Applied Mathematics and Computation 218 (2011) 3733-3745

Contents lists available at SciVerse ScienceDirect X
APPLIED
. . . mﬁﬁAﬂiEMATLCS
Applied Mathematics and Computation CompuTATION
journal homepage: www.elsevier.com/locate/amc e

Stability analysis of diffusive predator-prey model with modified
Leslie-Gower and Holling-type III schemes ™

Yanling Tian*, Peixuan Weng

School of Mathematics, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO ABSTRACT

Keywords: The stability of a diffusive predator-prey model with modified Leslie-Gower and Holling-
Diffusive predator-prey model type Il schemes is investigated. A threshold property of the local stability is obtained for a
MgdlﬁEd Leslie-Gower and Holling-type II boundary steady state, and sufficient conditions of local stability and un-stability for the
schemes

positive steady state are also obtained. Furthermore, the global asymptotic stability of
these two steady states are discussed. Our results reveal the dynamics of this model
system.

Comparison method
Persistence

Stability . .
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

One of dominant themes in both ecology and mathematical ecology is the dynamic relationship between predators and their
prey due to its universal existence and importance in population dynamics. The investigations on predator-prey models are
developed during these thirty years, and more realistic models are derived in view of laboratory experiments and observations.
In these models, more factors such age-structure, seasonal effects, radio dependence, etc. are included into consideration (see
[1,4-7,10] and the references therein). In [1,7], Nindjin et al. considered a predator-prey model incorporating a modified
version of Leslie-Gower functional response as well as the Holling-type Il functional response:

X:x(alfbxf Gy ),
X‘Fk]

. _ QY
ny/<az x+k2>’

where (1.1) is considered associated with initial conditions x(0) > 0, ¥(0) > 0.

Model (1.1) describes a prey population x which serves as food for a predator with population y. The parameters ay, a,, b,
C1, C2, kq are assumed to be only positive values: a; and a, are the growth rate of prey x and predator y respectively, b mea-
sures the strength of competition among individuals of species x, c¢; is the maximum value of the per capita reduction rate of
x due to y, k; and k, measure the extent to which environment provides protection to prey x and to predator y respectively,
and c;, has a similar meaning as c;.

The first equation of (1.1) is a standard equation with Holling-type II response function, but the second is not standard.
The intactness of the equation contains a modified Leslie-Gower term £. If the growth of the predator population is of logistic
form, then:

(1.1)
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here C measures the carry capacity set by the environmental resources. Let C = Ix, where [ is the conversion factor of prey into

predators, then the above equation becomes:

and the term £ measures the loss in the predator population due to the rarity (per capita y/x) of its favorite food. If this favor-
ite food is lacking severely, the predator y will switch to other population, but its growth will be limited. By adding a positive
constant to the denominator, the equation becomes:

VA O
dt 2T Ik+d)
and thus the second equation of (1.1) follows, where ¢c; =1k, =4

As well known, Holling-type III response exists universally in population dynamics. Hence it is natural to consider the
system incorporating a modified version of Leslie-Gower functional response as well as that of the Holling-type III:

2
X:x<a1 — bx — Gy ),

X2 + kq

- _ Gy
y_y<a2 x—s—kz>'

Taking the diffusion of the species into account as in [9,10,12,13], one obtains the following reaction-diffusion model:

2
altJ:DlAUJrU(mbU aW )

(1.2)

0 U2 -‘rk] (13)
ow o oW
- D, AW + W(az “Ur k2>'

to describe the interaction of spatially distributed populations of predator W and prey U, here U = U(t,x),
W =W(t,x), x = (X1,Xa2,...,Xn) € R".

Let:
u=ly w_Sw r_ar x- X p-D (1.4)
=@ =a = at, = =D, .
a
then:
ow ¢ W _ Dy
where Aw =S, afi";’z AW = Y1 2W Substituting (1.4) in (1.3), we have:
al\,/:Aw+ocw<1 _ bw ),
ot u+ky
where o0 = %,ﬁz = %,TQ = %kz. Similarly, we obtain:
6—%:2%, Au:DZRAU:%AU,
o a? ot a2 Daf
and then:
du Byw? >
—=DAu+u(l-u———-+|,
ot ( u? + k] '

where §;, = g,kl = ”% By rewriting t',x’, k1, k, as t, x, kq, ka, (1.3) becomes:

2
a—U:DAu+u(17uf frw ),

ot u2+k1
ow Paw
awa-i—ocw(l _u+k2)’

where D, a, f1, B2, k1, ko are positive constants.



Y. Tian, P. Weng/Applied Mathematics and Computation 218 (2011) 3733-3745 3735

Assume that the predator and prey are confined to a bounded domain € in R" with a smooth boundary. In this article, we
consider the following reaction-diffusion system:

du Biw?
— =DA 1-u- , Q
T u+u( u k) t>0, xeQ,

ow faw

a7Aw+ocw<l u-s-kz)’ t>0, xeQ (1.5)
ou ow

57570, t>0, xedQ,

u(0,x) =ug(x) = 0, w(0,x)=we(x) >0, xcQ,

where n is the outward unit normal vector of the boundary 0€, ug, Wy are continuous functions of x. We mention here that
[8, Theorem 2.1] guarantees that (1.5) has a unique nonnegative solution (u,w) defined on [0,00) x €. In addition, from the
maximum principle, we can see that the solution is positive, i.e., u(t,x) >0, w(t,x)>0 on Q for all t >0, provided uy # 0,
wo # 0.

Obviously, (0,0),(1,0), (Og—;) are the three constant steady states of (1.5). Moreover, the following proposition guaran-

tees the existence and uniqueness of the positive constant steady state.

Proposition 1.1. System (1.5) has a unique interior equilibrium E; = (u*,w*) (i.e., u* > 0,w* > 0) if the following condition holds:

2 2
( _%> >3<k1+—2/;;2k2>, kl—ﬁ;g—fz>0~ (1.6)

2 2 2

Proof. If E; = (u*,w") is the interior equilibrium of (1.5), then:

(1- u*)<(u*)2 +k1) _ B (u*;zkz>2 0

Consider the function:

s(h) = (1= h)(* + k) —%(h o),
2
and calculate its derivative, we have:

§(h) = —(K + ki) + 2h(1 — h) — %(h ko).
2
Obviously:
2

( - ﬁ—;> >3 (k1 + 2ﬁ12"2> = 5(h) <0,

B 15

2

k —Bl—’;z>0:>s(0) > 0,

2

then the curve of the function s(h) intersects x axis only once, hence the existence and the uniqueness of the interior
equilibrium is guaranteed. The proof is completed. O

As well known, the persistence and the stability are two important topics in the study of dynamics for differential
equations and population models (e.g., see [4,5,9,11,12]). In the present article, we shall also concern with these two topics.
This article is organized as follows. Section 2 is for the preliminaries. In Section 3, the persistence of the system is discussed.

The stability of the boundary steady state (0 kz) and the positive steady state (u*, w*) are investigated in Section 4. A thresh-

P2,
ky
'

eigenvalue method, respectively (see Theorems 4.1 and 4.4 in Section 4). Sufficient conditions for globally asymptotic sta-
bility of these two steady states are also obtained. The techniques used for globally asymptotic stability are the Lyapunov
function method and the comparison principle.

old property or sufficient conditions of the local stability is obtained for (O ) and (u*,w*) by the linearized method and

2. Preliminaries

In order to discuss the dynamics of the steady states, we introduce some lemmas in this section for the use of
convenience. Consider the following equation:
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Z—l::dlAu+F1(u,W), £>0, xeQ,

ow

—~ =d,Au+F . t>0 Q

ar = RAu+F(uw), >0, xe® (2.1)
ou ow

- >0 xeQ

u(0,x) >0, w(0,x) >0, xeQ.

Let (11, w) be a steady state of the equation, i.e., F; (i1, W) = F» (i1, w) = 0.
Define
X = {(u,w)T e [c'(@)] x [¢'(Q)] U_W_05 on aQ}.
’ on on
Assume that 0 = po < ftq < i <--- <--- denote the eigenvalues of the operator —A on X with the homogeneous Neumann
boundary condition. Hence there is a decomposition X = @&;°,X; such that X; is the eigenspace corresponding to ;.
Define an operator £ in the form:

£_<d1A+01 —0, >
T\t doA—04)’

here:
oF, oF,
0 = Em lucaww: 02 = Tow lu-tt-ws
oF, oF;
03 = u N 787W|u:ﬂ'wzw.

As usual, we identify an abstract vector function (u(t), w(t)) = (u(t,-), w(t,-)). Therefore, we can rewrite (2.1) as:
d (u—a ) _ﬁ(u—a ) N (fl(u—ﬂ,w—\iv)>
dt\w-w/) “\w-w hu-u,w-w))’
where fi(z1,2;) = 0(,/2% +z§),i: 1,2.

Motivated from [11], we have the following lemma:

Lemma 2.1. If:

01— 04 < 07 0y = O, 03 = 07 0,03 — 0104 > 07 (22)
then (i1, w) is uniformly asymptotically stable. Furthermore, if 0,03 — 0,04 < 0, then (1, W) is unstable.
Proof. For eachi,i=0,1,2,...,X; is invariant under the operator £ and ¢&; is an eigenvalue of £ on X; if and only if &; is an
eigenvalue of the matrix:
—di; +0 -0
M, = ( 14 + 01 ) )
03 *dz,ui — 04

By direct calculation and (2.2), we obtain:

2
+ 1 2
Refo == (01 — 04+ \/(0] — 04) — 4(0293 — 6 04) <0.

1
Reg; — = [91 — 04— /(01 — 02" — 4(0,05 — 0, 94)} <0,

2
We also have:

deth = dldzu,z -+ (94d1 — 91(12)/1,- + 0,03 — 0104 > 0,
trM; = —(d; + d2):ui +0; —04 <0,

hence:
1 2 1 1
Re& = 3 trM; — £/ (trM;)* — 4detM; ) < jtrM,v < jtrM1 <0,
. dd 0 >1
1 2 det M; didy @iy — 0 <Y Wi>1,
F=_ : N — ) < _ i
Re¢; 5 <trM, + 4/ (trM;) 4detM,) < oM, < @ T + (0= O, < g

~ G — 0 <0 <l
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From the above discussion, we know that there is:

T d]dz d]dz,u%
0= mm{(ch )+ (0a—01) (dr + o) + (0a — ol)} >0,

such that Re¢ < —4, for all i. Consequently, the spectrum of £, which consists of eigenvalues, lies in {Re¢ < —é}. An
application of [3, Theorem 5.1.1] leads to the first conclusion of the theorem.
Note that if 0,03 — 0,04 <0, then:

1
Reéy =5 {01 — 04+ \/(01 — 04)* — 4(0,05 — 0104)} >0.

Hence the spectrum o(£) ({Re/ > 0}#0, and therefore (i1, W) is unstable, which yields to the second conclusion of the the-
orem. O

The following lemma is also from [11]:

Lemma 2.2. Let a and b be positive constants. Assume that ¢, ¢ € C'([a,+o0)), = 0 and ¢ is bounded from below. If ¢
'(t) < —bo(t) and @'(t) < k in [a, + 0o) for some positive constant k, then lim;_, ...¢(t)=0.
Poincare inequality is usually used in order to give the estimation of the solutions, we introduce it as follows:

Lemma 2.3 (Poincare inequality). Assume that 1 < p < oo and that 2 is a bounded open subset of n-dimensional Euclidean space
R" having Lipschitz boundary (i.e., Q is an open bounded Lipschitz domain.) Then there exists a constant C, depending only on Q
and p such that, for every function u in the sobolov space W''P(Q):

= ullpg < CIVUllp g
where Ul = ‘1@ Jou()dy is the average value of u over Q, with |Q| standing for the Lebesgue measures of the domain Q.

The last lemma is from [2, Theorem A2].

Lemma 2.4. Consider the following equation:
ou;

§:Aui+ﬁ(u17"'7un)7 1<l<m,
ui(0,%) = u;y (%),

% =0, xe0Q,

on

suppose that [u;(t,x)] < K for (t,x) € R* x Q,1 <i< n,and fiis of class C' on X = [[1,[-K,K], 1 < i < n, where u = {u, us,. .., u,}
is the solution of the above system. Finally, suppose that fi(u) = 0 if u; = 0. Then there exists N > 0 depending only on Q,«,K and df;
(the total differential of f;) such that |[u|2-(2) < N.

3. Persistence
In this section, we shall discuss the persistence of (1.5). Firstly, we consider the upper boundedness of the solutions for (1.5).

Theorem 3.1. Any solution (u,w) of (1.5) satisfies:

. . 1+k
limsup maxu(t,-) <1, limsup maxw(t,-) < e
t—oo  xeQ t—oo  xeQ Ba

. (3.1)

Proof. Assume that (u,w) is any solution of (1.5). The first element u satisfies:
aa—Ltl—DAugu(l —-u), t>0, xeQ
0

—u:O, t>0, xecdQ,
on

u(0,x) =up(x) =0, xeQ.
Consider the following initial value problem of ordinary differential equation:
dv
P v(1-v), t>0,
v(0) = maxug(-).
Q
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Since lim,_,...¢(t) < 1, the first inequality of (3.1) is followed by the standard comparison principle.
As a result, for any ¢ > 0, there exists T > 0 such that u(t,-) <1+ ¢ for t > T. Then w satisfies:

a—Wwagocw lfﬂziw, t=T, xeQ,
ot 1+e+k

W_ 0, t>T, xeoQ,

on

w(T,x) =20, xeQ.
Consider the following initial value problem of ordinary differential equation:
dz Bz
—-— = 1-—— T
dt “Z( 1 +8+k2>’ t>1
z(T) = maxwg(-).
Q

, we have:

Since lim;_,..z(t) < %

. 1+k +¢
lim sup maxwi(t,-) < — 2 +%
t—00 Q Ba

Let ¢ — 0, then the second inequality of (3.1) is valid. O
The above theorem implies that for any ¢ > 0, the rectangle [0,1 + &) x [0,%;*8) is a global attractor of (1.5) in R%.

Definition 3.1. The problem (1.5) is said to have the persistence property if for any nonnegative initial data (ug(x), wo(x)),
with ug(x) # 0, wo(x) # 0, there exists a positive constant # = 1(ug, Wp), such that the corresponding solution, (u,w) of (1.5)
satisfies:

lirtninf minu(t,-) > 7, lirtninf minw(t,-) > 7.

2
Theorem 3.2. Suppose 1 — f—: (%) > 0, then (1.5) is persistent.

Proof. Suppose that (u,w) is the solution of (1.5) with ug(x) = 0, wo(x) = 0 and ug(x) # 0, wp(x) # 0. Since ug(x) # 0, we
have u(t,-) > 0 for all t > 0 and u(t,-) > O for all ¢t > 0. Hence:
1- Baw Baw

>1-22 forallt >0, xeQ.
u+k; k,

Let T; > 0 and w(Ty,-) > 0. Consider the following initial value problem:
Z:az< —g), t>Ty,
ky
Z(T1) = minw(Tq,-) > 0.
Q
It is easy to have lim, ., .z(t) = %, it then follows by the comparison principle that:

.. . k»
liminf minw(t,-) > —=.
t—+c0 @ ( ’ ) [32

(32)

From the second inequality of (3.1) we obtain T, > O such that:

2
2 'B Liky
1-u ﬁ]W >1 U—M

, t=Ty, xeQ.

- u? + k] = k]
Thus there is:
2
1+k
B (')
”l‘l - k] )

being the limit of the solutions of the following initial value problem:

2
1+k
Bi(42)
_— t>T,,

v=oav|1-v— ,
k]

v(T;) = minu(T,,-) > 0.
Q
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We then obtain from the comparison theorem that:

llmmfmmu( ) = (3.3)

t—+o0

(3.2) together with (3.3) yields the conclusion of this theorem. O

4. Stability

Since (0,0) and (1,0) are unstable, then stability of the steady states (O 7 ) and (u*,w*) are considered. Theorems 4.1, 4.2,
4.3 describe the stability of (0 ( ) while Theorems 4.4, 4.5 describe the stability of (u*, w*). Multiple methods and techniques

are used in this section. By the analy51s of eigenvalues of the linearized matrixes, we obtain Theorems 4.1, 4.4, which are the
results on local stability. Lemma 2.2 and the analysis on the Lyapunov function yield Theorems 4.2, 4.5, as well as the
comparison method leads to Theorem 4.3. They are the results of globally asymptotic stability.

Theorem 4.1. The following conclusions hold.

(1) f ("2) > 1, then the constant solution ( ,ff) of (1.5) is uniformly asymptotically stable.

(2) If g ("i) < 1, then the solution (O,’i2

7 ) is unstable.
2

Proof. Define w = ’;,2, Let:

Br Biks
0 =1-11 P g, =0,
=1 W e
0B (W) o 20,
=—, UO4g=—0+ o,
T k)? B kz

then the linearization of (1.5) at (0, w) can be written as:

it () =2(o—io) * G )

DA+0; -0, .
£:<03 A794>’ fi(z1,zz):o<‘/z%+z§>, i=1,2.

If & (f‘f) > 1, then a straightforward calculation yields:

where

61 < O, 02 = 07 03 > 0, 64 > 07 02(‘)3 — @] 04 > O,

then (07%) is uniformly asymptotically stable by Lemma 2.1.

On the other hand, the assumption - (%2) < 1 yields 0,05 — 0104 <0, then (0,%) is unstable by Lemma 2.1. O

Next, the globally asymptotic stability of (0, ) is considered. Let (u,w) be the unique positive solution of system (1.5).

Using Theorem 3.1, there exists a constant C, Wthh does not depend on x and t, such that ||u(t, )|, <C,||w(t,-)| . < C for
t > 0. By Lemma 2.4, there is A > 0 such that:
[u(t, leza@ <A WL )l 2a @) < A (4.1)

Theorem 4.2. Suppose that - <

if ky>1 and B, > p2, then the positive constant solution ( "2> of (1.5) is globally
asymptotically stable.

/;2;

Proof. Define a Lyapunov function:

Vi, w)(t) = —dx+/Q{W72—\7v2<1+ln%)}dx,
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here w = 2—; Obviously V is bounded below for all ¢t > 0. We calculate the derivative of V along the solutions of (1.5):

av
dt

= %a—udx+/<1—w>(w+17v)a—wdx
(1.5) o B ot Q w

_four, piw? _@ P _ pw
,/Qﬁ2 (1 u u2+k1)dx+/g<l W)(w+w){Aw+o¢w<1 u+k2>}dx'

Integration by parts, we have:

/Q<1 —%)(W+W)Awdx:_/g<1+$>(|VW|)2dX

Direct calculation leads to:

Bw u Ba(W — w)

Tu+k, u+k ' (u+ky)

I >p5, i< ﬁ—g then:

piw? pow?
w4k~ u+k’
Substitute (4.3)-(4.5) into (4.2) and note that k, > 1, we obtain:

dv o 22 af,(w — W)?
E'<1-5J</Qﬁ_§<1‘” u+k2>dx /(1+ >(|Vw|) dx — /(w+ i) 220

L ou(w —w)
+/Q(W+W)Tkz

2 p2y2 72
< [ Zuraxs /“_g Utk - ppw? dx_/ (1+W—2>(|Vw|)2dx—/(w+\7v)
o p3 i u+k; o w o

opy (W — W)?
u+k;

oUW -—w) o, ou/ u ou (B3 (W —w)(W+w)
+/Q(W+W)7u+k2 dx = /zszzu dx+/ i (sz)d)ur/Q 7 <u+k2 )dx

/Q (1+ )(IVWD (/Q("” )deJr/g(Wer)de

u+k u+ky

g-/ﬂﬁ—éﬁ(l—u:kz)dx /Q(w+ )de /<1+ )(\VWI)

Also by k, > 1, we have:

dv %, afy (W — W)? 1),z
E'“-S)g_ gzﬂ_zu <1 u+k2>d _/Q(W+ W) u+k; e < - /Qﬁz(l_E> =

By Theorem 3.1, u, w are bounded, so there are positive constants By, B, such that:

) 2
dfg”dx /Zu—dx_/Zu{DAquu(lfu, frw )}dngh

uz +ky

dfgw W)’ /2 —dX*/ZW W)|:AW+OCW(1— fw )}dngz.
u+ky

Apply Lemma 2.2, we obtain:
lim [ uv?dx=1lim [ (w—w)’dx =0.

=0 Jo =0 Jo

On the other hand, we have from (4.6) that there is B3 > 0 such that:
dv
< [(1+ )(an ~8s [ (Vw2 - (o)
15) Q Q

dt
Calculating the derivative of g(t), we have:

ax, 6u6
/zzax, ar _33/226)(, ax,

/ oky (W — W)?
%) 1+k;

(4.2)

(4.4)

(4.5)

dx <0

(4.7)
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By using inequality (4.1) and system (1.5), g'(t) is bounded in [1,+c0). Therefore Lemma 2.2 also yields:

lim [ ((Vw/)dx=0
Q

t—+o00

The Poincare inequality yields:

lim [ (w—w)dx =0, (4.8)

t—+o0 o

where w = 4, [, wdx and
|Q|(W — W)? = /(W—W)zdx= /(Vv—w+w—\7v)2dx < 2/(\7v—w)2dx+2 /(w—\?v)zdx.
Q JQ Q JQ
Hence from (4.7) and (4.8) we have:

w(t) —Ww as t— +oo. (4.9)

Define ti = |]ﬁ J udx, then by Schwarz inequality, we have:

= (1 /udx>2</u2dx
12| o ’

Hence by (4.7), we also have:

ut)—0 as t— +oc. (4.10)
According to (4.1), there exists a subsequence of {t,,,}, denoted still by {t,;}, and nonnegative functions ii, w € ¢?(Q) such that:
Himu(tn, ) = 80|z = Jim[W(tm,) = W) g, = 0. (4.11)
Note that:
/(Vv(x) —W)ldx < 3 /(W(x) — W(tm, X))2dx +3 / (W(tm, X) — W(tm))?dx + 3 /(W(rm) — W)%dx.
Q JQ JQ

Let m — +oo, (4.8), (4.9) and (4.11) imply the fact w(-) = w. Similarly, we can obtain u = 0. Therefore we have:
Jimu(tn,) = Ollag = m_ [W(tn, ) =Wl g, = 0.

This equality and Theorem 4.1 yield that ( ) is global asymptotic stable. O

' By

In the following, we use the comparison method to obtain Theorem 4.3, which is also the result on the global asymptotic
stability of (0,72).

Theorem 4.3. Suppose that:

1 ka\ 2
3 <k <p (é) , (4.12)

then:

lim (u(t, -

t—+o0

( > uniformly on Q

provided wy(x) # 0. Thus ( 1—2) is globally asymptotically stable.

Proof. Since u(t,-) > 0, w(t,-) = 0 for t > 0 and wy(x) # 0, from the second equation of the system, there is t; > 0 such that:

a—W—Aw> ocw(l—ﬁli—w), t>t;, XxeQ
2

—=0, t>t;, x€0Q,
w(t,x) >0, xeQ.

Consider the corresponding initial value problem:

_ Bz
ka
z(ty) = mlnw( ,-) > 0.

) t>tq,
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An application of the comparison principle gives:

liminf minw(t,-) > &
t=o Qg Ba

(4.13)

Hence for any ¢ > 0, there is T > 0 such that w(t, -) > % —¢for t > T. By (4.12), we know that (1 — u) (u? + kq) < k; for u > 0 since

2
di-wi+k)l - 0 moreover we can choose & small enough that k; — ; (% - 8) < 0, it follows that:

2
Bi(2—e

aj_DAugu 1—U—M
ot u2 +ky

then:

limsup maxu(t,-) = 0.
t—+o0 Q

Hence there is T; > 0 such that u(t,-) < ¢ for all t > T; and it follows that:

a—W—Awgocw<1— ﬁ2w>.

ot &+ k2
The standard comparison argument leads to:
PR ky .

limsup maxw(t,-) <
t—+o0 Q ,BZ

(4.14)
Let ¢ —» 0, we have w — 2—2 uniformly on Q as t — +oco by (4.13) and (4.14). O

2
From the above three theorems, we can see that the condition 2—; < (%) play an important role in the stability of (0, ’/j—;). In

2
what follows, we want to investigate the stability of (u*,w"). Note form Proposition 1.1 that the assumption Z—: > (g—;) guar-
2
antees the uniqueness and existence of the positive steady state (u*,w*). Hence we give the assumption that Z—: > (%) for all
the rest theorems.

Theorem 4.4. The following conclusions hold:

(1) Suppose 2u* — k; — 3(u*)? < 0, then the positive constant solution (u*,w*) of (1.5) is uniformly asymptotically stable.

(2) If 2u" — ky — 3(u*)* > Z/f/}ZW*, then the solution (u*,w*) is unstable.

Proof. Let:
0 =120 — p w2 | k) g o 1—u)[@) + k] [k = @)’]
1 [y + kl]z [+ k1]2
i {(u*)g:L kl} [Zu* —ki —3(11*)2}7
= 2, uw —M— x 04 =—00+2 oUW =q,

WPtk O Wik) B

and

ﬁ_(DA-ﬁ-G] —92>
B 05 A—04)

then the abstract form of (1.5) at (u*,w*) can be written as:
i(u—u* > :£<u—u* > N (ﬁ(u—u*,w—w*))
dt\w—-w w—w Hu—u,w—-w)/)

where fi(z1,22) = 0(1/Z2 + 22),i = 1,2. If 2u* — k; — 3(u*)? < 0, a straightforward calculation yields:
01 <0, 0,>0, 035>0, 04>0, 0,03—0104>0.
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An application of Lemma 2.1 leads to the first conclusion of the theorem.

On the other hand, the assumption 2u* — k; — 3(u* ) > 2”‘W yields 6,05 — 6104 <0, hence (u*,w*) is unstable by Lemma
2.1. O

Now we discuss the global stability of (u*,w*) by using Lemma 2.2 and Lyapunov function.

Theorem 4.5. Suppose that (u*)f +k; — 1> 0 and k{ku* — k% — kou* — k1 > 0 hold, then the positive constant solution (u*,w*) of
(1.5) is globally asymptotically stable.

Proof. Define a Lyapunov function:
o

V(u, w(t) = / ;

+/Q<W72—(w*)2<1+ln%>>dx‘

Obviously V is bounded below for all t > 0. Define:

dx

2

kz u* + k2 kz u*

ks~ ke
ky ’ €= ky -

Calculating the derivative of V along the solutions of (1.5), we obtain:

o 5 1 ~1 R wr dw
1.5) //31 {u_(kz—'—u)—'—Bqukz —}gdx—&-/(w-i-w)( W>§dx
1

/ a {u—(k2+u )+§u+k2-61} [DAu+u(1 —u—uflr’;)]dx
Lmomls e )

_/QDﬁ_?‘<1 ﬁ A>(|Vu|) dx — /(HO:/VV—;)z)(IVWI)ZdH/Q%
/??Cm;Jﬁlg%j(VuﬂmA<1+%Zj(vwfﬁ+[ﬂi

Xw<l_u_ pw? )dx+[l (w+w*)(w—w*)<1— pow )dxA

B =ky(ky 4+ u) + ky +——

av
dt

u+k, +k u+k;
Since:
o pw* o piw? {1 pr(w)? o piw? _ pr(w)?
1-u u2+k1_1 T (1 ! (u*)2+k1>_ (=) <u2+k1 u)? +ky
_ o (B Brw)?  Br(w)? By (w)?
= um- <u2+k1 u2+k1+u2+k1_(u*)2+k1
Y {0 MRS U Chk 9 [ CHRL)
u? +ky (u)? + k) (U2 + k)
:—(u—u*)—%(w—w*)—i—%(u*—&-u)(l—u*)
_ (k= (w1 —u)\ B (w4 w) X
_—(u—u)< U2 + ky )7 U2 + ky w—w’)
and
pow =P, oo u-u
7u+k2_u+k2(W7W)+u+k2’

then together with C — B < 0, we have:
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PO, ‘ >
av g_/ % L‘*‘Ck; (\Vu\)zdx—/ 1+(W2) (\VW\)ZdX
15) o b1 \ u2(u+ky) o w

dt

/ K u+1;<22+k1) (u _u*)<u2 +kl112_+1]: (u*)2> +/)’11(1\2/v:’:,1w) (w—w*)}
+ [atw—wyww) (L w-w) - 520
</Q{ ;‘1%(u—u*)z—%(w-w*)z}dx—'/g';—f(k‘kzu*uz(ﬁi,gu )(Vu)
- <1+(W*)2><|VW|>2dx
Hence if (u*)* + k; — 1> 0 and kikyu* — k2 — kou* —k; > 0, then:
s < { LT s (w—w*)z}dxgo. @15)

By Theorem 3.1, u, w are bounded, so there are positive constants C;, C, such that:

2
M:/Qz(u_u*)Z—lt’dx:/QZ(u—u*){DAujLu(l—u— v )}dxga,

dt uz +ky
d[o(w—w) Byw
T /Zw w)—dx_/ZW W)[DAW+W(1—u+k2)}dx<C2.
Apply Lemma 2.2, we obtain:
lim [ (u—u)’dx=lim [ (w—w")dx =0. (4.16)
t—oo Jo t—oo [

On the other hand, we find from (4.15) that there is C; > 0 such that:

" Do (kikour — k2 — kour — k w)?
e O A (s T
(1.5) v 2 .

G /(|Vu|2 +IVW)dx2 — g(t).
Q

av
dt

Using inequality (4.1) and system (1.5), g'(t) is bounded in [1,+cc). Therefore:

t—+o00

lim .(\Vu\z + | Vw*)dx =
Q

The Poincare inequality yields:

lim [ (u-1u)’dx= lim [ (w—w)%dx=0, (4.17)
t=+oo Jo t—+o0 [
where u = i [, udx,w = 4 [, wdx and

|Q\(ﬁ—u*)2:/Q(ﬁ—u*)zdx:/Q(ﬂ—u—&-u—u*)zdxgZ/Q(ﬂ—u)zdx+2/g(u—u*)2dx,

|Q|(w Z/W de+2/ww

Hence from (4.16) and (4.17):
ut) —u*, w(t)—w" as t— +oo. (4.18)
According to (4.1), there exists a subsequence of {t,,,}, denoted still by {t,;}, and nonnegative functions i1, w € ¢?(Q) such that:
lim u(tn, ) = 20| = Jim[W(tm, ) = W) g = 0.
Combined with (4.16)-(4.18), we have:

mliIPOO lu(tm,-) — u*”c2(§) = mlil}r]m [W(tm,-) — W*ch(ﬁ) =0.
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Since (u*)? + ky — 1 >0 implies 2u* — k; — 3(u*)? <0, then the above equality and Theorem 4.4 yield the conclusion which
(u*,w") is globally asymptotically stable. O
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