DIFFERENTIATED SERVICES ARCHITECTURE,

MECHANISMS AND AN EVALUATION

WENJIA FANG

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTER SCIENCE

NOVEMBER, 2000

(© Copyright by Wenjia Fang, 2000.
All Rights Reserved

Abstract

The current Internet assumes thest-effortservice model. In this model, the network
allocates bandwidth among all the instantaneous users as best it can, andsaibesapte
all of them without making any explicit commitments as to bandwidth or delay. Route
keep no state about end host connections, and when congestion occurs, all connections are
expected to slow down and achieve a collective sending rate equal to thetgagiahe
congestion point.

As the Internet has transitioned from a research network to a commeretai;oge-
neous network, three problems arise. First, an increasing number of readpiptieations
require some kind of quality of service (QoS) guarantees from the Internet ratirethe
simplebest-effortservice. Second, a heterogeneous user base has a variety of different re-
guirements from the network and some users are willing to pay to have theiresugnts
satisfied, and the current Internet service model cannot offer a range of flexibieese
Third, in a commercial network, Internet Service Providers (ISPs) haymdoways to
charge for the service rendered and recuperate the cost of provision the netwotkeand
current Internet is missing mechanisms to account for network usage.

This thesis describeBifferentiated Servicesa scalable architecture that can provide
flexible services that address the above three issues. Diffieeentiated Servicearchitec-
ture (DiffServ), a network classifies packets into different clasaed gives differentiated
service to different class of traffic. Network users can choose from ttwecedevel best
suited for their applications. They subscribe and pay for Service Level Agnetsn(SLAS)
from their ISPs. An SLA specifies the expected service a user willveahiring network
congestion. If the network is not congested, then the user can send traffic beyond.its SL
The DiffServ architecture augments the current Internet architectucenttists of mecha-
nisms to be implemented in existing Internet devices—network routers and eisd-Hmst
pushes the complexity of the system towards the edge of the network, which makes it mor
scalable. A variety of services can be constructed using the simple igemprovided by

the DiffServ architecture, therefore, DiffServ offers very flexibervices to users with dif-

ferent requirements. Pricing based on SLAs, instead of the actual ustigetsréhe nature
of the Internet provisioning: mostly the Internet connection is a fixed-cost and tiggnala
cost of delivery only occurs when there is congestion. Thus, this kind of pricing steuct
can manage congestion, encourage network growth and recuperate cost without a complex
implementation.

This thesis proposes a set of DiffServ mechanisms that offer robust andepaticis
cation of bandwidth. It proposéRED with In/Out(RIO), a differentiated dropping al-
gorithm to be used in interior routers. It proposeése Sliding WindowWTSW), a prob-
abilistic tagging algorithm for monitoring and tagging packets in edge routers.llysina
it proposes three modifications to TCP’s congestion control algorithm, collgctaded
TCP-DiffServ mechanisms. The mechanisms include 1) a change of TCP’s window i
crease algorithm; 2) an adjustment to TCP state varisdtleresho reflect the contracted
SLAs; 3) a usage of TCP ECN mechanism and DiffServ codepoints to provide accurat
feedback of network conditions.

We use elaborate simulation experiments to evaluate the proposed mechawsms.
observe that when using router mechanisms (RIO and TSW) only, a DiffServ dasnai
able to allocate differentiated bandwidths according to the specified egmobles. How-
ever, TCP’s window increase algorithm has an intrinsic bias against longeBiiifections,
which cannot be overcome by the proposed router mechanisms. We then proceed to apply
TCP-DiffServ mechanisms to end hosts in a DiffServ domain. We find thde\line en-
hanced TCP is robust and fair, in times of congestion or in presence of non-regonsiv
connections, TCP connections with service profiles are not protected from thderitvit
Since current Internet allocates its resources using a congestion control loqbetesn
with mechanisms in both routers and end hosts, changing one set of devices without chang-
ing the other will not achieve an effective allocation scheme. Finakyapply both router
mechanisms and TCP-DiffServ mechanisms and conclude a DiffServ systédratiocate

resources in a robust and precise manner when both groups of mechanisms are used.

Acknowledgments

| have been very fortunate to work with my advisors in both Princeton Uniyessid
M.L.T. Four people are instrumental in making this thesis a reality, Dr. DBvi@lark of
M.L.T, Professors Larry Peterson, Edward Felten and Randy Wang at Prndetversity.

| would like to thank Dr. David D. Clark for his wisdom, intuition, patience anddgnice
and Prof. Larry Peterson for his insights, knowledge, methodical reshapingfandgef
my ideas and writing. | have been very fortunate to work with two top resess in the
networks field whose styles and skills are complement of each other. | owe themiys
to Prof. Edward Felten for his discussions and support for completing the thesisyéio
physically remote it has been. | thank Prof. Randy Wang for his discussions, csiaqae
advice during the course of thesis writing.

The process of education takes many forms throughout my graduate career. In this
sense, | am deeply indebted to many professors at Princeton Universitybwberample,
showed me what a good researcher and a good teacher can be. | pay my respectlkand tha
especially to Prof. Kai Li, Prof. Doug Clark, Prof. Ken Steiglitz, anafPrAndrea
LaPaugh. | am also extremely fortunate to have met Prof. Edwin Zschauhiéreceton,
who has shown me that a good teacher should be teaching from experiences and not just
from knowledge. Thanks also go to Prof. Vincent Poor of the Electrical Engineering
Dept. for his enthusiasm about the wireless space, his encouragement and discussions
technologies and beyond.

| am indebted to many researchers in the Internet research areadtingra conducive
environment for this work: Prof. Dave Farber of University of Pennsylvania,. Rroda
Zhang of U.C.L.A., John Wroclawski and Dr. Karen Sollins of M.I.T., and Hans-Werner
Braun of NLANR. | especially thank Hans-werner for his endless supply of Inténaees
and helpful discussions. | also like to thank Alan Berenbaum and Dr. Brian ¢teaniof
Bell Labs for their friendship, mentorship, and guidance throughout my undergraduate and
graduate years.

This work would not be possible without Sun Microsystems’ generous support for my

two-year tenure in M.1.T.. Thanks go to Jos Marlowe and Dr. Bob Sullivan of Sun Mi-
crosystems for creating a Sun Microsystems Graduate Fellowship for mmis. wbrk is
also supported by DARPA Contract N66001-96-8518.

Thanks also go to Melissa Lawson, Sandy Barbu, Trish Killian, whose ablenasirat
tive skills make my life easier in the department. Certainly, my fx@ar absentia to M.I.T.
wouldn’t be possible without their assistance.

| am grateful to have made mArabic Connectiongn Cambridge, MA: Dina Katabi,
Kamal Khuri-Makdisi, Robert S. Chehgand always present in spirit: Gibran Kahail.
Whether digging ancient coins in Palmya, catching kamens in the Amazon, negotiating
for hebiskis teas on the streets of Carol, or simply discussing TCP’s funny wsdo
Cambridge, Rob and Dina are incredible companions (MAA Houbbi). They made my
time in M.1.T. and beyond an intellectually enriching experience.

| am fortunate to have met many of my fellow students in Princeton. In jpdatic
I'd like to thank Dirk “Balfi” Balfanz and Lujo Bauer for their friendship. &y things
wouldn’t have been possible without their artisic, engineering and perfectianisht
| also like to thank Rudro Samanta, Allison Klein, Stefanos Damianakip@rAhuja,
Dongming Jiang, Cheng Liao, Lena Petrovic and Yaoyun Shi for their friendship and sup-
port throughout the seemingly endless graduate career. I'd like to thank membaes of t
Network Systems Group (NSG) —Scott Karlin, Xiaohu Qie, Limin Wang, Aki Ngka
Tammo Spalink—and the remote but always visible Bjorn Knutsson for their digcisssi
and friendship. | thank Ralf Wittenberg, Tadashi Tokieda, Georg Essl, Mat#hisse,
Sanjeev Kumar, Patrick Min for making my Princeton experience a wonderfikyna-
tional one.

My profuse apologies to those who have suffered from being my officemates at some
point. | seem to occupy an increasing amount of space with my photographic ngtarial
collection of sizable drinking cups, rather incoherent research papers, andiagsiack

of broken wooden boards. | will, eventually, retreat.

1Rob, with his aptitude for the Arabic language, convinced me that hereiths an Arab in his previous
life, or will incarnate as one in his next life.

Vi

Last but not the least, I'd like to thank my family.
| dedicate this thesis to Haipeng, my “editor friend”, who has been and wikydw

correct my mistakes in writing, Ping Ying and Life. In you, | find the seederféttion.

Vil

Contents

Abstract e iii
1 Introduction 1

1.1 HistoricalContext 1

1.2 PreviousResearch 4
1.2.1 Integrated Services 4
1.2.2 Pricingforthelinternet 6

1.3 Differentiated Services 9

1.4 ThesisOrganization i e 10

2 Architecture 12

2.1 The Best-effort Service Model 12

2.2 Integrated Services 16

2.3 Differentiated Services 18

2.4 IssuesinDiffServ 24
24.1 AVarietyofServices e 24
2.4.2 Network Resource Allocation and Provisioning 26
2.4.3 Sender-controlled and Receiver-controlled Schemes 27
2.4.4 Denial-of-Service Attacks Lo 29
2.4.5 Framework for Designing DiffServ Mechanisms 34

25 RelatedWork 37
2.5.1 Proportional DiffServ. o oo 38

3 Mechanisms

3.1

3.2

3.3

3.4

3.5

2.5.2 Minimum Rate Guarantees in Networks 39
2.5.3 |ETF StandardizationEfforts 40
254 LIRAand SCORE Network 42
44
Congestion Control inthe CurrentInternet 44
3.1.1 Network Congestion 44
3.1.2 Congestion Avoidance MechanismsinRouters 45
3.1.3 CongestionPhasesinRED 47
3.1.4 Congestion Control and Avoidance Mechanismsin TCP 49
RIO Dropping Algorithm 50
3.2.1 TwinAlgorithmsinRIO 52
3.2.2 DesigningRIO 53
3.2.3 CongestionPhasesinRIO 55
3.2.4 Creating DifferentiationwithRIO 57
Tagging Algorithms L 58
3.3.1 lIdeal Algorithms 59
3.3.2 Tagging TCP Traffic 60
3.3.3 Token Bucket Tagging Algorithm 63
3.3.4 TSW Tagging Algorithm 66
3.35 TSWRateEstimator 67
3.3.6 Probabilistic Tagger 72
3.3.7 DISCUSSION 73
DiffServ MechanismsforTCP 74
34.1 Problems 75
3.4.2 Mechanism 1: Fair Window Open-Up Algorithm 77
3.4.3 Mechanism 2: Settigsthrestfor TCP 81
3.4.4 Mechanism 3: ECN-enabled TCP in a DiffServ Domain 81
RevisitDesignsand Discussion 82

iX

4 Evaluation 86

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

Simulation Methodology 87
Sender-based Scheme oo 90
4.2.1 Network Bias Against Long-RTT Connections 90
4.2.2 Sender-based Scheme 92
DiffServ with TCP-sack 95
43.1 Results 96
Receiver-based Scheme oL 97
4.4.1 TSW Tagger for Receiver-based Scheme 98
442 Results 98
Cascaded DiffServ Domains 102
451 Setup e e 103
452 Results 106
Aggregated Profiles 108
4.6.1 Taggers in the Center of the Network: Aggregated Traffic. 108
4.6.2 Combined Effect of Aggregate Taggers and Cascade Taggers 111
46.3 Results 113
Non-responsive Connections 115
4.7.1 Non-responsive Connections in a DiffServ Network 115
4.7.2 Setup 116
473 Results 117
TCP-DiffServ Mechanisms 118
481 Setup e e e 119
4.8.2 Impact of TCP-DiffServ Mechanisms 121
4.8.3 Impact of Individual TCP-DiffServ Mechanisms 123
4.8.4 RobustRecoveryfromlLosses 125
4.8.5 Backward Compatibility 127
4.8.6 Heterogeneous Environments 127

4.9 Testbed Implementations, 130

4.10 Conclusions 132

Conclusions and Future Work 134

5.1 Thesis Summary and Conclusions 134

5.2 Discussionand FutureWorko o oo 136
5.2.1 End-to-end DiffServ 136
5.2.2 DeploymentStrategy o 140
5.2.3 Interactions with Applications 141

Xi

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

Key Elementsinthe CurrentiInternet 15
Key Elementsin a DiffServ Network 20
Three Possible Designs for Mechanisms 35
RED Algorithm 48
TCP Operating Epochs Using Congestion Avoidance Mechanism 51
RIO Algorithm 53
Twin AlgorithmsinRIO 54
Phases in RIO Algorithms 56
Ideal TCP Operating Epochs 61
TSW Block Diagram 67
TSW Rate Estimator Algorithm 68
The Operations of TSW Rate Estimator 69
TSW Probabilistic Tagging Algorithm 73
Different Versions of TCP on Robustness and Fairness Scale 84
Topology for Sender-based Scheme 90
Throughput Graphs for Current Internet and DiffServ Scenarios 95
Receiver-based TSW Algorithm 99
Topology for Receiver-controlled Scheme 100
Bandwidth Allocation Using Receiver-based Scheme 101
Cascaded DiffServ Domain: the ControlledCase 104

Xil

4.7 Cascaded DiffServ Domain: the ComparedCase 104
4.8 DiffServ Domain with Taggers for Aggregated Traffic 109
4.9 Compare Aggregated Taggers With Individual Taggers: Controlled Case . . 112
4.10 Compare Aggregated Taggers With Individual Taggers: Compare Case . . . 112

4.11 In Presence of Non-responsive Connections 117
4.12 Topology for Applying DiffServ TCP Mechanisms 120
4.13 TCP Window Algorithm Before and After Incorporating Diff-Serv Mech-

aniSM 126
5.1 End-to-end DiffServ 138
5.2 Possible DiffServ Deployment Strategies 140

Xiii

List of Tables

2.1

3.1
3.2
3.3

4.1

4.2

4.3

4.4

4.5

4.6

Differences between IntServand DiffServ 24

SLAs and the corresponding TCP mechanisms to achieve fairness
Choice ot in TCP fair window algorithm 80

Summary of mechanisms in routers and endhost TCP 83

TCP’s bias against long-RTT connections. Link A-B capacity = 6Mbps.
RED gateway e e 91
Comparison of current Internet scenario and a DiffServ network with router
mechanisms. Link BW=33Mbps. Parameters for RED router: (10, 30,
0.02); parameters for RI0:(40,70, 0.02) fdis and (10, 30, 0.2) foDUTSs.

Used TCP-Reno 93
Using TCP-Sack in Diff-Serv. Parameters for RED routers are (10, 30,
0.02), and those for RIO routers are (40, 70, 0.02) for INs and (10, 30, 0.5)

for OUTs. BW=33Mbps it 97
Receiver-based scheme in a DiffServ domain. BW = 33Mbps. RED router

is configured with parameters (15, 40, 0.02). Used TCP-Reno with ECN
SEeMaNntiCsS 100
Results for cascaded domains: the controlled case and the compared case.
Bottleneck link speed = 5.6Mpbs. The cascaded tagger has a target rate of
5Mbps. Used TCP-SACK e 107

Cascaded tagger case, when the network is under-provisioned

Xiv

4.7 Taggers for aggregated traffic. Topology 4.1. Bottleneck link A-B =5.6Mbps.
Parameters for RIO routers are (12, 30, 0.02) for INs and (2, 15, 0.5) for

OUTS . . . e e 109
4.8 Aggregated taggers and cascaded taggers. Bottleneck link speed= 10Mpbs.
Used TCP-SACK e e e e e 114

4.9 10-connection case with a non-responsive connection (CBR). BW= 33Mpbs,
CBR is sending at 6Mbps. RIO parameters: (40, 70, 0.02) for INs and (10,
30,0.5)forOUTs. Used TCP-SACK 118

4.10 Configurationsof TCP connections 120

4.11 Comparison of Diff-Serv mechanisms applied to routers and endhost TCP;
Modified TCP = standard TCP + three TCP-DiffServ mechanisms. All
measuredinMbps L 121

4.12 Comparison of individual endhost mechanisms appliedto TCP 124

4.13 Heterogeneous deployment of TCP mechanisms, measured inMixsl
is the fair window open up algorithnmew include all three mechanisms . . 128

4.14 Effect of C in a testbed environment (throughput measured as Mbps) 131

XV

Chapter 1

Introduction

1.1 Historical Context

The context of this thesis is set in the early to mid-1990s, when the Internegedieom
an obscure research network connecting mostly educational and reseatcieggtito the
public light. The Internet can trace its roots to the ARPANET, a collabaratsearch
network funded by the Advanced Research Projects Agency (ARPA) aimed tootonne
“existing interconnected networks”[6]. The TCP/IP protocols — the Transam<3ontrol
Protocol[52] and the Internet Protocol[51] — were developed for the ARPANEThén t
mid-1980s, the National Science Foundation (NSF) created the NSFNET in ornder-to
vide connectivity to its supercomputer centers and other general services. HNEYS
adopted the TCP/IP protocols and provided a high-speed backbone for the developing In-
ternet. By the early 1990s, primary users of the Internet were researphefsssors, and
students in educational and research institutes. The primary applicatiohe dmternet
were text-based interactivee(net gophe) or bulk-data transferfip) applications.

The power of the Internet was truly unleashed when the World Wide Web (WWW), or
the Web, was developed in the early 1990s. WWW and its hypertext mark-up language
HTML provide a very intuitive and convenient way to distribute and accefsmation

from anywhere on the Internet. WWW is the Killer application for the Internetidn’t

take long before many web sites were sprouting all over the Internet, pattiagt amount

of content on-line for Internet users to browse and exchange. Commercial usezff as w
typical households began to connect to the Internet. The more users are connected to the
Internet, the more positive network externality Internet can provide to #ssudn other

words, the benefits of having an additional user connected to a network is proportional to
the number of users that have already connected to the Internet. By 1994, the In&snet w
connecting over 45,000 networks and more than four million hosts [42].

The success of the Internet turns out to be a mixed blessing. On one hand, the Internet
architecture based on TCP/IP has been very robust in its expansion to in¢erpeva
networks and hosts. On the other hand, some of the architectural components of the current
Internet are no longer adequate to keep up with the growth of the Internet. louybert
there are three problems.

First, new applications have been developed to run over the Internet, marmyabf are
real-time video and audio applications that require some kind of quality of s€iQic8)
guarantees from the network. The current Internet assumdsestesffortservice model.

In this model, the network allocates bandwidth among all the instantaneous ubest ds

can, and does not make any explicit commitment as to bandwidth or delay. Rowggrs ke

no state about end host connections, and when congestion occurs, routers drop packets.
All sending connections are expected to slow down and achieve a colleatigdmgeaate

equal to the capacity of the congestion point. Therefore, from the end host perspectiv
the service from the network is not always predictable, as it depends on how many othe
connections are simultaneously sending.

Second, the Internet has transitioned from a government-funded project in a closed,
cooperative environment to a commercial network with a heterogeneous userTiade.
transition has happened gradually and was completed when NSF shut down its NSFNE
backbone on April 30th, 1995 and ended its funding [42]. Though the NSF is continuing to
fund some regional nets, its role in the Internet has been greatly reduced, antetinet

is therefore a commercial network. In a commercial and heterogeneous netwindne

ment, individual users have different requirements for network resources they Vikeil
to receive, and some are willing to pay to to receive those servicesettr, the current
Internet architecture does not offer flexible services to meet differentregairements.

Third, since the Internet is a commercial network, the Internet Service da®/{ISPS)
would like to recuperate their costs in some fashion and use the proceeds ler fioet-
work engineering and expansion. In its design, the current Internet architectureatoes
have any kind of mechanisms to account for network usage. This is simply the leigacy
government-funded research network [6]. Though accounting was considered gsoan im
tant feature in the original ARPANET design, it did not receive a high prionity research
network and was missing from the deslgrHowever, in a commercial network, if there
are no accounting mechanisms to serve as the basis for pricing and billing, Wuaket
likely to be heavily used and congested.

The above three problems set the context for two bodies of research work that-event
ally led to Differentiated Services, a scalable, technical solutotine above three prob-
lems. The two bodies of research work are Integrated Services and Ireitiay, coming
from Internet community and the economics community, respectively. The |teelgBer-
vices research proposes solutions to resolve the first two problems and tmetiRacing
research addresses the last problem. We will describe these two bodieskoinv&ec-
tion 1.2.1 and Section 1.2.2 before describing the general idea of DifferentiatédeSan
Section 1.3.

1By accounting, we refer to the measurement of traffic profiles of the Intemdkthe attribution of such
profiles to the corresponding users. It is not to be confused witimdpilnor pricing. Billing refers to the
process of compiling the accounting information and charging the usersuth usage, whereas pricing
refers to the formation of prices for different types of services, usuhbyugh elaborate economic models.
See [16] for a more detailed discussion.

1.2 Previous Research

1.2.1 Integrated Services

Integrated Services (IntServ) is an Internet service model that includestriagitional
best-effort service and real-time services. IntServ researctedta early 1990s, and has
generated much interest and discussions by 1994[4, 10, 26, 39, 49, 67, 59]. The problem
IntServ research work addresses is how to provide network support for mealegppli-
cations as well as for non-real-time applications. The researchers inal@bservation
that many emerging real-time applications — multimedia teleconferen@ngpte video,
computer-based telephony, remote visualization, etc — will have veryeliff€uality of
Service (QOS) requirements than the traditional text-based non-reagppieations like
ftp or telnet. A network architecture that can tailor itself to servieal-time applications
is a major departure from the Internet architecture. One could conceivabty/tinglsepa-
rate networks, one offering real-time services and the other offering nostimeakervices;
however, an integrated network offering both sets of services seems tiractiee because
it would be cheaper to build the network and easier for the application developers
IntServ researchers realized that they were designing a service motdsl izsed on
conjectures about future applications, institutional requirements, and tecfeasddility[59].
In [10, 59], Clark, Shenker and Zhang divide applications into thoselastic and those
arereal-time Elastic applications adjust easily and flexibly to delay in delivery; ihaa
packet arriving earlier helps performance and a packet arriving later penfisrmance, but
there is no set need for a packet to arrive at a certain time. Typieahiett applications are
elastic in nature, and the Internet service model has performed well for. thberefore,
a service model consisting of several classes of best-effort servidiesengufficient for
them. In contrast, real-time applications have more stringent requirenfentdbserved by
Shenker[59], “the performance of elastic applications is more closelyerktatthe average
delay of the packets, whereas the performance of real-time applicationsrésaiosely

related to the maximum delay of the packets”. Real-time applicationbedurther clas-

sified astolerantor intolerantapplications. Intolerant applications need a service that has
a firm worse-case bound on delay; tolerant applications, on the other hand, only need a
service that can offer a loose bound on delay.

Services for both tolerant and intolerant real-time applications involvassilom con-
trol; before commencing transmission, applications must request servicelfeonetwork.

This request consists of a traffic QoS descrigtowspe¢ in which applications specify
their traffic load, and a filter specificatiofil{er speg, which describes the subset of the
traffic from this application that is to receive the resources. In contifasre is no admis-
sion control for the best-effort service classes (for elastic applicgtidmmis, for real-time
service, the prominent failure mode is that requests can be rejected, and faffbes
service, the failure mode is that best-effort packets can be dropped.

The Integrated Service model is artensiorto the original Internet best-effort archi-
tecture, and it includes two services targeted towards real-timecagiphs [4]:guaranteed
service angbredictedservice.Guaranteedervice involves pre-computed worse-case delay
bounds angbredictedservice uses the measured performance of the network in computing
delay bounds.

Based on the above considerations, the researchers believe that the édt&gatice
model would 1) keep additional flow state in routers; 2) require an explicit seegha-
nism to install and eliminate flow state in routers. The proposed solution, ihemhave
end hosts initiate a quality of service (Qo0S) request prior to the transmissioaffic to
networks. Such request will be carried by a reservation protocol calledPRBguch re-
guest is accepted by networks, then the network will create per-flow stgteatantee such
QoS request during the transmission. If the network does not have enough resources, then
the QoS request is denied.

Integrated Service effort has done a very good job in 1) analyzing the requirements of
real-time applications and 2) arguing for the efficiency of an integrated nkteftering
different kind of services instead of disjoint networks each with a distinewice model.

However, the implementation framework IntServ has raised serious ©mnds it feasible

to implement and maintain per-flow state in routers, especially in twbéeh handle a lot
of aggregated traffic? The RSVP protocol is complex, and it may be unrealistiqtxt
routers to devote much resources to interpreting RSVP requests and handlirggiadmi
control for established state. Last, there is the partial deployment probleRSVP itself.
If there are routers on a path which do not understand RSVP and can’'t makeatesesy

then it would be impossible to make any guarantees on end-to-end delay bounds.

1.2.2 Pricing for the Internet

Network researchers looked into accounting mechanisms and pricing schemadyaas

in the beginning of the 1990s. In [11, 12], Cocchi et al. studied the intertwining of pricing
policies and multiclass service disciplines. Pricing policies provide naoypécentives,
whereas multiclass service disciplines produce performance incentivg$l1]inCocchi,

et al. developed a multiclass network discipline which uses a FIFO queue abtkito
drop packets depending on whether the packets have priority flags set. The authas used
pricing model that is a graduated set of prices with the lower quality of seplass being
cheaper. In order to evaluate the different pricing and performance schémgs)sed

a simple user utility function. Using simulations, they demonstrated thatpbssible to

set the prices so that every user is more satisfied with the combinedntbpegdormance

of a network with graduated prices and a multiclass service discipline tamwithout a
pricing model and a multiclass service discipline.

In [12], Cocchi et al. presented a more elaborate formulation of serviceptiszs and
pricing policies, and argued that fany multiclass service discipline to have the desired
effect of maximizing network performance, some form of service-classtas@npricing
is required. The authors concluded that effective multiclass service dmsspllow net-
works to focus resources on the performance sensitive applications, whiéwffgricing
policies allow service providers to spread the benefits of multiple serlasses around to
all users, rather than just having these benefits remain exclusivelylatasers of appli-

cations that are performance sensitive. Using simulations, they find thgudssible to set

the prices so that users of every application type are more satisfiedhsittombined cost
and performance of a network with service-class sensitive prices thaowri For some
application types, the performance penalty received for requesting ehkssptimal ser-
vice class is offset by the reduced price of the service. For the other apptidgges, the
monetary penalty incurred by using the more expensive, higher quality servicesles
offset by the improved performance they receive.

Though their conclusions are hardly surprising, their work was the first to combine
many disparate issues, such as service disciplines, application penfiemeer behaviors,
congestion externalities, and incentives. The limitation of the work isithestes simple
models in each issue in order to make the problem more tractable.

In 1995, two economists, Jeffrey MacKie-Mason and Hal Varian, reflectmtne end
of government funding for the Internet, asked the question of how to price a conainerci
Internet[42]. They observed that if the Internet is to be utilized as a public gubee for
all, then it will soon suffer from a well-known economic phenomenon called tfagédy
of the commons”. That is, without instituting new mechanisms for charging for the usage
of the Internet, the Internet is likely to be over-grazed. Therefore, somgk & pricing
structure has to be in place to manage congestion, encourage network growth, and guide
resources to their most valuable usage.

As a general rule, users should face prices that reflect the resource costeyhgen-
erate so that they can make informed decisions about resource utilizatieKidAslason
and Varian observe that most of the Internet connection cost is fixed, and thenented
cost of sending extra packets if the network is not congested is zero. Howdnan, the
network is congested, the cost of sending a packet is not zero, therefore, the ghicirid
also be positive. To reflect the congestion cost, they propose the “smarttinareha-
nism, in which each packet carries a bid in its header to indicate how itsisknder is
willing to pay to send it. The network admits all packets with bid pridest £xceed the
current cutoff amount, determined by the marginal congestion cost imposed by the next

additional packet. Users do not pay for price they actually bid, but rather, thefppthe

market-clearing price, which is always lower than the bids of all acmipackets.

MacKie-Mason and Varian made an important contribution in analyzing theesiteg
problem of pricing the Internet, and how to charge for the cost of transmitting @patien
the network is congested. However, their proposed smart-market schemeféasible
with the mechanisms available in the current Internet.

In [59], Shenker observes that access-based pricing—charging only for the $ihee of
access link—is both technically easy and predictable. However, abessst pricing can-
not provide incentives for users to specify the appropriate service class, nanpre-
selling. Therefore, access-based pricing is not economically efficienargfles for usage-
based pricing, which is economically efficient. However, the concern fayatbased pric-
ing is the level of accounting granularity. Depending on the granularity chosen, thefcos
usage-based accounting can be prohibitive. Additionally, usage-based accoupiieg im
a major shift in operating systems as well as in networks, which might be ndtqadac

In [8], Clark analyzes the advantages and disadvantages of flat-rate pmdngage-
based pricing. Flat-rate pricing, he argues, is simple to implement and egesuraage
(if the marginal cost is zero, it is not a problem). The disadvantages of flafprating
is that it does not reflect the congestion cost. A usage-based pricing scheme ptimethe
hand, can drive away big users and lead the providers to increase pricegpernate costs.
The current Internet architecture lacks the necessary mechanisms neatteddourate
usage-based pricing. He proposed a concept called the “expected capacity'ure ¢capt
advantages of both schemes. Expected capacity specifies the service esxzeated
to receive from the network when the system is congested. Users are chargeoh diné
expected capacity they have contracted from their ISPs. If the systemdemgetsted, then
the users can send beyond their expected capacity and the extra amount of traBeritie
is not charged.

Expected capacity has a direct relationship to the facility costs of thadao The
provider must provision enough to carry the expected capacity from all its shésgrand

thus its provisioning costs directly relate to the total of the expected dgpabias sold.

This would help the provider to provision for the fixed cost of network. Expected dgjisc
not a measure of actual usage; rather it is the expectation that the user has ahjatage.
Therefore, it encourages network usage while sets users’ expectations. Expeguaeity
also leads to a very simple implementation because it is not based ontactraunting

of packets transferred, but on an expected usage, which is known before saigemi

1.3 Differentiated Services

Differentiated Services (DiffServ) has benefited from the previous twasaof research

work. It shares the same goal as IntServ—to provide QoS to applications—but empha-

sizes ascalablesolution. The central idea is simple. DiffServ defines a small set of packet
classes, and creates mechanisms in the network to treat differeseslaf packets differ-
ently during congestion. When there is no congestion, all packets are forwardekdgust
same. Users contract Service Level Agreements (SLAS) from thgieotise ISPs. Each
SLA defines the expected service profiles the user pays for and expects to resadre
SLAs and policy elements are stored only at the edge of the network. Traffic frers iss
classified and mapped into one of a few classes of packets at the edge of the&knahalor
is forwarded within the network core receiving consistent treatment baséueoriass it
belongs to. The mechanisms within the core remain simple.

DiffServ benefits from the research work on pricing and accounting and insigims f
the expected capacity work. It defines service profiles—contracts betweetfice ggovider
and a customer that describe the service the customer expects to receitedosbwork—
which are essentially the same concepgxgsected capacityOne could imagine an SLA to
be either a simple profile or a sophisticated profile. If we apply Cocchi’'s work,aheSLA
can be constructed using a few primitive services associated withcessshof packets, and
the price of such a sophisticated SLA can be the user’s utility function bastx qmicing
for each of the primitive services. This way, more sophisticated pricohgmes can be

supported by the underlying DiffServ mechanisms.

Since 1996, DiffServ has generated a tremendous amount of research intergst. Ea
work like [9] focuses on architecture and mechanisms. Later work [14, 61, 62, 19, 20, 17,
32] focuses on different types of services that can be supported by DiffServestcing
and the necessary mechanisms to achieve those types of services. Thatdiffepesals
are testimonies that DiffServ architecture is flexible enough to supporteiiffeypes of

services.

1.4 Thesis Organization

This thesis contributes to the Differentiated Service research. &ribes and discusses
the architecture of DiffServ, then proposes an integrated set of mechafusaikcating
different bandwidths to TCP traffic and offers an evaluation on those mechaniims
thesis is organized as follows.

In Chapter 2, we first describe the current Internet service model, as weieds-
tegrated Services, and its respective mechanisms. In essence ffenbDarchitecture
tries to combine the best of both worlds by offering service assurance to appisatith
scalable, efficient network mechanisms. We then introduce the DiffSehitecture and
compare it with previous approaches. We proceed to discuss a few aspectsfthatDi
offers, e.g., a variety of services, sender-based control and receivet-bastrol and how
DiffServ can be seen as a preliminary network defense against Dentsdruice (DOS)
attacks. Within the same flexible architecture, there have been a number of gdsofors
an integrated set of mechanisms, which we will discuss. These proposaig vath what
we will propose in Chapter 3, can be seen as different schemes to satisfeititkinds of
DiffServ services.

In Chapter 3, we describe a set of mechanisms for robust and precise alloohtion
network bandwidth for TCP traffic. Though the specific mechanisms can be seasdas m
ifications to the existing congestion control mechanisms in both routers and end hosts

we do provide a framework to think about other possible designs of bandwidth allocation

10

schemes. The set of mechanisms include RIO, a preferential dropping algori8iwi; T
a probabilistic tagging algorithm, and three mechanisms for end hosts, calgatalled
TCP-DiffServ. Those mechanisms are simple modifications to the existiaghket mech-
anisms, and are practical and deployable.

In Chapter 4, we evaluate the proposed mechanisms using elaborate simulatians and
limited set of testbed experiments. We first consider applying only the routetanesms:
RIO and TSW, and we explore different aspects of the DiffServ architeatutes setup.
Then we consider applying both router mechanisms and end host TCP mechanisms. We
conclude that with the set of integrated mechanisms we propose, a DiffServrdoougl
allocate network bandwidth in a fair, robust, and precise manner.

Finally, in Chapter 5, we offer some perspectives on how DiffServ can be cteth®
other part of the Internet architecture, as well as speculating on how tovaame-to-end
DiffServ.

11

Chapter 2

Architecture

In this chapter, we describe tlgfferentiated Servicearchitecture. We first describe two
related architectures: the current Internet architecture charaeteby thebest-effortser-
vice model and théate-sharingprinciple, and the proposed Integrated Services (IntServ)
architecture. Then, we introduce the Differentiated Services archigsoivhich is an at-
tempt to combine the best of the two previous architectures: efficiency fromutinent
Internet and provisioning for QoS from IntServ.

We proceed to discuss a few aspects of DiffServ: its flexible support for atyari
of services, provisioning issues, and its support for sender-controlled assveitaiver-
controlled schemes. Unlike the current Internet architecture, Diffpeyvides a prelim-
inary protection against denial-of-service attacks. Finally, we disalated work in the

DiffServ research and standardization efforts.

2.1 The Best-effort Service Model

Topologically, the current Internet can be modeled as an arbitrary intercoomettAu-
tonomous Systems (ASes). Each autonomous system mirrors a real-world eegtitgn
Internet Service Provider (ISP), or a university. There is a two-tiefimgugtructure in to-

day’s Internet. Within one AS, routers exchange routing information using an inggier

12

way protocol (IGP). There is a consistent routing metric being used by all sowitrin an
AS. ASes further exchange routing information using an exterior gateway protdG#l)(E
The most recent version of EGP is called Border Gateway Protocol, or BGPE&3} can
handle different routing policies. Therefore, the Internet is a heterogeneousranent
of many inter-connected ASes, each with its individual routing policies armhbeig to
different constituents.

Within each AS, there are two types of devices: routers and end hosts. Raxters e
change routing information with each other, multiplex IP packets streamns different
incoming links, and forward IP packets to their neighbors. Routers provide a vepjes
unreliable service to IP packets called the best-effort service. Strefcs is usually im-
plemented with a queuing mechanism caliizdp-tail queuing, in which a router drops all
arriving packets if its queue is full. The end hosts implement the TCP/IP pradaitel and
provide a reliable, sequential transport-layer service to high-level appisa Figure 2.1
depicts the components in the current Internet architecture.

The reason that the Internet chooses the best-effort model can be tracechildgatry
research network roots. The Internet was conceived in late 1960s as an @xtentgie
ARPANET, a defense research project funded by the Advanced Researctt Pggacy
(ARPA). The primary design goal of the Internet was “survivability in theefa€ failure”
[6]. That is, if two entities are communicating over the Internet and saiharé occurs
and temporarily disrupts the Internet, the two entities should still be aldertonunicate
without re-establishing their conversation. The approach chosen to implemeeist¢alled
fate-sharing9], which puts the state information at the endpoint of the network. This way,
the only way that state information is completely lost is when the commungatrty
itself has failed. The building block chosen then was IP datagram (packetata), and
consequently, routers are stateless packet switches. Itis up to the estchosiintain the
state information about connections.

In the current Internet, the network resource allocation scheme is built encd son-

gestion control mechanisms in both routers and end hosts. In routers, there ataidrop-

13

gueues that drop packets when the buffers are full. Lost packets in networtstanted
by TCP in the end hosts, and are taken as congestion signals. TCP slows slsamdiing
rate upon detecting congestion. This alleviates network congestion, and the end Rost TC
then gradually increases its sending rate. The bandwidth a TCP connectioresetem
the network is dependent on the network congestion state of the routing path and how many
other simultaneous connections there are, and is not always predictable.

The current Internet uses a simple architecture that is characterizeee dgllowing

three attributes:

¢ Distinction between two types of devices: routers and host devices

The routers are network-level (IP) devices that exchange routing informatioro&nd c
laboratively deliver a packet from its source to its destination. They Bboonsistent
substrate to deliver packets generated by end hosts. The end hosts are tiaysport
(TCP or UDP) devices that send and receive IP packets to be deliveredroytaes.

e No explicit contract on service provided by network to end hosts

End hosts can send traffic into the network without explicit connection setup. The
routers use a simple mechanism to deliver IP packets, in which routers drketpa

if they are congested or have failed. It is up to the transport-layer protoctie at
end hosts to ensure that a packet eventually arrives at its final destinBtierefore,
there is no explicit commitment from the network to end hosts as to whether atpack

will be delivered or when a packet will be delivered.

e One type of service provided by a consistent network substrate

At the network level, all packets are subjected to the same treatmmmtthe net-
work, i.e., forwarded according to the destination IP address and dropped if the

routers are congested .

The best-effort service model is simple and allows a great deal of gtatistultiplex-

ing, which leads to efficient use of the network resources. The pitfall of thisoappris

14

@ Routers

E End Hosts

Figure 2.1: Key Elements in the Current Internet

15

that without explicit support from the network, it is difficult to provide any kind ofvees

assurance or guarantees to end host traffic.

2.2 Integrated Services

As briefly discussed in Chapter 1, the Integrated Services model is an exteéosihe
original Internet best-effort architecture[4]. It includes two servieggeted towards real-
time applications:guaranteedand predictedservice. Guaranteedservice involves pre-
computed worse-case delay bounds pretlictedservice uses the measured performance
of the network in computing delay bounds.

Based on these considerations, network researchers believe that thetéut&gevices
model will 1) keep additional flow state in routers; 2) require an explicitig@echanism
to install and eliminate flow state in routers. Therefore, in termsmgglémentations, an

Integrated Services framework has four components:
e Packet Scheduler
The packet scheduler manages the forwarding of different packet streams gsing a
of queues or perhaps other mechanisms like timers.
e Classifier

When a packet arrives at a router, it is ficdéssifiedby the classifier, i.e., mapped
into some classes. Packets in the same class get the same treabmethief packet
scheduler. The classifications are decided by the upper layer policies and caube us

for accounting purposes.

e Admission Control

Admission control implements the decision algorithm that a router or a host uses to
determine whether a new flow can be granted the requested QoS without impact-
ing earlier guarantees. Admission control is invoked at each router te ddcal

accept/reject decision.

16

e Reservation Protocol

A reservation protocol is the signaling protocol that carries QoS requests fidm e
host applications to routers on the routing path. QoS requests are necessary to cre
ate and maintain flow-specific state along the path of a packet streamard®this

end, Zhang, Deering, Estrin and Shenker in [67] proposed a setup protocol called
RSVP RSVP is a receiver-initiated reservation protocol that can accomiaadde

needs of both unicast and multicast traffic. The general idea is that RSMBscarr

QoS requests—a list of parameters calldtbavspefd9]—along the reverse path of
the data stream, and make reservations in each router. If any router doesveot
sufficient resources to accept such request, its admission control moduis tee

request, and the rejection is carried by RSVP to the initiating end hoall. rfuters

along the data path accept the flowspec, then RSVP is responsible for maintaining

and refreshing the QoS state that has been established by the routers. €he stat

kept in the routers isoft statethat is, it expires if not refreshed by periodic RSVP

requests. This provides graceful support for dynamic membership changes and auto-

matic adaptation to routing changes.

IntServ's proposed mechanisms are a major departure from those in the beist-effor

model in that IntServ requires both explicit setup prior to traffic transimmsand keeping
per-flow state in the network. Architecturally, IntServ is similarthe best-effort model
in that there are two types of devices: routers and host devices. HowevetSery, the
routers are much more complicated. They have to implement a reservatioeqirt es-
tablish QoS state and maintain mechanisms to keep, delete or refregdta@@3Ne list the

attributes of an IntServ architecture below.

¢ Distinction between two types of devices: routers and host devices

Just like that in the best-effort model, the routers are network-leveld@giices that
exchange routing information and collaboratively deliver a packet from its edarc

its destination. The routers form a consistent substrate to deliver packetsated

17

by end hosts. In addition, they have to implement protocols to establish, delete and

refresh QoS state at the requests of end hosts. The end hosts are transp¢fci&ye
or UDP) devices which generate and receive IP packets to be deliveredroytbes.
Additionally, they initiate RSVP protocols to establish QoS state.

e Explicit contracts on service between the network and the end hosts

In order to receive a certain QoS, the end hosts have to specify explicit€go8sts

(flowspegto the network. The traffic generated by the end hosts to receive such QoS

requests is also subjected to explicit checking and policing by the network.

e Fine-grained, per-flow levels of services by a consistent network substrate

Inside the network, packets that belong to flows having QoS specifications and having

been admitted into the network receive per-flow, QoS treatment by allreooitethe

routing path. Since QoS requests by end hosts are fine-grained, the services provided

by IntServ network to end hosts are also fine-grained.

It is clear that if IntServ mechanisms can be implemented in the netwioek the
network can support explicit QoS requests from the end hosts. However, thisuparti
feature comes at the cost of losing some network efficiency. Explicit resens for flows
mean that there is less or no statistical sharing of network resources dfoasgthat
have requested explicit Q0S. Since statistical multiplexing is what ntaeléest-effort
service model efficient, IntServ’'s approach reduces the network efficiemothar serious
concern is about the complexity involved in establishing, maintaining, and ml@oS

state at per-flow granularity in IntServ’s approach.

2.3 Differentiated Services

Differentiated Services (DiffServ) tries to combine the benefits of tis¢-btort model and

the IntServ model. The primary goal is to preserve the statistical mediipd nature of the

18

current Internet, while using scalable, flexible mechanisms to provide a aggerof QoS
services. A secondary goal is to make network resource usage accountable.

The general idea of the DiffServ architecture is to mark packets intoal samber
of classes at the edge of the network and to create mechanisms inside the rietdibrk
ferentially treat different classes of packets. Each user is adedcivith aService Level
Agreemen(SLA), which is a contract between a customer and an Internet Servig&Ero
(ISP) that specifies the expected forwarding service a customer shouldereéai SLA
also specifies a profile of what a customer’s traffic will look like. The comdr pays for
the SLA, under the condition that the ISP delivers the specified forwarding sdovicaf-
fic within the profile. Any traffic that is in excess of the profile is consideypgdortunistic
traffic and is not provided with any kind of service assurance.

At the edge of the network, the ISP’s edge routers classify packets and miap traf
to their respective SLAs. Traffic sent within the profiles in SLAs ararked by edge
routers into different classes of packets. Traffic sent outside the prafil8sAs are left
unmarked by the edge routers and is considered opportunistic traffic. In this, tvesis
illustrate the different classes of packets with only two types of packdtpackets and
OUT packets. IN packets represent packets within a profile and OUT packatesent
packets beyond a profile. The edge routers mark packets as IN packets if fleeigraf
within a customer’s SLA; anythiniop exces®f the SLA is tagged as OUT packets. Inside
the network, core routers only need to distinguish between two types of packetsvand gi
IN packets preferential treatment in terms of bandwidth or delay, or both.

In DiffServ, only edge routers need to keep per-flow state and the core sdaep no
per-flow state. This way, the complexity of the system is pushed to the edge ofarket
Putting per-flow state in only edge routers makes DiffServ architectore scalable than
IntServ. Additionally, SLAs serve as a basis for ISPs to account for theonkt@source
usage.

Figure 2.2 depicts a Differentiated Services network with two DiffS#mains. The

core routers adopt simple mechanisms on its forwarding path and give prefeterata

19

H1

Interior Routers

Edge Routers

End Hosts

H2

Figure 2.2: Key Elements in a DiffServ Network

20

ments to different classes of packets. The edge routers deploy mechaniskhes-Hefic
Conditioners—that classify, monitor, and tag packets. Finally, DiffServ might aégpire
simple mechanisms to be deployed in end hosts to achieve precise rescraga@il De-
tails on mechanisms can be found in Chapter 3.

A connection that spans multiple DiffServ domains goes through several edge routers;
its packets are marked and remarked at the edge routers of each domairaifptes in
Figure 2.2, a connection from H1 to H2 spans two adjacent DiffServ domains.tB&cke
the connection are marked for the first time at edge router ER1 of Domain 1. Tkéma
is according to an SLA between customer H1 and Domain 1. When packets ex#@ibom
1 and enter Domain 2, they are marked again by edge router ER2. This time, Ketspac
together with packets from other connections traversing from Domain 1 to DoPyaire
marked according to an SLA between Domain 1 and Domain 2. In other words,@mdge r
ER2 marksaggregatedraffic, since ER2 does not keep SLAs for individual connections.

Compared to both the current best-effort Internet and the IntServ, the BiféBehi-

tecture has the following four attributes:

¢ Distinctions between edge routers, interior routers and end hosts

The DiffServ architecture distinguishes between end hosts, which impléraegport-
layer protocols, and routers, which implement network-layer protocols, just as the
current Internet does. Additionally, it further distinguishes between two types of
routers: edge routers and interior routers. Edge routers keep state inforrabtion
SLAs, classify packets, mark packets into different classes amdgbkce the ar-
riving packets according to the service profiles. Interior routers do not neegkt k
per-flow state, they only need to distinguish among a relatively fewetasigpackets

and give preferential treatments to different classes of packets.

e Explicit contracts on services between the network and the end hosts

The service provided by the network to the end hosts is described in SLAs, which

are long-term, static service profiles. An SLA describes the expectéit speci-

21

fications from an end host to the network. Traffic from an end host can exceed the
specified SLA as long as it doesn’t congest the network. If the network is congested,
the end host is expected to slow down to the specified profile. The differerveedret

an SLA and dlowspedn IntServ is that the former is long-termrexpectedservice
profile and the latter is an exact description of traffic specification spoeding to

an explicit QoS request.

A few differentiated levels of services by a consistent network of inteaoters

In the DiffServ architecture, once packets are inside the core of the netihernk,

are treated as aggregates. Interior routers distinguish between a tsg<laf pack-

ets by examining the Type of Services (TOS) field of IP headers and treakediffer
classes of packets differently. The interior routers form a network subgtrat pro-

vide consistent treatment of packets of different classes. Packets ihsidetwork

are aggregated, and enjoy a high degree of statistical multiplexing, as in the bes
effort service model. This design preserves the network efficiency thatscame

statistical multiplexing.

A variety of services provided to end hosts

DiffServ architecture hopes to provide a variety of services, in termsaofiwidth
and delay requirements, to either aggregated traffic or per-flow trafiics i$ done

by having different traffic conditioners at the edge of the network.

Architecturally, DiffServ takes an approach that combines the best of botlisv a

high degree of aggregation from the best-effort model and QoS assurance from tie IntSe

The edge routers keep per-flow state, and monitor and mark traffic using traffdition-

ers. The interior routers are still stateless, as in the current IritéFhes approach is more

scalable in terms of mechanisms than that of the IntServ.

Like IntServ, DiffServ takes advantage of the same observation thay neahtime

applications are adaptive and do not require stringent network guarantees. ldoiveve

differs from IntServ in a number of ways. Instead of trying to support a very fiel [ef

22

QoS specifications in networks itself, DiffServ only supports that level ofifipations at
the edge of the network, where it maps these QoS specifications to a few clagaekeit.
In the interior of the network, DiffServ treats different classes of peckédferently. This
design immediately simplifies the design of the interior network and makesdhbanisms
scalable.

DiffServ separates thenplementable servicedsom the actuaimplementing mecha-
nisms DiffServ aims to support many different flexible services, whether theyfar
fine-grained, per-flow traffic or aggregated traffic, and whether they are sbaded or
receiver-based. In terms of the actual implementations, however,4besees can be sup-
ported by one or many integrated sets of mechanisms. For example, there cdereadif
approaches to providing differentiated levels of bandwidths to applications ahdapa
proach proposes an integrated set of mechanisms for implementation. FromsapdiBP
of view, this provides a number of implementation alternatives to choose froom e
users’ perspective, applications can run transparently on top of differecttanesms as
long as the mechanisms can achieve what'’s specified in the profile.

In terms of time scale of service profiles, IntServ expects to support walttynamic
traffic that establishes a reservation prior to sending. In contrasS@&nifservice profiles
are long-term and static.

In terms of mechanisms used, IntServ uses a hop-by-hop, receiver-initiatrdaton
protocol RSVP, and shaping and policing mechanisms to admit traffic into the ketwor
In DiffServ, there are quite a few proposals on what the actual mechanisnt loob
like. Some require admission, shaping and dropping traffic at the edge of the network and
scheduling mechanisms in the interior of the network; others require only markingtsack
at the edge of the network and a dropping mechanism in interior routers. Since there ar
only a few different classes of packets inside the network, interior routers doawsut
to support a complex protocol like RSVP. Table 2.1 summarizes the differencesdret

IntServ and DiffServ.

23

Table 2.1: Differences between IntServ and DiffServ

| | IntServ | DiffServ |
Service profiles| fine-grained, per-flow per-flow or aggregate
receiver-based | sender-based or receiver-based
Time scale walk-in long-term
of service profile dynamic static
Mechanisms per-hop RSVP separate edge and interior
involved mechanisms, flexible

2.4 Issues in DiffServ

In the next four sections, we discuss a few selected aspects of DiffSditeature.

2.4.1 A Variety of Services

In designing the DiffServ framework, we are serving two potentially comfigcigoals.
First, we would like to implement a set of simple services that are uaaflieasy to under-
stand and adopt; second, we do not want to embed the above services into the mexhanism
so that the framework cannot adapt to new applications with new service regumitem
the future. The decoupling of the SLAs at the edge of the network from the differential
treatment of packets in the center of the network allows this flexibility.ofer simplify,
the preferential dropping scheme adopted in routers will not change over time iae: ca
standardized; whereas the characteristics of a service are defined amekddpt its cor-
responding traffic conditioners and it is only necessary to create new traffditooners at
the edge of the network to adopt a new service.

The services provided by this framework are diverse. As a simple exarhptajld be
the equivalent of a dedicated link of some specified bandwidth from a source toi-a dest
nation. Such a model is easy for users to understand. A more elaborate model can be an

aggregated commitment to a range of destinations, or anywhere within an ISRjrees

1Section 2.4.1, section 2.4.2, and section 2.4.3 are taken in large parafjoint work by Dave Clark
and the author

24

called a Virtual Private Network (VPN). A virtual network is by naturem difficult to
offer with high assurance since offering commitments to “anywhere withiittaal Net-
work” implies that the ISP has provisioned its resources adequately to supposead
sending IN traffic simultaneously to any destination.

Not all Internet traffic is continuous in its requirement for bandwidth. In faasm
Internet traffic is very bursty. It may thus be that a “virtual link” servinedel is not what
users really want. Itis possible to support bursty traffic by changing thectcaffiditioners
to implement this new sort of service. The key issue is to ensure, in ther agntiee
network, that there is enough capacity to carry this bursty traffic, and thualBcmeet
the commitments implied by the outstanding profiles. This requires a more soatadtic
provisioning strategy than the simple “add ‘em up” needed for constant bit-ratealir
links. However, in the center of the existing Internet, especially at tlio&dmne routers
of major ISPs, there is a sufficiently high degree of aggregation that the buitsine rod
individual traffic flows is no longer visible. This suggests that providing bursty StoA
individual users will not create a substantial provisioning issue in the centiee oigtwork,
while possibly adding significant value to the service as perceived by the users.

A more sophisticated SLA would be one that attempts to provide a specified and pre-
dictable throughput to a TCP stream. This is more complex than a profile that esulat
a fixed capacity link, since TCP hunts for the correct operating rate by inogeasd de-
creasing its window size, which causes rate fluctuations to which the prafgé conform.
The service allocation profile is easy for a user to test by simply running abaSEd appli-
cation and observing the throughput. This is an example of a higher level profile, because
it is less closely related to some existing network components and mordyalelsged to
the users’ actual demands. This kind of service is the focus of this thesis. Tihenmsos
and evaluations we offer are targeted throughput for a TCP connection.

In summary, three things must be considered when describing an SLA:

o Traffic specification

What exactly is provided to the customer in terms of bandwidth, delay or both? For

25

example, a SLA can specify a 5Mbps average bandwidth, or an end-to-end delay of

no more than 100ms, or both.

e Geographic scope

To where this service is provided. Examples might be a specific destination, a group
of destinations, all nodes on the local provider, or “everywhere”. The specifibssof t
condition reflect the geographic scope of the domain with which DiffServ services
are provided, as well as the set of upstream and downstream domains (where the

possible destination machines are) this domain is connected to.

e Probability of assurance

With what level of assurance is the service provided. Since DiffServ doesmadpr
a hard guarantee, the probability of assurance is a metric a service provided shoul

also include in the SLAs.

These things are coupled; it is much easier to provide “a guaranteed one megabit per

second” to a specific destination than to anywhere in the Internet.

2.4.2 Network Resource Allocation and Provisioning

The statistical multiplexing nature of the Internet makes efficient use of hdiitand
supports an increasing number of users and new applications. However, it doesdeat:
uncertainty as to how much of the bandwidth is available at any instant. The ahpwea
take to allocating network resources is to follow this philosophy to the debegétte user
can tolerate the uncertainty. In other words, a capacity allocation schleowtd provide

a range of service assurance. At one extreme, the user may demand an absaltde ser
assurance, even in the face of some network failures. Less demanding wsevsish

to purchase a SLA that igsually available but may still fail with low probability. The

presumption is that a higher assurance service will cost substantially mionplEment.

26

Thus, DiffServ takes a different approach than the previous Integrated Seefiort.

In Integrated Services, applications that require a higher level of committhan the
best-effort service take explicit actions to make reservations alongrdliersing route,
using protocols like RSVP [67]. In DiffServ, SLAs aggpectedervices from the network.

The termexpectedsuggests that the SLAs do not describe a strict guarantee, but rather
an expectation that the user can have about the service he will receive dunies) af
congestion. This sort of service somewhat resembles the Internet of today in ¢ngat us
have some expectation of what network performance they will receive; theHaeyge is

that our mechanism permits different users to have different expectations.

It should be noted that traffic requiring this higher level of assurance carbstaig-
gregated with other similar traffic. It is not necessary to separateamiit mdividual flow
to ensure that it receives its promised service. For example, there cotudblmpieues in
the router, one for traffic that has received a statistical assurancenaadr this higher or
guaranteed assuranc#Vithin each queue, IN and OUT tags would be used to distinguish
the subset of the traffic that is to received the preferred treatment.

Fundamentally, statistical assurance is a matter of provisioning. Theadhgtiprovi-
sioning a network with an arbitrary set of links and required capacity is Brcdimplete
problem [40]. There are only solutions to reduce it to a NP problem using heuristics. |
practice, however, an ISP monitors and measures the amount of trafficngrassious
links over time, and provides enough capacity to carry this subset of the tedfkn at
times of congestion. This is how the Internet is managed today. Using Differad-
ditional classification of packets will give an ISP a better idea of how nuic¢he traffic
at any instant izvaluedtraffic, and how much is discretionary or opportunistic traffic for

which a more relaxed attitude can be tolerated.

2.4.3 Sender-controlled and Receiver-controlled Schemes

Up to this point, we have assumed that it is the sender that is concerned witiy geéef-

erential treatment of its packets and is willing to pay for the profileswéier, in today’s

27

Internet, the receiver of the traffic, not the sender, is often the more appgmpnéty to
make such decisions. For example, some video-on-demand subscribers are wilayg t
for a better delivery of traffic to their homes. We will show that the DéifSarchitecture is
flexible to allow receiver-controlled schemes, hence, receiverdgaseing.

The receiver-based scheme in the DiffServ framework is the complevhdre sender-
based scheme. It relies on a newly proposed change to TCP called the Exphigeg<Zion
Notification (ECN) bit [21]. In ECN semantics, congested routers turn on @ Bit in
a packet instead of dropping the packet. The TCP receiver copies the ECN hihénto
acknowledgment (ack) packet, and the sender TCP gracefully slows down upinggce
an ack with the ECN bit on.

In the receiver-based expected capacity scheme, routers are ECNtinenpauters;
they turn on the ECN bit in a packet when there is congestion, instead of droppingAhem.
traffic conditioner, installed at the receiver checks whether a streascteived packets is
inside of the profile. Each arriving packet debits the receiver’s serviceadlon profile. If
there is enough profile to cover all arriving packets, the traffic conditionkktwmn off the
ECN bits in those packets which had encountered congestion since the resenétied
to receive at this rate. If the receiver’s profile is exceeded, pagkigtstheir ECN bits on
will be left unchanged at the traffic conditioner. If packets arrive at the Te&€River with
ECN bits still on, it means that the receiver has not contracted for sufficegrdcity to
cover all the packets that encountered congestion, and the sender will be notsied/t
down.

There are a number of interesting asymmetries between the sender-badeslr@cdiver-
based schemes, which arise from the fact that the data packets flow fr@artter to the
receiver. In the sender-based scheme, the packet first passes througfiitheanditioner,
where it is tagged, and then through any point of congestion. In contrast, in theereceiv
based scheme the packet first passes through any points of congestion, wheggitds ta
and then through the receiver’s traffic conditioner. The receiver schemeotary to the

end point dynamic information about the current congestion levels, since routers bnly se

28

the ECN bit if congestion is actually detected. In the sender scheme, in sipritedfic
conditioners must tag the packets as IN or OUT without knowing if congestion isligctua
present. Thus, we could construct a service, based on the receiver schéiiejder for
actual usage during congestion.

On the other hand, the receiver scheme is more indirect in its ability fonekto
congestion. Since in the sender scheme, a packet carries the explicitbassevthether
itis IN or OUT of profile, the treatment of the packet is evident when it reaehgsint of
congestion. In the receiver scheme, the data packet itself carries npratditd indication,
so at the point of congestion, the router must set the ECN bit, and still attenginarti
the packet, trusting the sender will correctly adjust its transmissite r@f course, if
the traffic conditioner at the receiver’s side employs a dropping algorithm that drops
packets that exceeds the profile, the sender will slow down if it is a propenignvee TCP.

Another difference between the two schemes is that in the sender schemandiregs
application can set the IN/OUT bit selectively to control which packetsfavored during
the congestion. In the receiver scheme, all packets sent to the recedgethpaugh and
debit the traffic conditioner before the receiver host gets them. Thus, in ordehdor t
receiver host to distinguish those packets that should receive prefervcksd would be

necessary to install some sort of packet filter in the edge router that keeS&.A.

2.4.4 Denial-of-Service Attacks

As the Internet has transitioned from a closed research network to an opemdesteous
network, it has become vulnerable to malicious Denial-of-Service (DOSkattdAs some
events in early 2000 [54] demonstrate, Denial-of-Service attacks comeiousdorms.
One common attack is to use spoofed but valid IP addresses as source adifneasksts
and inject packets into the targeted network. The amount of bogus packets injgcted i
a targeted domain is so great as to overwhelm the routers and stall thel mpenations

of the network. The difficulty in detecting and preventing DOS attacks is thatetweork

has no way of telling goodpacket—packet that is from a valid host and should be carried

29

through the network—from had packet, a packet with a spoofed IP source address. The
lack of detection mechanisms prevents a network from quickly filtering out the&eicets
and recovering from the attacks.

The DiffServ architecture, if deployed, is not immune to such attacks. #ns#ition,

we discuss problems and solutions when a DiffServ domain is under a DOS attack.

2.4.4.1 Sender-based Scheme

In the sender-based scheme, traffic from a customer is allowed intd@eBifdomain if
it already has an SLA with the service provider. Traffic from customers ddaot have
SLAs with the service provider is at the whim of the service provider. A discservice
provider may choose to implement explicit admission control at the edge of the network
and drop all traffic that does not have an SLA contract. In this case, the neisviags
vulnerable to DOS attacks because it must have provisioned enough to handle d# “insi
profile” traffic. In the case where a service provider does not implement exqdioiission
control, but only classify and mark packets to different DiffServ @dasshe mechanisms
in core routers should be able to handle the extreme condition when the network is under
heavy attacks.

In DiffServ, the criteria of good and bad packets is very clear: packitsn the SLAs
are considered good packets and should be delivered by the network; packets outside the
SLAs are considered bad, or opportunistic traffic, and can be dropped. Since DifiSer
troduces a criteria to distinguish among packets and installs admissioolaoethanisms
at the edge of the network, it presents a preliminary shield against DOS attacks

There are three scenarios when a DiffServ domain is under DOS attacks.

e All spoofed sources do not have valid SLAs

This is the best scenario. In this case, all traffic generated to mount @& ware
OUT packets. Since DiffServ networks are already capable of shielding ¢kiepa
from OUT packets under various congested state, the network can eagilguiitbe

bad packets (they happen to be OUT) and can resume normal operations.

30

¢ All spoofed sources do have valid SLAs

This is the worse scenario. In this case, all traffic generated to mountdda@&ks

are IN packets. Since a DiffServ domain is supposed to carry all IN paché

this traffic is allowed into the network, and the DiffServ domain has no autuiti
criteria to distinguish between the good and bad packets and therefore, thademai
vulnerable to disruptions. In this case, a DiffServ domain is no more vulneitzde t
the current Internet because it still has admission control at the edge to teterm
the amount of IN packets allowed into the network. Since it should have provisioned

enough to carry IN packets, the network should be able to carry spoofed IN packets

e Some of the spoofed sources have SLAs and some do not

Between the two above scenarios, there could be a spectrum of scenariogjtbac

an arbitrary mix of the above two scenarios. In any case, the ability@ff§erv
domain to shield IN packets from OUT packets will prevent itself frormbeaver-
whelmed by DOS packets which are OUT packets; the overall provisioning of a
DiffServ domain will prevent itself from being overwhelmed by DOS IN kets.

Therefore, this scenario is no worse than case 2.

Therefore, we have shown that a domain implementing sender-pay DiffSerlrame
nisms is less vulnerable to DOS attacks than it is without those mechanignssis be-
cause the DiffServ mechanisms define a criteria for distinguishing betweenpgo&dts
and bad packets and have sufficient provisioning for the good packets. Under DEKS atta
the DiffServ mechanisms for distinguishing good and bad packets can providedirghiel

effect by dropping the bad packets, thus dampening the possible effect of DOS.attacks

2.4.4.2 Receiver-based Scheme

The receiver-based scheme, however, poses a bigger security threafjainelsradditional
robust and scalable network mechanisms in order to work. In the received-bakeme, a

receiver purchases an SLA from a DiffServ domain, and any sender sendiveg teceiver

31

can turn on a bit—the receiver-pay bit—indicating it is the receiver, notéhder, who is
paying for the traffic. A DiffServ domain allows the traffic with the ra@e-pay bit on into
the network. The traffic is delivered to the edge of the network and the traffic toomelis
check the traffic against the receiver’s profile. If the receiver's Siofers the amount of
traffic, the packets are further directed to the receiver; othenthsenetwork can drop the
packets at the edge of the network.

In this scheme, the information of whether the receiver has enough profile totbeve
traffic is not known at the point when traffentersthe network but when the traffiexits
the network. If the receiver does not have enough profile, these packets are dropped only
afterthey have unnecessarily consumed network resources. The network is prone to a new
type of Denial-of-Service attack, in which, a malicious host can simply rakuiks traffic
as receiver-pay with a spoofed destination and inject into the network. §tiis converse
scenario to the normal DOS attacks in the current Internet. In other wordsgiver-based
scheme is adopted, a DiffServ domain is more open to DOS attacks.

There are two possible approaches to deal with this. One approach is a preveedv
sure, in which a receiver's SLA is installed ali edge routers (other than just the edge
router closest to the receiver), along with an access list of hosts vanechuthorized to
use this SLA. All traffic, whether it is sender-pay or receiver-pay,uisjacted to admis-
sion control by traffic conditioners when they enter the network. This approach istyobus
however, not scalable because all edge routers have to maintain an astcéssedvery
receiver-pay SLA.

An alternative approach in dealing with potential DOS attacks are tettdlend penal-
ize”. We expect that even in an increasingly heterogeneous Internet, end Bbsthawior
will be the exception and not the rule. Detect-and-penalize is a cheaper methadphex
ventive measure if DOS attacks is an infrequent event, but it is lesstrbbaguse it takes
time for the network to identify and react to misbehaving hosts. Howevebeheve that
as long as the penalty imposed is sufficiently harsh, this approach should alstepitosi

proper incentives for users and end hosts to behave appropriately.

32

In the context of receiver-pay schemes, a misbehaving end host is one that sends unau-
thorized receiver-pay traffic. The challenge here is not only in detecting rather detect-
ing it early enough to minimize the damage it might have caused. Since the eguéss r
closest to the receiver knows the receiver’'s SLA, detecting an unautkdor&ceiver-pay
traffic stream at this egress point is easy. The problem is how to quickly coroatarthis
information back to the ingress point of the DiffServ domain so the offendingdredin
be dropped as early as the ingress point. There are a number of solutions. First, eve coul
use explicit control messages, such as IP Source Quench [50] messages francegess
to ingress routers, who ultimately will take responsibilities for pemadjzhe unauthorized
source. Another option is to adopt a push-back mechanism, such as a protocol described
in [65]. In this protocol, the desired information is pushed back hop-by-hop by the routers
along the reverse direction of the packet stream.

Once a DiffServ domain has detected a misbehaving host, the traffic conditnother i
edge router that is the closest to the misbehaving host must apply an appropriate penalt
The penalty serves two purposes: 1) limit the damage to the network that mishghavi
hosts can cause; and 2) provide the proper (dis)incentives to discourage abuswerbeha
One method of penalty is to simply drop all packets of the offending flow. Altesigt
edge router could downgrade the traffic to OUT packets, or turn into sender-pagtpack

and count against the sender’s profile.

2.4.4.3 Summary of DOS Attacks in DiffServ Domains

In summary, DiffServ architecture, with its flexibility to support boémder-pay and receiver-
pay schemes, opens new challenges in the face of Denial-of-Service attdoKfSHrv
only supports sender-pay schemes, then the resulting environment is better tbamehe
Internet in its defense against DOS attacks. This is because DiffSentemture has in-
strumented a criteria for distinguishing betwegyodandbad packets, and good packets
always have priority over bad packets to network resources. Howeveretee/er-pay

scheme opens up another loophole for DOS attacks and additional network mechanisms

33

are needed before DiffServ architecture can support them. We discusseppveaches: a
preventive measure that is robust but not scalable; and a “detect and pemaasire that
can potentially be both scalable and robust. We propose a few mechanisms timgeted

penalizing offending flows.

2.4.5 Framework for Designing DiffServ Mechanisms

As described previously, a DiffServ network can allocate different nédwesources to
different entities by putting scalable tagging and dropping mechanisms in rodteese
mechanisms, as we shall see in Chapter 3, will be integrated into existemét mecha-
nisms. At a high-level, the idea is simple: edge routers maintain policy irgtom(SLAS),
classify and tag packets; interior routers create differentiatiorangndifferent classes of
packets. The actual implementation of this idea, however, may choose frpof dine
three designs depicted in Figure 2.3.

Each design occupies a row, depicted by an end host, an edge router and an interior
router. The edge router and the interior router represent the network (shaded @dnea)
like the current Internet, in DiffServ there is a trust boundary between endamoisthe
network. Everything inside the network is owned and trusted by an ISP, and l@wneryt
outside the network is not. When traffic crosses the trust boundary from end hosts to the
network, it is subjected to classification, tagging, shaping, policing and even dgoppi
Collectively, these are the functions ofraffic conditioner There are two types of traffic
conditioners: active and passive. Active traffic conditioners can shape apdodckets,
essentially, affecting traffic patterns, whereas passive tradficlitioners only classify and
tag packets but do not affect traffic patterns. Tagging algorithms, or taggerpassive
traffic conditioners. We focus on taggers only.

In design 1, the tagger is placatsidethe end host. It communicates with the edge
router using a signaling protocol that can inform itself about the SLA. This desigthbas
advantage that the tagger can access the internal state variables ofsp€é&tally those

used in TCP’s congestion control algorithm, e.g., round trip time (RTT) estiuad the

34

End Host

TCP cong.
control

Design 1 +

Tagger

DeS|gn 2 TCP cong.

control

TCP w/o

Design 3 | coo.

control

Figure 2.3: Three Possible Designs for Mechanisms

35

congestion windowewnd Since these TCP state variables are dynamic, knowing them
will help the tagger to tag packets precisely and accurately. Morgthwetagger can be
integrated with TCP’s congestion control algorithms in controlling the ratettteend
host’s TCP is sending. Since the tagger communicates with the edge router to bbtain t
latest SLA, the pace at which end hosts send is well-controlled.
The problem with this design is that the tagger is plaoatsidethe trust boundary
of the network. In this case, there has to be some kind of authentication andatemnific
mechanism to verify that the tagger has not been tampered with inside the enartubist
tagging/pacing the traffic according to SLAs. Minimally, the network has toddiit@nal
checking, or policing, at the edge of the network to check that the end host is not cheating.
In design 2, the tagger is placed at the edge roumside the trust boundary. The
end host is not modified. The tagger is configured with the latest SLA stored in edge
routers, but they do not have access to the internal state of TCP. This gartiegign is
the most practical approach because the router mechanisms can be reéatsrigiyadopted
and changed by ISPs. On the other hand, since the tagger does not have knowledge of the
dynamic state in the end host, this design limits the precision and the accofitheytagger.
A tagger designed this way will have to be versatile enough to work with diftetraffic
mixes, with different round trip times.
In design 3, the tagger is placed at the edge router, inside the trust boundary, we propose
a more radical change to the current Internet by taking TCP congestion control neukani
out of the end hosts and placing them in the edge router. What's left between endiubsts a
the edge routers is a flow control mechanism that tells the end host TCP the amount of
packets to be sent into the netwérkVe place the congestion control mechanism into the
edge router and keep per-flow state in the edge routers. The tagger then camtstadte
with congestion control mechanism in edge routers. In essence, this designheeptre
congestion control loop within the network itself. At the edge router, the congestiarot

mechanism is very much the same as that of the TCP, but itis now combined taglying

2For example, the control can be in the form of setting TCP’s receiver’dovin

36

algorithm for each flow. The interior routers implement congestion avoidanceaaricbt
schemes. Since atagger is integrated with congestion control mechanisedgerouter,
it can provide very accurate indication about the flow of the traffic to interaddorks.

This design does not require authentication and verification mechanisms betaeen
hosts and edge routers as in design 1, and is more accurate than design 2. The digadvant
of this design is that it is a more radical approach and might not be practicatualac
deploymeng.

In designing our mechanisms, we start with design 2 because this is the mdst prac
cal approach, we end up proposing mechanisms which can also be used in the other two

designs.

2.5 Related Work

The inception of the idea that eventually led to DiffServ research camalsed to early
work by David Clark. In [8], Clark proposed an idea in which accounting inforomais
installed at the edge of the network for pricing and cost allocation purposes, aketgpac
are classified and marked differently according to this accounting inttwmalnside the
network, routers distinguish packets with one bit and treat packets differém{l7], Clark
also mentioned the implications of combining sender-pay and receiver-pay esreoon-
sidering Internet pricing schemes. [9] was the first research paper thaindéates these
ideas can be implemented in the real TCP/IP network and have promisingsrésubn af-
ter that, there were quite a few different proposals on mechanisms to impi&iftServ,
which eventually led to a standardization effort by IETF. Currently,gree two proposed
interior router forwarding services proposed by IETF: Assured Forwarding anddiggde
Forwarding.

There has been quite a flurry of research on DiffServ since 1997. The rest of this

section describes these efforts. Though they conform to the same DiffSxniteatural

3The idea of separating congestion control mechanism from TCP and treadimg very general mecha-
nism can also be found in “Congestion Manager” [3].

37

approach, they differ primarily in two ways: the high-level user perceivabtgices and

the mechanisms required in order to achieve such services.

2.5.1 Proportional DiffServ

TheProportional DiffSern14] offers a different perspective on differentiated services. In-
stead of offering ambsolutedbandwidth or delay to a class of packets, Proportional DiffServ
offersrelative differentiated service under the premise that the service received by higher
classes will be better, or at least no worse, than that of lower classéisis context, ap-
plications and users do not get an absolute service level assurance, sucmedsaerd
delay bound or bandwidth, since there is no admission control and resource reservations
Instead, the network assures them that higher classes will be proportiona#y theth
lower classes, so it is up to to the applications and users to seledatsetiat best meets
their cost and policy constraints.

In [14], Dovrolis et al. identify and evaluate two packet schedulers, WitFBPR, that
approximate the proportional delay differentiation model in heavy-load conditionsjreve
short time scales. They conclude that although both schedulers are approprialatiice re
delay differentiation, their studies illustrate that WTP is significabiyter than BPR in
the context of proportional delay differentiation. These schedulers give networkosera
“tuning knobs” to adjust the quality spacing between classes. They demonsttatadha
per-hop and class-based mechanisms can provide consistent end-to-end diffensrio
individual flows from different classes, independent of the network path and floimehar
teristics.

In the proportional DiffServ model, the network does not implement admission control
at the edge of the network and relies on its queuing mechanisms to createntidfieoas
among classes of packets. When the network is moderately loaded, the two prgpesed
ing schemes BPR and WTP [14] may not create sufficient differentiation betaeislass
gueues are not sufficiently long for these schedulers to distribute the clags.délaen

the network is heavily loaded, if the queues are sufficiently long, the scheduleosrperf

38

well. However, if there is only limited buffers in routers, the netwodn be overwhelmed
by the heavy load and incur losses, and there is not sufficient class queues for thdesche

to distribute class delays either.

2.5.2 Minimum Rate Guarantees in Networks

Another series of work by Feng, et al. [19] explores mechanisms in routers andtii&Ps
enable the network to guarantee minimal levels of throughput to different TCRI&SsSs
The service realized by the proposed mechanisms can be seen as a possilbheitgilen
of the “controlled-load” service in IntServ, in that those modifications alloarietwork to
guarantee a minimal level of end-to-end throughput to different network sessions.

In [19], Feng et al. proposes policing traffic at the source and marking packatsaisi
token bucket. Inside the network, routers use Enhanced Random Early Dete®igbD)E
algorithm, which is a minor modification of the Random Early Drop (RED) algorithm
ERED uses thresholds for dropping unmarked (non-conformant) packets and does not drop
marked (conformant) packets unless the queues are full. In ERED, the threshoéd
be set appropriately to ensure no marked packets are dropped.

At the end host, each TCP is configured with a token bucket policing and marking unit
There are a few mechanisms proposed to TCP to utilize the marking scheaileblav
First, TCP’s sending pace is no longer controlled by the acknowledgment packattie
receiver, but controlled by delayediimer and geriodictimer. These timers help TCP to
utilize the available tokens in the token bucket more effectively: ifelaee no tokens avail-
able, TCP withholds its sending by the delayed timer until new tokens becomeabéeall
if there are tokens in the bucket, the TCP sender is eligible to inject neapadakets into
the network even when no acknowledgment packets have arrived. Second, TCPs-conge
tion control algorithm is modified. The essential idea is to divide TCP’s congesbiatnol
window cwndinto two parts: reserved window, which reflects the minimal guarantated r

from the network, and the rest of the available bandwidth to the connection. The conges-

4We will describe RED in detail in Chapter 3.

39

tion control algorithm is modified so that when TCP detects congestion signalgfiem
network (typically packet drops), it does not reduce its congestion window belowitiie m
imal guaranteed rate. The author warns that these modified congestion contrahatgori

in TCP should be exercised if and only if the network supports minimum rate guasante
through end-to-end signaling, admission control, and resource reservation. Withbut suc
mechanisms in place, the use of this modified TCP may cause congestion collapse.

In a similar piece of work[20], Feng et al. propose an adaptive marking engine that
can either be integrated with TCP or be transparent to the end hosts. Incserthe
marking engine maintains local state that includes the target rate requaséstbihnection
or a group of connections. It passively monitors the throughput of a connection (or the
aggregated throughput of connections) and adjusts packet marking in order to achieve the
target rate by the user. The overall framework can provide simple setiffegentiation,
without the risk of congestion collapse.

In terms of approach, Feng et al.’s work is the closest to this thesis. Wddimtk on
mechanisms in routers and end host TCPs, even though the services we trnete aohi
different. Feng’s work focuses on providing minimum network bandwidth guarantees, and
we focus on providing an average throughput for TCP traffic. Feng’s proposed changes to

TCP are complex and it is not clear whether they can actually be deployed.

2.5.3 |IETF Standardization Efforts

Research work on DiffServ started to appear in late 1997. By early 1998, lkangaroup
for Differentiated Services (DiffServ WG) was chartered in |EArte active standardization
process was in progress. The DiffServ WG attempts to standardize the ugpebi
Service (TOS) byte in both IPv4 and IPv6 headers.

There are two Per-Hop Behavior (PHB)—behaviors defined for interior routers—groups
currently defined in DiffServ: the Assured Forwarding PHB group [28] and the Exguidit
Forwarding PHB group [32]. Each PHB group is allocated three bits of the Difffssd,
or six out of eight bits in TOS byte. The other two bits in the TOS byte are currenithgbe

40

considered for Explicit Congestion Notification (ECN) mechanism [22].

2.5.3.1 Assured Forwarding PHB

Assured Forwarding (AF) PHB is a means for a DiffServ domain to offeedsffit levels of
forwarding assurances for IP packets received from a customer of a ifi8enain. Four

AF classes are defined, where each AF class in each DiffServ nodecdsataltl a certain
amount of forwarding resources (buffer space and bandwidth). IP packets thabwisé

the services provided by the AF PHB group are assigned by the customer or the provider
of a DiffServ domain into one or more of these AF classes according to the sgtiat

the customer has subscribed to.

Within each AF class, IP packets are marked with one of three possibl@dropdence
values. In case of congestion, the drop precedence of a packet determinestiveirela
portance of the packet within the AF class. A congested DiffServ node tripsotect
packets with a lower drop precedence value from being lost by preferablydiisggpack-
ets with a higher drop precedence value.

In a DiffServ node, the level of forwarding assurance of an IP packet thus depends
on (1) how much forwarding resources has been allocated to the AF class tipaictet
belongs to, (2) what the current load of the AF class is, and in case of congestion wit
the class, (3) what the drop precedence of the packet is. The recommended iotggor

mechanism to implement AF PHB is an algorithm similar to RIO, presant€thapter 3.

2.5.3.2 Expedited Forwarding PHB

In contrast, the Expedited Forwarding (EF) PHB group is designed to build aksylbw
latency, low jitter, assured bandwidth, end-to-end service through a Diftenain. Such
a service appears to the endpoints like a point-to-point connection or a “virtuad st

In [32], Jacobson, et. al state that a service that ensures no queues for sometaggrega
equivalent to bounding rates such that, at every transit node, the aggregateisumeai-

rival rate is less than that aggregate’s minimum departure rate. Thing interior routers,

41

the queuing scheduling should be such that it guarantees that the aggregate has a well-
defined minimum departure rate, independent of the dynamic state of the router. Often,
the interior router implements such guarantees by a priority queue, which alldwsited
preemption of other traffic if necessary. At the edge routers, the traffic condits should
ensure that arrival rate of an aggregate at any interior router is alwsg#han that router’s

configured minimum departure rate.

2.5.4 LIRA and SCORE Network

In [61], Stoica and Zhang propose an alternative Assured Forwarding serviRa,(Lo-
cation Independent Resource Accounting). LIRA does not provide absolute bandwidth
profiles, but rather, it defines service profiles in units of resources tokensnurhber of
resource tokens charged for each “in profile” packet is a dynamic function of thetpat
traverses and the congestion level. The assessment of congestion leviekakdhrough

a utility function. The authors leverage the existing routing infrastructuresiiute the
path costs to edge routers. Since such costs are dynamically generatetingeftexcon-
gestion level along the path, the costs can also be used to design dynamic routiogcand
balancing. Defining service profiles in terms of resource tokens allows more dtyaach
flexible network control algorithms that can simultaneously achieve high didrzand
ensure high probability delivery fan profile packets. In LIRA, Stoica and Zhang demon-
strate how the routing subsystem can be integrated with packet delivechiteva both
high network utilization and service assurances.

In [62], Stoica and Zhang propose the Scalable Core (SCORE) architecturkian w
only edge routers perform per-flow management while core routers do not. They attempt
to use SCORE to provide end-to-end per flow delay and bandwidth guarantees as defined
in IntServ, but without per flow management. Thus, they can have the best of botsworl
i.e., providing services as powerful as those defined in IntServ, while atlizigorithms
as scalable and robust as those used in stateless network as DiffServ.

Current IntServ solutions assume a stateful network in which two types of per flo

42

state are neededbrwarding statewhich is used by the forwarding engine to ensure fixed
path forwarding, an@oS statewhich is used by both the admission control module in the
control plane and the classifier and scheduler in the data plane. In [62], Staiczhang
propose two algorithms for providing QoS state, one to schedule packets, and theother t
perform admission control. The primary technique is called Dynamic Pacitt @PS).

Each packet carries in its header some state that is initialized bygness router. Core
routers process each incoming packet based on the state carried in thésplac&der,
updating both its internal state and the state in the packet’s header befosrdmmgyvto

the next hop. Therefore, DPS is essentiallgyachronizingand coordinatingmechanism
piggybacked on the packet itself. Since such mechanism must traverse thgatmas

data payload, distributed algorithms can be designed to approximate the behavior af a broa
class of stateful networks using networks in which core routers do not maintaifoper
state.

In terms of actual implementation, Stoica and Zhang propose to use the fragmenta-
tion field of IPv4 header (13 bits) as well as four bits from the TOS byte to encode the
state information. They have implemented an testbed to demonstrate godthahs are
possible.

SCORE pushes the idea of DiffServ further in that the packet itself sastéthe task

of a traditional signaling protocol by synchronizing and coordinating with routers.

43

Chapter 3

Mechanisms

This chapter presents mechanisms that implement the Assured Forwarding middel.
though the specific mechanisms can be seen as modifications to the existing oongesti
control mechanisms in both routers and end hosts, we also provide a framewhbmko t
about other possible designs of bandwidth allocation schemes. We first describesthe exi
ing congestion control mechanisms in routers and end host TCP, in section 3.1. Intthe ne
three sections, we describe three mechanisms: 1) for interior routers, we ereposa
probabilistic early dropping algorithm that can create preferential treatrof packets in
different classes; 2) for edge routers, we describe TSW, a rate estiamat@r probabilistic
tagging algorithm for marking packets; and 3) for end host TCP, we propose TCRDRIiffS

a collection of three mechanisms to make TCP robust, fair, and meet thifieppSLA.

Finally, in Section 3.5, we discuss our design choices.

3.1 Congestion Control in the Current Internet

3.1.1 Network Congestion

Network congestion has long been an active research topic. Fundamentalyrkneon-

gestion exists because of a mismatch in either memory sizes, procepsiad, ®r link

44

bandwidth of network devices [34], and it becomes more pronounced and frequent as net-
works become more heterogeneous. Early debate in the 1980s centered around a few issues
namely, whether congestion control should take the form of a prior-reservatiomadkan;

whether it should be rate-based [63, 2, 64, 60, 66, 5] or window-based; whether the control
should be done in the routers [43, 13] or at the end hosts [31, 33, 38, 55]; and whether
an open-loop or a close-loop mechanism would suffice. In [35], Jain presents ativabje
comparison of the alternatives and argues that a complete congestion manadeategy s
should include several congestion controls and avoidance schemes that workrantiffe
levels of protocols and handle congestion of varying duration.

The Internet suffered a congestion collapse in the late 1980s because of a lack of con-
gestion control mechanisms. In 1988, Jacobson [31] proposed a collection of practical
congestion control mechanisms for TCP. The mechanisms significantly impraves T
performance and alleviated network congestion. The particular mechanismsihage
been widely adopted and implemented. Later research work in congestion ¢ovidioes
mechanisms on the router side [27, 43, 41], as well as improvements to T@Rjsstion
control [30, 15, 23, 5], but the adoption and deployment of these is slow.

We are interested in congestion control and avoidance mechanisms becausedhese
the mechanisms by which Internet bandwidth is allocated. In the current Inteamgfes-
tion control and avoidance mechanisms include those in end host TCP and those in routers
In the following two subsections, we describe router mechanisms and TCP ms&uka

respectively.

3.1.2 Congestion Avoidance Mechanisms in Routers

Most of today’s Internet routers use a drop-tail algorithm to manage incoming theirgueue

A drop-tail queue uses FIFO scheduling and drops packets when it runs out of buffer space.
The problem with a drop-tail queue is that it doesn’t do any congestion avoidance: it only
drops packets when the congestion is already severe. This tends to create agrfmmom

calledglobal synchronizatioyin which many TCP connections tend to synchronize in their

45

increase and decrease phases when a drop-tail queue is used in‘roliisss because
when the queue is full, packets from all connections are dropped together. The connec-
tions all try to recover packets, and after a period of silence, sg@ihaso the queues at
congested routers will move between full and empty. Global synchronizatioleadrio
low network utilization. One proposal to solve this problem is to use a randomizngd dr
gueuing discipline[43], instead of the drop-tail queuing.

The most effective detection of congestion occurs in routers because routaeica
ably distinguish between propagation delay and queuing delay, as well as betavesertt
congestion and persistent congestion. There have been a few proposals on putting conges-
tion detection and avoidance mechanisms into routers. The DECbit congestidara®i
scheme [37] is an early example of congestion detection in the router. DEEQbérs give
explicit feedback when the average queue size exceeds a certain threshold.r &rathe
ple, which combines the idea of DECbit and randomized drop, is RED, or Random Early
Drop gateway, proposed by Sally Floyd and Van Jacobson. The RED algorithm can dete
incipient congestion, avoid global synchronization, and keep the overall throughput high
while maintaining a small average queue size.

The RED algorithm operates as follows. First, it computes the average queue Si
(avg). The average queue size is calculated using a low-pass filter of instantageeue

size (nst,ueue), ONCE UpON every packet arrival (Formula 3.1).

avg = avg * Wy + iNStguepe * (1 — wy); (3.1)

wherew, is a configurable parameter.

Then, it uses the calculated g to determine whether an arriving packet should be
dropped. If the average queue size is below a minimum threshald,(), the arriving
packet is not dropped. When the average queue size exeeeds but is less than a
maximum threshold/az,,), RED drops the arriving packet with a certain probability.

This probability is calculated as a function of the average queue@iz¢ 4nd a parameter

1Though this shouldn't be a problem if the TCP connections havediéfsrent round trip times.

46

P,.., as in Formula 3.2.
Pirop = (avg — ming,)/(mazy, — ming,) * Pras; (3.2)

The closeravg is to maxy,, the higher the dropping probability. When the average
gueue size exceeds the maximum thresheldy;,, RED drops all arriving packets with
probability 1.

RED allows routers to tolerate transient bursts but to detect incipieshtparsistent
congestion. By using a low-pass filter to calculate, RED can filter out transient bursts
and temporary congestion. Persistent congestion in the router is reflecteddbyavbrage
gueue size, which results in a high dropping probability. Thus, RED can detecitpatsi
congestion.

RED also allows routers to detect congestion early. This is done by staotidgp
packets when the average queue size exceeds a minimum threshold, not when the router i
out of buffer space. This allows a grace period for congestion detection.

Finally, RED drops packets randomly so end host connections (especially TCP €onnec
tions) can back off at different times. This mechanism avoids the global synchtiomnz
effect we mentioned earlier. Therefore, RED is able to keep the Ib¥eraughput high

while maintaining a small average queue length, and tolerate transient congesti

3.1.3 Congestion Phases in RED

A RED router is configured with the following parametersin,;,, max,, w,, andp,,,,.

It works as illustrated in Figure 3.1. The X axisdsg, the average queue size. The Y axis

is the probability of dropping an arriving packet. There are three phases in REDahor
operation, congestion avoidance, and congestion control. The three phases are defined by
the average queue sizeg in the range of [Oming,), [ming,, max,), and fnaxy,, 0o),

respectively.

e Normal operation (phase 1)vg is between [Oming,)

a7

P(drop)
A

-
\

Phase 1 Phase 2

Min_th Max_th avg

Figure 3.1: RED Algorithm

In this phase, the router is operating with no congestion; the amount of arriving
packets is well below the router’s capacity. The router sees very shtahiaseous

gueues and a very small average queue. No packets are dropped.

Congestion avoidance (phase &)y is betweenfning,, max,,)

In this phase, the router observes that the queue is gradually building up. It starts
dropping packets as a congestion signal to end hosts. The packets are dropped early
and randomly to avoid global synchronization. If the end hosts implement the ap-
propriate congestion control algorithm[31], they will back off and congestion at the
router will dissipate. This phase is a buffering phase with a relativedy dropping

rate.

Congestion control (phase 3jug is betweenfaz,,, oo)

In this phase, the router is congested. The router drops all arriving packets in the
hope to control congestion. The router degrades into a drop-tail router, which has
a few undesirable consequences. A drop-tail router is more likely to drop multiple
packets from the same TCP connection, and if the TCP connection fails teerecov

those packets using its retransmission mechanism, it will go into a tinpswidd

48

and suffer a long period of silence. A drop-tail queuing mechanisms can alstwlead

global synchronization effect. This is the operating phase that a router should avoid.

3.1.4 Congestion Control and Avoidance Mechanisms in TCP

TCP is the only transport protocol that implements congestion control and avoidanice mec
anisms. The mechanisms were introduced in the late 1980s by Van Jacobson [31di-imme
ately preceding this time, the Internet was suffering from a congestiorpseilaend hosts
would send their packets into the Internet and quickly congest the network. The routers
would drop packets once they run out of buffers. The end hosts would time out and retrans-
mit packets again, resulting in even more severe congestion.

The mechanism proposed by Jacobson was to have TCP probe the available bandwidth
available in the network and pace its injection of new packets into the netwdHe arrival
of acknowledgment packets. However, determining the available capaditg inetwork
is not an easy task. TCP does this by increasing the number of packets it injectisa
network until a packet is dropped—the underlying assumption is that a packet is always
dropped because network congestion has occurred—at which point, TCP determines that
correct operating point should be one half of the number of outstanding p&cketksre-
duce its sending rate by one half. This is often called the “linear increasiéphcative
decrease” algorithm, first proposed by Raj Jain, et al. in [38].

In Jacobson’s mechanism, each sending TCP maintains a new state valiadleaa
gestion windowor cwnd cwndis dynamically adjusted to reflect the number of packets a
given TCP can send into the network. There are two phases in TCP’s congestaovww
adjustment algorithm: exponential increase phase (accomplished by a mechalesin ca
“Slow-Start”), and linear increase phase (accomplished by a mechanited ¢Conges-
tion Avoidance”). During the exponential increase phase)dis doubled every round trip

time (RTT). During the linear increase phasendis increased linearly, or by one packet

2Assuming the buffer space in the congested router equals the number efpackently in the “pipe”,
then cutting down the TCP window size by one half will match TCP’s opegatoint to the number of
packets in the pipe, or reduce the queue in the router to zero.

49

every round trip time.

TCP maintains another new state variable called “Slow-Start threslooldsthresh
which marks the turning point when TCP switches from the exponentially increase phas
to the linear increase phase. When thendis less tharssthreshTCP uses the Slow-Start
mechanism to exponentially increaseatsnd once thecwndgoes beyondsthreshTCP
switches to Congestion-Avoidance, linearly increasingvwisd ssthreshs typically pre-
configured to be 64Kbps and is set to be one hativarfid after a packet drop. Intuitively,
ssthreshreflects an estimation of the equilibrium operating point of the TCP connection.

The ideal operating region of TCP uses Congestion Avoidance mechanism only and
stays in a linear-increase phase until a packet drop, at which point TCP redutjtiztwnd
andssthrestio be one half of whatwndwas prior to the packet drop. Since the new value
of cwndis equal to the newgsthreshTCP stays in the linear-increase phase and uses the
congestion-avoidance mechanism again. Slow-start is only evoked when a T@Ryini
starts and does not know its ideal operating point, or after TCP has a timeout.vefpwe
it is often the case that a TCP loses a number of packets in the same congeéstioww
when congestion occurs, in which case, TCP has to recover through a timedamssc.

If a timeout occurs, TCP is usually silent for a while before it can send paekmin. Since
TCP doesn’t have a very accurate timer, this silent period can be long. tfdbiss, TCP’s
achieved throughput can be unpredictable.

Figure 3.2 illustrates four TCP epochs of linear increase and packet drops. Each “
the figure indicates a packet drop, after which,¢hadandssthreshs reduced to one half

of the value oftwnd

3.2 RIO Dropping Algorithm

As discussed in Section 2.4.5, there are a few possible approaches in design8en\Diff
mechanisms and we start with design 2. In the next few sections, we wililoescir expe-

riences in designing an interior-router mechanism (RIO), an edge-routéamisen (TSW)

50

Packets

ssthresh

cwnd

Time

Figure 3.2: TCP Operating Epochs Using Congestion Avoidance Mechanism

and TCP mechanisms, then we conclude by revisiting the three designs in Section 3.5.

In addition to detecting congestion and manage congestion, the algorithm in interior
routers has to have two additional attributesrsatilityanddifferentiation In other words,
the algorithm should create differentiated treatment of packets regastbkegaffic mix and
network conditions. For example, the network might be very well-provisioned, and ther
is a low utilization of network at any instant. Alternatively, the netkoright be heavily
congested but most of the packets are OUT packets, or the network is undergredisi
and a major portion of the packets causing long queues are in fact IN packellsdses,
the router algorithm has to perform well.

We designed a preferential dropping algorithm, RIO, based on Random Early Drop
(RED) algorithm. RIO stands for Random Early Drop (RED) with IN/OUT. Wgrtsour
design with RED algorithm because RED can detect congestion early, managstamnge
and avoid global synchronization.

RIO uses twin RED algorithms, one for IN packets and the other for OUT pachuets,
gives preferential treatment to IN packets. RIO retains all atte of RED algorithm:
detecting incipient congestion, avoiding global synchronization and keeping theloveral
throughput high while maintaining a small average queue size. Additionally, RKdesre

service discrimination to different classes of packets.

51

3.2.1 Twin Algorithms in RIO

RIO uses the same early drop mechanism as RED, but is configured with svof get-
rameters, one for calculating the probability of dropping IN packets, and the athealf
culating the probability of dropping OUT packets. RIO works as follows. When agback
arrives, RIO first exams whether it is an IN packet or an OUT packétidfan IN packet,

RIO calculatesivg_in, the average queue size for IN packets. Then RIO uses the same al-
gorithm RED uses to determine whether to drop this IN packet. There are twgeraiiie
thresholds: the minimum thresholdin_in for IN packets and the maximum threshold
max_in for IN packets. Ifavg_in is less thammin_in, then the packet is not dropped; if
avg_in is between two thresholdsin_in andmaz_in, then the packet is dropped with a
probability Py,.,_i» calculated based on Formula 3.3gifg_in is beyondnax_in, then the

packet is dropped with a probability of 1.

Pirop_in = (avg_in — min_in)/(maz_in — min_in) * Ppaq_in (3.3)

Similarly, if the arriving packet is an OUT packet, RIO determinestiveeto drop this
packet with the following algorithm. It first calculatesg_total, the averagéotal queue
size forall arriving packets (both IN and OUY)There are two configurable thresholds:
the minimum thresholdnin_out for OUT packets and the maximum threshebdx_out
for OUT packets. Ifavg_total is less thanmin_out, then the packet is not dropped; if
avg_total is between two thresholdsin_out andmax_out, then the packet is dropped with
a probability Py, _,.: calculated based on Formula 3.4uifg_total is beyondmazx_out,

then the packet is dropped with a probability of 1.

Pirop_out = (avg_total — min_out)/(max_out — min_out) * Pau_out (3.4)

Figure 3.3 contains the pseudo code for RIO algorithm.

3We consider both IN and OUT packets when calculating the dropping pratgafiDUT packets. This
is a subtlety which we discuss at the end of this section.

52

For each packet arrival
if it is an IN packet])
calculate the average IN queue size avg_in;

calculate the average queue size avg_total,

If it is an IN packet
if min_in < avg_in < max_in;
calculate probability Pin;
with probability Pin, drop this packet;
else if max_in < avg_in;
drop this packet;

if this is an OUT packet
if min_out < avg_total < max_out;
calculate probability Pout;
with probability Pout, drop this packet;

else if max_out < avg_total,
drop this packet;

Figure 3.3: RIO Algorithm

Figure 3.4 shows the twin algorithms in RIO.

3.2.2 Designing RIO

We didn’t arrive at this particular design easily. There were a few ottienmgts, mostly
focusing on what metric (the X axes in the twin algorithms) we should use tdel¢ce
congestion state of the router. In RED, the value@f_q is particularly important because
this estimate should accurately reflect the congestion state of the roudein &urn, de-
termine the dropping probability. In RIO, we have to determine the proper métricse

for both IN packets and OUT packets. Determining the metric for IN padcketdatively
straightforward because IN packets represent the provisioned trafftee s@twork service
providers should know the amount of IN packets to expect. Therefore, the metrid for |
packets is the averaged queue size for IN packets, i.e., the weighted avérag@anta-

neous queue sizes of IN packetsly. However, determining that for the OUT packets is

53

P(drop In) P(drop Out)
A A

e — I
7777777777777777777 Pmax_out
|
|

************************* Pmax_in
! |

! » 1 >
Min_in Max_in avg_in Min_out Max_out avg total

Figure 3.4: Twin Algorithms in RIO
not that easy. There are three possible choices:

e Usingavg_out_q

We could use a similar metric for OUT packets, namely, the weightechgeeof
instantaneous queue sizes of OUT packelly. This design has a problem because
the OUT packets represent the amount of opportunistic packets not provisioned for,
so the ISP has no idea about the appropriate amount of OUT packets to expect. For
example, a lot of arriving OUT packets may be due to the fact that there aréever

IN packets in the network so the sending flows can send beyond their servicesprofile
thus generating a lot of OUT packets; or this is because some non-conforming flows
are sending a lot of OUT packets to congest the network. In these two cases, the
congestion state of the network are very different. However, by examiniggut_q

alone, the routers do not have enough information to determine the proper congestion

State.

e Usingavg_in_q

We could useivg_in_q to determine the proper rate to drop OUT packets. At first,
this design seems counter-intuitive. However, it makes sense withotlosving
rationale. The amount of IN packets is what the network has provisioned for. If the

avg_in_q is small, then it means that the routers should haeeebuffers available

54

for OUT packets. Conversely, ifvg_in_q is large, then it means that the routers
should haveessbuffers for OUT packets. In other words, the average queue size for
IN packets can determine how much room the router has for OUT packets. Howeve
the problem with this particular design is that it works well whery_in_q is large;
when there are very few IN packets in the network, using this metric cahte a
very lenient treatment of OUT packets, resulting a long delay for arrivirgkeis

and eventually congestion.

e Usingavg_total

Finally, we come up with a design that has the benefits of the above two designs.
We useavg_total, or the average queue size footh IN and OUT packets as the
metric. For IN packets, we still usevg_in_q. This way, the dropping probability

of IN packets is determineanly by the amount of IN packets in the queue, but that
for OUT packets is determined by all arriving packets, regardless whaokKitndffic

mix. This way, the dropping algorithm is versatile, and can maintain short queue
length and high throughput no matter what kind of traffic mix the arriving packets

have.

3.2.3 Congestion Phases in RIO

Figure 3.5 illustrates RIO graphically. RIO divides up the router’s congestatea stto five
phase&

e Congestion free phase (phase 1)

The router is operating with no congestion: the amount of IN and OUT packets are
well below its capacity. It sees very short instantaneous queues and amwally s

average queue. No packets are dropped.

4We merged the two pictures in the previous graph into one. Howeweaisplnote that the X-axes of
the two previous pictures arevg_in andavg;otal respectively. In this graph, the X-axis é@g_total, the
average queue size for both IN and OUT packets.

55

P(drop)

1

_
.

3 —
Phase 1 | Phase 2 /

_
7
%
/ Phase 5
%
%

S =
, _ .
min_out max_out min_in max_in Avg_total

Figure 3.5: Phases in RIO Algorithms

e Congestion sensitive phase (phase 2)

The router suspects that the queue might be building up so it starts dropping packets
as congestion signals, however, it drops OUT packets only. During this phash, the |

packets only see short instantaneous queues and they are never dropped.

e Congestion tolerance phase (phase 3)

All OUT packets are dropped, but no IN packets are dropped. This is the buffering
phase for the IN packets before routers start dropping any IN packets. During this
phase, the average queue size is building up with the arriving IN packets.chicpra

max_out andmin_in can be the same, then, this phase is eliminated.

e Congestion alarm phase (phase 4)

All OUT packets are dropped. In addition, the router starts to drop IN packets as
a means to keep the queue from overflowing. This is an undesirable phase for ISP

because it compromises the ISP’s SLAs by dropping IN packets.

56

e Congestion control phase (phase 5)

The system is congested. The router drops both IN and OUT packets with probability
1. In this phase, the router has switched its primary goal from creating efitfier

tions among two types of packets to congestion control. The router degrades into a
drop-tail router. If the router constantly operates in this phase, it is a symetisat

either the system is under-provisioned or the parameters of traffic conditiBh@rs/

are not set correctly.

Phases 2 and 3 are the ideal operating phases for a router because both the instaintane
and average queue sizes are short, but the network link is highly utilized. Only OU
packets are dropped, which doesn’t compromise an ISP’s service profiles tigtibsners.
When operating in phase 1, the router sees little congestion but the link caigautywell
utilized. When the input traffic is predictable, an ISP should try to configurgygtem to

avoid phases 4 and 5, and operate mostly in phases 1, 2 and 3.

3.2.4 Creating Differentiation with RIO

The discrimination against OUT packets in RIO is created by carefhibosing the pa-
rameters uin_in, max_in, Paz_in), @and (nin_out, max_out, P.:_out). A RIO router

is more aggressive in dropping OUT packets on three accounts: first, it drops QT pa
ets much earlier than it drops IN packets, this is done by choosiingout smaller than
min_in. Second, in the congestion avoidance phase, RIO drops OUT packets with a higher
probability, by settingP,..._..: higher thanP,,.. ;.. Third, by choosingnax_out much
smaller thannax_in, RIO goes into congestion control phase for the OUT packets much
earlier than for the IN packet. In essence, RIO drops OUT packets first wiiketects
incipient congestion, and drops all OUT packets if the congestion persists. Oallass
resort, occurring when the router is flooded with IN packets, does it drop IN maoke

the hope of controlling congestion. In a well-provisioned network, this should never hap-

pen. When a router is consistently operating in a congestion control phase by dropping IN

57

packets, this is a clear indication that the network is under provisioned.

We had some heuristics in choosing the parameters for RIO for our simulation exper
iments. Usually, we decide the maximum tolerable delay for arriving padledtse the
router starts to drop OUT packets, and this would setrthie_out. For example, if we
decide that when arriving packets have an average queuing delay of 5ms, it i®tgtart
dropping OUT packets, then thein_out (in bytes) is set to be the multiple of 5ms and the
link bandwidth (bytes/sec). Similarly, we determine the maximum delayable for all
arriving packets before the router drops all arriving packets. For example, deeide that
when an arriving packet sees a 20ms of queuing delay this router is in a heavily sahges
state and all arriving packets have to be dropped, thetn;, in is set to be the multiple of
20ms and the link bandwidth. Similar heuristics are usedar_out andmin_in. We
usually usenin_in to be at least one half efax_in andmin_out to be at least one half of
max_out. The respectivéd’,,,.. for IN and OUT are chosen to be different enough to create
strong discrimination between the two types of packets. In our simulationsgti®, ... ;.
to be 0.02 and®,,,,.._o.: 10 be 0.5.

A conservative choice of buffer size of a router is at least the number of Eaickite
pipe i.e., the multiple of link speed and the longest round trip time of connections going
through this router. For example, if the link speed is 1.5Mbps, and the RTT of the longest

connection going through this router is 100ms, then the buffer size is 0.15M bits.

3.3 Tagging Algorithms

In this section, we discuss the design of tagging algorithms (or taggers). \weste-
scribe the desired attributes of an ideal tagging algorithm. Instead afagiraly a tagging
algorithm for all kinds of traffic, we focus on long-lived TCP traffic and descabeexpe-
riences in designing a tagger for such traffic. We describe a few previouspstamd the
difficulties we run into in each case. Finally, we describe a tagging dligorcalled Time

Sliding Window (TSW), which has overcome those difficulties. We use TSW tag@eir

58

subsequent simulation experiments.

3.3.1 Ideal Algorithms

In our design, taggers reside in edge routers and should be able to workmyitiipe of

traffic coming from the end hosts. A tagger doesantitvelycontrol the speed and spacing

of end host traffic, but onlpassivelymonitors and tags the end host traffic. The flow’s
behavior is therefore determined by the combined effect of its tagger and the dropping

algorithms in the network. We believe an ideal tagger should have the follownigudes:

e \ersatility

The ideal tagger should be able to work with all types of traffic, whether it iB,TC

UDP, bursty, long-lived or interactive traffic.

e Long-term Perspective

In designing different taggers, we are less concerned about the particular bedfavior

a flow over a short period of time, for example, during one round trip time. Rather,
we are concerned about eliciting the correct behavior of a flow—meeting theeervic
profile—over a long period of time, e.g., minutes, because this is the time graypulari
that ISPs are concerned about. That is, if we have a number of taggers to compare and
evaluate, the determining criteria is that whether this tagging algorithmaffected

the behaviors of a sending flow to achieve the target rate in SLA over a long period

of time.

This particular observation has two implications. The tagger should be able to 1)
induce a reduction in a flow’s speed by tagging if the flow has been sending above its
target rate. The more a flow exceeds the target rate, the more this flow skalédd s
back during the next period of time; 2) tolerate a burst of packets after the flew ha
been sending below its target rate. These two tagging behaviors are complgmenta

to each other, and they both require the ideal tagger to have some memory of the past

59

history. We define the first kind of memory as “negative memory”, i.e., the tagger
remembers that the flow has sent beyond its target rate and should be clamped down.
Similarly, we define the second type of memory “positive memory”, i.e., a memory

that tolerates a bursts of packets from the flow.

3.3.2 Tagging TCP Traffic

In the following, we focus on a particular type of traffic: long-lived TCP taffiVe de-
scribe the idiosyncrasies of a tagger for such kind of TCP traffic. We chose & tr
because it represents about 97% of entire Internet traffic. Most of file transfiethe In-
ternet are long-lived TCP traffic. However, while TCP’s behaviors ae8 understood,

the effect of a tagger on such traffic is not. Additionally, evaluating thecetiea tagger

on long-lived TCP traffic is relatively straightforward. Since a longetivi CP traffic flow
always has packets to send, a connection’s behavior depends only on the combined effect
of tagging and dropping algorithms, and not on upper-layer applications. If a flow doesn’t
reach its specified targeted rate, we can safely conclude that it asethe tagging and
dropping algorithms do not work well, not because the upper-layer applications do not have
packets to send. Therefore, the evaluating criteria is simple: we |able gitme average of

a long-lived TCP traffic after it has reached a stable state, and seelbsathis particular

flow comes to its target rate.

The pitfall in choosing on long-lived TCP traffic is that this might not be repredimet
of TCP traffic on the Internet. We think majority of the TCP traffic are ict fshort-lived,
transactional TCP transfers, given the popularity of the Web.

In previous sections, we have described how TCP adjusts its sending rate gsing it
congestion control and avoidance algorithms, and it usually keeps a sawtooth belmavior.
a DiffServ system, after having both taggers and droppers in place, the ideaidyebfa
a long-lived TCP connection trying to achieve an average targetRatould look like
what's depicted in Figure 3.6.

In Figure 3.6, the X axis is time, and the Y axis is the sending rate of a TCP connection.

60

Sending Rate

1.33R_t

0.66 R_t

rtt

Time

Figure 3.6: Ideal TCP Operating Epochs

At any point, the thick, dark line respects the sending rate of a TCP connectiom xEac
the figure symbolizes a packet drop. After a packet drop, the TCP connection cateits r
down by one half and starts increasing its rate again. The time between tket glops
is an epoch. In Figure 3.6, there are three epochs.

There are three things worth noting:

1. TCP keeps consistent sawtooth swings betwetdR, and0.66 R;.

2. Once TCP has gone beyohd3R;, part of its traffic is marked as OUT.

3. The OUT packets in TCP will eventually trigger packet drops or congestioraindic
tions from the network, which will lead TCP to cut it sending rate by half, and blagvn
t0 0.66 R;.

The choice ofl.33R; and0.66 R;, or the high sending rate when TCP traffic is marked
as OUT and the low sending rate TCP is reduced to, is not incidental. Let H déeote t
high sending rate, and L denote the low sending rate, and they have to meet thénfpllo
two equations:

(H + L)/2 =R, (3.5)

61

H/2=1L (3.6)

Equation 3.5 is because a TCP connection swings between the two sending rates should
achieve an average &f; over time; Equation 3.6 is because TCHisltiplicative decrease
window reduction algorithm always cuts the sending rate by oné&.hatflving the above
two equations, we will get the high sending rate tol33 R,, and the slow sending rate to
be (.66 R;.

Ideally, packet drops happen at the point when the TCP connection has just passed the
1.33R; threshold, and the tagging algorithm has started tagging some of the packets as
OUT. In actuality, this is hardly the case. For one, there will be a feedfelely between
the time when a packet is tagged and when a congestion signal is receivedisdtitdast
a round trip time. Secondly, the sending TCP might suffer from packet drops (cangesti
signals) before it reaches the33 R, point.

Let’s calculate the time it would take for a TCP connection to increasa fr66 12, to
1.33R;, or theperiodof the TCP epochs. We assume that TCP stays in the linear increase
phase, then each round trip time (RTT), the connection opens up its window by ong packe
or increases its sending rate bykt/rtt (bytes/sec). In Figure 3.6, the lightly shaded box
depicts the one packet increase in TCP’s window. The width of box is one RTT time be
cause TCP increases its congestion window by this packet during one RTT timeforage
the height of the box is the rate increase for the connection within this RTT tilmehvs
1pkt/RTT.

Therefore, to increase its sending rate from6 R; to 1.33R;, a connection would have

to take
(1.33R; — 0.66R,) 0.67TR,* RTT

Ipkt/RTT pkt

SWe are simplifying things here a little and ignoring the Fast Restmsihand Fast Recovery here, which
would create a short gap between two consecutive epochs.

62

round trip times, or
0.67R; x RTT?

pkt

seconds. In other words, the period of ideal TCP epochs is a function of both the téeget ra
R, and the RTT of a TCP connection. In order to give a precise indication of when a TCP
connection has exceeded its target rate and by how much, the tagger has to havdg@owle

of both the RTT and the target rai&, so it can accurately tag the traffic.

3.3.3 Token Bucket Tagging Algorithm

We have designed and tried a number of tagging algorithms. One possibility is a@simpl
token bucket, which works as follows. There is a bucket of ddpttmeasure in bytes)
and it is constantly being filled by tokens at a replenish rat® {ffytes/sec). However, the
number of tokens in the bucket never exceeddackets passing through the token bucket
tagger will be tagged as IN if there are enough tokens in the bucket for the sizekatpa
(bytes); if not, the packet will be tagged as OUT. For example, if the sendiagfdhe
flow is 2R, whereR is the replenish rate of the token bucket; then it would first tke?
time for the flow to drain all the tokens already in the bucket, during whi¢ipzakets will
be IN. After this point, every other packet will be an OUT packet.

One is tempted to use a simple token bucket tagging algorithm, since the stpiata
R matches the target rate, in an SLA well. However, when using a token bucket tagger
for general traffic, we run into two problems. The first is how to set the depithecd token
bucket. Without knowing anything about the traffic, the deptls difficult to configure.
Second, the idea of laucketis to havepositive memoryi.e., if the flow has been sending
below its target rate, then tokens will be accumulated in the buckettyath allow a burst
of packets up tdD after a while. However, missing in the design of a token bucket is the
negative memorylf a flow has been sending above its target rate for a while, then the
bucket will be exhausted, at this poirﬁ% percent of the packets are tagged as OUT.

However, whether the flow was twice exceeding the target rate or thres rceeding the

63

target rate is not recorded, or eventually, reflected in future tagging. Thisxdbeseet the
second attribute of an ideal tagger.

One could argue that the design of a token bucket tagger is to specify the minimum
guaranteed rate, and therefore, having a positive memory is sufficient. diteedesirable
attributes associated with token bucket controlled traffic that srteetrequirement of hav-
ing minimum guaranteed. In [47, 48], Parekh and Gallager show that if all enddwoses
use token buckets to pace their respective traffic, then the overaibrietan offer a delay
bound, no matter what topological configurations the network has. However, in this case
the token bucket algorithm is used &atively shape and control the sending rate of end
hosts, i.e., if the end host cannot receive a token, it won't be able to send. However
our case, the tagging algorithm cannot alternate the pace or speed of a traffinfl@ara
only tag packetpassively Therefore, a flow can still send beyond the bursfoand the
overshoot part should eventually be compensated for in the long run. That's why we think
in designing taggersiegative memorig important as well.

When using a token bucket tagger for a more specific long-lived TCP trafficreve a
experimenting with, we could have a better assessment of the depth of a token. biack
see this, we have to go back to Figure 3.6. When TCP is sending below its tamget ra
R;, it does not exhaust any of the tokens in a token bucket, so the bucket is full. Only
when TCP is sending beyorfg, is it going to use both the tokens being replenished and
tokens already in the bucket. At some point, the tokens in the bucket are exhandtinen
the tagger starts to tag packets as OUT. In order to keep TCP in the peefdct epochs
depicted in Figure 3.6, the token bucket should run out of tokens precisely at theieme
TCP exceeds$.33R;. This implies the depth of the token bucket should be the amount of
tokens that will supply the TCP connection fraia to 1.33R; in exces®f the R;. This is
the shaded triangle area depicted in the figure. The height of the triartgB318;, and the
width of triangle i50.33* R, RT'T? /pktsize, so the area of /2 height xwidth, measured
in bytes. It should not be surprising that the depth of the bucket has to be dependent on the

RTT of the connection.

64

However, we find that even if we have the right configuration’gfa token bucket
tagger still does not work well with long-lived traffic. This is because theetwhen a
token bucket tagger runs out of tokens does not coincide with the the time when TCP runs
at 1.33R; (or, when TCP is running ak,, the token bucket is full with depth). Itis in
fact very difficult to synchronize the state of the token bucket with the quiteagingiable
behaviors of a TCP connection. If the TCP connection starts with a burst of paakets
normally it would during the exponential increase phase, then this burst would teain t
token bucket initially, and then the token bucket would start tagging pselse®DUT before
TCP is sending at.33R;. Conversely, if the TCP connection has stopped sending for a
while, and then starts again, it is very difficult to make sure the tokekéius full when
the sending rate of TCP has reached

Our experience with a token bucket tagger has convinced us that we need to have a
tagger that has botbositive memorgndnegative memoryin other words, this is a tagger
that can remember the rate that a flow has been sending in some past tirag\ia@ther
itis beyond the target rate or below the target rate, and can gradually forgeghkistory
to reflect the new sending rate. What we also learned from using a tokentbagger is
that there are in fact two separate parts to a tagger: first part is tibh@stéimator, which
has to keep certain amount of past history, and second is the tagging algorithah, whi
tags packets based on the estimated rate. The second part is relatiggly We know
the estimated sending rate, the tagging can be done probabilistically with abpitgba

P = R;ft, when the estimated sending rdtehas exceeded the target rdtg So we set

out to design a good rate estimator.

At first, we used a low-pass filter rate estimator, similar to thaRiO. We could use a
weighted average of past sending rate and an instantaneous rate. Upon eathrpaake
we estimate an instantaneous ratg,,;, and calculate the average rate using the following

formula:

R=(1—w)* R+ wx* Ry (3.7)

65

where R is the estimated rate. Instantaneous ratg; can be easily calculated by
dividing packet size over the inter-packet arrival time.

There are two problems with this way of calculating the average sending Fats,
packets from end hosts can be bursty and arrive at the tagger back to back,isethe
packet arrival time can be zero, which makes calculating instantanetu eate difficult.
Second, this way of discounting past history is biased towards fast-sending fBince
each discounting event happens when a packet arrives, the faster a flow bergigcker
this flow forgets the past history. Conversely, if a flow has not sent for a wihiéerate
estimate still uses the rate that was recorded before the silent periodatter tmow long
the silent period is.

After a few more experiments, we eventually settled on a simple tagggogitim that
meets the above criteria. This algorithm, called Time Sliding Windsweiscribed in detalil

in the next section.

3.3.4 TSW Tagging Algorithm

The Time Sliding Window (TSW) tagging algorithm runs on the edge routers that tag pack-
ets as IN or OUT according to specific service profiles. It has two independepbr@nts:
arate estimatothat estimates the sending rate over a certain period of time, taghar

that tags packets based on the rate reported by the rate estimator. Téwtirateor accom-
modates both the burstinéssd silence often observed in TCP traffic, and smoothes out its
estimate to approximate the actual sending rate at the source TCP. Witttithated rate,

the TSW tagger determines whether the sending host has exceeded its targHtthage.
source is sending below the target rate, the tagger will tag all packel, #stthe source

is sending above the target rate, the tagger will tag those paicketsesf the target

rate as OUT. The tagger also tags OUT packets probabilistically to rededéelihood of

packets within a TCP window being dropped together in interior routers.

5The burstiness of TCP traffic can be caused by a phenomenon called “compres$ggBhdksvhich
acknowledgment packets arrive at the sender back to back, triggering data packetsént in reverse
direction as a burst.

66

The logical relationship of the rate estimator and the tagger is shown in tlogviiog

block diagram 3.7.

Rate

Rate
estimator

Tagged Packet

Packet - | Tagger Stream (IN and OUT)

Stream

Figure 3.7: TSW Block Diagram

3.3.5 TSW Rate Estimator

As discussed in the previous section, ideally, the decaying function embodied rat¢he
estimator should be independent of connections’ sending rates, but according tohime. T
is how the TSW estimator works. It estimates the sending rate upon each packs and
decays the past history over time. Since the decaying is according to tinteday factor

is the same regardless how fast the source is sending.

The algorithm in TSW is simple, as shown in Figure 3.8. TSW maintains threé loca
variables: Win_length, which is measured in units of timelvg_rate, the rate estimate
upon each packet arrival, add front, the time of the last packet arrivall in_length is
the only parameter that needs to be configurédj_rate and7'_front are local variables
that are updated each time a packet arrives. TSW only needs to execut@eésusflcode
for each packet. In essence, TSW remembers the amount of “histoW/iinlength and
decays it over time. TSW also incorporates the instantaneous arrivadfrétte arriving
packets.

Figure 3.9 illustrates how TSW calculatdsg_rate. There are three packet arrivals,
depicted as crosses on the time line, at time t1, t2 and t3, respectindiye figure, the

lightly shaded box depicts the TSW rate estimator. The width of the box idthelength,

67

Initially:
Win_length = a constant;
Avg_rate = connection’s target rate, R_t;
T front =0;

Upon each packet arrival, TSW updates it state variable follows:

Bytes_inTSW = Avg_rate * Win_length; Q)
New_bytes = Bytes_in_TSW + packet_size; 2)
Avg_rate = New_bytes / (now - T_front + Win_length); (3)
T_front = now; 4)

whereas, now is the time of current packet arrival, packet_size is the packet size.

Figure 3.8: TSW Rate Estimator Algorithm

along the Time axis. The height of the box is theg_rate; the higher the box, the higher
the estimateddvg_rate. The right edge of the box is thE_front, or the time of last
packet arrival. The bytes contained in the TSW is the area covered by tdedshax, or
the amount ofmemorythat TSW keeps about a particular flow.

TSW works as follows:

e Attime tl, TSW calculates a neWuvg_rate after a packet arrival. TSW is depicted

by a shaded box and the height of the box is the newly recafdedrate.

e Attime t2, a new packet (in dark) arrives. The area of the box depicts thefike

new packet in bytes.

e The TSW rate estimator spreads both the bytes in its memory and the bytes in the
new packet across the sum of Wsin_length and the inter-packet arrival time. This
is depicted in Figure 3.9 as both the shaded box and the dark box are spread across

the time span ofl{/in_length + (t3 - t1)).
e This is the decaying phase of the TSW, where TSW remembers onljihe-ate

68

attime tl

Win-length

X X

1. Time t1. This is what the TSW looks

t1 t2

at time t2 (line 1)

X >Iike having completed the calculations
t3 upon the arrival of packet 1. The height

. of the TSW is the current Avg_rate.
Time

Win-length
2. Time t2. Packet 2 arrives, the tall
X X X g striped bar depicts the packet size. TSW
t1 t2 t3 calculates line 1 of the algorithm
. described above.
Time

at time t2 (lines 2, 3)

I —

3. Time t2. TSW calculates the new
Avg_rate using lines 2 and 3 in the above

X X Xp- algorithm. Visually, TSW spreads the
t1 t2 t3 of the bytes in the TSW and the packet
Time size over the time span ((t2-t1)+
Win-length Win-length), where (t2 - t1) is the
at time t2 (line 4) inter-packet arrival time.
4. Time t2. TSW executes the last
line of the algorithm, effectively
X X > "forgetting" the number of bytes beyond
t1 t2 t3 a Win-Length ago. This is the decaying
Time .t of TsW.
at time t3
Win-length
5. Time t3. A new packet, packet
3 arrives, TSW updates the Avg_rate
X X X
and T_front again.
t1 t2
Time

Figure 3.9: The Operations of TSW Rate Estimator

69

of its newly calculated rate, and forgets everything beyomtdia length period of
time. This happens when TSW resets’itsfront to be the current time (line 4 in

Figure 3.8). A proof of this decaying function is given below.

e A new packet arrives at time t3. TSW restarts its cycle of incorporatiegnew

arrival rate and decaying the past history.

3.3.5.1 Decaying Function

We now present a proof for the decaying function embedded in TSW rate estimatdarSi
proofs can be constructed for non-constant arrival rates as well.

Let w denote the size of each packet,datenote the arriving interval between packets,
therefore, the sending rateus/$. Let L denote théV in_length of a Time Sliding Window
rate estimator. LeR?, denote the estimated rate by TSW at titgeand subsequently?;

denote the estimated rate by TSW upon receivthgacket. Then, after receiving the first

packet;
Ry = Ry(—2—) 4+ 2
P Lys T L+6
and, after receiving the second packet;
L w
fo =Rl T 155

or,

= (Bulgag) + (o)) (g +

L+6 L+6 L+6 L+6
L w L w
- %QHw)+L+5L+Q+L+6

after receiving thexith packet;

70

L n w L n—l w L n—2 w
R"_RO(L+6) +L+6(L+6) +L+6(L+6> Tt G

The lasth — 1 terms are of exponential series, so Equation 3.8 can be reduced:

L n w n—1 L 7
o = 3.9
i RO(L+6> +L+6.Z<L+6> (3.9)

1=0

Recall thaty"}" ¢', whereg < 1, is =2, or {1, wheren goes toco. Additionally, since

n= % the first term in Equation 3.9 becomes

L \" (1Y
L+%) \1+442

Therefore, Equation 3.9 is

n _(_L_ "
R, = R, <1i%> + iné. (11((“;))) (3.10)

whenn — oo, or when thelWin_length is usually much greater than the inter-packet

arrival rate,0, Equation 3.10 can be reduced:

1 w 1
lim R, = Rpe — + ° .
n— oo L+6—L
e L+6 (E_M)
or

lim R, = Rye + + .
e o

n—oo

In summary, ifiWin_length is much greater than inter-packet arrival ratehe TSW
rate estimator decays the sending &gy a factor ofe for everyWin_length time period,
and reflects the new sending rate. In other words, the TSW rate estimatysdeast
history by a constant factor over a certain period of time, independent of the canm'®ct

sending rate.

71

It should be fairly obvious then that the TSW rate estimator has positive memory
andnegative memorpecause it discounts both high sending rate (bursts) and low sending

rate (silence) equally over time.

3.3.5.2 Configuring the Rate Estimator

Configuring the variabléVin_length depends on two factors. On one hand, since TSW
keeps a long-term perspective on estimating sending rates, welWantlength to be

much bigger than the typical RTTs of a TCP flow. On the other hand, we want a value
of Win_length that is small enough so that the rate estimator is sensitive to the changing
rate of the connection. In our simulation experiments, we have TCP connections whose
RTT range from 30ms to 150ms, and we U&én_length to be between 0.6 seconds and

1 seconds. As a rule of thumb, choos@an_length that is an order of magnitude larger

than the RTT. Subsequent experimental studies by Seddigh, Nandy, and Pieda[45] have
used aVin_length value of 1 second for scenarios where the contracted traffic consisted

of multiple TCP flows with different RTT values.

3.3.6 Probabilistic Tagger

We use a probabilistic tagging algorithm to mark an arriving packet as either DUT

based on the rate that the TSW rate estimator reports. The probabilistic inggefigured

with atarget rate or R,. It marks traffic within the target rate as IN packets, and marks

traffic in excessive dhe target rate as OUT packets. Equivalently, if the estimateds&te i

the probabilistic tagger marks all arriving packets with a probabffity- (R — R;)/ Ry, if

R > R;. The algorithm for the probabilistic tagging algorithm is described in Figure 3.10.
Although we present a tagging algorithm to mark two types of packets, the tagging

algorithm can be easily extended to mark a few types of packets, correspondiffgrent

drop preference within a class in Assured Forwarding (AF) PHB. In [18]extend the

tagging algorithm to mark three types of packets: red, yellow and green. The oetbrs

yellow and green translate into DiffServ codepoints representing drop prece@el, and

72

Estimate sending rate R;

ifR<R_t;
mark packet as IN;

else
calculate P=(R-R_t) / R_t;
with P, mark the packet as OUT;

Figure 3.10: TSW Probabilistic Tagging Algorithm

0 of a single AF class, respectively.

3.3.7 Discussion

Both RIO and TSW use a probabilistic function to spread out the dropping and tagging
of OUT packets. This is to keep TCP operating in the more controllableFets&nsmit
phase of its congestion control algorithm. Current TCP implementations have a-mecha
nism called “Fast Retransmit and Fast Recovery” which can re@weuple of packets
lost within a TCP’s sending window. When this mechanism is evoked, TCP’s lwehavi
robust. However, if multiple packets within the same TCP window are tastent TCP
implementations rely on a timeout mechanism to recover lost packetanéotit can be
a long period of silence. When this happens, TCP’s performance is neither robust nor
predictable.

If the network is heavily congested, then the preferential dropping algorithm has to
drop every single OUT packets in order to control congestion (phases 2 & 3 in Hdi)re
In this scenario, we would like TCP to stay in the Fast-Retransmit phlseefore, the
tagger should avoid tagging multiple packets within a TCP window as OUT asltcee
the probability of all of them being dropped by a congested router. Thus, in designing
the two router algorithms, we incorporate a probabilistic function in both: when dropping

packets, interior routers will drop randomly, with fairly regular intdsjavhen tagging

73

packets, the tagger tries to space OUT packets evenly across time.oifitened effect
is to decrease the likelihood of consecutive OUT packets from the same comnaeing
dropped by a router.

It should be noted that although TSW is presented here strictly as a taggingtatgotit
can incorporate an early drop function and a discrimination mechanism a®itorlerve
as a policer. In this case, the mechanisms in RIO—early, preferemitapeobabilistic
dropping—are duplicated in TSW; the interior routers might simply use a drop-tail algo-
rithm or a RED algorithm to achieve the combined effect of RIO+TSW preseaitede.

3.4 DiffServ Mechanisms for TCP

The previous two sections have primarily focused on router mechanisms, howeyer
effectiveness of such schemes is limited by the impreciseness ang biabe window-
based congestion control algorithms of TCP. More specifically, the rate adjnsstheme
in the current Internet depends on a feedback loop completed by both TCP’s congestion
control algorithm and the router’s congestion avoidance algorithm. Thus, by changing
mechanisms in routers alone, the rate adjustment schemes are not veiyeeieprecise
in achieving the targeted SLAs.

The congestion control mechanisms in TCP have been very successful in deding w
the growth of the Internet. However, the mechanisms in the current TCP ardeadiy
suited for a DiffServ network in that they are not fair or robust enough to nieespeci-
fications of SLAs very well. This section focuses on mechanisms that carcbgporated
into TCP’s congestion control algorithm in meeting requirements of SLAs. \Wede-
scribe the problems with the current congestion control algorithm and then propose these

mechanisms.

74

3.4.1 Problems
3.4.1.1 Bias in Window Open-Up Algorithm

During the slow start phase, TCP doubles its window each round trip time (Rhd)dur-

ing the congestion avoidance phase, TCP increases its window by one packet per round
trip time. To see why this particular window open-up algorithm is biased aigking-

RTT connections, we can simply look at TCP’s algorithm during the congestion aveidanc
phase. In congestion control phase, TCP opens up its window by one packet (measured in
bytes) per RTT (measured in seconds). Letlenote sourcés average round trip time,
including queuing delays. After each RTT seconds, TCP increases its sendirfgprat
cwnd/rtt to (cwnd + 1) /rtt (bytes/sec). The longer the RTT is, the slower the TCP con-
nection is to increase its sending rate. If two TCP connections are sendirggsgme rate

prior to their respective drops, it would take the long-rtt connection a significkortger

time to its previous throughput than it does for a short-rtt connection. The same thing can

be said for TCP during its slow-start phase.

3.4.1.2 Not SLA-aware

As discussed in section 3.1, the valuessthresireflects the perceived network available
bandwidth to a TCP. In the current TGthreshs set using a set of mechanismssthresh

is initially set to a default value and is readjusted after each pakc&ptto be one half of the
cwndbefore the packet drop. A packet drop is recovered either through Fast Retrandm
Fast Recovery, or through a timeout mechanism. When a single packet ihéoBgdt Re-
covery and Fast Retransmit mechanism recovers the lost packetsiutigesnd bothcwnd
andssthreshare reduced to one half afvndprior to the packet drop. At that point, TCP
continues to operate in the linear window increase phase with a redgte@sh When
multiple packets are dropped within a window, current implementations of T@RAQR
usually fail to recover the lost packets and have to rely on a timeout mescha This is

because when packets are lost, TCP (Reno) receiver generates duplotatedladgment

75

packets (duplicate acks), and the TCP semntfersthat a packet has been lost. When mul-
tiple packets within the same congestion window are lost, the sender won't boghie
enough packets into the network to generate sufficient duplicate acks to triggeomaldi
Fast Recovery and Fast Retransmit. Therefore, ultimately, TC®thegimeout mecha-
nism to recover. However, for each successive packet loss, TCPaedsgsthrestby one
half, so when TCP eventually recovers from packet loss via a timeout mischaTCP
operates with a much reducedthresh

In the DiffServ architecture, bandwidth allocation is based on SLAs. Therlyiug
premise is that each entity is assured of its target throughput specifisdSbAtwhen con-
gestion is experienced, and can exceed such profiles when there is no congesticheWi
knowledge of these target throughputs, the ISP is supposed to provision the network so that
all service profiles are satisfied. However, since DiffServ radiestatistical multiplexing
of shared resources and not strict admission control, there will still bescaken either
the ISP fails to provision properly or certain routers experience incipient cbioge In the
DiffServ domain, when a TCP connection loses a packet, how sissthidestandcwndbe
set? The underlying DiffServ premise implies that the ideal behavior of TC#risdiuce
its sending rate when congestion is experienced, but can recover to itsttameghput

robustly. In other words, TCP should be SLA-aware.

3.4.1.3 A Lack of Robustness

As described in Section 3.4.1.2, the mechanisms TCP has in recovering packiety-e+us

ther Fast Retransmit or Fast Recovery or a timeout mechanism—are notfaah robust.

Some recently proposed changes to TCP include the use of Explicit Congestion Notifica-
tion (ECN) mechanisms to improve TCP’s ability to recover lost peckeCN de-couples
congestion control notification from packet drops and can be implemented in both end host
TCPs and RED gateways [22]. In this proposed scheme, RED routers mark an &8N bi

a packet’s header instead of dropping the packet, and TCP responds to the explicst conge

tion notifications instead of inferring congestion from duplicated acknowledgmehis

76

mechanism has the advantage of avoiding unnecessary packet drops and unnecegsary dela
for packets from low-bandwidth delay-sensitive TCP connections. A second adeait
the ECN mechanism is that TCP doesn't have to rely on coarse granularitycbddtsto
retransmit and recover packet losses. TCP-SACK, on the other hand, usegpkeely
different acknowledgment mechanism from the current TCP. TCP-SACK escgener-
ates a bitmap of packets it has received so the TCP-SACK sender eatividy retransmit
packets. TCP-SACK also improves TCP’s robustness.

There is a similarity in the ECN mechanism and the DiffServ mechanioth allow
routers to mark one bit in packet headers to convey information on the data p&GN,
this information is between routers and the end host TCP; in DiffServ, tifidgmation
is between edge routers and interior routers. If we decide that the end host TG ca
modified to incorporate some additional mechanisms, then this change will cortiete
feedback loop between routers and end host TCP in a DiffServ architeaisteag that
in the ECN mechanism. The question is whether the end host TCP can take adwdntage

additional DiffServ information from the routers.

3.4.2 Mechanism 1: Fair Window Open-Up Algorithm

In the DiffServ architecture, each entity (potentially at the finestglarity of a single TCP
connection) is associated with an SLA that defines a target throughput rate. Alttieugh
SLA definition has not been finalized by the IETF DiffServ working group, therevaoe t
potential definitions to choose from. Each definition will in turn determine the Uyidgr
window open-up algorithm. We use the fairness index proposed in [36],

F o (2?21 xi)z

B n(Xi, 27)

wherez; is the resource allocation to thih user. This fairness index ranges from O to
1, and is maximized when all users receive the same allocation. This inéléx iwhenk

users equally share the resource, and the othdrusers receive zero allocation. Examples

77

of possible definition of resource allocation include response time, throughput, throughput
times hops, and so on [36].

In the first definition, an SLA includes both a target throughput as well as a range
of RTT values within which the target throughput can be me&tW,q g, (MINRTT,
max RTT)). The bigger the RTT value, the smaller the corresponding target throughput.
For example, an SLA could be (1Mbps, (50ms, 100ms)), which says that if a connection’s
round trip time is between 50ms and 100ms, it should expect to receive 1Mbps of band-
width. A network domain with similar provisioning can offer other SLAs lilkkMbps,
(20ms, 50ms)) and (0.5Mbps, (100ms, 200ms)). Corresponding to this definition, the un-
derlying TCP window increase algorithm is that TCP increasestt packets per round
trip time, wherec is a constant, chosen as a scaling factor, and RTT is TCP’s round trip
time estimate variable. Using this algorithm, a connection that goes throbgttleneck
gateways will sharé/k of a bottleneck link bandwidth as a connection which goes through
one bottleneck gateway. This definition will meet the criteria of fairnegex when the
resource allocation is defined as throughput times the number of gateways.

In the second definition, an SLA simply includes a target throughput,..;), which
implies that the ISP is to assure the target throughput regardless of the rounché&ipft
the connection. The underlying algorithm for this definition is that TCP increasest>
packets per round trip time, where RTT is the TCP round trip time estivaaiable. Using
this algorithm, whem connections are sharing a single bottleneck gateway, the window
open-up algorithm allows all connections to recelye of the bottleneck bandwidth, re-
gardless of their RTT. This will maximize the fairness index when the resaaitocation
is defined as throughput of individual connections.

The related SLA definitions and their corresponding window open-up policy and fair-
ness criteria are tabulated in Table 3.1.

It should be noted that both alternatives to the current window algorithm of TGP sti
fall under thelinear increaserule. Only that the linear increase is bypackets per RTT

(the first policy), or byc packets per second (the second policy).

78

Table 3.1: SLAs and the corresponding TCP mechanisms to achieve fairness

| | Policy 1 | Policy2 |
SLA [BWiarget, (min_RTT, max_RTT)] | BWigrget
Definition Throughput * # of routers Throughput
Window Algorithm c*rtt c* rtt?

3.4.2.1 Choice ot

Another way of viewing the change in TCP’s linear window increase algorithm ifothe
lowing: instead of increasing TCP’s congestion window by one packet each ropnd tri
time, the proposed mechanism opensawnd by one packet during a certain standard
unit of time. If all TCP implementations adopt such algorithm, then they wilhatease
their windows at the same rate regardless of their RTTs. Thus, the choigewdfich
determines the value of such standard unit of time is a crucial one. For examgles, i
chosen to be 100, then, the standard unit of time is implicitly set to be 100m& {12 =
100%(0.1)? = 1pkt). In other words, all TCP implementing the above proposed mechanism
will be increasing their congestion windows at the same rate as a currentifil#&menta-
tion with an RTT of 100ms. Essentially, this algorithm make those TCP commsctvith
RTT less than 100ms less aggressive than the current implementations, andithd$ET
greater than 100ms more aggressive than the current implementations.

Two potential problems arise from this. The first is how to choose a value that ca
be universally agreed upon. The technical merits of the proposed mechanism have been
argued, but the ultimate choice lies in the policies by which the choieentdikes sense.
One problem of choosing a relatively smal(less than 100ms, for example) is that for
long-RTT connections, the new algorithm results in an effective rate inc@asn greater
than during the slow start phase. For example, if a 1sec TCP connection uses thegropos
algorithm, it means it will open up its window at the rate of one packet each 1Q@mh
is 10 packets each RTT. Depending on the current number of packets outstandingethis ra

can be greater than that during the slow start phase, which is alreadyagery his can lead

79

to a congestion collapse. The problem with choosing a relatively laigéhat this makes
TCP window increase algorithm very slow and if this algorithm is univeysadlopted, it
might result in low utilization of link bandwidth immediately after a cong@sepoch.

One possible solution is to define a set of inclusive RTT ranges, and within which,
modified TCP connections will open up their window at the same rate, but eachhraage
a different window open rate. A reasonable heuristic is that the longer RTT]dhers
the window increase rate is because the longer the connection, the more resouifees (b
space, or packets in the pipe) it would take. Such ranges of RTTs can besmsilfied
in the SLAs as the ISP will set a lower expected throughput for longer connections. The
range of RTTs can be chosen to reflect actual market concerns. For examplayldee-
fine four ranges of RTTSs, inclusively: (0, 50ms) for LANs and WAN range of connections;
(50ms, 100ms) for intra-continental connections; (100ms, 200ms) for inter-continental con-
nections; and (200msy) for non-tether connections. Of course, such policies have to be
universally agreed upon and standardized. These ranges define the particultralgad

the corresponding values for Table 3.2 lists one possible way of choosing constant

Table 3.2: Choice of in TCP fair window algorithm

| RTT range | ConstanCC' | Equivalent RTT||

(0, 50ms) 1024 31.2ms
(50,100ms) 256 62.5ms
(200,200ms 64 125ms
(200ms,00) 4 500ms

Another problem with the choice eflies in incremental deployment of such algorithm.
When TCPs with different implementations operate in a heterogeneous envirQiiGexst
observing the fair algorithms might be at a disadvantage. Fortunately, DifiSeter
mechanisms offer a solution for migrating TCPs to the fair algorithms. $etdh 4.8.6

in Chapter 4 for a detailed discussion of this point.

80

3.4.3 Mechanism 2: Settingssthreshor TCP

We propose the following changes to reflect the change in the underlying premise from a
purely best-effort service model to a DiffServ model. Each TCP is madesawf the upper-

layer policy SLA, and the targeted ratg,,, .., that it is supposed to be running at. This
can be done via a signaling protocol between end host TCP and an edge router or a policy
server. Then TCP sets sthresk(in bytes) as the multiple of its knowR;,,,.: (bytes/sec)

and its estimated RTT (sec). There are two instances where TCisstthreshInitially,

before TCP starts transmitting packets, it estimates its rounditmgpduring its three-way
handshake. With this initial estimate of RTT, it can set its inisisthresh This helps to
“gauge” the operating point of TCP. Additionally, we propose that TCP setssitgesh
similarly when congestion is detected. When TCP detects congestion via ienhiecit

or explicit mechanisms, it resets isthreshto be the multiple of its knowiR,,, .., and

the estimated RTT then. Since RTT might change during the course of a TCP connection,
the ssthreshwill change as well. TCP reducesvndto be one-half of the previous value
before the packet drop, as it would in current implementations. This has the effec
reducing instantaneous sending rate of TCP connections to alleviate temporanticonges

but allows each TCP connection to quickly throttle back to its target opgrabint.

3.4.4 Mechanism 3: ECN-enabled TCP in a DiffServ Domain

Mechanisms similar to ECN could be deployed in the DiffServ architectimstead of
dropping packets, the RIO gateway can also take advantage of the ECN mechgnism
marking them. A RIO gateway can apply its preferential algorithm in whicharks an
OUT packet as experiencing congestion with a much higher probability than an Ketpac
[9]. Both the ECN bit and the IN/OUT bit will be copied by the transport-layeenssr
and relayed back to the sender. The TCP sender has to be able to recognize fpetvo t
of packets (IN and OUT), and respond to ECN bits in them differently.

When an OUT packet arrives back at the TCP sender with the ECN bit matled,

81

dicates that the RIO gateway is operating in the congestion sensitive phase @ha
Section 2.1). When a RIO gateway deploys the ECN mechanism as the congestion no-
tification mechanism, TCP window reduction should be no more aggressive thanawhen
packet is dropped in the current TCP implementations. We recommend that dGéese

its cwndto be one half of the curremtvndvalue, and resetssthresto be the the multiple

of R...sec and RTT. Depending on the value ofvnd and ssthreshprior to receiving the

ECN signal, TCP can be operating in either the linear increase mode or the expbimenti
crease mode again. In either case, the reduction in the window size will iadeocgporary
reduction in TCP’s sending rate to alleviate congestion, but still keep dpgeating close

in the targeted operating point.

When an IN packet arrives back at the TCP sender with the ECN bit marnked, i
dicates that the RIO gateway operates in the congestion control phase (phase:4 & 5
Section 3.2.3), meaning that the gateway has seen persistent long queues andl iforce
mark both IN and OUT packets with probability 1. When such packet is retgie TCP
sender should react to the congestion signal more drastically. We recomméenidCtha
reduces it€wndto be one packet, and ressthresho be the multiple ofz,,,.. and RTT.
This is the same window reaction as in the current implementation when atgekbeen
dropped but TCP starts in its slow start phase with a configssdtresh This will cause a
more drastic reduction in TCP’s sending rate, but since thess¢wesltwill be greater than
the newcwnd TCP will quickly recover to the target operating point using exponential in-
crease window increase algorithm. Table 3.3 tabulates the combined mecsanishoth

TCP and routers—proposed in this chapter.

3.5 Reuvisit Designs and Discussion

As mentioned in Section 2.4.5, we started with our second design, i.e., modifying router
mechanisms only. We developed RIO and TSW algorithms and did simulation expésim

Our simulation experiments demonstrate that with RIO and TSW in placdf@ebi net-

82

Table 3.3: Summary of mechanisms in routers and endhost TCP

[| TCP sender | Tagger | RIO | TCP receiver
ECN-capable | Turn ECN bit off Mark IN/OUT if (ECN bit off) { | Copy ECN and
bit according mark packets | TOS bits to
to profile differentially; ack pkts
if (ECN) { }
if (IN) else{
cwnd = 1; drop packets
else differentially;
cwnd = cwnd/2; }
ssthresh = byte equi. ofy; * RTT);
}
else{
increaseewndby ¢ * RT'T?;
}
ECN-incapablel Turn ECN bit ON Mark IN/OUT Drop packets Copy ECN to
bit according differentially ack pkts
to profile

if (packet dropped]
ssthresh = byte equi. ofd; * RTT);
cwnd = cwnd/2;

}

else{
increaseewndby ¢ * RTT?;

}

83

work can create discriminations between two types of packets. The desighvéfand

RIO is also versatile enough to deal with different mixture of traffic. paeameters of
RIO can be chosen as to create strong discriminations under different netwratkions.

The simulation results show that there are still discrepancies betwee8LIAs and the
achieved targeted rate.

We then realized that much of the difficulties in meeting the specific Siedsn TCP
itself. As discussed in the previous section, the current version of TCP (FRenejther
robust nor fair. We have experimented other versions of TCP: TCP-SACK|[15TEH-
newreno[30], or TCP with ECN mechanism [22]. These three versions impro?sTa-
bustness in recovering packets, but do not change TCP’s window increaséhaigthiere-
fore, they are also biased against long-RTT connections. Then, we proposed mashanis
that can both improve TCP’s robustness, fairness, as well as make I&Rvare—the
three TCP-DiffServ mechanisms. This DiffServ-enhanced TCP can wemkwell with
both RIO and TSW. Figure 3.11 illustrates how different versions of TCP fathéenRo-

bustness and Fairness space.

Fair | TCP w/ DiffServ-TCP TCP wi/ DiffServ-TCP
mech 1
TCP-SACK
TCP-newreno
Unfair TCP-Reno TCP w/ ECN
TCP w/ DiffServ-TCP
mech 3
Non-robust Robust

Figure 3.11: Different Versions of TCP on Robustness and Fairness Scale

In hindsight, the realization that we have to change TCP should not be surprising. Since

the bandwidth allocation scheme in the current Internet relies on a congestitirafek loop

84

and mechanisms in both routers and TCP, and the essence of Assured Forwatalieg is
design the bandwidth allocation model, then, only changing mechanisms in routerstwill
be particularly effective. Changes have to affect end host congestion comchlamsms
as well.

If this is the case, shouldn’t we have used alternative designs? For examgesigm
1 proposed in Section 2.4.5, we incorporate tagging algorithms with end hosts and modify
both end hosts and routers. In fact, once we realize we have to modify the end G&sts
anyway in design 2, the difference between designs 1 and 2 is small. Basioaldiffer-
ence is where to do the proper authentication and verification. In design 1, wpaonatar
TSW in end hosts, and have a signaling protocol between end hosts and edge routers. Ther
is also an additional checking and verification function in edge routers. Igrni@siwe in-
corporate TCP-DiffServ in end hosts, TSW in edge routers, but we also nsigdaling
protocol between end hosts and edge routers to inform the enhanced TCP the SLA. The
checking function is done by TSW.

Design 3 avoids the authentication and verification problem altogether by mdwng t
new bandwidth allocation scheme to the networks entirely, and leaving end hdatsDE
to do flow control only. This is a more radical change. In essence, this proposaltdsli
that congestion control should be left in the network itself and not in the end hosts. Thi
meets the requirements of a commercial network really well because theshttansport
protocol is leftpassivelysending and receiving packets through network, so there is no
chance that end hosts can flood the network, as they could in today’s Internet.

It should be noted that the mechanisms proposed in this chapter are not limitejto des
1. They are a group of mechanisms that can provide fair and robust allocation of bdmdwi
meeting specific requirements of SLAs, and they are versatile enough teitledifferent
type of traffic mix. They can be applied in all three designs, regardless whattiimate

DiffServ networks looks like.

85

Chapter 4

Evaluation

We use extensive simulations to evaluate our proposed mechanisms. This cheggatpr
the evaluation results. At a high level, we organize this chapter in thenfisigpmanner.
We categorize the proposed mechanisms into two groups—mechanisms in routers (RIO
and TSW), and mechanisms in end hosts (TCP-DiffServ). In the first seimoilation
experiments, we apply the router mechanisms (RIO and TSW) to a Diff-Seraidpand
evaluate various aspects of the DiffServ architecture.

For this set of simulations, we go into depth for each simulation scenario.t\lg s
the sender-controlled scheme, in which TSW taggers are installed in thessgyuters
of the domain and RIO droppers are installed in the interior routers of a domastiqise
2). Using a similar setup, we evaluate how router mechanisms work with a rabust
version of TCP, TCP-sack (Section 3). We also consider the receweretled scheme, in
which TSW taggers are installed in tlegressrouters of a domain, and RIO droppers are
installed in the interior routers (Section 4). We then consider the effesdsfaded taggers
on individual connections (Section 5), and the impact of taggers on an aggregation of TCP
connections (Section 6). Finally, we study how TCP connections co-operate with non-
responsive connections after we apply the RIO and TSW algorithms to a domaiio(Sec
7).

We conclude from the above scenarios that though a DiffServ domain with router mec

86

anisms can differentially allocate network bandwidth according to the fig@cervice
profiles, the extent to which such differentiation can be achieved is noyslpradictable.
The limitations, as we discussed in Chapter 3, are in TCP itself.

Our subsequent experiments are studies on the combined effects of applying both the
TCP-DiffServ mechanisms and the router mechanisms. We compact the tsomsiEome-
what with one simulation run going through four network congestion states: start-up,
under-provision, recovery and over-provision. We conclude that neither group of mech-
anisms, by itself, is sufficient to achieve robust, precise allocatidrapéiwidth. However,
when both groups of mechanisms are applied to a DiffServ domain, the domainazatall

bandwidth resources in a robust and precise manner under a variety of traffid@osdit

4.1 Simulation Methodology

We use thend1] network simulator to evaluate the proposed router mechanig\sss

a discrete event simulator for network research. It provides substantial $dppdICP,
router queuing mechanisms, and various topologies, making it ideal for evaluatidgfthe
Serv architecture. We developed modules for RIO, TSW, and TCP-Diff®echanisms,
and compiled those inties Simulations scripts are written in Tcl and based on some early
research work in [24]. Each script defines a topology, sets attributes obrietlevices,
defines parameters, and describes network events during a period of time fiigmee
section describes the common simulation setup we used; each of the follosatigns
(Sections 4.2 - 4.7) uses additional topologies as well. The complete simulatiots serd

modules can be found at http://www.cs.princeton.edu/ wfang/papers.html.

e TCP Connections

Unless otherwise specified, all TCP connections are configured as followsaréhey
TCP-Reno with support for Slow-Start, Fast-Retransmit and FastvReg The
packet size is 1000 bytes and the TCP timer granulatifyt{ck variable in the de-

fault.tcl file) is 0.1 second. The receiver's advertised window is usualhfigured

87

large enough so that it is never a limit on the TCP sender’s window. The TCP con-
nections start at a slightly different time from each other, but all withim first 5
seconds of the simulations. Each simulation simulates 20 seconds of network condi-

tion unless otherwise specified.

¢ Interior Routers and RIO Algorithm

We implement the RIO algorithm in interior routers. We present simulatisalt®

in tables to save space, with the parameters of RIO described in teddense The
parameters are presented in the formatefi{_in, mazx_in, Py..,_in) for IN Packets,

and (nin_out, maz_out, Py oy o) for OUT packets. The thresholds are measured
in number of packets, and the dropping probability is a fraction. We use heuristics

described in Section 3.2.4 to choose the RED and RIO parameters.

e Edge Routers and TSW Algorithm

We implement the TSW algorithm as a module on the access link to edge routers. In
the simulator, a tagger is implemented as a subclass of a drop-tail link (drapg)ta

Data traffic from sending hosts will reach a TSW tagger before arriving atiter.

In an actual router implementation, a TSW tagger should be a module sitting after
packet classification and before the forwarding function. Logically, our sitoula
implementation is equivalent to a router implementation as long as thereyisoal

connection on every single access link, which is the case for all our simulations

e SLAS

We define a very simple SLA, which is “average TCP throughpuRpfrom this
host to anywhere”, wherg; is a target rate. The Round Trip Times (RTTs) used in
the simulations range from 20ms to 150ms. In our simulations, we try to push the

envelope by choosing very differeits and very different RTTs.

e Evaluating Metric

88

As the evaluating metric, we use the average throughput each host's TCP achieve
Average throughput is calculated at the receiver’s side after a TCP commdzs
reached a steady state. We consider the simulations to have reachedyasti¢a

after 5 seconds. Average throughput is defined as the total amount of data received
over total transfer time. Total amount of data is the data packets TCPpessznts

to upper layer applications, excluding all unnecessary retransmissions. Tlkee clos

the average throughput is to the respective target-fateghe better a scheme works.

Presentations

Simulation results are presented in a number of ways. Most throughput results are

presented in tables to save space. In addition, we use two types of graphsr&hey a

— Throughput graphs
These are graphs of achieved throughput vs. TCP’s round trip time. Each data
point on the graph is a throughput for a particular TCP connection with a certain
RTT. Each data point is calculated by averaging the results from 5 simmilati
runs. These graphs are to illustrate the effectiveness of the router meukanis

under different network scenarios.

— TCP window oscillation graphs

These are graphs of TCP congestion windowr{d vs. time in a typical sim-

ulation run. They are to illustrate the robustness of different versions of TCP

Topology

We use the topology depicted in Figure 4.1, in which, ten hosts are connected to ten
other hosts, sharing a common link between routers A and B. Eachiphbas(a TCP
connection to its peer host{ 10). Altogether, there are 10 TCP connections. The
ten connections are of different RTTs. They can be divided into five groups. The two
connections in each group have the same RTTs, but different target RateBpr

example, connections 0 and 1 both have 40ms round trip time, but have 5Mbps and

89

1Mbps as target rates, respectively. Each of the five groups has a differ&ritdri
the other groups. The RTTs for the five groups are 20ms, 40ms, 50ms, 70ms and

100ms, respectively.

Figure 4.1: Topology for Sender-based Scheme

@ : TSW Tagger

) ‘RO

4.2 Sender-based Scheme

This section presents two sets of simulation experiments. In Section 4.2Usexgmu-
lations to illustrate the network bias against long-RTT TCP connections. tioSet2.2,
we presents the results of experiments using sender-based scheme to akkbwatd re-

sources in a DiffServ domain.

4.2.1 Network Bias Against Long-RTT Connections

As discussed in Section 3.4.2, current Internet, when allocating resourcediaasagainst
long-RTT connections. This bias is due to TCP’s window increase algorithm. Duatty e
RTT, TCP opens up its window size by exactly one packet (in bytes). The longer the RT
(seconds), the slower TCP increases its sending rate (bytes/second=).aAICP con-

nection reduces its sending rate following a packet loss, it takes a longz&iiection a

90

longer time to recover to its original sending rate than a short-RTT connedfioouters

drop the same number of packets from along-RTT connection as from a short-RTT connec-
tion, the short-RTT connection will receive more bandwidth than the long-RTT cdonect
over time.

We simulate this with the following network configurations using the topology in Fig-
ure 4.1: bottleneck link A-B has a link speed of 6Mbps, and there are ten TCP conngctions
each with a different RTT. All connections start sending within the firs¢ 8econds of
simulation. The simulation results are listed in column 3 of Table 4.1. Tipeotise RTTs
for the connections are listed along with the average throughputs they achievsiriiis
lation reflects current situation in the Internet, where most hosts impieh&P-Reno. We
make two observations. First, the network bandwidth is distributed accotdlithgg RTTs
of TCP connection and there is a strong bias against long-RTT connections. Second, in
TCP-Reno, the congestion window oscillations are usually drastic and unpreeictaid
result, the throughput TCP-Reno can achieve is usually unpredictable, e.g., conn2ctions
& 3 have the same RTT, but differ significantly in their throughput (22%).

Table 4.1: TCP’s bias against long-RTT connections. Link A-B capacity = 6Mbps. RED
gateway

Conn#| RTT (ms) | Achieved Bandwidth Achieved Bandwidth
by Reno-TCP(Mbps) by Modified TCP (Mbps)
0 20 0.829482 0.623805
1 20 1.0932 0.620590
2 40 0.541590 0.600449
3 40 0.694729 0.655939
4 50 0.690377 0.674704
5 50 0.538202 0.527582
6 70 0.430481 0.503961
7 70 0.384579 0.620259
8 100 0.389476 0.671800
9 100 0.419572 0.511367
Total 6.011688 6.010456

Further, we want to verify that this bias is caused by TCP’s window ineredgo-

91

rithm. The current TCP window increase algorithm works as follows: upon reweaach

acknowledgment packet, TCP sender calculates its congestion wowiogas

cwnd+ = 1/cwnd,

Therefore, after receivingwnd number of acknowledgment packets, TCEXgndis in-
creased by one packet. Since within each RTT, there are alevaysnumber of packets
outstanding, this algorithm essentially increasesdby one packet each RTT.

If the algorithm were to increase TCP window by a constant factor regardlese of
RTT (algorithmically, this is to increasR1'T? for each RTT period of time), then all TCP
connections would equally share the link bandwidth. This hypothesis can be verified using

thenssimulator. We change TCP’s window increase algorithm to be

cwnd = cwnd + ¢ x RTT?

for every acknowledgment packet received, and re-run the same simulatierre3ult of
this simulation are listed in column 4 of Table 4.1. Itis clear that the ljamat long RTT

is eliminated, as the 10 connections sharing the 6Mbps link have roughly 0.6Mbps each.

4.2.2 Sender-based Scheme

In this section, we study the case of a sender-based allocation scheme pl&méent the

RIO algorithm for interior routers and the TSW algorithm for edge routers, and incatgor
them intons one TSW tagger for a TCP connection. We use the topology depicted in
Figure 4.1. Each of the 10 sending hosts has a contracted SLA and a respective target
rate, R;, of either 1Mbps or 5Mbps. We choose very differéhs to experiment how well

the over system deals with varying target rates. The 10 TCP connectionsaaisoery
different round trip times. The sum of all;s is 30Mbps, and the bottleneck link speed is

set to be 33Mbps. This allows 10% buffering during the congestion. The respéttve

and RTTs are listed in columns 2 and 4 in the table.

92

We run two simulations: one simulates the current Internet, where none of the con-
nections has an SLA or a tagger, and the other simulates a Diff-Serv networke Wde
connections each has its respective tagger and SLA. RIO is used in the hxktlentr A.

A note on how to choose RED and RIO parameters. As discussed in Section 3.2.4, we
use heuristics in choosing the RED and RIO parameters. For example, wel3gtaiRim-
eters to be (10, 30, 0.02), or 10 packetsras (the minimum threshold), and 30 packets as
mazx (the maximum threshold). This is equivalent to saying that when the average queue
size exceeds 2.4ms, the RED queue starts to drop packets rantloBiiyilarly, by the
time the average queue size exceeds 7.2ms, RED gsngestion avoidancphase and

drops all arriving packets. RIO parameters are configured similarly.

Table 4.2: Comparison of current Internet scenario and a DiffServ network revitter
mechanisms. Link BW=33Mbps. Parameters for RED router: (10, 30, 0.02); parameter
for RI1O:(40,70, 0.02) fofNs and (10, 30, 0.2) faDUTs. Used TCP-Reno

| Conn#| RTT (ms)| Current Internet(Mbps) R, | DiffServ (Mbps) ||

0 20 7.04873 1 2.27289
1 20 6.22214 5 5.7619
2 40 2.83662 1 1.28011
3 40 2.28316 5 5.26757
4 50 2.62307 1 1.21957
5 50 2.81556 5 5.18823
6 70 1.61073 1 1.34831
7 70 1.57837 5 412794
8 100 1.64488 1 0.99633
9 100 1.85132 5 4.12563
total 30.51458 31.588476

Table 4.2 compares the results from these two simulations. Column 3 listshisyed
rate for all TCP connections in the current Internet. The network bias againdRIbhgon-
nections is pronounced. Similar to simulations in Section 4.2.1, TCP window osrilat
are drastic and unpredictable. Column 5 lists the throughputs achieved by the comgecti

in a Diff-Serv environment. The total link throughputs in both simulations are cosbpa

110 packets of 1000 bytes is 80,000 bits, divided by 33Mbps, gives 6to2.4ms queuing delay.

93

30.51Mbps vs. 31.6Mbps, or 92.5% vs. 96% link usage.

We observe that all being equal, the network bandwidth in the current Internet can be
distributed according to the RTTs of the connection, and strongly in favor of coonecti
with short RTTs. The throughput achieved by TCP is subject to congestion in roaters a
can be very unpredictable. In contrast, a DiffServ network with routernaeisms can
allocate network capacity according to the respective service profilasstirs have con-
tracted for. For TCP connections with the same service profiles but diff&ERs, (e.g.
connections 1 and 9), there is a bias against long-RTT connection, but the bias has been
significantly mitigated (though not eliminated) by having the router mechanismade pl
Most importantly, now the system can provide quite different throughputs to diffecent
nections with reasonable assurance.

Figure 4.2 presents the throughput graphs for these two scenarios. For each graph,
we run five simulations of the exact same configuration; each simulation usedamnty
generated seed, and we get a slightly different result each time. Eazipaiat on the
throughput graph is the average of 5 simulations runs. In both graphs, the X axis is the
TCP’s round trip time, measured in ms; and the Y axis is the achieved throughput of
connection, measured in Mbps. The left graph plots the throughput in the current Inter-
net scenario. Since every two TCP connections have the same RTT, theveoadlata
points for a given RTT. The achieved bandwidth decreases as the RTT incr8dmss
is a varying difference in the two throughput data points for a given RTT, showing the
unpredictability in the current Internet environment. The right graph plots the\sahie
throughput with their respective target rates. The target rates are 1 Mbs Mibgs, in
dotted lines. A visual interpretation of how well a scheme works is how closadhieved
throughputs are to the dotted lines. It is clear that the network bias is siile/igs shown
by the slowly decreasing throughput line as RTT increases. However, suchasidseen

much mitigated since the slop is not as deep as that in the left graph.

94

Figure 4.2: Throughput Graphs for Current Internet and DiffServ Scenarios

—+— R_t=1Mbps
- -- 1Mbps
—e— R_t=5Mbps
- ——- 5Mbps

Throughput (Mbps)
Throughput (Mbps)

O T T T 1 T T — 1 1
20 40 60 80 100 20 40 60 80 100
RTT (ms) RTT (ms)
Bandwidth Distribution in the Current Internet ~ Bandwidth Distribution in a DiffServ Network

4.3 DiffServ with TCP-sack

TCP-Sack[15, 23], or TCP with Selective Acknowledgment, has a veryréliffeapproach
for handling acknowledgment packets from the previous versions of TCP, TCP-Reno or
TCP-Tahoe. In previous versions of TCP, the receiver acknowledges the higipeshse
number of a data packet it has received. When a packet is lost, either due to atednge
gateway or a lossy link, the receiver sends duplicate acknowledgments (duplotate
upon receiving successive packets after the lost packet. For examplekéft giecis lost,
the TCP receiver receives packets #3, #5 and #6. The respective acknowteggqiets
the receiver sends would be #3, #3 and #3. The first ack #3 acknowledges the receipt of
packet #3 but the last two acks indicate that packet #4 has not been received.

The sender infers from the duplicate acks that a packet had been lost, andmé@sans
the presumably lost packet, usually, the packet immediately after the drikelthuplicated
acks acknowledge. In the above example, the sender would retransmit packet#4uéia
retransmission also results in a reduction in congestion windemd and subsequently, a
reduction in sending rate.

Since in TCP-reno the information as to which packet was lost is imgliiteyed to

the sender, the sender can odigducewhich packet has been lost. This leads to either

95

unnecessary retransmissions of packets that did not get lost, or successiggore of
congestion windowewnd and eventually, @wndso small that the sender can no longer
recover the lost packets. The sending TCP will have to wait for a timeogcver the
lost packets, and start from Slow-Start again, with a much redsstdesh This has a
much more drastic effect on TCP performance, and a DiffServ domainttriggoid it by
adding probabilistic functions to both the tagging and dropping schemes.

TCP-SACK uses a completely different approach than that of TCP-reno: thevaekno
edgments now contain complete information as to which packets have beeredeard
which have not. This complete information allows the TCP sender to retrapsiciiets
selectively, and avoid unnecessary retransmits. The TCP senderscarabver multiple
packet losses within a window by only reducing the congestion window once. Therefore,
TCP-sack is more robust than TCP-reno, and can stay in the Fast-Reitrghsise and
avoid using timeouts to recover packets. Because the end host is bettedahdaet-
work congestion signals, RIO parameters can be chosen to ateagerdiscrimination
against OUT packets, without fearing consecutive OUT packet drops will dridehost
TCP to timeouts. This way, the overall system can create strongeratiffations among

connections if end hosts use TCP-SACK.

4.3.1 Results

We use the same topology as in the previous section. We replace TCP-reno with TCP
Sack and repeat those simulations. There are two scenarios as wellstisedmario is to
simulate the current Internet; the second case is to simulate a Diifi®erain. The taggers
are installed on the access links. Table 4.3 lists the simulation results.

The two primary observations from Section 4.2.2 (sender-based, TCP-Renbpktill
here: in the current Internet, network bias against long-RTT TCP connectionslengyvi
and in the DiffServ network, allocation of bandwidth is roughly according to thgetar
ratesR;. However, TCP-sack is morebustin handling congestion signals, so we use (10,

30, 0.5) for OUT packets, compared to (10, 30, 0.2) in the previous section. When using

96

Table 4.3: Using TCP-Sack in Diff-Serv. Parameters for RED routergldr, 30, 0.02), and
those for RIO routers are (40, 70, 0.02) for INs and (10, 30, 0.5) for OUTs. BW=33Mbps

| Conn#| RTT(ms)| Current Internet(Mbps) R, (Mbps) | DiffServ(Mbps) |

0 20 6.74918 1 1.33071
1 20 6.47331 5 6.13875
2 40 2.64113 1 1.2283
3 40 3.09084 5 5.38146
4 50 2.17542 1 1.13145
5 50 2.65581 5 5.20269
6 70 1.75715 1 0.98892
7 70 1.90942 5 4.92265
8 100 1.12921 1 0.89991
9 100 1.49762 5 4.68653
total 30.0791 30 31.9114

TCP-SACK, the overall system can achieve better throughputs, i.e., throughpuéseha
closer to the targeted rates.

In the following sections, whenever possible, we will use TCP-SACK asrtéhest
TCP.

4.4 Receiver-based Scheme

In DiffServ, the receiver-based scheme complements the sender-lchesokes A receiver-
based scheme can be implemented if 1) end host TCP implementations understaeitl Expl
Congestion Notification (ECN) semantics; and 2) REjateways also understand ECN
mechanism, and thayark instead of drop, packets when congestion occurs. Taggers for
the receiver-based scheme are installed on the access link from gemgdosts to the
network, or the egress routers of the network.

In the receiver-based scheme, a TSW tagger monitors the arriving triaéans from

the network to the receiver, and resets the ECN bit of a packet if theahrate is less

°Note: the interior routers are RED gateways, not RIO gateways, because patkets arrive at an
interior gateway, they are haven't gone through any taggers and areankédn There is no differentiation
among them.

97

than the subscribed service profile (SLA). This means that even if a packeataused
congestion at the network, as long as this packet is still within the reteesawice profile,
the network should have provisioned for it, and the receiver's TSW tagger wmil aff
the ECN bit so no congestion signals are sent to the end host TCP. If the aativabr
higher than the subscribed service profile, then the tagger will only turn off the IHCN
for packets which are within service profile, and leave thosxces®f the service profile
intact. This way, packets arriving at the TCP receiver with their H@ft still on are
those that are beyond the receiver’s proéiled have caused congestion in the network.
These packets will cause the TCP sender to slow down by the ECN mechandthug,
control the sender to conform to a sending rate that is within the receivevies@rofile.
Because there are no explicit packet drops, and the congestion control signalstinarkne
is clearly conveyed to end hosts, the end hosts typically operate totigestion avoidance

phase. Therefore, the overall system is responsive.

4.4.1 TSW Tagger for Receiver-based Scheme

Figure 4.3 contains the pseudo code for the TSW tagger in the receiver-controllegesche
A receiver-controlled tagger turns off ECN bit in a packet if the traffic inaisexceeded the
corresponding service profile (SLA).

We use a similar network topology as that in Section 4.1. The only difference ighthat
profile meters are installed at the receivers’ side, instead of aetindess’ side. Figure 4.4
illustrates the receiver-controlled scheme. Configurations for this topol@gharsame as

those in Figure 4.1.

4.4.2 Results

The simulation setup for end hosts is the same as in the sender case. Wedesimala
scenarios: one is the current Internet and the other is a DiffServ domain Witmdrters

and TSW taggers for the receiver-based scheme.

98

Estimate sending rate R;
causedCong = whether ECN bit in pkt is set;
tagged = mark_packet (pkt, R);
if (causedCong) {
if (! tagged)
turn ENC bit off;
else
[* leave ECN bit on, do nothing */

}
/* else, if it didn't cause congestion, let the pkt through */

subroutine:
mark_packet (pkt, R)
{
if R<Rt, return0;
if R > Rt, with Pmark = (R - Rt)/Rt, return 1;

Figure 4.3: Receiver-based TSW Algorithm

99

Figure 4.4: Topology for Receiver-controlled Scheme

=
(=)

. receiver-based
TSW Tagger

@:RIO

W ®
®J>
®EOGEREEO

Table 4.4: Receiver-based scheme in a DiffServ domain. BW = 33Mbps. RED isuter
configured with parameters (15, 40, 0.02). Used TCP-Reno with ECN semantics

Conn #| RTT (ms)| Current Internet R, (Mbps) DiffServ with
(Mbps) RIO+TSW(Mbps)
0 20 6.18994 1 2.71758
1 20 5.69154 5 5.38844
2 40 3.30375 1 1.65922
3 40 4.06525 5 5.02699
4 50 2.67894 1 1.3496
5 50 3.19256 5 4.83154
6 70 2.16772 1 1.04867
7 70 2.28335 5 4.7517
8 100 1.84308 1 0.868532
9 100 1.46514 5 4.41489
Total 32.88127 33 32.057

Table 4.4 lists the results from two simulation runs. Column 2 is the roundinigst
(RTTs) of TCP connections. Column 3 is the results using the current Internbamems
when both TCP and routers use ECN mechanisms. Column 4 is the respectiveatasie
or R,, for the ten connections, and Column 5 is the achieved bandwidths in a DiffServ

environment using the receiver-based scheme.

100

—+— R_t=1Mbps
——— 1Mbps
—— R_t=5Mbps
- —-- 5Mbps

Throughput (Mbps)
Throughput (Mbps)

o771 71 71 1 T T — 1 1
20 40 60 80 100 20 40 60 80 100
RTT (ms) RTT (ms)

Bandwidth Distribution in the Current Internet ~ Bandwidth Distribution in a DiffServ Network

Figure 4.5: Bandwidth Allocation Using Receiver-based Scheme

The two primary observations from the previous two sections still hold herediyts
network (column 3), short-RTT connections have a clear advantage over long-RTTteonne
tions. In the DiffServ architecture (column 5), the network allocates badttiveiccording
to the target rates};, in times of network congestion, and there is a bias against long-RTT
connections. The overall throughput is slightly better than that of the sender-lursedes
32.88Mbps vs. 30.51Mbps (Table 4.2). The reason is that the receiver-controlled scheme is
essentially a scheme using ECN mechanisms, which is a more robust wagRotoTdeal
with congestion. Like TCP-SACK, TCP’s ECN mechanisms can adjust T&&Ading rate
responsively but not drastically, so the overall system utilizationgbéi.

However, the receiver-based scheme is different from a sender-belsecha which
also uses the ECN mechanism. If TCP sending hosts use ECN, and the RIO algorithm
is changed to be marking instead of dropping packets, we would have seen a rdsult tha
is quite similar to that of TCP-SACK. In this case, sending end hosts atestralgainst
packet drops, and RIO can therefore be configured to discriminate against Okidtgac
without driving end host TCPs to timeout and eventually Slow-start. In trevecbased
scheme, however, whether the packet is an IN packet or an OUT packet is nat kbo
the time when network congestion happens. This piece of information is only known when
the packet iexitingfrom the network, therefore, there is no way for the network to create

stronger discrimination against receiver-pay packets. Therefore,eaveclbased scheme

101

doesn't provide better service differentiations, but only better network atitn.

Figure 4.5 gives the throughput graphs for the receiver-based scheme. For each graph,
we run five simulations of exactly the same configuration. Each simulation uaed@mly
generated seed, and we get a slightly different result each time. Eazipaiat on the
throughput graph is the average of 5 simulations runs. In both graphs, the X axisisa TCP’s
round trip time, measured in ms; and the Y axis is the achieved throughput of a donnect
measured in Mbps. The left graph plots the throughput in the current Internet scenario.
Since every two TCP connections have the same RTT, there are two data poatgven
RTT. The achieved bandwidth decreases as the RTT increases. Therejisg ddference
in the two throughput data points for a given RTT, showing the unpredictability in the
current Internet environment. The right graph plots the achieved throughput with their
respective target rates. The target rates are 1 Mbps and 5 Mbps, in doégdA visual
interpretation of how well a scheme works is how close the achieved throughputs are
the dotted lines. It is clear that the network bias is still visible, as shbythe slowly
decreasing throughput line as RTT increases. However, such bias has beenitigatiean

since the slop is not as deep as that in the left graph.

4.5 Cascaded DiffServ Domains

If the DiffServ architecture and mechanisms are fully deployed in theratea packet
might traverse multiple DiffServ domains to reach its destination. BEzifftserv domain
has ingress routers implementing tagging algorithms and interior routers immuiiege
dropping algorithms. Therefore, a packet from a sending host will traverse throsgh a
ries of taggers and droppers before reaching its final destination. For examplel Host
Figure 2.2 will go through two taggers, one in AS 1 and another in AS 2 to reach its fina
destination, Host 2.

The taggers in each DiffServ domain interpret service level agreenf@h#ss). Each

SLA specifies a bilateral agreement between two neighboring domains or bedvwk®en

102

main and an end host. The closer the tagger is to the sending source, the moreobgpplica
the service level agreement is to a particular source. At the edge of the ke8It A can

be specified for a particular host or source. However, in the middle of the netav@kA
between two domains is only applicable to the aggregated traffic between twairdgm
and therefore, less effective on any particular connection.

In a well-provisioned network, an ISP could contract a profile from its dowastrisP
(data flows from source to destination, or from upstream to downstream) equajreater
than the sum of all upstream profiles it has contracted out. This would ensurel tivat al
packets from upstream will remain IN packets throughout. However, thides oot the
case, because not all IN packets from upstreamsintiultaneouslyo through the same
downstream egress router to the next domain. The outgoing traffic can be just asetisper
as the incoming traffic. Therefore, ISPs often contract a service pte§ighan the total
sum of all upstream profiles, and hope the multiplexed traffic from all upstreansas will
still be less than the downstream service profile. If this is the case |thpackets could
be turned into OUT packets at the ingress router of a downstream domain. Indtisise

we study how cascaded taggers affect bandwidth allocation in a DiffSemoament.

45.1 Setup

The simulation setup is listed as following:

e Topology

There are two topologies used for this set of simulations. Figure 4.6 is what e cal
the “controlled” case. There are five taggers, and one for each of the five camsecti
Figure 4.7 is what we call the “compared” case, where five connections go through
their respective taggers as well as an aggregated tagger in a subsequent domain.
the compared case, each connection first traverses its individual taggeppedm

router A, an aggregated tagger in router B, and finally a dropper and a congested

bottleneck in router C.

103

5.6Mbps @
/ @

A B
®

: TSW Tagger @

() :RIO

® ©
oy

Figure 4.6: Cascaded DiffServ Domain: the Controlled Case

10Mbps 10Mbps 5.6Mbps

A B C D
& 3

i

: TSW Tagger

O RO

© w@\@

Figure 4.7: Cascaded DiffServ Domain: the Compared Case

104

In both cases, the individual access link from a host to the first router is 10Mbps.
Each individual tagger is set to have a 1Mbps target rafe (The RTTs of different
connections range from 30ms to 70ms. In the compared case, links from router A
to router B, and from B to C, are 10Mbps each. Link C-D has a speed of 5.6Mbps,
which is a 12% mark-up over the sum of allocat®g (5Mbps). Link C-D is the

only bottleneck. For the aggregated tagger in router B, we try different tartgst. ra

The corresponding connections in the two cases have the same RTTs.

e RIO Parameters

TCP packet size is set to be 500 bytes. In the controlled case, the configurations
for RIO router (router A) are: (7,14, 0.02) for IN packets and (5, 10, 0.5) for OUT
packets. This is equivalent of setting 5hamd 10ms average queuing delays for the
respectivenin_in andmaxz_in; and setting 3.5ms and 7ms average queuing delays
for the respectivenin_out andmax_out. In the compared case, the configurations
for RIO router (router C) are: (7, 14, 0.02) for IN packets, and (5, 10, 0.5) for OUT

packets.

e Cascaded Tagger

The cascaded tagger at router B uses a TSW algorithm. The algorithm difégrdysli

from the one presented in Chapter 3: it estimates the average rate of incding |
packets only, and when this estimated rate exceeds the contracted &heget, it

tags IN packets into OUT packets. In other words, the cascaded tagger does not
re-mark incoming OUT packets, but may turn IN packets into OUT packeltei
aggregated traffic exceeds the SLA. The OUT packets from upstream repraseht
profile traffic, which the network is not provisioned for. Therefore, there is no reason
for a cascaded tagger to re-mark an OUT packets into an IN packet.udgqvas IN
packet could be marked to be OUT if the upstream domain has contractedl®o litt

service profile from the downstream domain, and the downstream domain can change

37 packets of 500 bytes each is 28,000 bits, divided by 5.6Mbps, is egnivafi5ms queuing delay.

105

some IN packets to OUT packets as to meet the specifications of a Hisité&al he
cascaded tagger marks packets probabilistically, just as TSW. In ouradionylthe

cascaded tagger has a target rate of 5Mbps.

45.2 Results

The throughput results from two simulations are listed in Table 4.5. The respétTivs
and target rate®; for the five connections are listed in columns 2 and 3. The results for
the controlled case are listed in column 4 and those for the compared casealemn 5.
The simulation results show that if the cascade tagger has a service prdfikedticient
for all upstream traffic, then its impact on end-to-end TCP throughput is rathegiégl

To further confirm this, we traced the number of IN and OUT packets tagged lat eac
individual taggers (columns 6 and 7 respectively). We then counted the number of IN
packets which are re-marked by the cascaded tagger into OUT packetsb3ékve that
out of the total 1185%IN packets that go through the cascaded tagger, only 158 are turned
into OUT packets. The 158 IN-turned-into-OUT packets are randomly distdtarteong
the five connections. Since the number of re-marked packets is significanty fiean
the number of OUT packets marked originally by the individual taggers in the upstream
domain (column 7), the impact of a cascaded tagger is small.

We also simulated the above scenarios when the cascaded tagger has atargkt
4Mbps, which is significantly less than the sum of all upstream individual profiles r@-
sults of that simulation are listed in column 4 of Table 4.6. In this casejrtherg factor
is the bottleneck link speed of 5.6Mbps and not the cascade tagger. Each connettion stil
achieves a throughput similar to that listed in Table 4.5. Having an additional treans
tagger has no effect on the throughputs if the network is well-provisioned. Thiscsise-i
ilar to a well-provisioned network where the contracted profile is less tharottleneck

link speed, in which case, a connection can go beyond its profile.

4The sum of all IN packets from upstream taggers, or 11858 packets, mieysvbich was dropped at
Link A-B.

106

Table 4.5: Results for cascaded domains: the controlled case and the compardgiotas
tleneck link speed = 5.6Mpbs. The cascaded tagger has a target rate of 5Mbps. Used
TCP-SACK

Conn#| RTT(ms)| R;(Mbps)| Controlled Compared | # of IN pkts | # of OUT pkts
Case (Mbps) Case (Mbps

0 30 1 1.30024 1.22604 2549 437

1 40 1 1.09194 1.17093 2450 323

2 50 1 1.09401 1.01913 2413 480

3 60 1 1.06269 1.107 2362 255

4 70 1 0.95335 0.932333 2084 193
Total 5.502227 5.455433 11858

However, one should realize that if there is additional congestion in the deanstr
then the under-contracted profile will have an impact on individual connection’s eewldto-
performance. We simulate this scenario by changing the bottleneck link spe&d3iD)
from 5.6Mbps to 4Mbps; the results are listed in column 5 of Table 4.6. In this dase, t
link speed becomes a limiting factor, and the case is similar to that whder-provisioned
network where neither connection can achieve its target profile.

We should note here that when downstream congestion happens, other competing traffic
sharing the bottleneck bandwidth of 5.6Mbps, then the re-marking by the cascaded tagger

will have an effect on upstream traffic. We study this case in Section 4.6.2.

Table 4.6: Cascaded tagger case, when the network is under-provisioned

Conn #| RTT(ms)| R, (Mbps) | The link C-D is 5.6Mbpg When the network
but the cascaded taggeris under-provisioned
is 4Mbps Link C-D = 4Mbps
0 30 1 1.20459 0.874846
1 40 1 1.17409 0.794778
2 50 1 1.00739 0.740870
3 60 1 1.0069 0.835148
4 70 1 0.954569 0.734181
Total 5.347539 3.979823

107

4.6 Aggregated Profiles

In this section, we study how a Diff-Serv domain allocates bandwidth whéit isaaggre-

gated from a number of TCP sources. Aggregated traffic has different ch&tcsdirom

that of an individual TCP connection. Usually, aggregated traffic is more staindedloes

not have the pronounced sawtooth swings typical in a TCP connection. Aggregated taggers
are taggers located at routers where traffic has already been mixedtitulaay we are in-
terested in studying the distribution of bandwidth among connections, and how agdregate
traffic taggers can control the individual traffic rate. We study these two igmssnh two

separate sender-based simulations.

4.6.1 Taggers inthe Center of the Network: Aggregated Traffic

We use the topology presented in Figure 4.8. The simulation setup is similar tm that
section 4.2.2 except now the taggers are for a number of hosts instead of an individual host
(Figure 4.1). There are two taggers, one tagger is for aggregated traffic fromOhdst2,

3 and 4, and the other is for packets from hosts 5, 6, 7, 8 and 9. The topology is used to
study behaviors of individual connections when there is an aggregated tagger for a number
of TCP connections.

The bottleneck link A-B has a link speed of 5.6Mbps. The two aggregated taggers are
configured with target rates of 4Mbps and 1.5Mbps, respectively. Hosts O - 4 $leare t
aggregated tagger 1 (4Mbps), and hosts 5-9 share the aggregated tagger 2 (1.5Mbps). We
compare two scenarios. In the first scenario, hosts 0-4 each has a TCP camrsdwiring
aggregated tagger 1; simultaneously, only host 6’'s TCP is active and using tagdez 2. T
results are listed in column 4 of Table 4.7. In the second scenario, all hostsatiave TCP
connections. The first five TCPs (from hosts 0-4) share tagger 1, and the secondRise TC
(from hosts 5-9) share tagger 2. The results are listed in column 5 of Table 4.7.

When we apply a service profile and a tagger for aggregated traffic, the mareztpa

are distributed over the flows which are currently sharing the same service profile. Since

108

5.6Mbps

A B

AN

: TSW Tagger

@:Rlo

Ow& W@
L C]

Figure 4.8: DiffServ Domain with Taggers for Aggregated Traffic

Table 4.7: Taggers for aggregated traffic. Topology 4.1. Bottleneck link A-B = 5.6Mbps.
Parameters for RIO routers are (12, 30, 0.02) for INs and (2, 15, 0.5) for OUTs

Conn# | RTT (ms)| R; (Mbps) Scenario 1 Scenario 2
individual rate (Mbps) individual rate (Mbps)

0 20 1.14091 1.19158

1 40 1.0318 0.891620

2 50 0.960004 0.787156

3 70 0.643260 0.575159

4 100 0.392509 0.564507
| Subtotal | 4 4.168483 | 4.01 |

5 20 N/A 0.443117

6 40 1.41626 0.347406

7 50 N/A 0.320943

8 70 N/A 0.235642

9 100 N/A 0.232686
| Subtotal | 1.5 1.41626 | 1.57979 |
H Link Total \ 5.6 5.584743 \ 5.58979 H

aggregation allows more statistical multiplexing and better link utilirg the service pro-
file at edge routers can be better utilized than when there is only one flow usipgpfiie.
On the other hand, since the tagged packets are distributechdl@ws, the aggregated

tagger loses the fine control it has when tagging only one connection, therefore, bandwidth

109

allocation among all flows will be quite similar that in the current Internet

This is what we have observed in our simulation. First, among the connections that
share the same tagger and service profile, the distribution of the bandwidth @ribrim
according to the RTT of each connection, just as in the current Internet. For exampl
scenario 1 (column 4), as the RTT increases, the achieved throughput decfeaisesc-
tion 4, with an RTT of 100ms, achieves 0.392Mbps, whereas connection 0 (RTT=20ms)
achieves 1.14Mbps. Similarly, in scenario 2, within each service profiledyandwidth is
shared primarily according to the RTT of each connection.

Second, the effect of having a tagger and a service profile is to ensure the connec-
tions achieve the contracted share of bandwidth when aiineof-profiletraffic is present.

For example, in scenario 1, connection 6 has a 1.5Mbps service profile, and achieves
1.416Mbps. Had connection 6 not have such a profile, it would have achieved a through-
put comparable to that of connection 2 (1.01318Mbps), since they have the same RTT of
40ms. Combining these two effects together, we observe that in scenaria(cb), tag-

ger 1 ensures all its five connections achieve an aggregated rate of 4.01Mbps, and tagge
2 ensures that all its five connections achieve an aggregated rate of 1.5Mbp# &#ithi
service profile, however, the bandwidth allocation is according to the RT Tisdofidual
connection.

Third, the aggregated service profile is better utilized by an aggregation of.fl6ar
example, in Scenario 2, when the second aggregated profile is used by five senuka
TCP connections, the overall throughput (1.579Mbps) is higher than it is used by one indi-
vidual TCP (1.41Mbps, a little less than the target rate). This is because atjgndgads
to greater statistical multiplexing, which leads to better service prafilization.

The aggregated case here is very simple: we only consider aggregation of five TCP
flows. By no means, this is representative of Internet aggregation tradevever, we
think the simulation has demonstrated the essential points for the aggregates qasél
We think as the aggregation becomes larger, the real question is what would bghthe ri

profile for an aggregated traffic afflows, each with some targeted rate. A simple “add’em

110

up” algorithm to calculate the aggregated profile will not be very efficient.

4.6.2 Combined Effect of Aggregate Taggers and Cascade Taggers

In this set of simulations, we study how different taggers—individual, aggregated, a
cascaded—affect the performance of individual TCP connections. We compare the perfor
mance of five connections sharing one aggregated tagger with that of five connectibns, ea

with an individual tagger.

4.6.2.1 Setup

e Topology

We did two simulations, one controlled case, and one compared case. The two
topologies are depicted in Figure 4.9 and Figure 4.10, respectively. In the controlled
case (Figure 4.9), connections 0-4 traverse through two adjacent domains, and there-
fore, two taggers, one individual tagger (on the access link) and one aggregated tag-
ger (in router B). Connections 5-9 share an aggregated tagger (in router C) in this
scenario. In the compared case (Figure 4.10), the set up for connections 0-4 is the

same. However, in this case, connections 5-9 each has an individual tagger.

In both cases, each access link (from host to the first router, either Aigra®)Eth-

ernet link, with 10Mbps. The speed of links between routers are shown in the figures.
Connections 0-5 each has an individual profile of 1Mbps, and the aggregated profile
for them is 5Mbps, enforced by the aggregated tagger at router B. The bottleneck in

both cases is the link between routers D and E, which is 10Mbps.

In the controlled case, router C has an aggregated tagger of 5Mbps, shared among
five connections 5-9. In the compared case, connections 5-9 each has an individual

tagger of 1Mbps, same as that of connections 0-4.

e RIO Parameters

111

5.6Mbps 10 Mbps 10 Mbps

P E

@@@ég£%®®®

. TSW Tagger

() :RiO

Figure 4.9: Compare Aggregated Taggers With Individual Taggers: Controlled Case

5.6Mbps 10 Mbps 10 Mbps

P~ E

@@@ég£%®®®

. TSW Tagger

() :RiO

Figure 4.10: Compare Aggregated Taggers With Individual Taggers: Compare Case

112

In both the controlled and compare cases, parameters for the RIO algoritbortén r

A are (7, 14, 0.02) for INs—7 packets forin_in, 14 packets fornaz_in and 0.02

for Pyop_in—and (5, 10, 0.5) for OUTs. On a 5.6Mbps link, an average queue of 7
packets is equivalent of 5ms of average queuing delay. In both cases, the pasamet
for the RIO algorithm in router D are (7,18,0.02) for INs, and (5, 15, 0.5) for OUTs.
TCP packet size is 500 bytes. We use TCP-Sack.

e Cascaded Tagger

The cascaded tagger at router B uses a TSW algorithm. The algorithm difégrdysli

from the one presented in Chapter 3: it estimates the average rate from kitpac
only, and when this estimated rate exceeds the contracted target;ratéags IN
packets into OUT packets. In other words, the cascaded tagger does not mark up-
stream OUT packets, but may turn IN packets into OUT packets if the gaigpe

traffic exceeds the SLA. The cascaded tagger marks packets probabllisticéthe

simulation, the cascaded tagger has a target rate of 5SMbps.

4.6.3 Results

The results from the above two cases are tabulated in Table 4.8. Resunit#hé controlled
case, where connections 5-9 share an aggregated service profile, arenlistddmn 4.
Results from the compared case, where connections 5-9 each has an individuwa servi
profile, are listed in column 5.

Performance of connections 0-4 is fairly consistent in both the control and the cesnpar
cases. Each achieves a rate close to the 1Mbps target rate subscrimdsenvice profile.
The more interesting results come from the bottom half of the table, where throughputs of
connections 5-9 differ considerably when they have different taggers. When the imgge
for aggregated traffic (the controlled case, column 4), the network bias ad@ugsRTT
connections is very visible. In contrast, when the taggers are for each indicmuadction,

such bias is ameliorated.

113

Table 4.8: Aggregated taggers and cascaded taggers. Bottleneck link speed= 10Mpbs.
Used TCP-SACK

Conn#| RTT (ms)| R; (Mbps)| Aggregated Tagger| Individual Tagger
Achieved Bw (Mbps), Achieved Bw (Mbps)
0 30 1 1.02679 1.09818
1 40 1 0.943344 1.02829
2 50 1 0.949632 0.979580
3 60 1 0.929313 1.00836
4 70 1 0.901795 0.950515
H subtotal\ \ 4.750874 5.064925 H
5 30 1 1.46652 1.06329
6 40 1 1.1965 1.00333
7 50 1 0.936831 0.980113
8 60 1 0.831452 0.876147
9 70 1 0.752801 0.855813
| subtotall | | 5.184104 | 4.778693 |
H Total \ \ \ 9.934978 \ 9.843618 H

There are two things worth noting. First, a careful trace of the IN and OUTqtad&r
both cases lead us to draw the same conclusion as in the previous sectioon(8dxti an
additional cascaded tagger does not have a significant impact on the traffic peiderma
as long as the cascaded tagger has sufficient profile for all upstream traffend in the
controlled case, connections 5-9 are sharing one aggregated service profile aggréie a
gated tagger can not regulate individual TCP flows very well. TCP window graphg sho
less frequent, but more drastic window swings. In contrast, connections O-hasel in-
dividual tagger, drops at regular intervals, and the individual taggers regulate TdBwv
swings very well. This can be explained as follows. When a connection has adindi
ual tagger, the rate estimation is sensitive to the rate change in thisdndivdonnection,
hence, the tagging mechanism is sensitive as well. For example, when the cameget
ceeds its target rate, the tagger is likely to tag packets as OUT dmatedy. This way, the
overall feedback mechanism—individual TSW tagger and RIO—is responsive. lrastnt

when a connection is aggregated with other traffic before reaching a taggistjctbmul-

114

tiplexing of all flows will damperbursts from individual flows, so the aggregated tagger is
not sensitive to any particular individual flow. Therefore, the overalllfeek mechanism

will not be as accurate as that when there are individual taggers.

4.7 Non-responsive Connections

4.7.1 Non-responsive Connections in a DiffServ Network

Non-responsive connections refer those that do not have any congestion avoidance mech-
anisms and do not slow down when their packets are dropped at the routers[26F In t
current Internet, when non-responsive connections are present, TCP, or any tréaysgor
protocol that implements congestion avoidance mechanisms, is at a disadvantaigge. W
TCP backs off upon detecting congestion, non-responsive connections will get theispacket
through while continuing to cause congestion.

There has been research work done on 1) limiting the effect of non-responsive con-
nections on TCP connections (or congest-control compatible transport-layer prot@gols);
detection mechanisms of non-responsive connection so network can penalizedresm, s
to provide proper incentives to a fair network resource utilization. Towdrdditst goal,

John Nagle in [46] proposedFair QueuingmechanismFair Queuing and the later, more
elaborated work by Demers et. al.[13], propose to queue the connections (or flows) sepa
rately, thus, any given packet sees only the queuing delay created by pactetssame
connection and is shielded from potential damaging effect from other connectioms. Fa
gueuing and its variations are mechanismstdatenon-responsive connections. Towards
the second goal, Floyd[25] proposed algorithms to study the drop statistics of the RED
algorithm, thus identifying and detecting non-responsive connections.

In this section, we study the effect of non-responsive connections in a Diff8einon-
ment. Our proposed mechanisms utilize the congestion feedback loop betweenandters
end host TCP. When a connection exceeds its contracted service profildficstraarked

by TSW taggers as a mixture of IN and OUT packets. When the network is congekied, R

115

routers either send implicit signals to end hosts by dropping packets, or they>qaiuit e
signals to end hosts by marking packetfiaging experienced congesti(lEeCN bit). If the
transport layer protocol in end host implements congestion control algorithms liReth€

end host slows down, and eventually to a point below its contracted servicesprfi€n

its traffic is marked only as IN. However, if the transport layer protondhie end host is

not congestion control compatible, then it will not respond to the congestion signals from
the network. Therefore, the traffic is still a mixture of IN and OUT packdtsis means

that the drop statistics from RIO, especially those of the OUT packetsndications of

the flows which are not responsive to congestion signals from the network. Thus, in a
DiffServ environment, RIO drop statistics provide a mechanism to ideatifdetect non-
responsive connections. Conceivably, one could make use of this mechanism adar basis

penalizing or policing the non-responsive flows.

4.7.2 Setup

We use a similar topology that is depicted in Figure 4.1 (the sender-based eyerari
shown in Figure 4.11, ten hosts are connected to ten peer hosts. They share a cotkmon |
between routers A and B. Each hodtl{as a TCP connection to its peer hast (0). There

are altogether 10 TCP connections. The ten connections are of different Roundriigp Ti
(RTTs). They can be divided into five groups. The two connections in each group have
the same RTTs, but different target ratég)(Each of the five groups has a different RTT
from another other groups. The RTTs for them are 20ms, 40ms, 50ms, 70ms and 100ms,
respectively. Parameter configuration is very similar to that in #reler-based scenario

as well. The bottleneck link speed is 33Mbps and the RIO parameters arelse(40,

70, 0.02) for IN packets, and (10, 30, 0.5) for OUT packets. This is equivalent of setting
(2.4ms, 7.2ms) as the respectivén andmazx thresholds for OUT packets on a 33Mbps
link, and setting (10ms, 17ms) as the respective thresholds for IN packetddket size

is 1000 bytes and we use TCP-SACK.

We use a constant bit rate (CBR) source to model non-responsive sources since a CBR

116

@
(19) .
: TSW Tagger
) RO
Cor-snk)

Figure 4.11: In Presence of Non-responsive Connections

source does not have a congestion control mechanism. We add a CBR connection to the
above scenario, with a sending rate of 6Mpbs, or roughly 20% of the total bandwidth.
The achieved throughput of the CBR connection is calculated by creating a resieike

(CBR-sink) and calculated the received packets over time.

4.7.3 Results

We run two separate simulations. In the first, we simulate the curremh&ttenvironment.
We have 11 connections (10 TCP connections and 1 CBR connection). We use RED gate-
ways and there are no DiffServ router mechanisms. The results areilistetlimn 3 of
Table 4.9. In the second simulation, we simulate a DiffServ domain. We use itiee sa
11 connections. In addition, we implement RIO and TSW algorithms in interior and edge
routers, respectively. The results are listed in column 5 of Table 4.9.

In today’s Internet, a non-responsive connection causes persistent congestioars rout
and TCP connections with congestion control algorithm will back off as a resulun@ol

3 in Table 4.9 lists this effect: the CBR connection gets almost all itsgga¢krough, and

117

all TCP connections have a drastic performance degradation, compared to whaiuleky
have achieved when connection 11 is not present (column 3 in Table 4.2). In contrast,
in a DiffServ network (column 5), connections with service profiles are ptetefrom
non-responsive connections: the link bandwidth is allocated according to the cedtract
service profile while packets from CBR are severely dropped. The CBR conneetion
ceives 1.78Mbps or 29.6% of its 6Mbps sending rate in our framework, vs. 5.85Mbps or

97% of its sending in today’s Internet.

Table 4.9: 10-connection case with a non-responsive connection (CBR). BW= 33Mpbs,
CBR is sending at 6Mbps. RIO parameters: (40, 70, 0.02) for INs and (10, 30, 0.5) for
QUTs. Used TCP-SACK

| Conn#| RTT(ms)| Current Internet (Mbps) R, (Mbps) | with RIO-TSW (Mbps)||

0 20 5.40752 1 1.21924
1 20 5.36329 5 5.87978
2 40 1.98478 1 1.1372
3 40 2.56938 5 5.15273
4 50 2.443 1 0.989687
5 50 2.54567 5 4.99475
6 70 1.28912 1 0.837817
7 70 1.53377 5 4.86143
8 100 1.1074 1 0.720575
9 100 1.50127 5 4.72234
CBR 50 5.85338 0 1.78195
Total 31.59858 30 32.297499

4.8 TCP-DiffServ Mechanisms

The previous section concludes our simulations using router mechanisms— RIO and TSW—
only. We explore different aspects of a Diff-Serv architecture: senderebas. receiver-
based, aggregated profiles and cascaded profiles. We also explore using ditfesents
of TCP with RIO-TSW: TCP-reno (sender-based scheme), and TCP-SA€Konclude

that while RIO/TSW alone can create service differentiations to end leRtcbnnections,

118

such differentiations are neither precise nor fair. The reason lies initBER. TCP’s win-
dow increase algorithm is not fair, TCP’s congestion control mechanisms arematr
enough and are not aware of the upper-layer policy of SLA.

In this section, we explore the effect of applying both the TCP-DiffServ meshani
and RIO+TSW. Unlike previous sections, where we go in depth for each individeal sc
nario, in this section, we choose to compact our simulations somewhat and focus our dis-

cussion on TCP-DiffServ mechanisms.

4.8.1 Setup

We use a simulation topology similar to that in the previous sections, in whichGP
connections are sending to six respective receivers. We also use lodd~TNTCP con-
nections, with two different RTTs: 80ms and 30ms. We feel that we have undetsi®od
effect of RTTs on TCP performance so we will not explore this dimension any.moe

80ms connections represent long-RTT connections and the 30ms connections represent
short-RTT connections. Between the first pair of sender and receiver (hostttbané),

there is also a CBR connection that sends for a period of time. The only bottlentgek i

link between R3 and R4, which is set at 8Mbps. All the other links are 10Mbps and are not
bottlenecks.

Each simulation run has four different phases. The first phase stéineupphase in
which all six FTP/TCP connections reach their respective operating politts.second
phase is @ongestegbhase, in which, a constant bit rate (CBR) connection starts, running
at1/4 of the bottleneck bandwidth, or 2Mbps. This causes heavy congestion in the router
and TCP connections back off during this phase. The third phase ret¢beeryphase,
in which the CBR source stops and all FTP/TCP connections recover to tepeative
operating points. The fourth phase is ther-provisioneatase, during which, one of the
FTP/TCP connections (TCP1) stops sending and the available bandwidth is sharegl am
the rest five FTP/TCP sources. Each individual phase lasts for 25 secondsclét pees

are set to 1000 bytes. We use TCP-Reno, and receiver windows are large enougbeto not

119

a constrain on the congestion windows.

TCP1

TCP2

TCP3

TCP4

TCP5

Figure 4.12: Topology for Applying DiffServ TCP Mechanisms

Table 4.10: Configurations of TCP connections
| | RTT (ms)| R, (Mbps) |

TCPO 80 2
TCP1 80 2
TCP2 80 1
TCP3 30 1
TCP4 30 0.6
TCP5 30 0.6

The parameters for RED and RIO gateways are set comparably. The bottlgeeck s
is 8Mbps. The low threshold(in_th) for RED is the byte-equivalent of 5ms of queue
delay, the high threshold{ax_th) is the byte-equivalent of 10ms of queuing delay, and
the dropping probability?,,... is 0.1. Since the packet size is 1000 bytes, 5ms of queue
delay on a bottleneck link of 8Mbps is equivalent of 5 packets.

We set parameters for RIO comparably: (5, 10, 0.5) for OUT packets, and (10, 20, 0.02)
for IN packets. This is equivalent to (5ms, 10ms) queuing delays for the respéutash-
olds for OUT packets, and (10ms, 20ms) for the IN packets. We use tables teaepitee

120

time-averaged throughput of three representative connections during differens pBash

setup is run three times with a different random seed, and the data presethedables

are averages of the three runs. For each scenario, we show the throughput of 1) a long-rtt
FTP/TCP (with and without a target throughput of 2Mbps); 2) a short-rtt FTP/TC# (wi

and without a target throughput of 0.6Mbps); and 3) a CBR connection with sending rate

at 2Mbps during the congested phase. The constant CP’s window open-up algorithm

is chosen to be 100, which is equivalent of increase one packet each 100ms.

The total allocated throughput to TCP connections is 7.2Mbps, or 90% of the bottleneck

link. The details of the simulation set up are listed in Table 4.10.

4.8.2

Impact of TCP-DiffServ Mechanisms

Table 4.11: Comparison of Diff-Serv mechanisms applied to routers and endhost TCP;
Modified TCP = standard TCP + three TCP-DiffServ mechanisms. All oredsn Mbps

Start-Up | Congested Recovery| Over-provision
Phase Phase Phase Phase
Standard TCPO (80ms, no target)0.676768| 0.491638| 0.723149| 0.832894
TCP+RED TCP3 (30ms, no target)1.622382 1.126404 | 1.585279 1.804911
(Scenariol) CBR 1.978168
Modified TCPO (80msRk;=2Mbps)| 1.86133| 1.31369 | 1.81553 2.30319
TCP+RED TCP3 (30msk;=1Mbps)| 1.11268| 0.84987 | 1.12360 1.42987
(Scenario?2) CBR 1.92003
Standard TCP, TCPO (80msk,=2Mbps)| 1.43707 | 1.32511 | 1.40382 1.49129
+RIO+TSW | TCP3 (30msRk;=1Mbps)| 1.05836| 0.90249 | 1.11443 1.37187
(Scenario3) CBR 1.78891
Modified TCP| TCPO (80msRk;=2Mbps)| 2.02678 | 1.89689 | 2.02658 2.36111
RIO+TSW TCP3 (30msk;=1Mbps)| 1.04109| 0.91049 | 1.04853 1.33992
(Scenario4) CBR 1.00350

We separate the mechanisms into two groups: Diff-Serv mechanisms to bedajppihe
end hosts (combinations of all the mechanisms proposed in Section 3.4) and Diff-Serv
mechanisms to be applied in the router (RIO and TSW algorithms). We consider four

different scenarios: 1) standard TCP-reno algorithm with RED gateways;ifRp&rv

121

enhanced TCP (incorporating TCP-DiffServ mechanisms) with RED gate®pysandard
TCP with RIO and TSW gateways; and 4) Diff-Serv enhanced TCP with RIOT&W
gateways. Table 4.11 lists the results from four different scenarios.

Scenario 1 is our basis for comparison, representing the cupestteffortmodel. It
illustrates two well-known phenomena: 1) short-RTT TCP connections have ageanta
over long-RTT connections when sharing the same bottleneck (first body row vs. second
body row); and 2) a non-congestion controlled source has a detrimental effect on TCP
connections (second body column), where TCPO and TCP3 throughput dropped by 30%
when CBR starts. In this case, the CBR source gets almost all its pabketigh a RED
gateway at the expenses of other TCP connections’ throughput.

Scenario 2 illustrates the effect of the mechanisms incorporated intoWitliPconfig-
ured knowledge of target throughputs, TCP could robustly recover to its targeaftat
packet losses. The proposed window open-up algorithm also corrects the bias lagginst
RTT connections, e.g., in the Start-up and Recovery phases, TCPO, withcir80ms,
doesn't suffer from network bias and gets close to its allocate target Y&86Nlbps or
93%). However, in the presence of a non-congestion controlled source, all TCRRsourc
suffer, e.g., a drop in TCPO and TCP3'’s throughput (30%) when CBR starts. The RED
gateway is not capable in discriminating againsoatof-profilesource.

Scenario 3 shows the results of applying only the router mechanisms. Compared to
scenario 2, the RIO algorithm discriminates agamstof-profilesources to limit the detri-
mental effect OUT packets have on IN packets during congestion. In thistbes€BR
source is getting 89% of its packets through vs. 96% of its packets in scenario 2dFhe
tleneck link has enough available bandwidth to accommodate 50% of the CBR packets.)
The service differentiation among TCP connections with varying RTTs is the pnos
nounced during congestion (body column 2). When the network is well-provisioned, the
service discrimination effect of RIO is dampened by the TCP window algoritBhart-

RTT connections obtain most of the available bandwidth in the over-provisionedisit.

In other words, when free of congestion, the innate TCP biases can overridegéeda

122

bandwidth allocation created by the Diff-Serv mechanisms in routers.

Scenario 4 illustrates the effects of the mechanisms in both the end hosadCP
routers. Compared to scenario 2, the improvementlies in the congestediphasieh the
RIO algorithm is able to shield IN packets from the interference of OUT gksckin this
case, the CBR source is able to get 50% of its packets through (body column 2), which is
roughly what the router can accommodate besides all its pre-allocated resdborepared
to scenario 3, the improvement lies in allocating bandwidth according tocamection’s
profile regardless of itstt and the network conditions. When the network is congested,
each TCP receives close to its targeted throughput; when the network ipneeiioned,
the allocation of extra available bandwidth is fair among all TCP connections.

In summary, we observe that by incorporating Diff-Serv mechanisms in endliiosts
combined scheme can allocate resources fairly, precisely and difsdhgaimong connec-
tions, regardless of network conditions. In fact, if the endhost TCP has incorpdnated
Diff-Serv mechanisms, the RIO algorithm in routers can be configured ttecsé@ng dif-
ferentiation among classes of packets, therefore, more effectikiidgraffic that within

SLAs from those that are outside SLAs.

4.8.3 Impact of Individual TCP-DiffServ Mechanisms

In this section, we isolate the effect of each of the host mechanisms propossthriVéth
scenario 3 of Table 4.11, which has standard TCP-reno implementations and hasd appli
Diff-Serv mechanisms to routers (tagging and RIO algorithm), and we addpraposed
mechanism to TCP. We denote the three proposed mechanisms with the followieg abbr
viations: WinAdj for changing the window open-up algorithm withx rtt?; SsthresHor
configuring TCP’sssthreslwith the target throughput; arllCNfor incorporating differen-

tial ECN mechanisms into TCP. Table 4.12 lists the four stages of the progressinges,

by applying ECN, Ssthresh and WinAdj to TCP. The first stage corresponds toisc&nar
in Table 4.11, and the last stage corresponds to scenario 4 in Table 4.11.

The second stage shows an improvement over stage 1: all TCP connections gain mor

123

Table 4.12: Comparison of individual endhost mechanisms applied to TCP

Start-Up| Congested Recovery| Over-provision

Phase Phase Phase Phase

Standard TCP TCPO (80msRk;=2Mbps)| 1.43707| 1.32511 | 1.40382 1.49129

+Tagging+RIO(3) | TCP3 (30msRk,=1Mbps)| 1.05836| 0.90249 | 1.11443 1.37187
CBR 1.78891

TCP+ECN TCPO (80msRk;=2Mbps)| 1.6858 | 1.6902 1.7006 1.8257

+Tagging+RIO TCP3 (30msk;=1Mbps)| 1.2576 | 0.9696 1.2144 1.6694
CBR 1.4154

TCP+ECN TCPO (80msRk;=2Mbps)| 1.95429| 1.81875 | 1.95571 2.08191

+ Ssthresh TCP3 (30msRk;=1Mbps)| 1.08955| 0.95229 | 1.08742 1.50265
+Tagging+RIO CBR 0.93761

TCP+ECN TCPO (80msRk;=2Mbps) | 2.02678| 1.89689 | 2.02658 2.36111

+Ssthresh+WinAdj TCP3 (30msk;=1Mbps)| 1.04109| 0.91049 | 1.04853 1.33992
+Tagging+RIO(4) CBR 1.00350

bandwidth in all phases than they did in stage 1 and the CBR source gets ledgdidan i

stage 1. This is because after incorporating ECN, TCP only reacts to pasketlat most

once per round trip time, thus it is robust in reacting to congestion signalsetoynotice

that the short RTT TCP (tcp3) has an advantage over the longer RTT connection (tcpl) due

to a bias in the window open-up algorithm.

The third stage shows an improvement over stage 2 as well. The effeettofgs

ssthresh to gauge TCP’s operating point is obvious: both TCPs, with different targeted

rates, operate close to their respective targeted rate. Compartagéo?s the higher target-

rate TCP (tcpl) has improved bandwidths in all phases and operates closfbjis

targeted rate; the lower target-rate TCP (tcp3) has lower bandwidthigoineses, and also

operates close to its 1Mbps target rate. Thus, settinly-esh makes TCPs operate more

precisely to its target rate. The effect of TCP’s bias against long RRRhections is damp-

ened in all phases where there is congestion (phase 2). However, such bias i8gijolie

when there is sufficient bandwidth for all TCPs (phases 1, 3 and 4). CBR, intdgs,s

can get only 47% of its bandwidth. Thus, when the ECN and Ssthresh mechanisms are

applied, TCP can effectively operate at its targeted rate and igiski®éom unresponsive

124

connections.

The final stage shows results after TCP has incorporated all three mecka@sm-
pared to stage 3, the bias between the two TCP connections has disappeared turing al
phases. Especially in phase 4, where there is extra available bandwidth T&@Ralcon-
nections, and there is no particular bias of one TCP against another. In thisteaG&R
source actually getmorepackets through the gateway than it did in stage 3. This is due to
the following subtle reason. We configure all TCP connections with a new window open-
up algorithm using a constant of 100, which is equivalent to the window open-up rate of 1
packet per 100ms during thi@ear increasegphase. Since 100mslsngerthan the RTT of
both TCP connections (30ms and 80ms), the new TCPkaseaggressivan opening up
their windows than their counterparts before incorporating the mechanism. Aslg the
CBR connection gains more bandwidth through the gateway. This is similar to the prob-
lem of deploying such fairness mechanisms in a heterogeneous environment [29ill We w

come back to this point in Section 4.8.6.

4.8.4 Robust Recovery from Losses

This section focuses on the details of TCP’s window behaviors before and afbepaac
rating the Diff-Serv mechanisms. We illustrate the effects in Figui. The left graph
shows TCPO'€wndandssthrestihroughout the entire 100 seconds of simulation (scenario
1 setup in Table 4.11, in which TCP uses the standard Reno algorithm). The right graph
shows TCPO'swndandssthreshithroughout time (scenario 4 in Table 4.11, in which TCP
incorporates all three Diff-Serv mechanisms). The most pronounced and vidieledce

lies in howssthreshs adjusted in the two graphs: in the left graph, $sthrestadjustment

is according to the perceived network conditions and can be drastic and unpredi€tabl
example, from time 25 to 50 seconds, when there is a CBR source keeping the networks
a congested state, the TCP sources usually detect this and run at a much gokregd

ing point. There are several cases in whesthreshs adjusted multiple times, each for a

packet drop within the same congestion window. (Not visible given the granutdribhe

125

60+ 60+

2l
i

i

' i I i T i i 1 i T i T i I i 1
0 20 40 60 80 100 0 20 40 60 80 100

N
o
|
N
o
|

I —— tcp0

¢ ssthresh

K3

Window size (pkts)
N
o
1
*
= —x
window size (pkts)
N
T

Time (sec) Time (sec)
Standard TCP Diff-Serv Enhanced TCP

Figure 4.13: TCP Window Algorithm Before and After Incorporating Diff-Serv Mecha
nism

graph.) From time 80 second and onwards, the network is in a over-provisionedsite
the rate adjustments are infrequent andgdshreshis high. In contrast, in the right graph,
ssthreshs set by the targeted throughput, so after a packet drop, T€@Rislis reduced

but not itsssthreshNote thatssthreshs adjusted if the estimated RTT changes, because it
is set to be byte-equivalent to the target-rate delay product. This is shatva graph as

a few discreet values afsthresh 40, 45 and 50 packets, etc. By keepsgjhresmear its
target operating point, TCP can quickly recover from its packet losses and affelbted

by worsening network conditions caused by non-congest control sources.

Another difference between the two graphs lies in the rate at which TCP sudijsist
window, or the slope of each discrete segment of the TCP window adjustments. During
the congestion control phase, the enhanced TCP uses a canetdiO in calculating its
window increase rate and opens its windslawerthan its counterpart before incorporating
the Diff-Serv mechanisms. The right graph appears to hdastarrate of increase than
the left graph because most of the time. TCP operates irSlbe Startphase after a

packet drop. This is because tb&threst{set by multiplying RTT and target rate) is greater

126

thancwnd The fact that TCP is operating in ti8ow Startphase is also a sign that the
TCP connection is not meeting its targeted throughput. In the left graph, TCP apeerate
the congestion avoidance phase after a packet drop because in the current TCRaongest

control algorithm, bottssthresrandcwndare re-adjusted after a packet drop.

4.8.5 Backward Compatibility

Among the above three proposed mechanisms, the first and second mechanisms require
only the TCP sender to change its window adjustment algorithm, and does not require the
receiver's cooperation.

The second mechanism needs some policy servers that keep information about SLAs
and additionally, a signaling protocol for communicating between the transportdaifes
end host and the edge router if the profile is changing in real time. The informatbimke
policy servers is used to configure TCP with its iniBathreshvalue and thesthrestvalue
after each packet drop.

The third mechanism requires TCP to be aware of the IN/OUT bit (TOS field)eof t
IP header. This mechanism can be deployed at the same time as the ECN field. The
mechanism works as follows: a TCP sender always sends out packets withTNViD&b
OFF. A packet goes through a traffic conditioner, which in turn tags the packet’s BQIS fi
as eithe©ONor OFF. A RIO and ECN capable gateway will mark packets differentially, and
turn on ECN field for those packets if necessary. The transport layer atdbieeeside has
to copy both the ECN field and the TOS field of the IP header in the due acknowledgment
packet. The sending TCP will react to a packet with both ECN and TOS hitdl(packet)
set differently from that with only ECN bit set (an OUT packet).

4.8.6 Heterogeneous Environments

Among the mechanisms we propose, the first mechanism has been studied in a context of

improving fairness for TCP connections with varying RTTs [29]. One important pnoble

127

Table 4.13: Heterogeneous deployment of TCP mechanisms, measured in Whagsl
is the fair window open up algorithmmew include all three mechanisms

Start-Up | Congested Recovery| Over-provision
Phase Phase Phase Phase
Standard TCPO (80ms, Ren0) 0.676768| 0.491638| 0.723149| 0.832894
TCP+RED TCP3 (30ms, Reno) 1.622382| 1.126404| 1.585279| 1.804911
(Scenariol) TCP5 (30ms, Reno)) 1.541346| 1.122553| 1.610749| 1.850088
CBR 1.978168
Mixed TCP TCPO (80ms, w/ mech1)0.851694| 0.499243| 0.898498 0.90222
algorithms TCP3 (30ms, w/ mech1)0.950140; 0.584215| 0.792326 1.3719
+RED TCP5 (30ms, Reno) 1.893473| 1.462454| 1.845942| 2.018788
(Scenario?2) CBR 1.986283
Uniform TCP TCPO (80msR;=2, new)| 2.02678| 1.89689 | 2.02658 2.36111
algorithms TCP3 (30msR;=1, new)| 1.04109| 0.91049 | 1.04853 1.33992
+TSW+RIO | TCP5 (30msR;=0.6, new)| 0.659625| 0.533941| 0.629245| 0.969653
(Scenario3) CBR 1.00350
Mixed TCP TCPO (80msk;=2, new)| 1.984425 1.917876| 1.991106 2.18545
algorithms TCP3 (30msk;=1, new)| 0.993548| 0.924187| 0.991756] 1.182006
+TSW+RIO | TCP5 (30msR;=0.6, Reno) 0.602984| 0.424578| 0.591179, 0.940206
(Scenario4) CBR 1.151985

128

pointed out by [29] lies not in the algorithm itself, but its interaction withstendard TCP
algorithm when they both exist in a heterogeneous network environment. As discussed
before, the fair algorithm makes all TCP connections open up their windows aaitine s
rate. With a chosen constantorresponding to some standard unit of time, this algorithms
makes any TCP connections with RTT shorter than the standardessifiggressivéhan
their current implementation, and any TCP connections with RTT longer thanatheésstl
unitmore aggressivthan their currentimplementations. As a result, if two TCP implemen-
tations co-exist in a heterogeneous network environment and their RTTs are botr short
than the standard unit of RTT, the connection with the current implementatibipexiore
aggressive than the connection with the fair algorithm implementation. Tas tavay any
incentives for people to deploy the fair algorithm. Of course, connections withi&iger
than the standard unit RTT will be more aggressive than their current implatrentand
there would be an incentive for people to deploy such an algorithm.

The first half of the Table 4.13 illustrates this case. We include the resultsottier
30ms TCP connection (TCP5). Scenario 1 is the case when all TCPs use thecstdgola
rithm and RED is used by routers as the queuing discipline. The two 30ms TCP connections
have a clear advantage over the 80ms TCP connection, as expected from the cdORent T
window algorithm. Scenario 2 illustrates the case when TCP0O and TCP3upgvaded to
use the new and fair window algorithm, while TCP5 remains the same. The coasant
chosen to be 100, which makes both TCPO and T&B8aggressive than their counter-
parts in scenario 1. We see that TCPO and TCP3 achieve comparable, rgs888bps
and 0.95Mbps), whereas TCP5 has gained an advantage over both (1.89Mbps). TCPO per-
forms slightly better than its counterpart in scenario 1 (0.67Mbps), but TCH8rper
much worse (1.62Mbps).

Fortunately, we find that the Diff-Serv mechanisms in routers can be usasbist in
such migration. We find that when the Diff-Serv router mechanisms are depliogteand
TCPs incorporate all three proposed mechanisms, the allocation of bandwidtioidiag

their respective SLAs (for those TCPs which have respective SLAS)theand is no clear

129

advantage for standard TCP over enhanced TCP. Scenarios 3 and 4 in Tableugtdz8e!|
this. In scenario 3, all TCPs have upgraded to incorporate the Diff-Serhanems,
and the allocation of resources is according to their respective serviceepnagardless
the state of the network. When the network is over-provisioned, the available luihdisv
equally distributed among all connections. In scenario 4, TCP4 (not shown) &bl Gah
use the standard TCP window open-up algorithm. The results show current TCPhatgorit
has no clear advantage over the fair TCP algorithm in the Diff-Serv envieohmThis

preserves the incentives for customers to update their TCP to incorporadeérthlgdrithm.

4.9 Testbed Implementations

The algorithms described in this thesis—RIO, TSW and TCP-DiffServ—have ingae-
mented and evaluated in a testbed environment. In [58], Seddigh et al. cepoplement-
ing both RIO and TSW algorithms in an experimental testbed. They used a RiQaigor
configured with three classes of packets and three levels of assurancesaongalegy
setups similar to those in our sender-based simulations. They verify ouratioruéxper-
iments that service differentiation can be achieved when router algoraheregpoplied, but
they are not certain to what extent the differentiations can be predicted.

As a follow-up work to the above [57], Seddigh et al. studied the five factoits tha
impact throughput assurances for TCP and UDP flows in an experimental network. The
five factors are RTT, number of flows in an aggregation, size of the targepatket size
and presence of non-responsive flows. They show that in an over-provisionedkedilor
target rates are achieved regardless of the five factors, but in an urtdesipned network,
none of the target rates may be achieved. The role of the RTT, target ratendipacket

size play in determining throughput rates can be explained via the following eqidion

packetsize

BW
< RTT % \/target — rate

The effect of non-responsive flows (UDP) is similar to what we have expeatadean sim-

130

ulation. They recommend using intelligent marking schemes that take in accaiket pa

sizes, target rate and RTTSs.

Table 4.14: Effect of C in a testbed environment (throughput measured as Mbps)
| | TCPO (30ms) TCP1 (80ms)|

| Both using Rend 2.7 | 2.0 |
C=50 2.7 2.0
C=100 2.5 2.3
C=200 2.4 2.4
C=500 2.3 2.6
C=1000 2.2 2.7

We have implemented the first two TCP mechanisms (window open-up algorithm and
settingssthresh in a testbed. The testbed currently has edge routers that implement the
TSW tagging algorithms, and a RIO algorithm with three dropping preferences, oonfor
ing to the Diff-Serv WG standard. The end hosts use Linux RedHat 2.3.39 distribution,
which has the standard TCP-Reno algorithms. We incorporated the first twoamsms
in an end host kernel, and ran some initial test experiments. By the tinmesibtsubmis-
sion, we have only conducted a few simple test experiments. This is on-going work.

In a simple test case to study the effect of constamte have two TCP connections,
with the new mechanisms and the other without. Both share a 5Mbps bottleneck connec-
tion. The standard TCP (TCPO) connection has an RTT of 30ms, and the TCP connection
with the new mechanisms (TCP1) has an RTT of 80ms. When both TCPs use TCP-reno,
we observe a network bias against long-rtt connections (2.7Mbps for TCPO and 2.2Mbps
for TCP1). Then we configure TCP1 with increasingly large values, @nd therefore,
an increasingly aggressive window open-up algorithm. We observe the effecTaP1,
with the new window algorithm, can gradually overcome the network bias. EVéntine
effect of an aggressive window open-up algorithe(1000) is limited because the actual
sending window is limited by the receiver's window, instead of the congestiadow.

The results are summarized in Table 4.14.

131

4.10 Conclusions

In this chapter, we apply two groups of mechanisms—router mechanisms TSW and RIO,
and TCP-DiffServ mechanisms—to a DiffServ domain and evaluate teet®#ness of
the mechanisms.

We observe that when we apply only the router mechanisms—RIO and TSW algorithms—
, a Diff-Serv domain can create service differentiations among conneatiinglifferent
target rates. We have explored different aspects of this setup. We consider-based as
well as receiver-based schemes. We find in a DiffServ domain wi@ &id TSW, both
the sender-based and the receiver-based schemes can allocate bandwidtimgdo the
service profiles. We use the most widely deployed TCP, TCP-reno, as weathaseaobust
version, TCP-SACK. We find TCP-SACK is more robust in dealing with congiestig-
nals from the network and can cope with the RIO/TSW algorithms better. Waatierand
experiment with the effect of having cascaded service profiles on a single camabte
observe that as long as an additional tagger has sufficient service profile, it dateobt
the end-to-end performance of TCP connections. If the additional cascaded tagger does
not have enough service profile for all upstream traffic, then it turns sommfile traffic
to out of profile and consequently affects the end-to-end performance of the TCP connec-
tions. We also consider the case where a tagger is for an aggregation of connedtiead i
of a single TCP connections. We find that a tagger for an aggregate of upstream traffic
does not regulate the traffic as precisely as one for an individual connection. An aggrega
tagger is effective in regulating traffic within its profile against othffic regulated by
other profiles. Finally, we experiment with the case where there are non-respfiog/s
together with TCP connections that implement congestion control mechanisms and have
service profiles. We find that the router mechanisms in DiffServ can protetctections
from being severely affected when non-responsive flows are present. Thenatiobiof
TSW and RIO can also provide a means of identifying non-responsive flows by analyzing
the dropping statistics of OUT packets, thus, making it possible to isolate aesposrsive

flow in the middle of a congested network.

132

However, in all above cases, we find that even though the routers mechatasms
allocate services according to service profiles, the overall system fainot robust. The
problem lies in TCP’s congestion control mechanism itself, and cannot be @ulrbygt
changing router mechanisms alone.

We therefore study the effect of applying our three proposed TCP mechanismd (calle
TCP-DiffServ) to end hosts. We experimented with a few scenarios. #ewith the
current Internet scenario as the comparison case. We then apply either wbtlgeoups
of mechanisms individually—RIO/TSW and TCP-DiffServ. We find that when applying
TCP-DiffServ mechanisms only, TCP connections will not be able to enjoy arwce
differentiation when the network is congested. In other words, although each T&C#& ha
configured target rate, it does not get special treatment from the network. Ingbenge
of non-responsive connections, TCP will not achieve its target rate. When onijf B\
mechanisms are applied, the overall system is not robust or fair enough. When we appl
both groups of mechanisms, the overall system can allocate bandwidth in a preagte
manner.

Finally, we describe testbed experiments by us and our collaborators on vettipisg

simulation results in an experimental testbed network.

133

Chapter 5

Conclusions and Future Work

5.1 Thesis Summary and Conclusions

The current Internet assumes thest-effortservice model. In this model, the network
allocates bandwidth among all the instantaneous users as best it can, andsdibesapte

all of them without making any explicit commitment as to bandwidth or delay. Relke=p

no state about end host connections, and when congestion occurs, routers drop packets.
End host connections are expected to slow down and achieve a collective sesteing r
that is equal to the bottleneck speed. Therefore, what each connection achieuess

of network bandwidth is determined by the network congestion state and the number of
simultaneous connections sharing the same path, and is not always predictable.

As the Internet has transitioned from a research network to a commeretai;oge-
neous network, three problems arise. First, an increasing number of readpipheations
require some kind of quality of service (QoS) guarantees from the Internet thaimiple s
best-effortservice. Second, a heterogeneous user base has a variety of different require-
ments from the network and some are willing to pay to have their requirematig&iex,
and the current Internet service model cannot offer a range of flexible serviced, ifira
commercial network, Internet Service Providers (ISPs) have to find wagtsaige for the

service rendered and recuperate the cost of provision the network, and the coteemt

134

is missing mechanisms to account for network usage.

This thesis describes tHeaifferentiated Servicesa scalable architecture that can pro-
vide flexible services which address the above three issues. Diffleeentiated Services
architecture, or DiffServ, a network classifies packets into diffectasses, and gives dif-
ferentiated service to different class of traffic. Network usersataose from the available
service levels that best suited for their applications. They subscribe anfbip8grvice
Level Agreements (SLAs) with their ISPs, and receive differentises. What specified
in an SLA is the expected service a user will receive and pay for. If thearktis not
congested, then the user can send traffic beyond its SLA. The architecture asighegent
current Internet devices—network routers and end hosts—and pushes the complexity of
the system towards the edge of the network, therefore, is scalable. A \@frggices can
be constructed using the simple primitives provided by the DiffServ ar¢hitecherefore,
DiffServ offers very flexible services to users with different reqoients. Pricing based on
SLAs, instead of the actual usage, reflects the nature of Internet provisionosityrthe
Internet connections incur a fixed cost and the marginal cost of delivery only octers w
there is congestion. Thus, this kind of pricing structure can manage congestion, encourage
network growth and recuperate cost without complex implementation.

After describing the architectural components of Differentiated Seryviwesproceed
with a design framework in which different mechanisms can be implememédfocus
on the Assured Forwarding service model within DiffServ architecture aopqse mech-
anisms to allocate bandwidths. This is a particular implementation of a dédiéieerv
architecture.

The current Internet accomplishes its bandwidth allocation by mechanismsingas:
tion control feedback loop between network routers and end host TCPs. We propose a set
of modifications to this congestion control feedback loop. We propose RIO, a difféezhtia
dropping algorithm for interior routers of a DiffServ domain. We propose TSW (Tirnte S
ing Window), a probabilistic tagging algorithm for monitoring and tagging packetseat t

edge routers of a DiffServ domain. Finally, we propose three modifications tosTcoR-

135

gestion control algorithm, collectively called TCP-DiffServ mecharssThe mechanisms
include 1) a change of TCP’s window increase algorithm; 2) adjusting TCP staadlear
ssthresho reflect the contracted SLAs; and 3) a combined use of TCP ECN mechanism
and DiffServ codepoints to give accurate feedback of network conditions.

We use elaborate simulation experiments to evaluate the above proposed s@shani
We observe that when applied router mechanisms (RIO and TSW) only, a Diffé®e
main is able to allocate differentiated bandwidths according to the spksdrgice profiles.
However, routers mechanisms are not sufficient to overcome bias againd®RTangen-
nections, which is a result of TCP’s window increase algorithm. We then pildoegpply
only TCP-DiffServ mechanisms to end hosts in a DiffServ domain. We findathaéé the
enhanced TCP is robust and fair, in times of congestion or in presence of non-rgsponsi
connections, TCP connections with service profiles are not protected from thderitvit
Since the current Internet allocates its resources using a congestion controblopfeted
with mechanisms in both routers and end hosts, and changing one without changing the
other will not achieve an effective allocation scheme. Finally, we appth router mech-
anisms and TCP-DiffServ mechanisms and conclude a DiffServ system dimddta re-

sources in a robust and precise manner when both groups of mechanisms are applied.

5.2 Discussion and Future Work

This thesis is just the beginning of some interesting research directions edmdbe further

pursued. We list them below.

5.2.1 End-to-end DiffServ

In DiffServ architecture, we see a clear divergence in functionalitierouters. There
are two types of routers: edge routers and interior routers. In addition to prowididg
tional router functionalities like routing and forwarding, edge routers are nowtailaing

necessary state information (SLAS) in order to classify, monitor, dag, police packets.

136

Similarly, interior routers have the additional functionality of creatingedtdéntiated ser-
vice to different class of packets. However, the design of DiffSertitacture is to keep
interior routers as simple as possible while keeping all necessary statsnation in edge
routers. This is because the number of edge routers is relatively few compatesigos-
sible interior routers in a network. (In contrast, the Int-Serv mechanised teeaffect all
routers.) This design significantly simplifies DiffServ architecture amadt@s it scalable.

This kind of divergence in router functionality can also be founded in routing. The cur-
rent commercial Internet is an arbitrary interconnection of Autonomous SygiSes).
Within one AS, an interior gateway protocol (IGP) with a single routing métricsed. Be-
tween ASes, an exterior gateway protocol (EGP) [56] is used. The most vadegpted
and deployed exterior gateway protocol is the Border Gateway Protocol (BGP NGB
boundary of each AS, there are routers which are BGP speakers, and they exchimge r
information with both BGP speakers in neighboring domains and interior routessown
domain. Inside each domain, interior routers exchange routing information withets pe
using some kind of interior gateway protocol (IGP), e.g., OSPF, RIP. The introduction
of two-level of routing protocols—BGP and IGP—came when the Internet was growing
to connect thousands of networks and millions of hosts, and a simple routing protocol is
not sufficient to keep up with the growth. Separating routing functionality witmlevels
allows both autonomy and isolation among Autonomous Systems (ASes): each AS can
choose an interior routing protocol and a routing metric that is best suited ftimitieout
affecting others, so long as they can use BGP to exchange routing informations A(Se
designed with mechanisms to allow each AS to apply its own policies athertte allow
certain traffic traverse it or not.

One question we never explicitly pointed out in the thesis is where to place the edge
routers and interior routers. The terms “edge routers” or “interior routers” do@oéssar-
ily refer to the actual placement in the network, they are simply termsritésg the func-
tions routers implement. However, putting DiffServ in perspective witier components

of the Internet architecture, we suggest implementing edge routers in the B@kespe

137

and implementing interior routers in the IGP routers within a single Autonomougiayst
(AS)L. BGP speakers, in this case, will keep not only routing policies of a domaia)swit
the SLA specifications with its neighboring domains as well. IGP routers can #u®pt
mechanisms of DiffServ interior routers, creating differentiations andifigrent classes.

Figure 5.2.1 depicts a two-tier structure of DiffServ domains coincide with ASes

Figure 5.1: End-to-end DiffServ

lllllllll Edge_to_ajge
congestion control

Interior Routers/IGP

Edge Router sBGP Speaker

End Hosts

This begs the question of how to achieve end-to-end differentiated services®efThe
of mechanisms we proposed in this thesis—RIO, TSW and TCP-DiffServ—arenest
possible set of mechanisms that can provide precise and robust bandwidth atidoati
DiffServ. Just as there could be many IGP protocols, there could also be coaryina-
tions of mechanisms that can meet the requirements specified in SLAs. édeneé of

having a two-tier architecture is to be able to de-couple intra-AS mechariemsnter-

1AS, though originated as a purely routing concept, has become a syndrndmunistrative Domain,
which mirrors a real-world entity with administrative policies, eacorporation, a university, etc.

138

AS mechanisms. One could conceive that a domain can achieve the same kindsof SLA
using any of the alternative DiffServ approaches described in Chapter 2 eorusing
IntServ mechanisms since they maybe scalable within a domain. Howevengaas the
mechanisms within a domain can meet the specifications of SLAs, end-to-éerdoliF

ated services can be constructed by concatenating a series of SLAs. Ttiesuting

very well.

Just as end-to-end routing is done by concatenating a series of intra-AS routes, end-
to-end differentiated services can be done by concatenating SLAs, eachp8tifies the
edge-to-edge requirements between two neighboring ASes. Therefore, a séyieslof
mains, each meeting the specific SLAs specified, will be able to provideceade Diff-

Serv services.

Since there are already a number of proposals for intra-AS mechanisms like the®ne
proposed in this thesis, the question of providing end-to-end differentiated egrsithen
reduced to designing an inter-AS QoS protocol that is equivalent of BGP in routing. Thi
is an interesting future research direction. At this point, we can only satculhat this
protocol would look like. This protocol is very much inter-wined with the routing pcots
(IGP and BGP) because any route changes will definitely affect the aluitity domain to
meet its SLA. We could imagine an internal protocol to be used to convey congesti
information within a domain among the edge routers. The protocol provides feedback
between edge routers to adjust either 1) routes, or 2) traffic directed on a@mufzmroute
in order to fulfill the requirements of SLA, or both. In essence, this protocol embodie
what we call “edge-to-edge” congestion control mechanism, i.e., a congestion coapol |
operates between two edge routers of a DiffServ domain, and relay feedbackteriors
routers to edge routers and back forth. At the inter-AS level, another protocadedeo

adjust the long-term committed SLAs between ASes.

139

5.2.2 Deployment Strategy

In this section, we offer some perspectives on deploying the mechanisms we grapose
a DiffServ domain. There are two possible routes to deploy both the router msoigni
(RIO+TSW) and end host mechanisms (TCP-DiffServ) that can migrate aiddroen
best-effortto a DiffServ domain. Figure 5.2.2 illustrates the two routes. In the first route
(solid lines), ISPs deploy the router mechanisms first; then each individer wal up-
grade their end host TCPs to adopt their respective TCP-DiffServ mechanibnthe
second route (dashed line), each individual users will first upgrade their end hBsttdC
adopt the respective TCP-DiffServ mechanisms, and then, ISPs will deqltgr mecha-

nisms.

Figure 5.2: Possible DiffServ Deployment Strategies

Current
I nt er net

Route 1 ~Route 2
N
S
End host

Rout er TCP
mechani sm mechani sns
only

Ve

Ve
7
7

Diff-Serv
Net wor k w.
robust scheny

There are practical as well as technical arguments for either route. Tiypicarder for
a mechanism to be adopted by industry, it has to go through IETF standardizationsproces
and be adopted by vendors. In the case of adopting router mechanisms, it is a relativ

simple matter because there are only a handful of router vendors, namely, Cistal axid

140

Lucent. It is conceivable that an ISP can choose to adopt a new version of rouxearsof
which has incorporated the respective DiffServ mechanisms and upgradentsket a
matter of days. In terms of adopting end host TCP mechanisms, however, ittimarei
complicated because there are many variations of TCP implementaticergdlly many
vendors of end hosts. Even if an IETF working group has standardized some modifications
to TCP, one shouldn’'t expect those modifications to be adopted by all implementations of
TCP, nor should one expect those modifications to be deployed completely. Rather, one
should expect that there will be a long time when the Internet has a great mix oCétd T
(TCP-Reno) and TCPs with TCP-DiffServ. This is thertial deploymenproblem.

We explore thepartial deploymenproblem in Chapter 4, in which, we make the ob-
servation that if the DiffServ router mechanisms are deployed first, woayd facilitate
deployment of TCP-DiffServ because they offer incentives in performanatdse users
who want to adopt TCP-DiffServ mechanisms. On the other hand, if TCP-Difi8ech-
anisms were deployed first, the end users might find them in a situation whegertbe
mance of their TCPs is/iorsethan what they had before, depending on the value of the
constant factor in TCP’s window increase algorithm. This can happen when the new
TCP’s window increase algorithm Iessaggressive than that of the older, existing TCPs
when the two versions of TCPs have the same round-trip-time connections. Heggtr
of deployment would create businedis-incentives to adopt DiffServ. Therefore, based
on the simulation results in this thesis, we would recommend route 1, i.e., adomtiteg
mechanisms first and then adopting end host TCP mechanisms. With this routapnwe c

gradually migrate the current Internet to a DiffServ network.

5.2.3 Interactions with Applications

While the IntServ research started by analyzing the requirements of appi€and then
proposed mechanisms in networks to support such requirements, DiffServ went tlrough
different route. DiffServ started by designing simple, scalable netwakhanisms that

can provide different levels of services. While DiffServ has been quiteesstul in its

141

research and standardization effort, there is no research work to deatertbat applica-
tions can actually take advantage of the services provided by DiffServ netvaod end
users can see a visible difference. Seamless integration of the networkeo&es and
applications will be the “Holy Grail” of QoS research effort.

There are a number of issues to consider. First of all, there has to be amadeterf
between applications and network protocols like TCP/IP by which, the applicatans
convey the necessary QoS requirements to the network protocols. Second, the end host
operating system will check whether such service requirement fits withiooihtracted
SLA with the ISP. If such request is beyond the SLA, then such request valy/likot be
satisfied and the application should be informed of such. (There is still a chizatcguch
requestcanbe satisfied if the network is not congested.) If the request is within the SLA,
then the applications can be assured at this point that such request can bedsdtisé
up to the end host operating system to adjust the amount of system resources (memory,
CPU cycles, and the necessary target-rate that would configure this TCP ¢onnéant
example) dedicated to this application. Third, the end host must have a signaliaggbrot
between itself and the immediate edge router. This protocol is to automatedbespr
of updating SLA information between edge routers and end hosts. An update can happen
because the customer explicitly requests a change of upper-layer contract or USSR
the SLA due to some unexpected network conditions, or the end host’s operating system
requests a short-term change of the SLA. If the application’s request is beyond the long-
term SLA between the customer and the ISP, the end host still has the optiomdta se
request to temporarily increase the SLA for the duration of this applicatiochumight
be granted by the edge router. Such handshakes can be accomplished by such signaling

protocol.

142

Bibliography

[1] Ns network simulatorAvailable via http://www-nrg.ee.lbl.gov/ns/.

[2] BALA, K., CIDON, I., AND SCHRABY, K. Congestion control for high-speed packet

switched networks. lIProceedings of Infocorf1990), pp. 520-526.

[3] BALAKRISHNAN, H., RAHUL, H., AND SESHAN, S. An integrated congestion man-
agement architecture for internet hosts. Aroceedings of SIGCOMM '9@01999),
vol. 29.

[4] BRADEN, B., CLARK, D., AND SHENKER, S. Integrated services in the internet
architecture: an overview. IfeTF RFC 1633IETF, 1994.

[5] BRAKMO, L., AND PETERSON L. Tcp vegas: End-to-end congestion avoidance on
a global internet.IEEE Journal of Selected Areas in Communications (JSACB13

(October 1995), 1465-1480.

[6] CLARK, D. The design philosophy of the darpa internet protocol®rbteedings of
ACM SIGCOMM(1988), pp. 16-19.

[7] CLARK, D. D. Combining sender and receiver payment schemes in the internet.
In Interconnection and the Internet: Selected Papers from the 1996 Telecom Policy
Research Conferen¢tlahwah, NJ, 1996), D. W. Gregory L. Rosston, Ed., Lawrence
Elrbaum Associates Publisher, pp. 95-112.

143

[8] CLARK, D. D. Internet cost allocation and pricing. Internet Economic$1997),
J. B. L. McKnight, Ed., MIT Press, pp. 215-253.

[9] CLARK, D. D., AND FANG, W. Explicit allocation of best effort packet delivery
service.|[EEE/ACM Transactions on Networking4(1998).

[10] CLARK, D. D., SHENKER, S.,AND ZHANG, L. Supporting real-time applications in
an integrated services packet network: Architecture and mechanisiAigodaedings
of ACM SIGCOMMBaltimore, 1992), pp. pp 14-26.

[11] CoccHI, R., ESTRIN, D., SHENKER, S.,AND ZHANG, L. A study of priority pric-
ing in multiple service class networks. 8iIGCOMM Proceeding&urich, Switzer-
land, September 1991).

[12] CoccCHI, R., SHENKER, S., ESTRIN, D., AND ZHANG, L. Pricing in computer
networks: Motivation, formulation and exampléEEE/ACM Transactions on Net-
working 1, 6 (1993), 614—627.

[13] DEMERS, A., KESHAVE, S.,AND SHENKER, S. Analysis and simulations of a fair
gueueing algorithm. IfProceedings of ACM SIGCOMM '8®Rustin, Texas, 1989),
pp. 1-12.

[14] DovRroLls, C., SriLIADIS, D., AND RAMANATHAN , P. Proportional differentiated
services. IrProceedings of SIGCOMNDctober 1999), vol. 29.

[15] FALL, K., AND FLOYD, S. Simulation-based comparisons of tahoe, reno, and sack

tcp. InComputer Communications Revi€ly 1996), vol. 26, pp. 5-21.

[16] FANG, W. Building an accounting infrastructure for the internet.Pioceedings of

Globecom Internet '96 workshdphondon, England, November 1996).

[17] FANG, W., AND PETERSON L. Tcp mechanisms for a diff-serv architecture. In
Submitted to INFOCOM 200R000).

144

[18] FANG, W., SEDDIGH, N., AND NANDY, B. A time sliding window three color
marker (tswtcm). Irinternet Drafts IETF, March 2000.

[19] FENG, W., KANDLUR, K., SAHA, D., AND SHIN, K. Understanding tcp dynamics
in an integrated services internet. MOSSDAV '9{May 1997).

[20] FENG, W., KANDLUR, K., SAHA, D., AND SHIN, K. Adaptive packet marking for
providing differentiated services on the internetPioceedings of 1998 International
Conference on Network Protocols (ICNP 'g&ctober 1998).

[21] FLoYD, S. Tcp and explicit congestion notificatiohCM Computer Communication
Review 245 (October 1994), 10-23.

[22] FLoYD, S. Tcp and explicit congestion notification. Gomputer Communication
Review(October 1995), vol. 24.

[23] FLoYD, S. Issues of tcp with sack. Tech. rep., LBL, March 1996.
ftp://ftp.ee.Ibl.gov/papers/issues.sa.ps.Z.

[24] FLoYD, S. Ns simulator tests for random early detection (red) gateways. Texh. re

http://mwww-nrg.ee.lbl.gov/nrg-papers.html, October 1996.

[25] FLOYD, S., AND FALL, K. Router mechanisms to support end-to-end conges-
tion control. Tech. rep., LBL, 1997. available via http://www-nrg.ee.Ibl.gov/nrg-

papers.html.

[26] FLOYD, S.,AND JACOBSON, V. On traffic phase effects in packet-switched routers.
Internetworking: Research and Experience831992), 115-156.

[27] FLOYD, S.,AND JACOBSON, V. Random early detection gateways for congestion

avoidancelEEE/ACM Transactions on Networkirggugust 1993), 297-413.

[28] HEINANEN, J., BAKER, F., WEISS, W., AND WROCLAWSKI, J. Assured forwarding
phb group. INETF RFC 2597IETF, June 1999.

145

[29] HENDERSON T. R., S\HOURIA, E., MCCANNE, S.,AND KATZ, R. Onimproving
the fairness of tcp congestion avoidance. Froceedings of IEEE Globecom 98
(Sydney, 1998).

[30] HOE, J. Improving the start-up behaviors of a congestion control scheme for tcp. In
Proceedings of ACM SIGCOM&tanford, CA, 1996).

[31] JacoBsoN, V. Congestion avoidance and control. Rmoceedings of ACM SIG-
COMM (Stanford, CA, 1988).

[32] JacoBsoN, V., NicHoLs, K., AND PODURI, K. An expedited forwarding phb. In
IETF RFC2598IETF, June 1999.

[33] JaIN, R. A timeout-based congestion control scheme for window flow-controlled
networks. IEEE Journal on Selected Areas in Communications SAZ-@A1986),
1162-1167.

[34] JaIN, R. Congestion control in computer networks: Issues and tréB&& Network
Magazing(May 1990), 24-30.

[35] JaIN, R. Myths about congestion management in high speed netwatksnetwork-
ing: Research and ExperiencgB992), 101-113.

[36] JAIN, R., CHiu, D., AND HAWE, W. A quantitative measure of fairness and dis-
crimination for resource allocation in shared systems. Tech. rep., Diggtapment

Corporation, 1984.

[37] JaIN, R., AND RAMAKRISHNAN, K. Congestion avoidance in computer networks
with a connectionless network layer: Concepts, goals and methodologyodeed-
ings of IEEE Computer Network SymposiiWashington D.C., April 1988), pp. 134—
143.

146

[38] JAIN, R., RAMAKRISHNAN, K., AND CHIU, D.-M. Congestion avoidance in com-
puter networks with a connectionless network layer. Tech. Rep. DEC-TR-506aDigit
Equipment Corporation, August 1987.

[39] JAMIN, S., SHENKER, S., ZHANG, L., AND CLARK, D. An admission control algo-
rithm for predictive real-time service. IAroceeding of Third International Workshop
on Network and Operating System Support for Digital Audio and Vi8aa Diego,
CA, 1992, pp. 73-91.

[40] JANG, Y., KAUTZ, H., AND SELMAN, B. Solving problems with hard and soft con-
straints using a stochastic algorithm for max-satPtaceedings of the 1st Workshop

on Artificial Intelligence and Operations Resea(d®995).

[41] LIN, D., AND MORRIS, R. Dynamics of random early detection. Pnoceedings of
SIGCOMM’97(1997).

[42] MACKIE-MASON, J.,AND VARIAN, H. Economic fags about the internet. Ihter-
net EcnomicgCambridge, MA, 1997), J. B. L. McKnight, Ed., MIT press, pp. 27—63.

[43] MANKIN, A. Random drop congestion control. Rroceedings of SIGCOMM '90
(Philadelphia, PA, September 1990), pp. 1-7.

[44] MATHIS, M., SEMSKE, J., MAHDAVI, J.,AND OTT, J. The macroscopic behavior
of the tcp congestion avoidance algorith@omputer Communication Review, 27
(July 1997).

[45] NABIL SEDDIGH, B. N., AND PIEDA, P. Bandwidth assurance issues for tcp flows
in a differentiated services network. Rroceedings of Global Internet Symposium,

Globecom '99Rio De Jeaneiro, Brazil, December 1999).

[46] NAGLE, J. On packet switches with infinite storadEEE Transactions on Commu-
nications COM-354 (April 1987).

147

[47] PAREKH, A., AND GALLAGER, R. A generalized processor sharing approach to flow
control in integrated services networks - the single node cHSEE/ACM Transac-

tions on Networking 13 (June 1993), 344-357.

[48] PAREKH, A., AND GALLAGER, R. A generalized processor sharing approach to
flow control in integrated services networks - the multiple node cd&&E/ACM
Transactions on Networking 2 (April 1994), 137-150.

[49] PARTRIDGE, C. A proposed flow specification. IETF RFC 1363I. R. Editor, Ed.
1992.

[50] POSTEL, J. Internet control message protocol.RRC792 |. RFC-Editor, Ed. 1981.

[51] POSTEL, J. Internet protocol. IRETF RFC 791 1. R. Editor, Ed. Information Sci-

ences Institute, University of Southern California, 1981.

[52] PosTEL, J. Transmission control protocol. WETF RFC 793 I. R. Editor, Ed.

Information Sciences Institute, University of Southern California, 1981.

[53] REKHTER, Y., AND LI, T. A border gateway protocol 4 (bgp-4). IETF RFC IETF,
1995.

[54] RICHTEL, M., AND BRINKLEY, J. Spread of attacks on web sites is slowing traffic

on the internet. INNew York Timeg~ebruary 2000.

[55] RosSE, O. The g-bit scheme: Congestion avoidance using rate-adapfiomputer
Communication Revie@April 1992), 29-42.

[56] ROSEN, E. Exterior gateway protocol (egp). IBTF RFC IETF, 1982.

[57] SEDDIGH, N., NANDY, B., AND PIEDA, P. Bandwidth assurance issues for tcp
flows in a differentiated services network. Rroceedings of the Global Internet
Symposium, GLOBECOM'q®io de Janeiro, December, 1999).

148

[58] SEDDIGH, N., NANDY, B., REDA, P., S\LIM, J. H., AND CHAPMAN, A. An
experimental study of assured services in a differentiated servicesmetin SPIE

symposium on QoS Issues Related to the Int¢Betton, November 1998).

[59] SHENKER, S. Public Access to the InternetPretice Hall, NJ, 1995, ch. Service

Models and Pricing Policies for an Integrated Service Internet.

[60] SipI, M., Liu, W., CDON, |., AND GOPAL, |. Congestion control through input
rate regulation. IfProceedings of Globecom '§Dallas, TX, November 1989), vol. 3,
pp. 1764-1768.

[61] StoICA, |., AND ZHANG, H. Lira: A model for service differentiation in the internet.
In Proceedings of NOSSDAV'98998).

[62] STOICA, I., AND ZHANG, H. Providing guaranteed services without per flow man-
agement. II8SIGCOMM Proceedin¢l999), vol. 29, pp. 81-94.

[63] TURNER, J. New directions in communications (or which way to the information
age?).[EEE Communications Magazine,2¥) (1986), 8—15.

[64] WONG, L., AND SCHWARTZ, M. Access control in metropolitan area networks. In
Proceedings of ICC '9QAtlanta, GA, April 1990).

[65] YANG, R. Scalable distributed router mechanisms to encourage network congestion

avoidance. Master’s thesis, Massachusetts Institute of Technology, 1998.

[66] ZHANG, L. Virtual clock: A new traffic control algorithm for packet switching
networks. InProceedings of SIGCOMM ’9(Philadelphia, PA, September 1990),
pp. 19-29.

[67] ZHANG, L., DEERING, S., ESTRIN, D., SHENKER, S., AND ZAPPALA, D. Rsvp:

A new resource reservation protoctiEEE Network 75 (1993), 8-18.

149

[68] ZHANG, L., SHENKER, S.,AND CLARK, D. D. Observations on the dynamics of a
congestion control algorithm: The effects of two-way traffic Proceedings of ACM
SIGCOMM(Zurich, Switzerland, September 1991).

150

