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Abstract   

Multiscale Principal Component Analysis (MSPCA) combines the ability of PCA to decorrelate the
variables by extracting a linear relationship, with that of wavelet analysis to extract deterministic
features and approximately decorrelate autocorrelated measurements.  MSPCA computes the PCA
of the wavelet coefficients at each scale, followed by combining the results at relevant scales.  Due
to its multiscale nature, MSPCA is appropriate for modeling of data containing contributions from
events whose behavior changes over time and frequency.  Process monitoring by MSPCA
involves combining only those scales where significant events are detected, and is equivalent to
adaptively filtering the scores and residuals, and adjusting the detection limits for easiest detection
of deterministic changes in the measurements.  Approximate decorrelation of wavelet coefficients
also makes MSPCA effective for monitoring autocorrelated measurements without matrix
augmentation or time-series modeling.  In addition to improving the ability to detect deterministic
changes, monitoring by MSPCA also simultaneously extracts those features that represent
abnormal operation.  The superior performance of MSPCA for process monitoring is illustrated by
several examples.
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Introduction
Principal component analysis (PCA) is among the most popular methods for extracting information
from data, and has found application in a wide range of disciplines.  In chemical process operation
and control, PCA is used to solve several tasks including, data rectification (Kramer and Mah,
1994), gross error detection (Tong and Crowe, 1995), disturbance detection and isolation (Ku et
al., 1995), statistical process monitoring (Kresta et al., 1991; Wise et al., 1990), and fault
diagnosis (MacGregor et al., 1994; Dunia et al., 1996).  PCA transforms the data matrix in a
statistically optimal manner by diagonalizing the covariance matrix by extracting the
crosscorrelation or relationship between the variables in the data matrix.  If the measured variables
are linearly related and are contaminated by errors, the first few components capture the
relationship between the variables, and the remaining components are comprised only of the error.
Thus, eliminating the less important components reduces the contribution of errors in the measured
data and represents it in a compact manner.  Applications of PCA rely on its ability to reduce the
dimensionality of the data matrix while capturing the underlying variation and relationship between
the variables.

PCA is popular for process monitoring since it allows extension of the principles of univariate
statistical process monitoring (SPM) to monitoring of multivariate processes (Jackson, 1980;
Kresta et al., 1991).  Abnormal operation is detected if the measurements deviate from the region
of normal operation in the space of the retained principal component scores, or the space of the
residual error.  The scores and residuals are usually plotted as a Shewhart chart at the scale of the
measurements, but may also be plotted as a cumulative sum (CUSUM) or exponentially weighted
moving average (EWMA).  Shewhart charts are quick at detecting large changes, but slow at
detecting small shifts.  In contrast, CUSUM and EWMA with properly selected filter parameters
are better at detecting small changes, but slow at detecting large changes.  Consequently, the best
type of control chart depends on the nature of the change in the signal.

Conventional PCA is best for analyzing a two-dimensional matrix of data collected from a steady-
state process, containing linear relationships between the variables.  Since these conditions are
often not satisfied in practice, several extensions of PCA have been developed.  Multiway PCA
allows the analysis of a multi-dimensional matrix (Nomikos and MacGregor, 1994).  Hierarchical
or multiblock PCA permits easier modeling and interpretation of a large matrix by decomposing it
into smaller matrices or blocks (Wold et al., 1996; MacGregor et al., 1994).  Dynamic PCA
extracts time-dependent relationships in the measurements by augmenting the data matrix by time-
lagged variables (Kresta et al., 1991; Ku et al., 1995).  Nonlinear PCA (Kramer, 1991; Hastie and
Stuetzle, 1989; Dong and McAvoy, 1996; Tan and Mavrovouniotis, 1995) extends PCA to
extracting nonlinear relationships between the variables.  On-line adaptive PCA updates the model
parameters continuously by exponential smoothing (Wold, 1994).

Modeling by PCA and its extensions is done at a single scale, that is, the model relates data
represented on basis functions with the same time-frequency localization at all locations.  For
example, PCA of a time series of measurements is a single-scale model since it relates variables
only at the scale of the sampling interval.  Such a single-scale modeling approach is appropriate if
the data contains contributions at just one scale.  Unfortunately, data from almost all practical
processes are multiscale in nature due to,

• events occurring at different locations and with different localization in time and frequency,
• stochastic processes whose energy or power spectrum changes with time and/or frequency,
• variables measured at different sampling rates or containing missing data.

Consequently, conventional PCA is not ideally suited for modeling of most process data.
Techniques have been developed for PCA of some types of multiscale data such as missing data,
but the single-scale approach forces data at all scales to be represented at the finest scale, resulting
in increased computational requirements.
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Another shortcoming of conventional PCA and its extensions is that its ability to reduce the error
by eliminating some components is limited, since an imbedded error of magnitude proportional to
the number of selected components will always contaminate the PCA model (Malinowski, 1991).
This limited ability of PCA to remove the error deteriorates the quality of the underlying model
captured by the retained components, and adversely affects the performance of PCA in a variety of
applications.  For example, in process monitoring by PCA, due to the presence of errors, detection
of small deviations may not be possible and that of larger deviations may be delayed.  Similarly,
contamination by the imbedded error also deteriorates the quality of the gross error detection and
estimation of missing data.  Consequently, the performance of PCA may be improved by methods
that allow better separation of the errors from the underlying signal.

A popular approach for improving the separation between the errors and the underlying signal is to
pre-treat the measurements for each variable by an appropriate filter.  In the chemical industry,
univariate linear filters such as exponentially smoothing, and mean filtering (Tham and Parr,
1994), and univariate nonlinear filters such as, finite impulse response median hybrid (FMH)
filters (Heinonen and Neuvo, 1987; Piovoso et al., 1992) are most popular.  Linear filters
represent data at a single scale, and suffer from the disadvantages of single-scale PCA.  Nonlinear
filters are multiscale in nature, and cause less distortion of the retained features, but perform best
for piece-wise constant or slowly varying signals, and are often restricted to off-line use.  The
recent development of wavelet-based filtering methods (Donoho et al., 1995) overcomes the
disadvantages of other nonlinear filters, and can be used on-line for all types of signals (Nounou
and Bakshi, 1998).  Despite these advances in filtering methods, preprocessing of the measured
variables is still not a good idea, since it usually destroys the multivariate nature of the process
data, which is essential for multivariate SPM and other operation tasks (MacGregor, 1994).

For reaping the benefits of reducing errors by filtering to improve process monitoring, it is
necessary to develop an integrated approach to both these tasks (Kramer and Mah, 1994;
Venkatasubramanian and Stanley, 1994; Bakshi, 1995).  Such an approach is developed in this
paper by combining the ability of PCA to extract the relationship between the variables and
decorrelate the crosscorrelation, with the ability of wavelets to extract features in the measurements
and approximately decorrelate the autocorrelation.  The development of wavelets has sparked a
flurry of research activity over the last decade, but most work has focused on using wavelets for
multiscale data analysis.  Multiscale modeling has received surprisingly little attention, despite the
fact that most existing modeling methods are inherently single-scale in nature, whereas most data
contain contributions at multiple scales.  Research on multiscale modeling to date has focused on
multiscale state-space modeling and estimation (Chou et al., 1994; Stephanopoulos et al., 1997).
This paper develops a multiscale approach for modeling by PCA, which can be generalized to
transform other single-scale empirical modeling methods to multiscale modeling.

The MSPCA methodology consists of decomposing each variable on a selected family of wavelets.
The PCA model is then determined independently for the coefficients at each scale.  The models at
important scales are then combined in an efficient scale-recursive manner to yield the model for all
scales together.  For multivariate SPM by MSPCA, the region of normal operation is determined at
each scale from data representing normal operation.  For new data, the important scales are
determined as those where the current coefficient violates the detection limits.  The actual state of
the process is confirmed by checking whether the signal reconstructed from the selected
coefficients violates the detection limits of the PCA model for the significant scales.  This approach
is equivalent to adaptively filtering each value of the scores and residuals by a filter of dyadic
length that is best suited for separating the deterministic change from the normal process variation.
The detection limits for the scores and residuals also adapt to the nature of the signal.  Thus,
monitoring by MSPCA can automatically specialize to Shewhart, CUSUM or EWMA of the scores
and residuals with filters of dyadic length and parameters depending on the nature of the
measurements, and the selected wavelet.  Furthermore, retaining only those coefficients that violate
the detection limits at each scale integrates the tasks of process monitoring and extraction of
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features relevant to abnormal operation, without any pre-filtering.  The MSPCA approach is
analogous to multiblock PCA (Wold et al., 1996), with the sub-blocks being defined by the
wavelet coefficients at each scale, and the super-block by the selected scales together.  It is also
similar to the algorithm for multiscale Kalman filtering (Chou et al., 1994), and multigrid methods
(Briggs, 1987).

Wavelets and PCA have also been combined by other researchers, but the resulting techniques are
different from the MSPCA method proposed in this paper.  The fast approximate PCA of
Wickerhauser (1994) determines the approximate eigenvectors by selecting them from a library of
wavelet packet basis functions.  Since this library can be searched very efficiently, the approximate
PCA algorithm takes O(nplogp) computations versus O(p3) computations for the exact PCA of an
n × p data matrix.  The local PCA approach of Coifman and Saito (1996) aims to overcome the
global nature of the basis functions determined by PCA.  It decomposes the data matrix by local
cosine transforms, and selects those temporally localized basis functions that explain the maximum
variance.  The approach of computing the PCA of the wavelet coefficients instead of the time-
domain data, and its application to process monitoring has also been suggested by Kosanovich and
Piovoso (1997).  Their approach pre-processes the data by the univariate FMH filter, and then
transforms it to the wavelet domain, before applying PCA to the coefficients.  This approach does
not fully exploit the benefits of multiscale modeling, and the univariate filtering is not integrated
with PCA.  Furthermore, monitoring a process based only on its wavelet decomposition will result
in too many false alarms after a process returns to normal operation.

The rest of this paper is organized as follows.  Conventional PCA is introduced in the next section,
followed by a brief introduction to wavelet analysis.  The methodology for MSPCA is developed
in detail, and its relation to multiblock PCA and multiscale Kalman filtering is described.  The
MSPCA method is applied to multivariate statistical process monitoring when the abnormal
operation is due to a deterministic change in the variables.  The superiority of process monitoring
by MSPCA over conventional PCA is illustrated by several examples, followed by a discussion of
the results and future work.

Principal Component Analysis

PCA transforms an n × p data matrix, X  by combining the variables as a linear weighted sum as,

X=TPT (1)

where, P are the principal component loadings, T are the principal component scores, n and p are
the number of measurements and variables respectively.  The principal component loadings denote
the direction of the hyperplane that captures the maximum possible residual variance in the
measured variables, while maintaining orthonormality with the other loading vectors.  The
eigenvectors of the covariance matrix of X  are the loadings, and the eigenvalues indicate the
variance captured by the corresponding eigenvector.  The data matrix may also be decomposed by
singular value decomposition as,

X  = U 1/2V

where,  is a diagonal matrix of the eigenvalues, PT = V, and T = U 1/2.

If the measured variables are redundant or correlated, the number of non-zero eigenvalues is equal
to the rank of the matrix, and the data matrix may be reproduced exactly without considering the
loadings and scores corresponding to the zero eigenvalues.  Thus, PCA reduces the dimensionality
of the data matrix by extracting the linear relationship between the variables, and decorrelating the
crosscorrelation in the data matrix.  In practice, the measured variables are usually contaminated by
errors, and none of the eigenvalues are exactly zero, but the loadings and scores corresponding to
small eigenvalues are composed of the errors only.  Thus, the contribution of the errors in the data
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matrix may be decreased by eliminating the loadings and scores corresponding to the small
eigenvalues, and reconstructing the filtered or rectified matrix as,

X̂  =T̂P̂ T (2)

where T̂ , and P̂  represent the selected scores and loadings respectively.

An important decision in PCA is to select the appropriate number of principal components that
capture the underlying relationship, while eliminating the errors.  Several techniques are available
for this task, and are reviewed by Jackson (1991) and Malinowski (1991).  If an estimate of the
error is not available, methods such as the scree test, parallel analysis or crossvalidation may be
used.  The scree test plots the eigenvalues and relies on the less important ones to be much smaller
than the others, and lie on a straight line.  The test looks for a break in the steep slope of the
relevant eigenvalues and the almost flat slope of the eigenvalues representing the errors.  The
subjective nature of this test is reduced by parallel analysis, where another matrix with uncorrelated
normally distributed variables is constructed to be of the same size as the matrix being analyzed.
The eigenvalues of both matrices are plotted, and the intersection of the two plots is used to
separate the relevant from the irrelevant components.  Selecting the components by crossvalidation
relies on determining the PCA model from training data and selecting the appropriate number of
components as those that minimize the error on testing data.

PCA is best suited for analysis of steady-state data with uncorrelated measurements.  In practice,
the dynamics of a typical chemical or manufacturing process cause the measurements to be
autocorrelated, that is, the data matrix will have both crosscorrelation and autocorrelation.  The
steady-state PCA approach may be extended to modeling and monitoring of dynamic systems by
augmenting the data matrix by including lagged variables as,

X  = [x1(t) x1(t-1) ... x2(t) x2(t-1) ... ]

The augmented data matrix permits implicit time-series modeling to decorrelate the relationship
between the measurements, or autocorrelation.  This approach has been widely used for system
identification, model reduction, and disturbance detection of dynamic processes (Box and Tiao,
1977; Ljung, 1987; MacGregor, 1994; Ku et al., 1995; Cheng and McAvoy, 1997).  It requires
prior knowledge or assumptions about the order of the dynamics, and increases the computational
complexity of the modeling.

For the monitoring of large-scale and complex processes, a modification of PCA called hierarchical
or multiblock PCA has been developed (Wold et al., 1996).  This approach divides the large data
matrix into multiple blocks of variables, or measurements, or both.  The PCA model is then
developed for the data in each block, as well as for multiple blocks together to capture the
relationship between the sub-blocks.  The blocks are usually defined based on knowledge about
the system being modeled such as, variables measured on distinct pieces of equipment, or
corresponding to different regimes of operation.  This approach can provide greater insight into the
data than conventional PCA which treats the entire data matrix as just one block, and has been
applied to monitoring and diagnosis of large continuous and batch processes (MacGregor et al.,
1994; Kourti et al., 1995; Wold et al., 1996; Cheng and McAvoy, 1997).

Wavelets
Wavelets are a family of basis functions that are localized in both time and frequency, and may be
represented as,

ψsu(t) = 
1

s
  ψ



t  -  u

s  
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where, s and u represent the dilation and translation parameters respectively.  For most practical
applications to measured data, the wavelet dilation and translation parameters are discretized
dyadically, and the family of wavelets is represented as,

ψmk(t) = 2-m/2ψ(2-mt - k) (3)

where, ψ(t) is the mother wavelet, and m and k are the dilation and translation parameters,
respectively.  The translation parameter determines the location of the wavelet in the time domain,
while the dilation parameter determines the location in the frequency domain as well as the scale or
extent of the time-frequency localization.  The wavelets represented by Equation (3) may be
designed to be orthonormal to each other (Daubechies, 1988).

Any signal may be decomposed into its contributions in different regions of the time-frequency
space by projection on the corresponding wavelet basis function, as depicted in Figure 1.  The
lowest frequency content of the signal is represented on a set of scaling functions, as depicted in
Figure 1f.  The number of wavelet and scaling function coefficients decreases dyadically at coarser
scales due to the dyadic discretization of the dilation and translation parameters.  Fast algorithms
for computing the wavelet decomposition are based on representing the projection of the signal on
the corresponding basis function as a filtering operation (Mallat, 1989).  Convolution with a filter,
H, represents projection on the scaling function, and convolution with a filter, G, represents
projection on a wavelet.  Thus, the coefficients at different scales may be obtained as,

am =  Ham-1,     dm = Gam-1 (4)

where, dm is the vector of wavelet coefficients at scale m, and am is the vector of scaling function
coefficients.  The original data are considered to be the scaling function coefficients at the finest
scale, that is, x  = a0.  Equation (4) may also be represented in terms of the original measured data
vector, x , as,

am = Hmx ,     dm = Gmx (5)

where, Hm is obtained by applying the H filter m times, and Gm is obtained by applying the H
filter (m-1) times, and the G filter once.  The original data may be reconstructed exactly from its
wavelet coefficients at all scales, dm for m = 1, 2, ..., L, and scaling function coefficients at the
coarsest scale, aL.

Wavelets have found wide use for signal analysis and noise removal in a variety of fields due to
their ability to represent deterministic features in terms of a small number of relatively large
coefficients, while stochastic processes contaminate all the wavelet coefficients according to their
power spectrum.  This property is due to the time-frequency localization, and can be seen in Figure
1, where the wavelet coefficients corresponding to the two step changes are larger than the
coefficients corresponding to the uncorrelated stochastic process.  The deterministic and stochastic
components of the signal may be separated by an appropriate threshold, resulting in the
deterministic component shown in Figure 1g.  The statistical properties of this wavelet
thresholding approach have been studied by Donoho et al. (1995), and several techniques have
been developed for selecting the threshold (Nason, 1996).

Another useful property of wavelets is that although they are not known to be the exact
eigenfunctions or principal components of any operators, they are the approximate eigenfunctions
of a large variety of operators (Wornell, 1990; Dijkerman and Majumdar, 1994).  Consequently,
the wavelet coefficients of most stochastic processes are approximately decorrelated.  The variance
of the wavelet coefficients at different scales represents the energy of the stochastic process in the
corresponding range of frequencies, and corresponds to its power spectrum.  Thus, for an
uncorrelated Gaussian stochastic process or white noise, the variance of the wavelet coefficients is
constant at all scales, whereas for colored noise, the variance decreases at finer scales.
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The conventional algorithm for wavelet decomposition is restricted to off-line use since
downsampling of the wavelet coefficients causes a time delay in the computation.  This limitation
may be overcome by decomposing the data in a moving window of dyadic length with the most
recent sample included in the window (Nounou and Bakshi, 1998).  The wavelet coefficients
obtained by this approach are identical to those obtained by the stationary or non-decimated wavelet
transform (Mallat, 1991; Nason and Silverman, 1995), but the orthonormality of the basis
functions and approximate decorrelation of the measurements in each window are maintained.
Averaging the signal reconstructed from each moving window decreases the spurious features near
sudden changes created and improves the accuracy and smoothness of the extracted features.

Multiscale Principal Component Analysis
Multiscale PCA (MSPCA) combines the ability of PCA to extract the crosscorrelation or
relationship between the variables, with that of orthonormal wavelets to separate deterministic
features from stochastic processes and approximately decorrelate the autocorrelation among the
measurements.  The steps in the MSPCA methodology are shown in Figure 2, and Table 1.  To
combine the benefits of PCA and wavelets, the measurements for each variable (column) are
decomposed to its wavelet coefficients using the same orthonormal wavelet for each variable.  This
results in transformation of the data matrix, X  into a matrix, WX, where W is an n × n
orthonormal matrix representing the orthonormal wavelet transformation operator containing the
filter coefficients,

W =

hL,1 hL,2 . . . . . . . hL,N

gL,1 gL,2 . . . . . . . gL,N

gL-1,1 . . . g
L-1,

N

2

0 . . . 0

0 . . . 0 g
L-1,

N

2
+1

. . . gL-1,N

. . . . .

. . . . . .

. . . . . .

g1,1 g1,2 0 . . . . . . 0

. . . .

0 0 . . . . . 0 g1,N-1 g1,N

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

=

HL

GL

GL-1

.

.

Gm

.

.

.

G1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
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 
 
 
 
 
 
 
 

where, Gm is the 2log2n-m × n matrix containing wavelet filter coefficients corresponding to scale
m = 1, 2, ..., L, and HL is the matrix of scaling function filter coefficients at the coarsest scale.
The matrix, WX is of the same size as the original data matrix, X , but due to the wavelet
decomposition, the deterministic component in each variable in X  is concentrated in a relatively
small number of coefficients in WX, while the stochastic component in each variable is
approximately decorrelated in WX, and is spread over all components according to its power
spectrum.  The relation between the PCA of X  and WX is given by the following theorem.

Theorem 1.  The principal component loadings obtained by the PCA of X  and WX are identical,
whereas the principal component scores of WX are the wavelet transform of the scores of X .
Proof.  Since each column of X  is transformed by the same orthonormal transformation matrix,
W, the relationship between the columns in WX is the same as that between the columns in X  that
is, the nature of the crosscorrelation is unchanged.  For a large number of samples and
orthonormal wavelets, the mean of each column of X  is identical to that of the corresponding
column in WX, and the covariance matrix of X  is the same as that of WX since,
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(WX)T(WX) = XTWTWX = XTX (6)

Equation (6) also implies that the principal component loadings of X  and WX are identical.  Since
the PCA of X  is given by Equation (1), the PCA of the wavelet transformed matrix, WX, is given
as,

WX = (WT)PT

which proves that the scores of WX are the wavelet transform of the scores of X .

The covariance of the wavelet transform matrix, and equivalently of the original data matrix may be
written in terms of the contribution at multiple scales as,

(WX)T(WX) = (HLX )T(HLX ) + (GLX )T(GLX ) + . . . + (GmX )T(GmX ) + . . . +

(G1X )T(G1X ) (7)

To exploit the multiscale properties of the data, the PCA of the covariance matrix of the coefficients
at each scale is computed independently of the other scales.  The resulting scores at each scale are
not crosscorrelated due to PCA, and their autocorrelation is approximately decorrelated due to the
wavelet decomposition.  Depending on the nature of the application, a smaller subset of the
principal component scores and wavelet coefficients may be selected at each scale.  The number of
principal components to be retained at each scale are not changed by the wavelet decomposition
since it does not affect the underlying relationship between the variables at any scale.
Consequently, existing methods such as, crossvalidation, scree test, or parallel analysis may be
applied to the data matrix in the time domain or to all the wavelet coefficients to select the relevant
number of components.  For selecting the relevant wavelet coefficients, different techniques may
be devised depending on the application.  For separating the stochastic and deterministic
components of a signal, thresholding criteria such as, the median absolute deviation (Donoho et
al., 1995) or crossvalidation (Nason, 1996) or the T2 and Q detection limits (Jackson, 1991) may
be applied to the scores at each scale.  Applying separate thresholds at each scale allows MSPCA to
be more sensitive to scale-varying signal features such as autocorrelated measurements.
Thresholding of the coefficients at each scale identifies the region of the time-frequency space and
scales where there is significant contribution from the deterministic features in the signal.

The covariance matrix for computing the loadings and scores for all scales together is computed by
combining the covariance matrices of the scales at which the coefficients violate the threshold.
This final covariance matrix may be computed efficiently by refining the covariance matrix at a
coarser scale in a scale-recursive manner by incorporating the covariance matrix of the wavelet
coefficients at the same scale as,

(Hm-1X )T(Hm-1X ) = (HmX )T(HmX ) + γ(GmX )T(GmX ) (8)

where,

γ = 
1 if the PCA at scale m has significant events
0 otherwise  

Equation (8) is identical to that for time-recursive computation of the covariance matrix (Ljung,
1987; Dayal and MacGregor, 1997), except that the time parameter is replaced by scale, and the
parameter, γ is analogous to the forgetting factor.  This MSPCA modeling method represents one
way of using the PCA models at multiple scales, and other approaches maybe devised depending
on the application.  

MSPCA is related to several existing methods such as, multiblock or hierarchical PCA (Wold et
al., 1996), multiscale Kalman filtering (Chou et al., 1994), and multigrid methods for solving
differential equations (Briggs, 1987).  Multiblock PCA divides a large data matrix from a complex
process into multiple blocks defined in terms of the variables, measurements, or both.  In contrast,
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in MSPCA, each variable is decomposed to multiple scales, and the matrix of coefficients at each
scale are treated as a separate block.  As in the multiblock PCA algorithm, the MSPCA algorithm
also involves determining the PCA of each sub-block or scale, and of the super-block, or all scales
together.  The PCA of each sub-block is useful for identifying “interesting” blocks, and that of the
super-block to determine the relationship between the selected sub-blocks.  Furthermore, like
multiblock PCA, multiscale PCA also reduces to conventional PCA as stated by the following
theorem.

Theorem 2.  MSPCA reduces to conventional PCA if neither the principal components nor the
wavelet coefficients at any scale are eliminated.
Proof.  If neither the principal components nor the wavelet coefficients at any scale are eliminated,
then the covariance matrix at all scales computed by Equation (8) will have γ=1 for all scales,
making it identical to Equation (7), which is the covariance matrix of the original data.
Consequently, the results of MSPCA and PCA will be identical.

MSPCA is also related to multiscale Kalman filtering (Chou et al., 1994), and the model
determined by both methods may  be represented in terms of a binary tree whose nodes represent
wavelet coefficients.  The methodology for both, multiscale Kalman filtering and MSPCA starts
with a fine-to-coarse scale sweep of the tree.  The next MSPCA step of determining the PCA
model at each level of the tree and selecting the relevant principal components and wavelet
coefficients is not present  in the multiscale Kalman filtering method.  Finally, both MSPCA and
multiscale Kalman filtering fuse the models at different scales recursively in a coarse-to-fine scale
sweep of the tree.  Like multiscale Kalman filtering, the MSPCA algorithm can also be
implemented efficiently in parallel since the computation at each scale can be done independently,
and only communication between neighboring scales is needed for the scale-recursive fusion of
covariance matrices.  This should result in a logarithmic improvement in the computational
complexity, that is, an algorithm requiring O(n) computations will require only O(logn)
computations when implemented in parallel.

Instead of the MSPCA methodology described above, some of the benefits of the wavelet
representation may be reaped by just transforming the measured data on a selected wavelet basis,
and computing the PCA of WX instead of X .  PCA of WX will make it easier to separate
deterministic features in a stochastic process, but this approach will be restricted to off-line use,
and will not fully exploit the benefits of the multiscale representation, since it will implicitly assume
that the nature of the data does not change with scale, or that the stochastic process is uncorrelated
and that the contribution of the deterministic features is equal at all scales.  This assumption will
cause too many false alarms for autocorrelated measurements, as compared to the MSPCA
approach that accounts for the scale-dependent power spectrum.  False alarms will also be created
for process monitoring based on the scores of WX after a process returns to normal operation, as
discussed in the next section.

Multivariate Statistical Process Monitoring by MSPCA
PCA is popular for multivariate SPM (Jackson, 1980; Kresta et al., 1991) since it does not
encounter problems due to ill-conditioning faced by other multivariate monitoring methods such as,
multivariate CUSUM (Crosier, 1988) and EWMA (Lowry et al., 1992).  The principal component
loadings and detection limits for the scores and residuals are computed from data representing
normal operation.  For new data, the score space is monitored by computing the T2 value as the
sum of the squares of the selected scores scaled by the respective eigenvalue computed from data
representing normal operation as,

Ti
2 = ∑

j=1

p̂

 
tij2

λj
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where, Ti
2 is the T2 value for the i-th row of measurements, p̂  is the number of scores selected,

and λj is the eigenvalue of the j-th score.  For Gaussian distributed measurements, the T2 detection
limits may be calculated based on the F-distribution (Jackson, 1991).  For monitoring in the
residual space, the squared prediction error is computed as,

Qi = ∑
j=1

p̂

 ( )xij -  x̂ij  2

and the detection limits are determined from the eigenvalues of the components not included in the
PCA model (Jackson, 1980).  Changes in the process that affect all the variables while satisfying
the PCA model are detected in the score space, whereas changes that violate the PCA model are
detected in the residual space.

The score and residual spaces are usually monitored by plotting the time series of T2 and Q values
without any filtering.  This Shewhart-type control chart, can detect large changes in the mean
quickly, but is slow in detecting small changes.  The ability to detect small changes may be
improved by plotting the CUSUM or EWMA of T2 and Q, but it requires proper selection of the
filter parameters, and detection of large changes may be delayed (Scranton et al., 1996).  These
popular charting methods differ in the scale at which they represent the data, since Shewhart charts
plot the data at the finest scale, CUSUM is a representation at the coarsest scale, and the scale of
EWMA depends on the value of the filter parameter.  As described in this section, monitoring by
MSPCA automatically represents the T2 and Q values at the scale that is best for detecting the
abnormal operation.

Process monitoring by MSPCA involves computing independent principal component loadings and
detection limits for the scores and residuals at each scale from data representing normal operation.
For new data, a statistically significant change is indicated if the scores or residuals based on
wavelet coefficients computed from the most recent measurements violate the detection limits at any
scale.  Since the wavelet coefficients are sensitive only to changes, if a variable goes outside the
region of normal operation and stays there, the wavelet coefficients will be statistically significant
only when the change first occurs.  The change is first detected at the finest scale that covers the
frequencies present in the feature representing abnormal operation.  As the change persists, it is
detected by wavelet coefficients at coarser scales present in the abnormal feature.  If the change
persists, the most recent scaling function coefficients are the last ones to violate the detection limit,
and continue to do so for as long as the process remains in an abnormal state.  Similarly, when a
process returns from abnormal to normal operation, the change will be detected by the wavelet
coefficients, but the scaling function coefficients will continue to indicate abnormal operation for
several samples due to the coarser scale of representation.  Thus, process monitoring based only
on PCA of the wavelet and scaling function coefficients will not permit quick and continuous
detection of a shift, and may create false alarms after a process has returned to normal operation, as
illustrated by the first example in the next section.  This time delay in detecting a shift at coarser
scales is because the longer filter dilates the deterministic change, and delays its detection.  A
similar time delay is also observed in CUSUM and EWMA charts (Lowry et al., 1992).

Fortunately, the last MSPCA step of selecting the scales that indicate significant events,
reconstructing the signal to the time domain, and computing the scores and residuals for the
reconstructed signal improves the speed of detecting abnormal operation and eliminates false
alarms after a process returns to normal operation.  For SPM, those scales are selected at which the
wavelet coefficient corresponding to the current measurements violates the detection limits.  Thus,
the definition of the parameter, γ, in Equation (8) is modified to,
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γ = 
1 if the current coefficient at scale m violates the detection limit
0 otherwise  

Since the reconstructed signal in the time domain is generated from the large wavelet coefficients,
MSPCA integrates the task of monitoring with that of extracting the signal features representing
abnormal operation, with minimum distortion and time delay.  Consequently, there is no need for a
separate step for pre-filtering the measured variables.  Furthermore, since the covariance matrix
computed by Equation (8) depends on the scales at which the current scores or residuals violate the
detection limits, the final detection limits for confirming the state of the process also adapt to the
nature of the signal features.

For on-line monitoring, the MSPCA algorithm is applied to measurements in a moving window of
dyadic length.  This approach is based on the on-line multiscale rectification method of Nounou
and Bakshi (1998), except that instead of rectifying each measured variable, on-line MSPCA
rectifies the T2 and Q values computed from the PCA at each scale.  Consequently, as shown for
on-line multiscale rectification, on-line monitoring by MSPCA automatically specializes to a
Shewhart, CUSUM, or EWMA chart applied to the T2 and Q values for each measurement, as
described below.

• If none of the current coefficients at any scale are eliminated, the reconstructed value and
corresponding detection limits will be identical to that for the original measurement, making
MSPCA for that measurement identical to a Shewhart chart.

• If the signal is decomposed using Haar wavelets to the maximum depth (coarsest scale),
and only the current coefficient of the last scaled signal is selected, then MSPCA will be
similar to a CUSUM of the maximum possible dyadic length of measurements.

• If current coefficients for the last scaled signal, and detail signals at consecutively finer
scales are selected, then MSPCA will be equivalent to a mean filter at the finest scale of the
selected coefficients for Haar wavelets, or similar to an EWMA filter at the finest scale of
the selected coefficients for smoother boundary corrected wavelets.

The use of a moving window makes the on-line wavelet decomposition algorithm equivalent to
wavelet decomposition without downsampling, causing a signal of length n to result in a total of
n(L+1) coefficients, where L is the depth of the wavelet decomposition.  This increase in the
number of coefficients requires on-line monitoring by MSPCA to increase the detection limits at
each scale to maintain the desired confidence limit for the reconstructed signal.  For example, for
normally distributed uncorrelated measurements in a window of length 128, approximately one
sample will lie outside the 99% limits.  The off-line wavelet transform will also result in 128
uncorrelated coefficients, and approximately one coefficient will violate the 99% limits.  In
contrast, the on-line wavelet transform of this data will result in 128 coefficients at each scale, and
approximately one coefficient will violate the 99% detection limits at each scale.  Thus, if the signal
is decomposed to four detail signals and one scaled signal, that is, for L=4, application of the 99%
limit at each scale will result in an effective confidence of only 95% for the reconstructed signal,
since the coefficients violating the detection limits at each scale need not be at the same location.
Consequently, the detection limits at each scale for on-line monitoring by MSPCA need to be
adjusted to account for the overcompleteness of the on-line wavelet decomposition by the
following equation,

CL = 100 - 
1

L+1(100 - C) (9)

where, C is the desired overall confidence limit, and CL is the adjusted confidence limit at each
scale in percent, and L is the number of scales to which the signal is decomposed resulting in L
detail signals and one scaled signal.

Another effect of the on-line wavelet decomposition approach is that the wavelet coefficients retain
more of the autocorrelation in the signal due to the use of overlapping windows for the
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decomposition.  Fortunately, as shown by the illustrative examples, the performance of monitoring
by MSPCA is not adversely affected by the autocorrelated coefficients in adjacent windows, since
the confidence limits at each scale are increased by Equation (9), and even relatively small
deterministic features are captured by large wavelet coefficients.

An important practical decision in the MSPCA methodology is that of the depth or number of
scales of the wavelet decomposition.  Ideally, the depth should be selected to provide maximum
separation between the stochastic and deterministic components of a signal.  If the depth is too
small, then the last scaled signal will have significant amount of noise which will be retained in the
result of MSPCA, but if the depth is too large, the matrix of coefficients at coarser scales will have
very few rows due to the dyadic downsampling, and will affect the accuracy of the PCA at that
scale.  The reduction in the number of rows is not a limitation for on-line or non-decimated wavelet
decomposition.  The depth may be determined by crossvalidation, but for the examples in this
paper, a heuristic maximum depth that results in 32 coefficients at the coarsest scale, that is, L =
log2n - 5 is found to be a good choice.

Illustrative Examples
The MSPCA methodology for on-line SPM is implemented in Matlab based on the wavelet
analysis functions available in WaveLab (Buckheit and Donoho, 1995).

Mean Shift in Uncorrelated Measurements
This example consists of four variables, with an underlying dimensionality of two.  Two variables
are represented as uncorrelated Gaussian measurements of zero mean and unit variance, as shown
in Equations (10a) and (10b).  The remaining two variables are formed by adding and subtracting
the first two variables, respectively, as shown in Equations (10c) and (10d).

x~ 1 (t) = N(0,1) (10a)

x~ 2(t) = N(0,1) (10b)

x~ 3(t) = x~ 1(t) + x~ 2(t) (10c)

x~ 4(t) = x~ 1(t) - x~ 2(t) (10d)

The measured data matrix, X , consists of these four variables contaminated by uncorrelated
Gaussian errors of zero mean and standard deviation of 0.2 as,

X (t) = X~ (t)  + 0.2N(0,I)

The data representing normal operation consists of 256 equally spaced samples.  The PCA and
MSPCA models are developed from this data by selecting the first two principal components.
Since the measurements are uncorrelated, the variances at each scale for MSPCA are almost equal.
Abnormal operation is indicated by a step change in the mean of all four variables between samples
176 and 225.  The performance of MSPCA is illustrated and compared with that of PCA for two
different magnitudes of the mean shift.

Case 1.  This case considers a mean shift of unity, which is large enough for easy detection by
both PCA and MSPCA.  The T2 and Q charts for PCA for the abnormal operation are shown in
Figure 3.  The Q chart easily and unambiguously identifies the mean shift between the samples
where it was introduced, but some measurements do go below the 95% detection limit.

The T2 and Q charts for on-line MSPCA are constructed as illustrated in Figures 4, 5, and 6.
These figures contribute to the final results shown in Figures 7 and 8.  The Q chart at each scale for
the wavelet decomposition of data in a window from sample number 49 to 176 is shown in Figure
4a.  Since a step change in the mean contributes to a wide range of frequencies, it is first detected
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by the Q chart at the finest scale, m=1, as shown in Figure 4a.  The reconstructed time-domain
signal based on the coefficient that violates the 99% limit is shown in Figure 4b.  The 99%
detection limit for the most recent measurement is computed from the variance of the coefficients
representing normal operation at the finest scale by applying Equation (8), and is shown as an x in
Figure 4b.  The Q chart for on-line monitoring in Figure 8b is constructed by including only the
current value of the reconstructed signal and its detection limit at the sample number 176.  Since
only the last point is used for on-line monitoring, detection limits are not shown for any other
measurements in Figure 4b.

Detection of the mean shift after it persists for a few samples is illustrated in Figure 5 for data in a
window ending at sample 180.  The change is no longer detected by the current coefficients at the
finest scale, but is detected by the current coefficients at coarser scales, at m=3, as shown in Figure
5a.  The reconstructed signal based on the coefficients that violate the 99% detection limis in Figure
5a, and the detection limit for these important scales are shown in Figure 5b, and contribute to the
signal in Figure 8b at sample number 180.  The contribution of the change is present at the finer
scales, but in older coefficients.  As the change continues, it will not be detected by any current
wavelet coefficient, but will be detected by the current coefficients in the last scaled signal.  If the
signal is decomposed to a depth such that the last scaled signal contains little contribution from the
stochastic process variation, then the current coefficients in the last scaled signal will continue to
violate the detection limits after an initial time delay.  If the process returns to normal operation, the
change will again be detected first at the finest scales, but the coefficients of the last scaled signal
will continue to violate the detection limits for several samples after the process has returned to
normal, as shown in Figure 6a.  Thus, any monitoring scheme based only on the wavelet
decomposition, without the last MSPCA step of monitoring based on the time-domain
reconstructed signal, may not be able to detect a return to normal operation as soon as it occurs.
Figures 4b, 5b, and 6b demonstrate the ability of MSPCA to extract the feature representing
abnormal operation and to adjust the detection limits depending on the scales at which the abnormal
operation is detected.

The T2 and Q charts for on-line MSPCA are shown in Figure 7 for a confidence limit of 95%, and
in Figure 8 for a confidence of 99%.  Comparison with Figure 3 shows that the Q chart for both
confidence limits detects the mean shift at least as accurately as that by conventional PCA, and all
the measurements are well above the confidence limits.  The original measured variables and
features extracted by MSPCA based on coefficients that violate the 99% limit on the Q chart are
shown in Figure 9.  These signals are the mean of the reconstructed signals like the ones in Figures
4b, 5b, and 6b.  The spikes in the extracted feature of Figure 9 near the end of the mean shift may
be decreased by soft thresholding, that is, by subtracting the detection limit from the retained
coefficients (Nounou and Bakshi, 1998).

Case 2.  In this case, the magnitude of the mean shift is 0.3, which is only 30% of the standard
deviation of the measurements.  The T2 and Q charts in Figure 10 show that the Q values for the
abnormal operation are a little larger in the region of the mean shift, but do not consistently violate
the confidence limits.  Thus, conventional PCA is unable to detect this change.  The T2 and Q
charts for on-line MSPCA demonstrate the superiority of monitoring by PCA, as shown in Figures
11 and 12.  The Q charts for 95% and 99% confidence clearly identify the mean shift over most of
the range of abnormal operation, which is significantly better than monitoring by PCA.

Monitoring of Autocorrelated Measurements
The data for this example are generated from a model suggested by Ku et al. (1995).  The input
variables, z and u are given by,

z(k) = 0.8z(k-1) + u(k-1)
u(k) = 0.7u(k-1) + w(k-1)
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where, w(k) is white noise with unit variance.  The measured data are corrupted by white noise of
standard deviation 0.2.  The data matrix used for steady state PCA is given by,

X (k) = [z(k) u(k)] + 0.2N(0,I)

The matrix representing normal operation consists of 1024 measurements.  Parallel analysis results
in the selection of one principal component.  Since the measurements are correlated, the
eigenvalues for MSPCA vary with scale according to their power spectrum.

The testing data are generated by introducing a disturbance in the form of a mean shift of
magnitude 0.5 in the input variable, u, between samples 101 and 600.  The T2 and Q charts for
PCA are shown in Figure 13.  The disturbance does affect the T2 values, but cannot be detected
with reasonable confidence from this chart.  The T2 and Q charts for MSPCA are shown in Figures
14 and 15.  Clearly, the T2 chart for MSPCA is significantly better at identifying the disturbance.
Figures 14 and 15 also show that steady-state MSPCA for autocorrelated measurements does not
result in too many false alarms.

Since the measurements in this example are autocorrelated, the data are also modeled by dynamic
PCA by augmenting the data matrix by lagged variables as,

X (k) = [z(k) u(k) z(k-1) u(k-1)] + 0.2N(0,I)

Three components are retained by parallel analysis.  As shown by the charts in Figure 16, dynamic
PCA is also unable to detect the mean shift.

Fault Detection in Industrial Fluidized Catalytic Cracker Unit
This case study is provided by the Abnormal Situation Management (ASM) consortium to evaluate
various fault detection methodologies.  The FCCU consists of a stacked regenerator and
disengager.  The feed entering the unit is heated in the feed/slurry pump around exchanger
followed by the feed preheater.  The heated fresh feed is combined with steam and the catalyst and
enters the riser.  The catalyst and product are separated in the disengager by two cyclones.  The
catalyst is returned to the regenerator, while the product is sent to the bottom of the main
fractionator.  Additional details about the FCCU are provided by Ali (1997).

The FCCU simulator generates output from 110 sensors every 20 seconds.  Data representing
normal operation are available from a steady-state simulation of about 10 minutes, and are
corrupted by adding uncorrelated Gaussian errors of standard deviation 0.1.  Three principal
components are selected based on a parallel analysis of the steady-state data.  The malfunction
selected to demonstrate the features of monitoring by MSPCA is degradation of the slurry pump-
around performance to 40% of the original value.  This malfunction is simulated as a slow ramp
that starts after 5 minutes, and ends after 65 minutes.  Other landmark events for this fault are listed
in Table 2.

The ability of PCA and MSPCA to detect this malfunction is compared in Figure 17 based on the Q
chart.  The T2 charts are not shown since they are unable to detect the malfunction.  For PCA, the
squared prediction error continuously violates the 95% confidence limit after about 47 minutes of
operation, and the 99% limit only after the malfunction is over and after the controllers take over.
In contrast, for MSPCA the error violates the 95% limit continuously after 17 minutes, and the
99% limit after 24 minutes.  Since the performance of adaptive resonance theory (ART) for
detecting this fault is similar to that of PCA (Ali, 1997), monitoring by MSPCA is also likely to
perform better than monitoring by ART.
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Conclusions
This paper presents an approach for combining the attractive properties of principal component
analysis and wavelet analysis.  The resulting multiscale PCA extracts relationships between the
variables by PCA, and between the measurements by wavelet analysis.  Consequently, MSPCA
enables greater compression of the data matrix than either PCA or wavelet analysis alone.  The
MSPCA methodology determines separate PCA models at each scale to identify the scales where
significant events occur.  Models at these interesting scales are then fused to obtain a PCA model
for all scales together.  MSPCA transforms conventional single-scale PCA, to a multiscale
modeling method, which is better suited for modeling data containing contributions that change
over time and frequency.  Such multiscale data include non-white stochastic processes, and
deterministic features localized in time and frequency.

Applying MSPCA to multivariate statistical process monitoring results in a method that
automatically filters the scores and residuals at each scale for easiest detection of a deterministic
change in the measurements.  Since the popular control charts such as, Shewhart, CUSUM, and
EWMA of the scores and residuals only differ in the scale at which they filter the data, monitoring
by MSPCA can specialize to these charts, and automatically select the best among them and other
filters for every measurement.  The detection limits for each measurement also depend on the scales
at which the change is detected, and adapt to the data.  Since wavelets approximately decorrelate
autocorrelated measurements, MSPCA can also detect changes in autocorrelated measurements
without too many false alarms.  Selection of the wavelet coefficients that violate the detection limits
at each scale also extracts the features that are relevant to the abnormal operation.  Thus, MSPCA is
better at SPM than PCA, it integrates the tasks of feature extraction and process monitoring, and
eliminates the need for pre-filtering the data.

The MSPCA methodology may be extended in several different directions to further improve its
performance.  Robustness to outliers may be provided by combining multiscale median filtering
with the wavelet decomposition (Nounou and Bakshi, 1998).  The basis functions may be selected
from a library such as, wavelet packets, to improve the separation of deterministic and stochastic
features.  Multidimensional wavelets may also be used for the decomposition.  This paper has
focused on using MSPCA to detect deterministic changes.  Since wavelets are also able to
characterize and model stochastic processes, MSPCA may also be extended to detect changes in the
stochastic behavior of the variables.  MSPCA may also be used for replacing PCA in other tasks
such as, gross error detection, estimation of missing data, and fault diagnosis.  The multiscale
approach may also be exploited for monitoring by methods other than PCA such as, adaptive
resonance theory, to obtain similar improvement.  Since most existing regression methods
including, ordinary least squares regression, partial least squares regression, artificial neural
networks etc., are also single-scale in nature, the insight provided by MSPCA may help in
transforming these methods for multiscale modeling.

One of the main contributions of the field of wavelets is that it has provided a general framework
for studying existing methods in a variety of fields, leading to new insight, and often, improving
the existing methods (Sweldens, 1996).  This paper and other related work (Nounou and Bakshi,
1998; Top and Bakshi, 1998) show how wavelets can also provide a general framework for
various existing approaches to univariate and multivariate SPM such as, Shewhart, CUSUM, and
EWMA charts, and result in improved process monitoring.
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Table 1.  Methodology for MSPCA

1) for each column in data matrix,
2) compute wavelet decomposition
3) end
4) for each scale,
5) compute covariance matrix of wavelet coefficients at selected scale
6) compute PCA loadings and scores of wavelet coefficients
7) select appropriate number of loadings
8) select wavelet coefficients larger than appropriate threshold
9) end

10) for all scales together,
11) compute PCA by including scales with significant events
12) reconstruct approximate data matrix from the selected and thresholded scores at each scale
13) end

Table 2.  Landmarks in the simulation of slurry pump around fault as a slow ramp (Ali, 1997)

Time Event
0:00:00 simulation begins
0:01:00 spurious transmitter drift
0:05:00 malfunction begins a slow ramp
0:11:00 spurious transmitter ends and holds at new value
1:05:00 malfunction ends and controllers take over
1:15:00 start of remedial action
1:26:00 end of simulation


