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Abstract

Squared-loss mutual information (SMI) is a robust measure of the statistical de-
pendence between random variables. The sample-based SMI approximator called
least-squares mutual information (LSMI) was demonstrated to be useful in per-
forming various machine learning tasks such as dimension reduction, clustering,
and causal inference. The original LSMI approximates the pointwise mutual in-
formation by using the kernel model, which is a linear combination of kernel basis
functions located on paired data samples. Although LSMI was proved to achieve
the optimal approximation accuracy asymptotically, its approximation capability is
limited when the sample size is small due to an insufficient number of kernel basis
functions. Increasing the number of kernel basis functions can mitigate this weak-
ness, but a naive implementation of this idea significantly increases the computation
costs. In this article, we show that the computational complexity of LSMI with the
multiplicative kernel model, which locates kernel basis functions on unpaired data
samples and thus the number of kernel basis functions is the sample size squared, is
the same as that for the plain kernel model. We experimentally demonstrate that
LSMI with the multiplicative kernel model is more accurate than that with plain
kernel models in small sample cases, with only mild increase in computation time.
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1 Introduction

Squared-loss mutual information (SMI) [1] between random variables X and Y is defined
as the Pearson divergence from the joint density p(x,y) to the product of marginals
p(x)p(y):

SMI(X,Y ) :=
1

2

∫∫
p(x)p(y)

(
p(x,y)

p(x)p(y)
− 1

)2

dxdy.

SMI is always non-negative and takes zero if and only if X and Y are statistically inde-
pendent. Thus, SMI can be used as a measure of the statistical dependence between X
and Y .

When SMI is used in practice, the densities p(x,y), p(x), and p(y) are often un-
known, and SMI is approximately computed using paired samples {(xi,yi)}ni=1 drawn
independently from density p(x,y). A naive way to approximate SMI is to estimate the
densities p(x,y), p(x), and p(y) from the samples and plug the estimated densities into
the definition of SMI.

However, this density estimation approach tends to perform poorly due to the di-
vision by estimated densities which considerably magnifies the estimation error. To
overcome this problem, the SMI approximator called least-squares mutual information
(LSMI) [1] directly estimates the density ratio p(x,y)

p(x)p(y)
without separately estimating each

density. LSMI was shown to possess excellent properties, e.g., it achieves the optimal
non-parametric convergence rate, it is numerically stable, its solution can be obtained an-
alytically, and it works well in practice [2]. So far, LSMI has been successfully applied to
performing various machine learning tasks such as dimension reduction, clustering, object
matching, and causal inference [3].

The original LSMI approximates the density ratio p(x,y)
p(x)p(y)

using the kernel model,
which is a linear combination of kernel basis functions located on paired data samples
{(xi,yi)}ni=1. Although LSMI with the kernel model was proved to achieve the optimal
approximation accuracy asymptotically, its approximation capability is limited when the
sample size is small because of too few kernel basis functions. A naive way to cope with
this problem is to increase the number of basis functions, but this significantly increases
the computation time.

In this paper, we propose to use the multiplicative kernel model in LSMI, which locates
kernel basis functions on unpaired data samples {(xi,yj)}ni,j=1 (see Fig.1). Note that the
number of kernel basis functions in the multiplicative kernel model is n2. Our critical
theoretical contribution in this paper is that the computational complexity of LSMI with
the multiplicative kernel model is proved to be the same order as that with the plain
kernel model. Through experiments, we demonstrate that LSMI with the multiplicative
kernel model is more accurate than that with the plain kernel model in small sample
cases, with only mild increase in computation time.
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Figure 1: Kernel centers in the plain kernel model and the multiplicative kernel model.
The plain kernel model locates n kernels at paired samples {(xi,yi)}ni=1 (filled circles),
while the multiplicative kernel model locates n2 kernels at unpaired samples {(xi,yj)}ni,j=1

(filled and unfilled circles).

2 Least-Squares Mutual Information

In this section, we review the sample-based SMI approximator called least-squares mutual
information (LSMI) [1].

Basic Idea: Suppose that we are given a set of paired samples {(xi,yi)}ni=1 drawn
independently from the joint distribution with density p(x,y). The key idea of LSMI is

to directly estimate the density ratio r(x,y) := p(x,y)
p(x)p(y)

without going through density

estimation of p(x,y), p(x), and p(y).
Let g(x,y) be a model of the density ratio. We learn the model g so that the following

squared-error J is minimized:

J(g) :=
1

2

∫∫ (
g(x,y)− r(x,y)

)2

p(x)p(y)dxdy

=
1

2

∫∫
g(x,y)2p(x)p(y)dxdy

−
∫∫

g(x,y)p(x,y)dxdy + C,

where C is a constant that does not depend on g. By approximating the expectations
contained in J by the empirical averages, including a regularization functional R(g), and
ignoring the irrelevant constant, the LSMI optimization problem is formulated as follows:

ĝ :=argmin
g

[
1

2n2

n∑
i,j=1

g(xi,yj)
2− 1

n

n∑
i=1

g(xi,yi)+λR(g)

]
,

where λ ≥ 0 is the regularization parameter.
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Based on another expression of SMI,

SMI(X,Y ) = −1

2

∫∫
r(x,y)2p(x)p(y)dxdy

+

∫∫
r(x,y)p(x,y)dxdy − 1

2
,

the SMI approximator called LSMI is given as follows:

LSMI := − 1

2n2

n∑
i,j=1

ĝ(xi,yj)
2 +

1

n

n∑
i=1

ĝ(xi,yi)−
1

2
.

LSMI with Linear Model: As a density ratio model, let us use the linear-in-parameter
model:

g(x,y) =
b∑

ℓ=1

θℓϕℓ(x,y) = θ⊤ϕ(x,y),

where b denotes the number of parameters, θ = (θ1, . . . , θb)
⊤ is the parameter vector, and

ϕ(x,y) = (ϕ1(x,y), . . . , ϕb(x,y))
⊤ are the basis function vector.

For the squared regularization functional R(g) = θ⊤θ/2, the LSMI optimization cri-
terion is expressed as

θ̂ := argmin
θ∈Rb

[
1

2
θ⊤Ĝθ − θ⊤ĥ+

λ

2
θ⊤θ

]
,

where Ĝ and ĥ are defined by

Ĝ :=
1

n2

n∑
i,j=1

ϕ(xi,yj)ϕ(xi,yj)
⊤, ĥ :=

1

n

n∑
i=1

ϕ(xi,yi).

By taking the derivative of the above objective function with respect to the parameter
vector θ, the following system of linear equations is obtained:

Ĝθ̂ + λθ̂ = ĥ. (1)

This linear system can be solved analytically as θ̂ = (Ĝ + λIb)
−1ĥ, where Ib is the

b-dimensional identity matrix. Finally, the density ratio estimator ĝ(x,y) is given by

ĝ(x,y) = θ̂⊤ϕ(x,y), and thus LSMI is expressed as

LSMI = −1

2
θ̂⊤Ĝθ̂ + θ̂⊤ĥ− 1

2
.

LSMI with Kernel Models: As an example of basis functions ϕ, let us use the kernel
model :

g(x,y) :=
n∑

i=1

θiK(x,xi)L(y,yi) = θ⊤ [k(x) ◦ l(y)] ,
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where K(x,x′) and L(y,y′) are kernel functions for x and y, θ = (θ1, . . . , θn)
⊤ is a pa-

rameter vector, k(x) = (K(x,x1), . . . , K(x,xn))
⊤ and l(y) = (L(y,y1), . . . , L(y,yn))

⊤

are empirical kernel vectors, and ◦ denotes the Hadamard product.
For the kernel model, Ĝ and ĥ are expressed as

Ĝ =
1

n2
(K⊤K) ◦ (L⊤L), ĥ =

1

n
(K ◦L)⊤1n,

where Ki,j = K(xi,xj), Li,j = L(yi,yj), and 1n is the n-dimensional vector with all ones.
Thus, the computational complexity for computing LSMI for the kernel model is O(n3).

Under some technical conditions, LSMI with the kernel model was proved to achieve
the optimal approximation accuracy asymptotically [2]. However, its approximation ca-
pability is limited when the sample size is small, partially because the number of kernel
basis functions is too small. This drawback may be overcome by increasing the number
of basis functions, but this in turn significantly increases the computation time.

3 LSMI with Multiplicative Kernel Models

In this section, we propose to use the multiplicative kernel model in LSMI, which locates
kernel basis functions at unpaired data samples {(xi,yj)}ni,j=1. As illustrated in Fig.1, the
multiplicative kernel model contains n2 kernel basis functions. This allows us to utilize
the Kronecker structure to significantly reduce the computational cost.

The multiplicative kernel model is expressed as

g(x,y) :=
n∑

i,j=1

θi,jK(x,xi)L(y,yj)

= vec (Θ)⊤ [(1n ⊗ k(x)) ◦ (l(y)⊗ 1n)] ,

where Θ is the n× n parameter matrix with Θi,j = θi,j, vec (·) denotes the vectorization
of a matrix, and ⊗ denotes the Kronecker product.

For the above multiplicative kernel model, Ĝ and ĥ are expressed as

Ĝ = L̃⊗ K̃, ĥ = vec(H̃),

where L̃ = 1
n
L⊤L, K̃ = 1

n
K⊤K, and H̃ = 1

n
K⊤L. The Kronecker structure of Ĝ is

brought by the fact that kernel basis functions share the same centers in the multiplicative
kernel model. Then, Eq.(1) yields that the solution Θ̂ satisfies

K̃Θ̂L̃+ λΘ̂ = H̃ .

This is called the discrete Sylvester equation, and can be solved with computational com-
plexity O(n3) [4]. Finally, LSMI with the multiplicative kernel model is expressed as

LSMI = −1

2
tr(Θ̂⊤K̃Θ̂L̃) + tr(Θ̂⊤H̃)− 1

2
. (2)
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The computational complexity for calculating Eq.(2) isO(n3), and therefore the overall
computational complexity of LSMI with the multiplicative kernel model is the same as
that with the plain kernel model, even though the number of kernel basis functions is
increased from n to n2.

4 Experiments

In this section, we experimentally evaluate the performance of LSMI with the plain kernel
model and the multiplicative kernel model.

For regression, we use the Gaussian kernel with the common bandwidth for K(x,x′)
and L(y,y′) after element-wise standardization of x and y. For classification, we use the
delta kernel for L(y,y′). The Gaussian width and regularization parameter are deter-
mined by 5-fold cross-validation.

Numerical Illustration: First, we use the following toy datasets with one-
dimensional x and y:

(A) Dependent: x and y are dependent as

p(x, y) = 1
2
N (z;12, I2) +

1
2
N (z;−12, I2) ,

where z = (x, y)⊤ and 12 = (1, 1)⊤. N(z;µ,Σ) denotes the multi-dimensional
normal density with mean vector µ and covariance matrix Σ.

(B) Independent: x and y are independent as p(x, y) = 1/4 if −1 < x, y < 1 and zero
otherwise.

Fig.2(a) depicts kernel centers of the plain kernel model and the multiplicative kernel
model for 50 samples in the dependent case (A). Fig.2(b) depicts the true density-ratio

function p(x,y)
p(x)p(y)

and its estimates with the plain kernel model and the multiplicative kernel
model, respectively, for 50 samples. The graphs show that the function obtained with the
multiplicative kernel model approximates the true density-ratio function better than that
obtained with the plain kernel model at around the origin.

More qualitatively, Figs.2(c) and 2(d) show the mean and standard error of the LSMI
values and the computation time, respectively, over 1000 runs. ‘naive’ denotes the naive
implementation of the multiplicative kernel model (i.e., solving the system of n2 linear
equations). The graphs show that LSMI with the multiplicative kernel model is more
accurate than that with the plain kernel model. In terms of the computation time, the
efficient implementation of LSMI with the multiplicative kernel model is shown to be
much faster than its naive implementation and is only slightly slower than LSMI with
the plain kernel model. Therefore, given a certain approximation level, LSMI with the
multiplicative kernel model is computationally more efficient than that with the plain
kernel model.

The results in the independent case (B) are plotted in Fig.3, again showing that LSMI
with the multiplicative kernel model is more accurate than that with the plain kernel
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(a) Kernel centers of the plain (left) and multiplicative (right) kernel models
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(b) True density ratio (top) and its estimates with plain (left)
and multiplicative (right) kernel models
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Figure 2: Experimental results for the dependent dataset. The best method and compa-
rable ones according to the t-test at the significance level 1% are specified by ‘◦’.
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(b) Computation time

Figure 3: Experimental results for the independent dataset. The best method and com-
parable ones according to the t-test at the significance level 1% are specified by ‘◦’.
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(a) Ionosphere (d = 34, c = 2)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

 

 

plain (dep.)

multiplicative (dep.)

plain (ind.)

multiplicative (ind.)

(b) Liver-disorders (d = 6, c =
2)
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(c) Shuttle (d = 9, c = 7)
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Figure 4: Experimental results for the benchmark datasets. Frequency of accepting the
null hypothesis over 100 runs under the significance level 0.05 is depicted. d and c denote
the input dimensionality and the number of classes of the dataset, respectively.

model. Similarly, the efficient implementation of LSMI with the multiplicative kernel
model is much faster than its naive implementation and is only slightly slower than LSMI
with the plain kernel model.

Benchmark Datasets: Finally, we apply LSMI to independence testing in the frame-
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work of the permutation test [5].
We employ 4 real-world classification datasets taken from the UCI repository avail-

able from http://archive.ics.uci.edu/ml/. We use the original dataset {(xi, yi)}ni=1

(where x and y are dependent) to evaluate the type-II error (i.e., whether a statistical
test can reject the wrong null hypothesis that x and y are independent). We also use its
randomly shuffled dataset {(xi, ỹi)}ni=1 (where x and y are independent) for evaluating
the type-I error (i.e., whether a statistical test can accept the correct null hypothesis that
x and y are independent).

Fig.4 shows the type-I and type-II errors for 100 runs under the significance level 0.05.
The graphs show that the multiplicative kernel model tends to provide lower type-II errors
than the plain kernel model, while their type-I errors are comparable.

5 Conclusions

In this paper, we proposed to use the multiplicative kernel model for approximating
squared-loss mutual information. The key contribution of the proposal is that, even
though the number of parameters is squared, its computational complexity does not exceed
that of the original method with the plain kernel model. Through numerical experiments,
we showed that the proposed method achieves lower type-II errors and comparable type-I
errors in independence testing.

This work was supported by KAKENHI 23120004 and AOARD.
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