TCP-Cognizant Adaptive Forward Error Correction
In Wireless Networks

Benyuan Liu!, Dennis L. Goeckel 2, Don Towsley !
! Department of Computer Science
University of Massachusetts
2 Department of Electrica and Computer Engineering
University of Massachusetts

Abstract— Wireless links are characterized by high bit error
rates and intermittent connectivity. This can result in significant
degradation in the performance (goodput) of TCP over wireless
networks since non-congestion related packet losses can be mis-
interpreted by TCP as indications of network congestion, result-
ing in unnecessary congestion control. In this paper, we pro-
pose a technique, TCP with adaptive forward error correction
(TCP-AFEC), to improve TCP performance over wireless net-
works. TCP-AFEC combines the well-established performance
characterization of TCP with an understanding of the link layer
error control scheme to dynamically select the forward error cor-
rection (FEC) that maximizes TCP goodput according to the cur-
rent channel condition. The benefit of coupling a characterization
of TCP performance with link layer FEC to improve TCP good-
put is demonstrated by comparing the performance of TCP-AFEC
against those of TCP-SACK and Snoop. Simulation results show
that TCP-AFEC outperforms TCP-SACK and Snoop for a wide
range of wireless channel conditions.

|. INTRODUCTION

Recently there has been substantial activity in the area of mo-
bile wireless data networks. TCP is the prevalent reliable trans-
port protocol in today’s Internet and has been widely used in
many application layer protocols. Thus it must be supported in
the wireless regime in order to make wireless networks integral
parts of the Internet. However, TCP is well known to suffer se-
vere performance degradation in wireless networks [1]. Packet
loss due to bit corruptions over wireless links can be misinter-
preted by TCP as indications of network congestion. This will
unnecessarily trigger the TCP congestion control mechanism,
resulting in a reduced throughput. Therefore, it is crucial to im-
prove the performance of TCP over wireless links to support
the fast adoption and deployment of wireless data networks. In
the past few years, there have been many proposals to improve
TCP performance in wireless networks, for example, [2][3][4]
[51[6]1[71[8]- The performance of some of these proposals were
studied in [1].

In this paper, we propose to couple TCP with an adaptive
forward error correction protocol (AFEC) in order to improve
TCP’s performance in a base station oriented wireless network.
The approach integrates the TCP performance characteriza-
tion and the link layer forward error correction (FEC) perfor-

This research has been supported in part by NSF under awards ANI-9809332,
EIA 0080119, NSF ITR-0085848, NCR-9714597, and CCR-9875482. Any
opinions, findings, and conclusions or recommendations expressed in this late-
rial are those of the authors and do not necessarilty reflect the views of NSF.

mance by employing a well-established TCP throughput for-
mula [9] to compute the forward error correction (FEC) code
that maximizes TCP goodput. In particular, we analyze the
effect of adding FEC to TCP packets between the base sta-
tion and mobile host on TCP goodput and present an algo-
rithm to select the code to be used for a given channel condi-
tion. The benefit of combining TCP performance characteriza-
tion with link layer FEC to improving TCP goodput over wire-
less networks is demonstrated through comparison with sev-
eral other proposals. We show that TCP combined with adap-
tive FEC, TCP-AFEC, significantly improves TCP performance
over TCP-SACK across a wide range of wireless channel condi-
tions. We also compare TCP-AFEC with Snoop [5], a proposal
that provides the biggest improvement over TCP Reno of all
approaches under study in [1]. Our simulation results show that
TCP-AFEC achieves a goodput comparable to that of Snoop at
low bit errors rates and considerably higher goodput than Snoop
when bit error rates are high, and thus is more robust than Snoop
over a broad range of wireless channel conditions.

Note that a similar approach has been independently pro-
posed in [10]. However, the development in this paper is more
closely tied to the physical layer assumptions (as opposed to the
packet error process model assumed in [10]) and is expected to
yield better performance. Furthermore, we consider a number
of important practical issues.

The rest of the paper is organized as follows. Section Il de-
scribes the TCP-AFEC protocol and highlights the character-
istics of the approach. In Section Il11, we evaluate the perfor-
mance of TCP-AFEC, and compare the goodput of TCP-AFEC
with that of TCP-SACK and Snoop. Conclusions are presented
in Section IV.

Il. TCP-AFEC PrROTOCOL

A. TCP Throughput Formula

Despite the complex behavior of TCP due to its various
mechanisms such as slow start, congestion control, timeout, etc,
it has been shown in [9] that the throughput of a TCP connec-
tion is a simple expression of packet loss rate (p) and average
round trip time (RTT). The TCP goodput, G ¢, can simply be

obtained by scaling the throughput by a factor of (1 — p):

1 (1-p)
282 4 Tomin(1,34/322)p(1 + 32p2) BTT

Gf 2 min(Wmam, (1)

where Wi, is the maximum congestion window size of the
TCP sender, b represents the effect of delayed ack, and T} is
the TCP retransmission timeout value.

The above formula assumes congestion-related packet losses
and it has been shown to accurately predict TCP goodput over a
wide range of packet loss rates [9][11]. Furthermore, our simu-
lation results show that the formula also yields good predictions
for random packet loss scenarios.

B. Effect of Forward Error Correction

Forward error correction (FEC) has been widely used in
wireless data communication systems to combat transmission
errors at the link layer. In FEC, parity-check bits are added to
the data to form a codeword, and the codeword is transmitted.
The parity bits are used by the receiver to attempt to recover
from errors that may have occurred on the wireless link.

Consider the effect of FEC on TCP goodput. On one hand,
FEC can reduce the packet error rate using its error correction
mechanism. According to the TCP goodput formula (1), this
leads to a larger achievable TCP goodput. On the other hand,
part of the link bandwidth in a system employing FEC is used to
carry parity bits, resulting in a smaller effective channel band-
width for the real payload.

If the effective channel bandwidth is larger than the achiev-
able TCP goodput (obtained from (1)), the real TCP goodput
should be well approximated by (1). If the effective channel
bandwidth is not large enough to meet the requirement of the
achievable TCP goodput, the TCP sender can achieve at most
the effective link bandwidth. Therefore, the real TCP goodput
can be approximated by the minimum of the achievable TCP
goodput and the effective channel bandwidth. Increasing the
level of FEC redundancy increases the achievable TCP good-
put but decreases the effective channel bandwidth. Since the
achievable TCP goodput is an increasing function of the level
of FEC redundancy while the effective channel bandwidth is
the opposite, the TCP goodput is maximized when the effec-
tive channel bandwidth becomes equal to the achievable TCP
goodput.

In TCP-AFEC, we use the TCP goodput formula to analyze
the tradeoff between the gain of the TCP goodput and the re-
duction of effective channel bandwidth through the application
of FEC. We will provide an algorithm to compute the optimum
FEC code that maximizes TCP goodput.

C. Physical Layer Assumptions

For wireless links, the received signal strength is affected by
three major factors: path loss, signal shadowing, and multipath
fading. In this paper, we assume the presence of an average sig-
nal to interference plus noise ratio (SINR) measurement, where
the averaging is over the multipath fading, at the base station.
Thus, this average SINR indicates the path-loss and shadowing
that the wireless link is undergoing, but does not assume knowl-
edge of the multipath fading, which varies at a much more rapid
rate. This average SINR measurement is generally available in
wireless communication systems and is currently employed for
power control [12], handoff [13], and adaptive rate control [14].

The variation of the channel between the time SINR measure-
ments are made and when they are employed is an important
consideration in adaptive systems. Whereas this presents a sig-
nificant problem when estimates of the multipath fading are em-
ployed [15], the problem is much less severe for measurements
of the path-loss/shadowing and can be compensated for using
the statistical model developed in [16].

Given the average SINR (or, more generally, any measure-
ment that is correlated to link quality) of the wireless link, it
is critical for our work to establish the packet loss rate as a
function of the wireless system parameters; in particular, it is
important to be able to characterize the packet error rate as a
function of the code rate and the average SINR measurement.
There are a number of ways to construct such a mapping, but the
difficulty lies in dealing with the averaging over the multipath
fading process, for which the statistics might not be known. If
the fading affecting bits (or symbols) is assumed to be indepen-
dent, the formulas follow easily, but this is unlikely to be a good
assumption in most systems. Instead, our system builds a set
of look-up tables that provides the optimal code rate based on
the current average SINR measurement and user velocity. Note
that the velocity can be well-estimated [17][18] and provides
the parameter for parameterized versions of the autocorrelation
function. Spectral estimate techniques, of course, can also be
employed.

In this work, we assume the use of block codes for FEC
where the level of redundancy can be adjusted. In particular,
we consider an (N, K') Reed-Solomon code, where (N — K)
parity symbols are added to K data symbols to form a codeword
of size N. The number of information symbols per codeword,
K, is fixed and the code length NV is varied to adjust the redun-
dancy level of the code. Here a symbol is the basic information
unit used in a Reed-Solomon code, and is composed of a cer-
tain number of bits. Assume a symbol carries m bits; then the
length of the code will not exceed 2™, i.e., N < 2™,

D. TCP-AFEC Protocol

Now we describe the TCP-AFEC protocol. Consider a TCP
connection between a host in a wired network and a mobile
host via a base station, where the wireless link is the bottleneck
of the connection. In TCP-AFEC, a link layer agent is added
to the base station and the mobile host respectively to improve
the TCP goodput. At the wireless hop of the TCP connection,
the link layer agent at the upstream node of the data flow es-
timates the packet error rate (PER) and TCP session RTT. For
each data packet passing by, the agent divides the packet into
frames, computes and constructs the optimal FEC code for each
frame that maximizes TCP throughput, adds appropriate frag-
ment headers, and then transmits the frames over the wireless
link. At the downstream node of the TCP data flow, the frames
are assembled and delivered to the transport layer if the number
of errors in each frame is correctable by FEC. Otherwise, the
whole packet is discarded. Note that our TCP-AFEC protocol
does not attempt to retransmit the error frames here. However,
the performance of a protocol that supports frame retransmis-
sion is an interesting avenue for future research. The size of
TCP acknowledgment packets is very small (about 40 bytes),
with FEC, these ack packets are much less prone to bit errors

than the large data packets. In this work, we assume these ack
packets are not subject to errors in the network.

A typical IP header is about 20 bytes. For a packet of 1500
bytes, the typical MTU for wired LAN environment (IEEE
802.3), the header only constitutes a small portion (1.3 %) of
the original packet. However, if the normal fragment header
operation is to be used in our approach, which fragments a data
packet into small frames, the header overhead will not be neg-
ligible. For a frame with data size of 175 bytes, the IP header
constitutes 11.4% of the total frame size. TCP/IP Header com-
pression [19][20] can reduce the header size by an order of mag-
nitude down to 3-6 bytes while yielding a performance very
close to ideal case across a wide range of bit error rates. In
this work, we employ the header compression technique in the
fragmentation process and assume that it can achieve the ideal
performance, where the correct header information can always
be constructed for each packet.

Given the estimate of PER and RT'T, we can compute the
achievable TCP goodput G ¢(N) using (1). Assume the raw
link bandwidth of the wireless channel is B,, the effective link
bandwidth, G, is computed as the portion of bandwidth that is
used to carry real payload scaled by the percentage of success-
ful transmissions (1 — PER). Since each TCP packet is frag-
mented into frames of size NV, of which K symbols are used for
real data. The effective link bandwidth is

K
G.(N) = Bcﬁ(l — PER) (2)

The real TCP goodput (T%.p) is the minimum of the achiev-

able TCP goodput (G'¢) and effective link bandwidth (G.), i.e.,

Giep(N) = min(Ge(N), G (N)) 3)

The optimal Reed-Solomon code (Ng, K) is the code that
maximizes TCP goodput and is computed as follows.

Ny = arg m}\e’\x(Gtcp(N)) 4)

As explained earlier, the TCP throughput is maximized when
the achievable TCP throughput equals the effective channel
bandwidth. Therefore, ideally Ny is just the solution to the
equation G.(N) = G¢(N). Note that G, is a decreasing func-
tion of N while G; is an increasing function of V. Hence, there
is a unique solution Ng to G.(N) = G#(IN). However, for an
(N, K) Reed-Solomon code, N can only take integer numbers
within a certain range. For trellis-based codes, the code rate can
only be chosen from an even smaller set of values, for example,
rates 3/4, 2/3, 1/2, 1/3 and etc. The protocol uses a look-up
table generated a priori to find the code that yields the largest
goodput as a function of the SINR and velocity estimates.

Compared to other related work, one of the key features of
TCP-AFEC is that the protocol takes a formula-based approach
to analytically derive the optimal FEC that maximizes TCP
goodput. The required modifications to implement TCP-AFEC
include some link layer operations at the base station and mo-
bile host. Since the modified link layer operations are trans-
parent to the TCP at the end hosts, the end-to-end semantics of
TCP is preserved.

1w00f 9 o o
1600

14001

B 1200
<
§ 1000
& oo}
4

600

2001

10° 107 10° 107
Symbol Error Rate

Fig. 1. Goodputs of TCP-AFEC, TCP-SACK and Snoop with no FEC

I1l. PERFORMANCE EVALUATION
A. Smulation Mode|

In our simulation model, a fixed host in the wired network
sends data to a mobile host via a base station. The path from
the fixed host to the base station is modeled as a link with a
bandwidth of B; and one-way propagation delay of d;. The
wireless link is modeled as an erroneous link with bandwidth of
B, and delay of ds. Since our focus is on the erroneous nature
of wireless links, we assume there is no loss on the wired link
and the buffer at the base station is large enough that there is
no buffer overflow. We also assume the bottleneck of the TCP
session is not in the wired part, but lies on the wireless link, i.e.,
Bs < Bj.

In the experiments, a TCP source at the fixed host has an
infinite amount of data to send. Each scenario was simulated
for one hour and the average TCP goodput was then measured
for the duration. The symbol length is set to be 8 bits, i.e., a
byte. The number of data bytes for each frame is chosen to be
175 bytes. We use a compressed TCP/IP header of 5 bytes for
each frame. The total frame size NV can vary from 180 to 255
bytes.

B. Smulation Results

We now present simulation results for two different wireless
channel scenarios. The first scenario assumes that the symbol
errors in the wireless channel form an i.i.d. Bernoulli process
with an average rate of symbol error rate (SER), when con-
ditioned on SINR. This approximates a rapidly varying mobile
radio channel and provides a baseline for more realistic rapid
varying channel scenarios. The second scenario adopts more
modest mobility assumptions for the user, which results in a
correlated SER process. Both shadow and multipath fading
effects are modeled by the well-established results in wireless
communications[21]. The signal strength due to the shadowing
is assumed to have marginal distributions that are lognormal,
and the autocorrelation function of the underlying normal pro-
cess (used to generate the log-normal shadowing) is assumed
to be exponential [22]. The multipath fading is modeled as a
complex Gaussian random process with zero mean and auto-
correlation function given by the standard “Jakes” model [23],
[24]; note that this implies a Rayleigh fading channel.

1) High-Mobility Channel: In this scenario, for the link in
the wired network, we set the bandwidth (B;) and one-way

propagation delay (d1) to be 10 Mbps and 40 ms, respectively.
For the wireless channel, we set the bandwidth (Bz) to be 2
Mbps and one-way propagation delay (d) to be 4 ms. A wide
range of symbol error rates, from 8 x 107% to 8 x 103, were
used in the experiments. The range of symbol error rates is
typical for wireless links, ranging from good to bad conditions.
The packet size is fixed at 1460 bytes.

Figure 1 shows the goodputs of TCP-AFEC, TCP-SACK and
Snoop as a function of symbol error rate. Here no FEC is used
in TCP-SACK and Snoop. Comparison of TCP-AFEC with
TCP-SACK and Snoop of two fixed coding overhead follows
shortly after in this section. The symbol error rates, ranging
from 8 x 1076 to 8 x 10~3, produce packet error rates ranging
from 1.2 % to 99 % in TCP-SACK and Snoop.

For a symbol error rate of 8 x 10~¢, TCP-SACK achieves an
average goodput of 756.3 Kbps, while TCP-AFEC and Snoop
yield similar goodputs around 1.8 Mbps, an improvement of
140 % over TCP-SACK. Note that in this case both TCP-AFEC
and Snoop achieve a goodput close to the link bandwidth of 2
Mbps. As the symbol error rate increases to 8 x 10>, the packet
error rate for TCP-SACK and Snoop grows to 11.3 %. In this
case, the goodputs of both TCP-SACK and Snoop drop drasti-
cally to 146 Kbps and 492 Kbps, respectively, while Snoop still
outperforms TCP-SACK by a large margin. For the same sym-
bol error rate, the goodput of TCP-AFEC only suffers a slight
degradation, providing an eleven-fold gain over TCP-SACK
and nearly a three-fold gain over Snoop. When the symbol er-
ror rates become even higher (8 x 10~4, 8 x 10~3), the trans-
mission of both TCP-SACK and Snoop stalls due to the TCP
congestion control. However, TCP-AFEC still maintains a high
goodput above 1.6 Mbps, much larger than those of TCP-SACK
and Snoop. The optimal FEC codes of the four SER are (175,
198), (175, 188), (175, 184), (175, 182), respectively. Note that
as the channel becomes less erroneous, less redundancy is need
to achieve maximum TCP goodput.

In the above comparison, no FEC is employed by TCP-
SACK and Snoop. Now we investigate the performance of
TCP-SACK and Snoop with a fixed FEC. We considered two
different coding overheads, 5 % and 30 %, representing light
and medium levels of code redundancy. The resulting Reed-
Solomon codes are (190, 175) and (255, 175), respectively.

The goodput of TCP-SACK and Snoop under the two fixed
coding overhead are compared with the goodput of TCP-AFEC
in Figure 2. From Figure 2 (a), we observe that the 5 % over-
head FEC significantly improves the goodput of TCP-SACK
and Snoop for all four symbol error rates. The goodputs
of TCP-SACK and Snoop for symbol error rates 8 x 107,
8 x 105, 8 x 10~* are now only about 6.7 % smaller than those
of TCP-AFEC. However, for the symbol error rate of 8 x 103,
TCP-AFEC still outperforms Snoop and TCP-SACK by 13.7 %
and 78.5 %, respectively. This is because the packet error rate
of TCP-SACK and Snoop is still 3.5 % after the application of
5 % overhead FEC. The packet errors cause a substantial per-
formance degradation for TCP-SACK. Snoop is able to provide
considerable improvement, but still falls below TCP-AFEC. For
symbol error rates from 8 x 1076 to 8 x 10~*, the 5 % over-
head FEC reduces the packet errors rates to such small values
that goodputs of TCP-SACK and Snoop have reaches the limit

)

1800F

1600

1400

1200

o
B

TCP Goodput (Kbp
g 8

8

8

8

Symbol Error Rate

(a) Reed- Sol onon code(175, 190)

1800F °

1600

1400

)

£ 1200

TCP Goodput (Kbps
8§ &8 &8 &8

8

10° 10 10° 107
Symbol Error Rate

(b) Reed- Sol onon code(175, 255)

Fig. 2. Goodputs of TCP-AFEC with TCP-SACK and Snoop with fixed FEC

of effective link bandwidth.

The goodputs of TCP-SACK and Snoop under 30 % over-
head FEC are shown in Figure 2 (b). In this case, the redun-
dancy level is large enough to account for the high symbol error
rate 8 x 102, However, the large coding overhead is an overkill
for the low symbol error rates, resulting in smaller goodputs
than those under 5 % overhead FEC.

2) Low-Mobility Channel: For the low-mobility channel,
the wired link parameters are set as B; = 10Mbps and d; =
10ms. The wireless channel model is characterized by the fol-
lowing parameters: average signal to interference and noise ra-
tio (SINR) to represent the average received signal strength af-
ter path loss; mobile speed (v) and correlated distance (D) to
characterize the shadowing effect; Doppler frequency (fp) to
characterize multipath fading effect. Note that the mobility of
the system is characterized by the model parameter v, while the
packet errors account for both the multipath fading and shad-
owing effect. In the simulation, the parameters used are as fol-
lows: average SIN R (averaged over both the multipath fading
and the path-loss/shadowing) = 25 dB, v = 3 m/s, D =10 m,
fa =6 Hz, and symbol rate (link bandwidth) B, = 20000 sym-
bols/s = 160 Kbps. The propagation delay for the wireless link
(d2) is set to be 80 ms. The packet size is 512 bytes.

To determine the potential of the TCP-AFEC protocol in such
a scenario, we assume TCP-AFEC can perfectly adapt to chan-
nel conditions at any time scale, i.e., it can choose the code that
maximizes goodput for any time interval. We divide a one-hour
long symbol error trace obtained from simulation into fixed
length segments. We shall refer to these segments as “adap-
tation intervals”. We then choose, for each adaptation interval
the code that maximizes the goodput within that interval. The

TCP- AFEC
Snoop (255, 175)

130 o o}
900,
0o

120 °

o — - — Snoop (190, 175) |
°

o
110 o
o

o
0 O

Goodput (Kbps)

Adaptation Interval Length (sec)

Fig. 3. Goodputs of Idealized TCP-AFEC and Snoop

overall TCP-AFEC goodput is the sum of the optimal goodputs
of all the adaptation intervals. Figure 3 shows the goodputs of
idealized TCP-AFEC for different values of the length of the
adaptation interval and the goodput of Snoop using fixed cod-
ing overheads of 5% and 30%.

Since TCP-AFEC maximizes its goodput at the time scale of
the adaptation interval, we expect that smaller adaptation inter-
val length results in better performance for TCP-AFEC . This is
validated by the simulation results shown in Figure 3. We ob-
serve as adaptation interval increases, the TCP-AFEC goodputs
decreases.

At 5% coding overhead, Snoop achieves a goodput of 58.2
Kbps, which is much smaller than the goodputs of TCP-AFEC
at all adaptation intervals. At 30% coding overhead, Snoop
achieves a goodput of 101.4 Kbps. We observe for adaptation
intervals larger than 500 seconds, the goodputs of TCP-AFEC
and Snoop are similar; for adaptation intervals smaller than 500
seconds, TCP-AFEC outperforms Snoop.

Note that the above results are for an idealized situation,
where TCP-AFEC can perfectly adapt to channel conditions at
any time. In practice, a base station only has an estimate of the
current channel conditions. The performance of TCP-AFEC
depends on how well it can predict the channel conditions for
the future adaption intervals. We expect that the actual results
will be quite close to the idealized performance, particularly for
smaller adaptation intervals, which will be on the order of mil-
liseconds rather than seconds. The design and performance of
the prediction scheme are parts of the on-going efforts.

IV. CONCLUSIONS

In this paper, we presented a novel technique (TCP-AFEC) to
improve TCP performance over wireless networks using adap-
tive forwarding error correction. The protocol integrates the
TCP performance characterization at the transport layer with
link layer error control schemes. A well-established TCP good-
put formula is combined with the error correction power of FEC
to select the optimal code that maximizes TCP goodput for dif-
ferent channel conditions. Through simulation, we show that
TCP-AFEC outperforms TCP-SACK and Snoop over a wide
range of wireless channel conditions. We consider several prac-
tical issues in [25], such as the TCP session RTT estimation
at the base station, the TCP packet size selection. To demon-
strate the benefit of combining TCP performance characteriza-
tion with link layer error control schemes, we also compared

the performance of TCP-AFEC with a physical layer optimiza-
tion scheme in [25]. Without TCP performance knowledge,
the physical layer optimization scheme yields smaller goodputs
than TCP-AFEC.

REFERENCES

[1] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and
Randy H. Katz, “A comparison of mechanisms for improving TCP per-
formance over wireless links,” |IEEE/ACM Transactions on Networking,
vol. 5, no. 6, pp. 756-769, 1997.

[2] Ajay Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile
hosts,” in 15th International Conference on Distributed Computing Sys-
tems, 1995.

[3] A. DeSimone, M. Chuah, and O. Yue, “Throughput performance of
transport-layer protocols over wireless LANs,” in Proceedings of Globe-
com, 1993.

[4] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin,
“AIRMAIL: A link-layer protocol for wireless networks,” ACM Wreless
Networks, vol. 1, no. 1, pp. 47-60, 1995.

[5] Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz, “Improving
reliable transport and handoff performance in cellular wireless networks,”
ACM Wireless Networks, vol. 1, no. 4, 1995.

[6] David Eckhardt and Peter Steenkiste, “A trace-based evaluation of adap-
tive error correction for a wireless local area network,” Mobile Networks
and Applications, vol. 4, no. 4, pp. 273-287, 1999.

[7] A. Chockalingam, M. Zorzi, and V. Tralli, “Wireless TCP performance
with link layer FEC/ARQ,” in Proceedings of IEEE ICC'99, 1999.

[8] Karen L. Gray and Daniel L. Noneaker, “The effect of adaptive-
rate coding on TCP performance in wireless communications,” Proc.
| EEE/AFCEA EuroComm 2000 Conference, pp. 233-237, 2000.

[9] J.Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-

put: A simple model and its empirical validation,” |EEE/ACM Transac-

tions on Networking, April 2000.

Chadi Barakat and Eitan Altman, “Bandwidth tradeoff between TCP and

link-level FEC,” in Proceedings of IEEE International Conference on

Networking, Colmar, France, Jul 2001.

[11] J. Bolliger, T. Gross, and U. Hengartner, “Bandwidth modelling for

network-aware applications,” in Proceedings of Infocomm’ 99, 1999.

R. Yates, “A framework for uplink power control in cellular radio sys-

tems,” IEEE J. Select. Areas Commun., vol. 13, pp. 1341-1347, 1995.

[13] V. Veeravalli and O. Kelly, “A locally optimal handoff algorithm for cel-

lular communications,” |EEE Trans. Veh. Technol., pp. 603-609, Aug

1997.

S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in

wireless packet data services,” |EEE Communications Magazine, Jan

2000.

D. Goeckel, “Adaptive coding for time-varying channels using outdated

fading estimates,” IEEE Trans. Commun., vol. 47, pp. 844-855, June

1999.

S. Wei and D. Goeckel, “Error statistics for average power measurements

in wireless communication systems,” to appear in IEEE Trans. Commun.,

2002.

R. Narasimhan and D. Cox, “Speed estimation in wireless systems using

wavelets,” IEEE Trans. Commun., vol. 47, pp. 1357-1364, Sept. 1999.

R. Narasimhan and D. Cox, “Estimation of mobile speed and average

received power in wireless systems using best basis methods,” in 33rd

Asilomar Conf. on Signals, Systems & Computers, 1999, pp. 300-305.

[19] V. Jacobson, “Compressing TCP/IP headers for low-speed serial links,”

RFC 1145, 1990.

Mikael Degermark, Mathias Engan, Bjorn Nordgren, and Stephen Pink,

“Low-loss TCP/IP header compression for wireless networks,” in Mobile

Computing and Networking, 1996, pp. 1-14.

[21] Theodore S. Rappaport, Wireless Communications. Principle and Prac-

tice, Prentice Hall, 1996.

M. Gudmundson, “Correlation model for shadow fading in mobile radio

systems,” Electron. Lett., vol. 27, pp. 2145-2146, Nov. 1991.

[23] W. Lee, Mobile Communications Engineering, McGraw-Hill, 1998.

[24] W.C. Jakes, Ed., Microwave Mobile Communications, IEEE Press, 1994.

[25] Benyuan Liu, Dennis L. Goeckel, and Don Towsley, “TCP-cognizant

aaptive forward error correction in wireless networks,” Tech. Rep.,
Computer Science Dept - University of Massachusetts, Amherst,
http://gaia.cs.umass.edu/ benyuan, 2001.

[10]

[12]

[14]

[15]

[16]

[17]

[18]

[20]

[22]

