomes noncon-
vex and possibly intractable if �i, i ∈�, are made decision
variables and (17)

A19
is enforced as a constraint in the opti-

mization model. As such, it is natural to choose, �i = �/m
as proposed in Chen et al. (2007) and Nemirovski and
Shapiro (2006).

In some instances, this approach may be rather conserva-
tive even for an optimal choice of �i. For example, suppose
that yi�z̃� are completely correlated, such as

yi�z̃�= 2i�a0 + a′z̃�� i ∈� (19)

for some 2i > 0; the least conservative choice of �i is �i = �
for all i ∈�, which would violate condition (17) imposed
by Bonferroni’s inequality. As a matter of fact, it is easy
to see in this case that the least conservative choice of �i,
while satisfying Bonferroni’s inequality, is �i = �/m for all
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i= 1� � � � �m. Hence, if yi�z̃� are correlated, the efficacy of
Bonferroni’s inequality will possibly diminish.

We propose a new tractable way of approximating the
joint chance constraint. Given a vector of positive con-
stants, � ∈ �N , � > 0, an index set � ⊆ �, an upper
bound (�y0�y� for E��y0 +y′z̃�+�, we define the following
function:

.1−��Y������min
w0�w

{
min
�

[
�+ 1

�
(�w0 −��w�

]
︸ ︷︷ ︸

=,1−��w0�w�

+ 1
�

[∑
i∈�
(�5iy

i
0 −w0�5iyi−w�

]}
�

The next result shows that we can use the above function
to approximate a joint chance constraint.

Theorem 3.1. (a) Suppose that z̃ satisfies Assumption U.
If

.1−��Y������ 0 (20)

and

yi0 +max
z∈�

y′
iz� 0 ∀ i ∈�\� � (21)

then

�1−�
(
max
i∈�

�5iyi�z̃��
)
� .1−��Y������

Consequently, the joint chance constraint (15) is satisfied.
(b) For fixed ������ the epigraph of the function

.1−��Y����� with respect to Y is second-order cone rep-
resentable and positively homogeneous. Similarly, for fixed
�Y���, the epigraph of the function .1−��Y����� with
respect to � is second-order cone representable and posi-
tively homogeneous.

Proof. (a) Under Assumption U, the set � contains the
support of the primitive uncertainty, z̃, hence, the robust
counterpart (21) implies

P�yi0 + y′
iz̃> 0�= 0 ∀ i ∈�\� �

Hence, with �> 0, we have

P�yi0 + y′
iz̃� 0� i ∈��= P�yi0 + y′

iz̃� 0� i ∈ ��

= P
(
max
i∈�

�5iy
i
0 +5iy′

iz̃�� 0
)
�

Therefore, it suffices to show that if Y is feasible in con-
straint (20), then the CVaR measure

�1−�
(
max
i∈�

�5iyi�z̃��
)
� 0�

Using the classical inequality (cf. Meilijson and Nadas
1979) that

E
(

max
i=1�����n

Xi−�
)+

� E�Y −��+ +
n∑
i=1

E�Xi− Y �+

for any r.v. Y � (22)

we have

�1−�
(
max
i∈�

�5i�y
i
0 + y′

iz̃��
)

=min
�

{
�+ 1

�
E
[(

max
i∈�

�5i�y
i
0 + y′

iz̃��−�
)+]}

� min
��w0�w

{
�+ 1

�

[
E��w0 −�+w′z̃�+�

+∑
i∈�

E��5iy
i
0 −w0 + �5iyi−w�′z̃�+�

]}

� min
��w0�w

{
�+ 1

�

[
(�w0−��w�+

∑
i∈�
(�5iy

i
0−w0�5iyi−w�

]}
= .1−��Y������ 0�

(b) For a fixed �, the corresponding epigraph can be
expressed as

Y1 = ��Y� t�� .1−��Y������ t�

=



�Y� t��

∃w0� r0� � � � � rm ∈�� A20
w ∈�N �

r0 +
1
�

∑
i∈�
ri � t�

,1−��w0�w�� r0�

(�5iy
i
0 −w0�5iyi−w�� ri ∀ i ∈ � �



�

Because the epigraphs of ,1−��·� ·� and (�·� ·� are second-
order cone representable, the set Y1 is also second-order
cone representable. For positive homogeneity, we observe
that because (�·� ·� is positively homogeneous, we have
that for all k� 0,

.1−��kY�����= min
��w0�w

{
�+ 1

�

[
(�w0 −��w�

+∑
i∈�
(�k5iy

i
0 −w0� k5iyi−w�

]}

= k min
��w0�w

{
1
k
�+ 1

�

[
(

(
1
k
w0 −

1
k
��

1
k
w
)

+∑
i∈�
(

(
5iy

i
0 −

1
k
w0�5iyi−

1
k
w
)]}

= k min
��w0�w

{
�+ 1

�

[
(�w0 −��w�

+∑
i∈�
(�5iy

i
0 −w0�5iyi−w�

]}
= k.1−��Y������
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Similarly, the same exposition applies when Y is fixed and
�

A21
is the decision variable. �

Remark. Note that constraints (21) do not depend on the
values of 5j for all j ∈�\� . Speaking intuitively, we can
perceive 5j =� for all j ∈�\� . However, to avoid deal-
ing with infinite entities, we define the set � as part of the
input to the function .1−��·� ·� ·�. Throughout this paper, we
will restrict the focus of � to only elements correspond-
ing to the indices in the set � . Unfortunately, the function
.1−��Y����� is not jointly convex in both Y and �. Nev-
ertheless, for a given Y, it is a tractable convex function
with respect to � and is in the attractive form of SOCP.
We will later exploit this property for improving the choice
of �.

If the sets

�i � �z̃� yi�z̃�� ��� i= 1� � � � � n

are mutually disjoint, then

E
(
max
i
yi�z̃�−�

)+ =
n∑
i=1

E�yi�z̃�−��+�

and hence inequality (22) cannot be tightened further sub-
stantially. Interestingly, by introducing the parameters �
and random variable w0 + w′z, our approach is also able
to handle the situation when the variables are positively
correlated. In the example (19) where yi�z̃�, i ∈� are com-
pletely positively correlated, the following condition

,1−��a
0�a�� 0

is also sufficient to guarantee feasibility in the joint chance
constraint. Choosing 5i = 1/2i > 0, we see that

.1−��Y�����

=min
w0�w

{
,1−��w0�w�+

1
�

[∑
i∈�
(�5iy

i
0 −w0�5iyi−w�

]}

=min
w0�w

{
,1−��w0�w�+

1
�

[∑
i∈�
(�5i2ia

0 −w0�5i2ia−w�
]}

� ,1−��a
0�a�+ 1

�

{∑
i∈�
(�a0 − a0�a− a�

}
= ,1−��a

0�a�� 0�

Therefore, we see that the new bound is potentially better
than the application of Bonferroni’s inequality on individ-
ual chance constraints. By choosing the right combination
of �����, we can prove a stronger result as follows.

Theorem 3.2. Let �i ∈ �0�1�� i ∈ �, and
∑

i∈� �i � �.
Under Assumption U, suppose that Y satisfies

,1−�i �y
i
0�yi�� 0 ∀ i ∈��

Then, there exists � > 0, and a set � ⊆ � such that
�Y����� are feasible in constraints (20) and (21).

Proof. Let �i be the optimal solution to

min
�

(
�+ 1

�i
�(�yi0 −��yi��

)
︸ ︷︷ ︸

=,1−�i �y
i
0�yi�

�

Because ,1−�i �y
i
0�yi�� 0 and that

(�yi0 −�i�yi�� E��yi0 −�i+ y′
iz̃�

+�� 0�

we must have �i � 0. Let � = �i � �i < 0�
A22
and

5j =− 1
�j

∀ j ∈ � �

Because �j = 0 for all j ∈�\� , we have

0�(�yi0�yi�� 0 ∀ i ∈�\� �

From Proposition 2.5, it follows that

yi0 + y′
iz� 0 ∀ z ∈� � ∀ i ∈�\� �

which satisfies the set of inequalities in (21).
For i ∈ � , the constraint ,1−�i �y

i
0�yi�� 0 is equivalent to

1
−�i

(�yi0 −�i�yi�� �i�

Because the function (�·� ·� is positive homogeneous, we
have

1
−�i

(�yi0 −�i�yi�=(
(

1
−�i

yi0 + 1�
1

−�i
yi

)
=(�5iyi0 + 1�5iyi�

� �i ∀ i ∈ � �

Finally,

.1−��Y�����

= min
��w0�w

{
�+ 1

�

[
(�w0−��w�+

∑
i∈�
(�5iy

i
0−w0�5iyi−w�

]}

�−1+ 1
�

{
(�−1+ 1�0�+∑

i∈�
(�5iy0 + 1�5iy− 0�

}

=−1+ 1
�

∑
i∈�
(�5iy0 + 1�5iy�

�−1+ 1
�

∑
i∈�
�i � 0�

where the first inequality is due to the choice of �=−1,
w0 = −1, w = 0 and the last inequality follows from∑

i∈� �i � �. �
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3.1. Optimizing Over �

Consider a joint chance-constrained model as follows:

Z� =min c′x

s.t. P�yi�z̃�� 0� i ∈��� 1− ��
�x�Y� ∈X�

(23)

in which X is
A23
an efficiently computable convex set, such

as a polyhedron or a second-order cone representable set.
Given a set of a constant, �> 0, and a set � , we consider
the following optimization model:

Z1
� �����=min c′x

s.t. .1−��Y������ 0�

yi0 +max
z∈�

y′
iz� 0 ∀ i ∈�\� �

�x�Y� ∈X�

(24)

In view of Theorem 3.1, suppose that model (24) is feasi-
ble, and the solution (x�Y) is also feasible in model (23),
albeit more conservatively.

The main concern here is how to choose � and � .
A likely choice is, say, 5j = 1/m for all j ∈� and � =�.
Alternatively, we may use the classical approach by decom-
posing into m individual chance constraints with �i = �/m.
In virtue of Theorem 3.2, we can find a feasible �> 0 and
set � such that model (24) is also feasible.

Our aim is to improve upon the objective by minimizing
.1−��Y����� over � and � , resulting in greater slack in
model (24). Hence, this approach will lead to improvement
in the objective, or at least will not increase the value.

Given a feasible solution Y in model (24), our aim is to
improve upon the objective by readjusting the set � and
the weights 5j , j ∈ � , which will result in greater slack
in model (24) over the solution, Y. We define the follow-
ing set:

	�Y��
{
i� yi0 +max

z∈�
y′
iz> 0

}
�

Note that we can obtain the set 	�Y� by solving the fol-
lowing linear optimization problem:

min
m∑
i=1

si

s.t. yi0 +max
z∈�

y′
iz� si�

(25)

so that 	�Y�= �i� s∗i > 0�, s∗ being its optimal solution.
Because Y is feasible in model (24), we must have

	�Y�⊆ � . If the set 	�Y� is nonempty, we consider the
following optimization problem over 5j , j ∈	�Y�:

Z1
5�Y�=min .1−��Y���	�Y��

s.t.
∑

j∈	�Y�
5j = 1�

5j � 0 ∀ j ∈	�Y��

(26)

By choosing (�y0�y�� (1�y0�y�, we can ensure that the
objective function of problem (26) is finite. Moreover,
because the feasible region of problem (26) is compact, the
optimal solution for 5j , j ∈	�Y� is therefore attained.

Proposition 3.3. Assume that there exists �Y�����, �>
0, such that .1−��Y����� � 0. Let �∗ be the optimum
solution of problem (26).

�a� Z1
5�Y�� 0�

(b) Moreover, the solution �∗ satisfies

5∗
i > 0 ∀ i ∈	�Y��

Proof. (a) Because 	�Y�⊆ � , and under the assumption
that there exists �Y�����, �> 0 such that .1−��Y������
0, by using the same �, we observe that

.1−��Y���	�� .1−��Y������ 0�

Due to the positively homogeneous property of Theo-
rem 3.1(b), we scale � by a positive constant so that it is
feasible in problem (26). Hence, the result follows.

(b) Note that under the constraints of problem (26),
there exists 5∗

j > 0 for some j ∈	�Y�. Suppose that there
exists a nonempty set 
⊂	�Y� (strict inclusion) such that
5∗
i = 0, ∀ i ∈
. We will show that the following holds:

yi0 +max
z∈�

y′
iz� 0 ∀ i ∈	�Y�\
�

which is a contradiction. We have argued that Z1
5�Y�� 0.

Let k ∈ 
, that is, 5∗
k = 0. Observe that for some suitably

chosen ���w0�w�,

0� .1−��Y��
∗�	�Y��

= �+ 1
�

{
(�w0 −��w�+

∑
i∈	�Y�

(�5∗
i y

i
0 −w0�5

∗
i yi−w�

}

= �+ 1
�
�(�w0 −��w�+(�−w0�−w��

+ 1
�

∑
i∈	�Y�\�k�

(�5∗
i y

i
0 −w0�5

∗
i yi−w�

� �+ 1
�
�E�w0 +w′z−��+ +E�−w0 −w′z�+�

� �+ 1
�
�−��+�

where the second equality is due to 5∗
k = 0. Because

� ∈ �0�1�, the inequality �+ �1/���−��+ � 0 is satisfied if
and only if �= 0. We now argue that

(�yi0�yi�= 0 ∀ i ∈	�Y�\
 (27)

which, from Proposition 2.5, implies

yi0 +max
z∈�

y′
iz� 0 ∀ i ∈	�Y�\
�
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Indeed, for any l ∈	�Y�\
, we observe that

0� �+ 1
�

{
(�w0 −��w�+

∑
i∈	�Y�

(�5∗
i y

i
0 −w0�5

∗
i yi−w�

}

= 1
�

{
(�w0�w�+

∑
i∈	�Y�

(�5∗
i y

i
0 −w0�5

∗
i yi−w�

}
�

substituting �= 0,

�
1
�
�(�w0�w�+(�5∗

l y
l
0 −w0�5

∗
l yl−w��

�
1
�
�(�5∗

l y
l
0�5

∗
l yl��

= 5∗
l

�
(�yl0�yl�� 0�

Hence, equality (27) is achieved by noting that 5∗
l > 0. �

We propose an algorithm for improving the choice of �
and the set � . Again, we assume that we can find an initial
feasible solution of model (24).

Algorithm 3.4
Input: Y
Step 1. Solve problem (25) with Input Y. Obtain optimal

solution s∗.
Step 2. Set 	�Y� �= �i � s∗j > 0� j ∈��.
Step 3. Solve problem (26) with Input Y. Obtain optimal

solution �∗. Set � �=	�Y�.
Step 4. Solve model (24) with Input �����. Obtain opti-

mal solution �x∗�Y∗�. Set Y �=Y∗.
Step 5. Repeat Steps 1–4 until a termination criterion

is met.

Theorem 3.5. In Algorithm 3.4, the sequence of objectives
obtained by solving model (24) is nonincreasing. The algo-
rithm will either have � =� or, consecutively, have � k =
� ∗ �= � for a certain index set � ∗ in a finite number of
iterations. If in addition the set X is bounded, then the algo-
rithm will produce a bounded infinite sequence ��xk�Yk��

with c′xk ↓ ; , a certain limit.

Proof. Starting with a feasible solution of model (24), we
are assured that there exists �Y�����, � > 0, such that
.1−��Y����� � 0. With Proposition 3.3(b), the condition
in Step 3 ensures that 5∗

j > 0 for all j ∈ � . Moreover,
Proposition 3.3(a) ensures that the updates on � and � do
not affect the feasibility of its previous solution �x�Y� in
model (24). Hence, its objective value will not increase.

Note that the set sequence �� k� is nonexpanding, i.e.,
one has � k+1 ⊆ � k because � k+1 = 	�Yk+1�⊆ � k� There-
fore, either � k =� in a finite number of iterations, or there
is a k0 such that � k =	�Yk�≡ � ∗ for all k� k0� In either
case, the infinite sequence ��xk�Yk�� is bounded because
X is bounded. This, together with the monotonicity of the
sequence �c′xk�, implies the last part of the theorem. �

The implementation of Algorithm 3.4 may involve per-
petual updates of the set � and result in reformulating prob-
lem (24). A practical solution is to ignore the set � and
solve the following model:

Z2
� ���=min c′x

s.t. .1−��Y������ 0�

�x�Y� ∈X�
(28)

for a given �� 1 such that 1′�=M , where M is a large
number. The updates of � are done by solving

Z2
5�Y�=min .1−��Y�����

s.t.
∑
j∈�
5j =M�

�� 1�

(29)

The algorithm is also simplified as follows.

Algorithm 3.5
Input: Y

Step 1. Solve problem (29) with Input Y. Obtain optimal
solution �∗. Set �=�∗

Step 2. Solve model (28) with Input �. Obtain optimal
solution �x∗�Y∗�. Set Y=Y∗.

Step 3. Repeat Steps 1–2 until a termination criterion
is met.

Step 4. Output solution �x∗�Y∗�.

The following result is straightforward.

Theorem 3.7. Assume that Y is feasible in model (28) for
some �� 1 and 1′�=M . Then, the sequence of objectives
obtained by solving model (24) in Algorithm 3.5 is nonin-
creasing. If in addition the set X is bounded, then the algo-
rithm will generate a bounded infinite sequence ��xk�Yk��
with c′xk ↓ ; , a certain limit.

Like most “Big M approaches,” the quality of the solu-
tion improves with larger values of M . However, M can-
not be

A24
so large that it results in numerical instability of

the optimization problem. Although the Big M approach
does not provide the theoretical guaranteed improvement
over the classical approach using Bonferroni’s inequality, it
seems to perform very well from our numerical studies, as
demonstrated in the next section.

4. Computational Studies
We analyze a resource allocation problem on a network
with uncertain node demands and allowing transshipment
of resources to neighboring nodes when necessary. We con-
sider a directed graph with node set � , �� � = n and arc
set �, ��� = r . At each node i, i ∈ � , we decide on the
quantity of resource xi to stock up, which will incur a cost
of ci per unit resource. When the demands d̃i, i ∈ � are
realized, resources at the nodes or from neighboring nodes
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are used to meet the demands. The goal is to minimize the
total allocation cost subjected to a service-level constraint
of meeting all demands with probability at least 1− �. We
assume that the resource at each node i can only be trans-
shipped across to its outgoing neighboring nodes defined as

 −�i�� �j� �i� j� ∈���

and received from its incoming neighboring nodes
defined as

 +�i�� �j� �j� i� ∈���

Transshipment of resources received from other nodes is
prohibited.

In our model, we ignore operating costs such as the
transshipment costs. One of such applications is with regard
to allocation of equipment such as ambulances or time-
critical medical supplies for emergency response to local
or neighboring demands. The costs associated with their
procurement is more significant than the operating cost of
transshipment, which may occur rather infrequently. We list
the notations of the model as follows:

ci: unit cost of having one resource at node i, i ∈� ;
di�z̃�: demand at node i, i ∈� as a function of the primi-

tive uncertainties z̃;
xi: quantity at resource at node i, i ∈� ; and

wij�z̃�: transshipment quantity from node i to node j ,
�i� j� ∈� in respond to realization of z̃.

The problem can be formulated as a joint chance-
constrained problem as follows:

min c′x

A25
s�t� P




xi+
∑

j∈+�i�
wji�z̃�−

∑
j∈−�i�

wij �z̃�� di�z̃��

i= 1� � � � � n�

xi �
∑

j∈−�i�
wij �z̃�� i= 1� � � � � n�

w�z̃�� 0�




� 1− ��
x� 0�w�z̃��

(30)

We assume that the
A26
demands at each node are indepen-

dently distributed and represented as

dj�z̃�= d0
j + z̃j �

where z̃j are independent zero mean random variables with
unknown distribution.

By introducing new variables, we can transform model
(30) to the “standard form” model as follows:

min c′x

s�t� xi+
∑

j∈+�i�
wji�z̃�−

∑
j∈−�i�

wij �z̃�+ r�z̃�= di�z̃��

i= 1� � � � � n�

xi+ si�z̃�=
∑

j∈−�i�
wij �z̃�� i= 1� � � � � n�

w�z̃�+ t�z̃�= 0� (31)

y�z̃�=




r�z̃�

s�z̃�

t�z̃�


 �

P�y�z̃�� 0�� 1− ��
x� 0� r�z̃�� s�z̃�� t�z̃�� y�z̃�� w�z̃��

Note that the dimension of y�z̃� is m= 2n+ r .
The transshipment variables w�z̃� are an arbitrary func-

tion of z̃.
A27
To obtain a bound on problem (30), we apply

the linear decision rule on the transshipment variables w�z̃�
advocated in Ben-Tal et al. (2004) and Chen et al. (2007)
as follows:

w�z̃�=w0 +
n∑
j=1

wj z̃j �

Under the assumption of linear decision on w�z̃� and with
suitable affine mapping, we have

r�z̃�= r0 +
n∑
j=1

rj z̃j �

s�z̃�= s0 +
n∑
j=1

sj z̃j �

t�z̃�= t0 +
n∑
j=1

tj z̃j �

y�z̃�= y0 +
n∑
j=1

yj z̃j �

which are affine functions with respect to the primitive
uncertainty, z̃. Hence, we transform the problem from one
with infinite variables (optimizing over a functional) to
a restricted one with a polynomial number of variables.
Therefore, we can apply our proposed framework to obtain
an approximate

A28
solution to problem (31).

The use of the linear decision rule is subject to criticism.
As Nemirovski and Shapiro (2006) argued,

A29
The only reason for restricting ourselves with affine decision
rules3 stems from the desire to end up with a computation-
ally tractable problem. We do not pretend that affine decision
rules approximate well the optimal ones—whether it is so or
not, it depends on the problem, and we usually have no pos-
sibility to understand how good in this respect is a particular
problem we should solve. The rationale behind restricting to
affine decision rules is the belief that in actual applications
it is better to pose a modest and achievable goal rather than
an ambitious goal which we do not know how to achieve.

Indeed, other than using the linear decision rule, we
do not know of any other methods of addressing the
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joint chance-constrained problem with recourse and under
incomplete distributional assumption.

In our test problem, we generate 15 nodes randomly
positioned on a square grid and restrict to the r shortest arcs
on the grid in terms of Euclidean distances. We assume that
ci = 1. For the demand uncertainty, we assume that d0

j = 10
and the demand at each node, dj�z̃�, takes a value from
0 to 100. Therefore, we have z̃j ∈ �−10�90�. Using Theo-
rem 2.2, we can determine the bounds on the forward and
backward deviations, which are, respectively, pj = 42�67
and qj = 30.

For the evaluation of bounds, we use � = �1�2�4�5�.
We formulate the model using an in-house developed soft-
ware, PROF (Platform for Robust Optimization Formula-
tion). The Matlab-based software is essentially an SOCP
modeling environment that contains reusable functions for
modeling multiperiod robust optimization using decision
rules. We have implemented bounds for the CVaR measure
and expected positivity of a weighted sum of random vari-
ables. The software calls upon CPLEX 11.0 to solve the
underlying SOCP.

In the computational experiment, we impose a service
level of 99% or �= 0�01. We first solve the problem using
the classical approach by decomposing the joint chance-
constrained problem into m constraints of the form (18),
with �i = �/�2n+ r�. We denote the optimal solution as xB

and its objective as ZB� Subsequently, we use Algorithm
3.5, the big M approach, with M = 106, to improve upon
the solution. We report results at the end of 20 iterations.
Here we denote the optimal solution as xN and its objective
as ZN � We also benchmark against the worst-case solu-
tion, which corresponds to all the demands at its maximum
value. Hence, the worst-case solution is xWi = 100 for all
i ∈� and ZW = 1�500.

Figure 1 illustrates the solution. The size of the hexagon
on each location

A30
i, corresponds to the quantity xi. Each

link refers to two directed arcs in opposite directions. We
present the solutions in Table 1. It is interesting to note
that the solution obtained using the classical approach has
significant resources allocated at nodes 5, 10, 12, and 13,
which are all linked to node 15. After several iterations,
the new solution centrally locates the resources at node 15,
diminishing the requirements at nodes 5, 10, 12, and 13.

In Table 2, we compare the relative improvement of
ZN against ZB and ZN against ZW . The new method
has 8%–12% improvement compared with the classical
approach of applying Bonferroni’s inequality and has 30%–
42% improvement compared with the worst-case solution.
We also note that the improvement generally increases over
the classical approach when the number of connectivity
increases. This is probably due to the increase in cor-
relation among the constraints as connectivity increases.
Even though minimum distributional information is pro-
vided, this experiment shows that the new method solves
the joint chance-constrained problem more efficiently.

Figure 1. Inventory allocation: 15 nodes, 50 arcs.
(a) solution using Bonferroni’s inequality;
(b) solution using the new method.
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We also evaluate the effectiveness of Algorithm 3.5,
which may depend on the initial solution. We study the
convergence of the algorithm with

A31
a random starting solu-

tion for a network with 15 nodes and 90 arcs (the last row
in Table 2). We choose 100 sets of parameters �i at ran-
dom in the simplex and solve the corresponding chance-
constrained problems based on the Bonferroni inequality.
For each solution, we apply Algorithm 3.5 and track the
changes in objective values at every iteration. In Table 3,
we present the distribution of the initial objective values as
well as their values after completing 1, 5, 9, 13, and 18
iterations of Algorithm 3.5. The first column indicates the
range

A32
within which the objective values fall. For example,

at the end of Iteration 5, 19% of the solution has object

Table 1. Resource allocation: 15 nodes, 50 arcs
(rounded to nearest integer).

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xB 14 61 73 100 13 213 136 112 7 161 27 8 9 61 161
xN 18 41 77 100 1 257 82 59 15 2 11 0 0 41 337
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Table 2. Comparisons among worst-case solution ZW , solution using Bonferroni’s inequality ZB, and solution using the
new approximation ZN .

No. of nodes No. of arcs ZW ZB ZN �ZW −ZN �/ZW (%) �ZB −ZN �/ZB (%)

15 50 1,500 1�158�1 1�043�3 30.45 9.91
15 60 1,500 1�059�7 968�1 35.46 8.64
15 70 1,500 1�027�3 929�5 38.03 9.52
15 80 1,500 1�009�3 890�1 40.66 11.81
15 90 1,500 989�1 865�7 42.29 12.48

values in �905�910�. It is interesting to note that even with
one iteration, Algorithm 3.5 is able to generate solutions
that improve the best solution achieved by the Bonferroni
inequality approach. At the end of 18 iterations, more than
75% of the solutions have objective values in �860�870�,
which is at least a 10% improvement over the best solution
obtained via the Bonferroni inequality.

5. Conclusion
We propose a general technique to deal with joint chance-
constrained optimization problems. The standard approach
decomposes the joint chance constraint into a problem
with m individual chance constraints and then applies safe
robust optimization approximation on each one of them.
Our approach builds on a classical worst-case bound for the
order statistics problem, where the bound is tight when the
random variables are negatively correlated. By introducing

Table 3.
A33
Distribution of objective values.

Initial Iter. 1 Iter. 5 Iter. 9 Iter. 13 Iter. 18

�995�1�000� 1 0 0 0 0 0
�990�995� 10 0 0 0 0 0
�985�990� 27 0 0 0 0 0
�980�985� 44 0 0 0 0 0
�975�980� 14 0 0 0 0 0
�970�975� 4 0 0 0 0 0
�965�970� 0 1 0 0 0 0
�960�965� 0 19 0 0 0 0
�955�960� 0 21 1 1 0 0
�950�955� 0 10 2 0 0 0
�945�950� 0 11 3 0 1 1
�940�945� 0 14 2 2 0 0
�935�940� 0 12 0 0 0 0
�930�935� 0 3 0 0 0 0
�925�930� 0 2 0 0 0 0
�920�925� 0 3 1 0 0 0
�915�920� 0 2 1 0 1 0
�910�915� 0 2 8 2 0 0
�905�910� 0 0 19 6 4 3
�900�905� 0 0 12 7 2 1
�895�900� 0 0 24 7 6 4
�890�895� 0 0 11 11 4 0
�885�890� 0 0 11 15 8 4
�880�885� 0 0 1 15 5 3
�875�880� 0 0 4 5 6 3
�870�875� 0 0 0 11 8 5
�865�870� 0 0 0 18 55 56
�860�865� 0 0 0 0 0 20

new parameters ���w0�w��� into the worst-case bound,
we enlarge the search space so that our approach can
also deal with positively correlated variables, and improves
upon the solution obtained by using the standard approach
via Bonferroni’s inequality.

The quality of solution obtained by using this approach
depends largely on the availability of a good upper bound
(�y0�y� for the function E��y0 + y′z̃�+�. As a by-product
of this study, we show that any such bound satisfying
convexity, positively homogeneity, and with (�y0�0�= y+0 ,
can be used to construct an uncertainty set to develop
a robust optimization framework for (single) chance-
constrained problems. This provides a unified perspective
on the choice of uncertainty set in the development of
robust optimization methodology.

Endnotes
1. Take, for example, the joint chance constraint P�ãx� 1�
b̃y � 1� � 1 − �� when X = ��x� y�� x � 1� y � 1�
and ã and b̃ are independent uniform distributions over
�0�1�. The approach using Bonferroni’s inequality, with the
decomposition �1 + �2 = �, reduces the feasible
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regions

to P�ãx� 1�� 1− �1 and P�b̃y � 1� � 1− �2. The above
holds only when 1/x � �1�1/y � �2. Hence, the approach
using Bonferroni’s inequality reduces the set of feasible
solutions to the region ��x� y�� 1/x + 1/y � ��. Note that
the exact solution is ��x� y�� 1/x+ 1/y− 1/�xy�� ���
2. Although it is not explicitly stated in the theorem, it
is assumed that � is a full-dimensional pointed cone in
Ben-Tal and Nemirovski (2001). However, a classical the-
orem of Rockafellar (1970, Theorem 28.2) indicates that
this assumption can be removed if � is defined by a finite
number of convex inequalities, which is obviously the case
considered in this paper.
3. An affine decision rule is equivalent to a linear decision
rule in our context.
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