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Abstract

Aim: To induce lipolysis, catecholamines could reach the adipocyte via the

blood stream after being released from the adrenal medulla or, alternatively,

via neuronal release in the vicinity of the fat cell. Sympatho-neuronal effects

on fat tissue lipolysis have been demonstrated in experimental animal

models. However, the role of sympathetic nerves in the control of lipolysis in

human white adipose tissue, which is sparsely innervated, has not been

clarified.

Conclusion: The present review summarizes evidence for a direct neuronal

influence on lipolysis in humans.
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Physiological importance of sympathetic

activity for energy balance

The regulation of lipolysis, which determines body fat

mass and body weight, depends on the balance between

hormonal and sympathetic mechanisms. Lipolysis is

predominantely inhibited by insulin while it is promo-

ted by catecholaminergic influences. Endocrine and

sympathetic mechanisms affect each other in the regu-

lation of fat mass, and are coordinated in the central

nervous system as well as through adaptation of

postreceptor signalling. Body weight regulating hor-

mones such as insulin, leptin, corticotropin releasing

hormone, melanocyte stimulating hormone and cortisol

regulate food intake via hypothalamic appetite centres,

but may also affect energy dissipation through

activation or suppression of sympathetic nerve activity.

Thus, sympathetic activity to effector organs of

metabolism is a key factor for maintenance of body

weight.

Several studies have tried to evaluate the importance

of sympathetic activity for the regulation of energy

expenditure in humans. Sympathetic b-adrenergic sti-

mulation evokes an increase in metabolic rate which

induces thermogenesis under fasting conditions (Staten

et al. 1987, Simonsen et al. 1992, Blaak et al. 1993).

Furthermore, sympathetic activation is largely respon-

sible for the facultative component of the thermic effect

of acute energy intake in humans and can be reduced by

b-blockade (Acheson et al. 1984, DeFronzo et al. 1984).

These studies focussed on the thermogenic effects of

increased sympathetic activity. Whether the resting

metabolic rate is also regulated by the sympathetic

nervous system is a matter of longstanding debate

(Acheson et al. 1984, DeFronzo et al. 1984, Seaton et al.

1984, Ravussin et al. 1985, Astrup et al. 1989, Christin

et al. 1989, Welle et al. 1991). However, a recent

thoroughly conducted study suggests that b-adrenergic

blockade effectively reduces the resting metabolic rate

in lean human adults (Monroe et al. 2001). This finding

could have important clinical implications because the

administration of b-blocking substances or drugs which

inhibit sympathetic tone, such as clonidine (Schwartz

et al. 1988), could reduce the metabolic rate to an

extent which increases body weight. So far, this has not

been examined prospectively but there is evidence that

chronic b-blocking treatment increases body weight

(Rossner et al. 1990, Sharma et al. 2001). It should be

underlined that these studies relied on systemic stimu-

lation or inhibition of sympathetic effector organs by
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catecholamines or b-blocking substances, rending them

unable to distinguish between sympathetic effects on

glucose or fat metabolism. Hence, they cannot specif-

ically address the importance of sympathetic activity for

regulation of body fat mass. However, evidence that

polymorphisms of b2- and b3-adrenoceptors coincide

with obesity may also argue in favour of catecholamine-

induced lipolysis being important for fat mass regula-

tion (Clement et al. 1995, Large et al. 1997).

Catecholamine-induced lipolysis

Noradrenaline and adrenaline activate lipolysis via

b1-, b2- and b3-adrenoceptors and these neurotransmit-

ters are the most important lipolytic substances in vivo

(Lafontan & Berlan 1993). However, catecholamines

also stimulate a2-adrenoceptors on the fat cell which

inhibit lipolysis. The coexistence of different adreno-

ceptors which increase or decrease the rate of lipolysis

in isolated fat cells raises the question of their functional

coordination in vivo. Experiments aiming to stimulate

sympathetic activity by physiological manoeuvres

like exercise (Arner et al. 1990) or mental stress

(Hagstrom-Toft et al. 1993, Karlsson et al. 1997) have

demonstrated an increased lipolysis in vivo, arguing for

a predominance of b-adrenoceptor- mediated lipolysis

under physiological conditions and against the assump-

tion that a-adrenergic inhibition plays an important role

in the regulation of lipolysis in vivo. Interestingly,

catecholaminergic lipolysis differs between intact fat

tissue and isolated fat cells. This difference may depend

on endocrine and paracrine mechanisms which are not

present in fat cell cultures, underlining the importance

of in vivo experiments.

The lipolytic effects of catecholamines may also

depend on the type of fat tissue being examined. The

rate of lipolysis has been reported to be low in the

subcutaneous femoral/gluteal region, intermediate in

the subcutaneous abdominal region and high in the

visceral (i.e. omental) region (Mauriège et al. 1987,

Jansson et al. 1990, Mauriège et al. 1991, 1995, Arner

1995, Morrison 1999). These regional variations in

lipolysis may be explained by site variations in the

lipolytic and antilipolytic activity of adrenoceptors, and

in addition by endocrine and paracrine factors. Anti-

lipolytic insulin receptors, a2-receptors and adenosine

receptors have been reported to be most active in

subcutaneous fat cells. However, part of the variation

could also be explained by a regional differentiation of

sympathetic outflow to fat tissue. Studies in rats have

demonstrated differences in sympathetic control of

metabolic and cardiovascular function in the splanchnic

region (Morrison 1999, 2001), and a recent study has

provided evidence for a somatotophic organisation of

central control over the selective innervation of subcu-

taneous vs. intra-abdominal fat by both the sympathetic

and parasympathetic branches of the autonomic ner-

vous system (Kreier et al. 2002).

Sympathetic function in obesity

The fact that the sympathetic system undoubtedly plays

an important role in the regulation of fat metabolism

has lead several investigators to study sympathetic

function in human obesity. Several branches of the

sympathetic system show altered activity in obese

subjects. Changes in heart rate variability (Karason

et al. 1999), plasma catecholamine concentrations

(Young & Macdonald 1992), pupillary latency period

(Peterson et al. 1988) and sympathetic nerve activity to

the muscle vascular bed (Spraul et al. 1993, Scherrer

et al. 1994, Grassi et al. 1995, Somers 1999) have been

described. Studies on muscle sympathetic nerve activity

(MSNA) are of interest for the question whether

changes in sympathetic activity could be involved in a

disturbed energy balance, resulting in weight gain. Basal

MSNA correlates with resting energy expenditure in

Caucasian population (Spraul et al. 1993) and the

respiratory quotient, which is high during low lipolytic

activity, is inversely correlated with MSNA (Snitker

et al. 1998). Given that muscle lipolysis may be import-

ant for energy expenditure, these results suggest that a

low sympathetically mediated energy expenditure could

be a risk factor for body-weight gain (Ravussin et al.

1988, Ravussin 1995). The fact that several studies have

reported an increased MSNA in obese subjects (Scherrer

et al. 1994, Grassi et al. 1995) and that total body

noradrenaline spillover is similar in lean and obese

subjects (Rumantir et al. 1999) seems at odds with this

notion, but it is conceivable that an initially low

sympathetic activity results in fat accumulation which

in turn augments sympathetic outflow through com-

pensatory endocrine mechanisms. One such compensa-

tory mechanism could be increased leptin release from

larger fat depots, an endocrine signal known to increase

sympathetic activity via hypothalamic mechanisms

in rats (Haynes et al. 1997, 1999). Glucocorticoid

effects may also be involved (Grassi et al. 2001), i.a.

via suppression of corticotropin releasing hormone

(a sympathoexcitatory substance with obvious anorexi-

genic properties) and/or increased neuropeptide Y

release (a sympathoinhibitory substance with orexigenic

properties). Apart from the above-mentioned and other

possible endocrine mechanisms, it should be stressed

that sympathoexcitation may be an unspecific secon-

dary consequence of obesity. For instance, the obstruct-

ive sleep apnea syndrome commonly observed in obese

subjects may contribute substantially to the augmenta-

tion of MSNA (Narkiewicz et al. 1998). Finally, when

discussing the role of sympathetic activity in the control
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of fat and body mass, it must be recognized that the

findings of unaltered total body noradrenaline spillover

and increased MSNA in obesity do not unequivocally

exclude the possibility that a selective reduction in

sympathetic discharge to fat depots could contribute to

an accumulation of fat mass and weight gain in general.

Neural control of white adipose tissue

Although subcutaneous fat tissue is the most important

energy store of the body, the question whether this

tissue receives metabolically relevant neural input in

humans remains to be resolved. Animal experiments

have shown that stimulation of sympathetic nerves to

white adipose tissue (WAT) increases lipolysis in vitro

(Corell 1963) and in vivo (Rosell 1966), despite the

sparse innervation of WAT (Slavin & Ballard 1978).

This innervation has recently be characterized and

labelled by retrograde tracers, which allow the local-

ization of central nervous structures governing sympa-

thetic outflow to the WAT (Bamshad et al. 1998,

Bartness & Bamshad 1998). Denervation of WAT

increases fat pad mass and fat cell number in Siberian

hamsters (Youngstrom & Bartness 1998), suggesting

that the neural input to fat tissue not only repesents a

lipolytic but also an antitrophic factor.

In humans, the route of sympathetic innervation of

WAT has not been described and its role in inducing fat

tissue lipolysis has not been determined. Global meas-

ures of sympathetic activity such as determination of

plasma catecholamine concentrations, or recordings of

activity in specific sympathetic branches like the MSNA,

are unlikely to reflect sympathetic metabolic signals to

the subcutaneous fat tissue. WAT is in all probability

only a minor contributor to total body catecholamine

spillover, and specific determination of WAT catechol-

amine spillover is not possible, as a single arterial supply

and venous drainage cannot be defined in humans.

Lacking direct methods to determine sympathetic out-

flow to WAT, studies have tried to assess the role of

sympathetic innervation in induction of subcutaneous

lipolysis in subjects with interrupted sympathetic out-

flow following a high spinal cord injury. These studies

suggest that sympathetic innervation has no clear effect

on the basal lipolytic rate of fat tissue (Karlsson et al.

1995) but induces lipolysis under conditions of sym-

pathoexcitation (Karlsson et al. 1997). Although these

studies suggest a role of sympathetic neurones in the

regulation of subcutaneous lipolysis, at least under

stimulated conditions, they were not able to define the

exact route of sympathetic innervation to WAT.

Lipolytic effects of intraneural electrical

stimulation in humans

Intraneural electrical stimulation has previously been

used to study sympathetic control of cutaneous vaso-

and sudo-motor function (Wallin & Elam 1997). We

have recently developed a model aiming to study

sympathetic control of subcutaneous lipolysis, involving

intraneural electrical stimulation of the lateral femoral

cutaneous nerve (supplying a large skin area with a

thick subcutaneous fat layer) and monitoring of

lipolysis through measurement of interstitial glycerol

release via microdialysis catheters placed within the

innervation zone of the stimulated nerve fascicle

(Fig. 1). To exclude systemic effects of the (painful)

intraneural stimulation, the glycerol release of the

stimulated area was compared with the local glycerol

release in a corresponding area on the contralateral

unstimulated leg. Regional blood flow was monitored

bilaterally with laser doppler flowmetry. The intraneu-

ral electrode was used for recording, to characterize the

pattern of sympathetic discharge in the lateral femoral

cutaneous nerve compared with more distal recordings

of skin sympathetic nerve activity in the median and

peroneal nerve (Fig. 2; Dodt et al. 1999), and subse-

quently for electrical stimulation of nerve fascicles

supplying the region drained by the microdialysis

catheters (Dodt et al. 1999, 2000).

In a group of seven healthy lean women, 10 min of

unilateral intraneural stimulation elicited a 22 � 8%

increase (P < 0.05) in glycerol levels in the stimulated

region, while no change was observed in the corre-

sponding area of the contralateral leg (Fig. 3). How-

ever, in order to reach an appropriate intraneural site,

Microinjection pumpStimulation unit

Recording unit

Figure 1 Experimental setup: after a

suitable stimulation/recording site within

the lateral cutaneous nerve had been

established, two microdialysis probes

were inserted in the receptive field and

one additional control probe in a

corresponding area on the contralateral

leg. From Dodt et al. 1999.

� 2003 Scandinavian Physiological Society 353

Acta Physiol Scand 2003, 177, 351–357 C Dodt et al. Æ Sympathetic control of human subcutaneous lipolysis



the experimental procedure involved shortlasting trans-

cutaneous and intraneural stimulation of the nerve prior

to the standardized stimulation period. Although short-

lasting, this initial unstandardized stimulation had a

strong lipolytic effect per se (47 � 13% higher glycerol

levels in the stimulated vs. unstimulated area before the

standardized 10 min stimulation, P < 0.05). Thus,

neural stimulation elicited an overall increase in glycerol

levels by 72 � 17%. This glycerol increase was not

explained by changes in regional blood flow, which did

not differ between the two legs (Dodt et al. 1999). In a

group of seven obese female subjects (Dodt et al. 2000),

the same intraneural stimulation protocol produced no

significant change in subcutaneous lipolysis (Fig. 3).

These in vivo results suggest that human obesity is

characterized by a profound unresponsiveness of the

subcutaneous adipose tissue to neurally induced lipoly-

sis.

The reason for this blunted lipolytic response in

obese subjects remains to be elucidated. A lipolytic

resistance to neural stimulation could be the result of a

dysfunction of b-adrenoceptors on lipocytes and/or of

the hormone-sensitive lipase (Langin et al. 1996).

b-Adrenoceptor dysfunction has been suggested to

cause obesity by several studies (Lacasa et al. 1984,

Lönnqvist et al. 1992, Reynisdottir et al. 1994a,b,

Clement et al. 1995, Large et al. 1997). However,

because of the presence of spare adrenoreceptors, such

receptor defects should result in reduced b-adrenergic

sensitivity without alteration of the lipolytic capacity

(Lacasa et al. 1984, Arner et al. 1988). Hence, our

results in obese subjects are more likely be attributed to

a post-receptor defect.

The importance of receptor and post-receptor defects

for the pathogenesis of obesity was suggested in an

interesting in vivo study on obese children using

adrenaline infusion (Bougnères et al. 1997). Our recent

studies using in situ stimulation of a cutaneous nerve

and measurement of glycerol release within its inner-

vation territory may support the concept of a reduction

of adrenergically mediated lipolysis in obesity. Other

neurally released substances apart from catecholamines

could, however, also be involved in the regulation of

lipolysis in obesity. For example, neuropeptide Y which

inhibits lipolysis (Fain & Shepherd 1979) may modu-

late the catecholamine effect. Whether changes in the

release of this or other neuromodulators is relevant for

the lipolytic resistance in obesity remains to be eluci-

dated.

Obesity is characterized by an increase in number and

size of fat cells (Bertrand et al. 1978, Bougnères et al.

1997). It is conceivable that a disproportional increase

in fat cell mass in relation to efferent sympathetic nerve

fibres and/or blood vessels may serve as an explanation

for the present results. To our knowledge, it has not
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Figure 2 Simultaneous recordings of skin

sympathetic nerve activity (SSA) in the

lateral cutaneous femoral nerve and the

median nerve (subject A), and the lateral

cutaneous femoral nerve and the superfi-

cial peroneal nerve (subject B). No specific

�lipomotor activity� could be discerned in

the mean voltage neurogram of the lateral

cutaneous femoral nerve. From Dodt et al.

1999.
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Figure 3 Interstitial glycerol levels in the innervation territory

of the lateral cutaneous femoral nerve in seven lean (circles)

and seven obese (triangles) subjects (mean � SEM). The solid

lines represent the levels in the innervation area of the stimu-

lated lateral cutaneous femoral nerve while the broken lines

represents the levels in the contralateral unstimulated area.

Prior to the insertion of the microdialysis probes, the nerve was

localized using transcutaneous and intraneural stimulation

(cross-hatched box). After an equilibration period of 45 min

and a baseline period of 30 min, the lateral cutaneous femoral

nerve was again stimulated for 10 min (hatched box). Stimu-

lation significantly enhanced glycerol release in lean subjects,

while lipolysis was not significantly affected in the obese group

(weight · time interaction: P < 0.05). From Dodt et al. 2000.
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been established whether sympathetic nerve fibres

proliferate during the development of obesity or remain

constant in size, thus leading to a relatively less-

innervated adipose tissue in obesity. A decreased blood

flow in subcutaneous fat tissue has been described in the

abdominal, but not in the femoral, region of obese

subjects (Knittle et al. 1979). However, a reduced blood

flow would have induced an increase in interstitial

glycerol levels and thus can also not explain the present

results (Jansson et al. 1992).

Our in vivo experiments in obese female subjects,

showing a reduced local lipolytic response to intraneu-

ral stimulation, are compatible with the theory that a

diminished lipolytic response to sympathetic activation

may be a pathogenetic factor in the development of

obesity and may impede weight reduction. However,

the impact of blunted responses to neural activation

should be related to the reduced antilipolytic effect of

insulin (Jansson et al. 1992) and the altered lipoprotein

lipase activity (Jensen et al. 1997) prevailing in obesity.

Furthermore, prospective studies in pre- and post-obese

subjects have to be performed.

Conclusion

Total body lipolysis is directly proportional to total body

fat mass. Consequently, obese subjects show a higher

total body lipolysis than lean subjects simply because

they have a larger fat mass, whereas lean and obese do not

differ in relative lipolysis per kilogram fat mass (Jansson

et al. 1992). In contrast, isolated fat cells from obese

subjects show an increased basal lipolysis, a reduced anti-

lipolytic response to insulin and also a reduced response

to b-adrenoceptor stimulation. The discrepancies

between in vivo and in vitro findings concerning human

lipolysis must be resolved before the role of the sympa-

thetic nervous system in the regulation of human fat

tissue mass and adipocyte cellular size can be fully

clarified. Our recent studies, combining intraneural

electrical stimulation of human cutaneous nerve fascicles

supplying WAT on the thigh with microdialytic evalua-

tion of glycerol release within the territory innervated by

the stimulated nerve fascicle, clearly demonstrate that

lipolysis can be neurally induced, and that this neural

effect can be blunted in obese subjects. This technique

provides a human in vivo model for further studies of

neural control of lipolysis in health and disease.
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