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Abstract

The current Internet assumes thebest-effortservice model. In this model, the network

allocates bandwidth among all the instantaneous users as best it can, and attempts to serve

all of them without making any explicit commitments as to bandwidth or delay. Routers

keep no state about end host connections, and when congestion occurs, all connections are

expected to slow down and achieve a collective sending rate equal to the capacity of the

congestion point.

As the Internet has transitioned from a research network to a commercial,heteroge-

neous network, three problems arise. First, an increasing number of real-timeapplications

require some kind of quality of service (QoS) guarantees from the Internet rather than the

simplebest-effortservice. Second, a heterogeneous user base has a variety of different re-

quirements from the network and some users are willing to pay to have their requirements

satisfied, and the current Internet service model cannot offer a range of flexible services.

Third, in a commercial network, Internet Service Providers (ISPs) have tofind ways to

charge for the service rendered and recuperate the cost of provision the network, andthe

current Internet is missing mechanisms to account for network usage.

This thesis describesDifferentiated Services, a scalable architecture that can provide

flexible services that address the above three issues. In theDifferentiated Servicesarchitec-

ture (DiffServ), a network classifies packets into different classes, and gives differentiated

service to different class of traffic. Network users can choose from the service level best

suited for their applications. They subscribe and pay for Service Level Agreements (SLAs)

from their ISPs. An SLA specifies the expected service a user will receive during network

congestion. If the network is not congested, then the user can send traffic beyond its SLA.

The DiffServ architecture augments the current Internet architecture. Itconsists of mecha-

nisms to be implemented in existing Internet devices—network routers and end hosts—but

pushes the complexity of the system towards the edge of the network, which makes it more

scalable. A variety of services can be constructed using the simple primitives provided by

the DiffServ architecture, therefore, DiffServ offers very flexibleservices to users with dif-
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ferent requirements. Pricing based on SLAs, instead of the actual usage, reflects the nature

of the Internet provisioning: mostly the Internet connection is a fixed-cost and the marginal

cost of delivery only occurs when there is congestion. Thus, this kind of pricing structure

can manage congestion, encourage network growth and recuperate cost without a complex

implementation.

This thesis proposes a set of DiffServ mechanisms that offer robust and precise allo-

cation of bandwidth. It proposesRED with In/Out(RIO), a differentiated dropping al-

gorithm to be used in interior routers. It proposesTime Sliding Window(TSW), a prob-

abilistic tagging algorithm for monitoring and tagging packets in edge routers. Finally,

it proposes three modifications to TCP’s congestion control algorithm, collectively called

TCP-DiffServ mechanisms. The mechanisms include 1) a change of TCP’s window in-

crease algorithm; 2) an adjustment to TCP state variablessthreshto reflect the contracted

SLAs; 3) a usage of TCP ECN mechanism and DiffServ codepoints to provide accurate

feedback of network conditions.

We use elaborate simulation experiments to evaluate the proposed mechanisms.We

observe that when using router mechanisms (RIO and TSW) only, a DiffServ domain is

able to allocate differentiated bandwidths according to the specified service profiles. How-

ever, TCP’s window increase algorithm has an intrinsic bias against long-RTTconnections,

which cannot be overcome by the proposed router mechanisms. We then proceed to apply

TCP-DiffServ mechanisms to end hosts in a DiffServ domain. We find that while the en-

hanced TCP is robust and fair, in times of congestion or in presence of non-responsive

connections, TCP connections with service profiles are not protected from those without.

Since current Internet allocates its resources using a congestion control loop completed

with mechanisms in both routers and end hosts, changing one set of devices without chang-

ing the other will not achieve an effective allocation scheme. Finally, we apply both router

mechanisms and TCP-DiffServ mechanisms and conclude a DiffServ system could allocate

resources in a robust and precise manner when both groups of mechanisms are used.
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Chapter 1

Introduction

1.1 Historical Context

The context of this thesis is set in the early to mid-1990s, when the Internet emerged from

an obscure research network connecting mostly educational and research institutes into the

public light. The Internet can trace its roots to the ARPANET, a collaborative research

network funded by the Advanced Research Projects Agency (ARPA) aimed to connect

“existing interconnected networks”[6]. The TCP/IP protocols — the Transmission Control

Protocol[52] and the Internet Protocol[51] — were developed for the ARPANET. In the

mid-1980s, the National Science Foundation (NSF) created the NSFNET in order topro-

vide connectivity to its supercomputer centers and other general services. The NSFNET

adopted the TCP/IP protocols and provided a high-speed backbone for the developing In-

ternet. By the early 1990s, primary users of the Internet were researchers,professors, and

students in educational and research institutes. The primary applications on the Internet

were text-based interactive (telnet, gopher) or bulk-data transfer (ftp) applications.

The power of the Internet was truly unleashed when the World Wide Web (WWW), or

the Web, was developed in the early 1990s. WWW and its hypertext mark-up language

HTML provide a very intuitive and convenient way to distribute and access information

from anywhere on the Internet. WWW is the killer application for the Internet. It didn’t

1



take long before many web sites were sprouting all over the Internet, puttinga vast amount

of content on-line for Internet users to browse and exchange. Commercial users as well as

typical households began to connect to the Internet. The more users are connected to the

Internet, the more positive network externality Internet can provide to its users. In other

words, the benefits of having an additional user connected to a network is proportional to

the number of users that have already connected to the Internet. By 1994, the Internet was

connecting over 45,000 networks and more than four million hosts [42].

The success of the Internet turns out to be a mixed blessing. On one hand, the Internet

architecture based on TCP/IP has been very robust in its expansion to incorporate new

networks and hosts. On the other hand, some of the architectural components of the current

Internet are no longer adequate to keep up with the growth of the Internet. In particular,

there are three problems.

First, new applications have been developed to run over the Internet, many of which are

real-time video and audio applications that require some kind of quality of service(QoS)

guarantees from the network. The current Internet assumes thebest-effortservice model.

In this model, the network allocates bandwidth among all the instantaneous users asbest it

can, and does not make any explicit commitment as to bandwidth or delay. Routers keep

no state about end host connections, and when congestion occurs, routers drop packets.

All sending connections are expected to slow down and achieve a collective sending rate

equal to the capacity of the congestion point. Therefore, from the end host perspective,

the service from the network is not always predictable, as it depends on how many other

connections are simultaneously sending.

Second, the Internet has transitioned from a government-funded project in a closed,

cooperative environment to a commercial network with a heterogeneous user base.That

transition has happened gradually and was completed when NSF shut down its NSFNET

backbone on April 30th, 1995 and ended its funding [42]. Though the NSF is continuing to

fund some regional nets, its role in the Internet has been greatly reduced, and the Internet

is therefore a commercial network. In a commercial and heterogeneous network environ-
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ment, individual users have different requirements for network resources they would like

to receive, and some are willing to pay to to receive those services. However, the current

Internet architecture does not offer flexible services to meet different userrequirements.

Third, since the Internet is a commercial network, the Internet Service Providers (ISPs)

would like to recuperate their costs in some fashion and use the proceeds for further net-

work engineering and expansion. In its design, the current Internet architecture doesnot

have any kind of mechanisms to account for network usage. This is simply the legacyof a

government-funded research network [6]. Though accounting was considered as an impor-

tant feature in the original ARPANET design, it did not receive a high priority in a research

network and was missing from the design1. However, in a commercial network, if there

are no accounting mechanisms to serve as the basis for pricing and billing, the network is

likely to be heavily used and congested.

The above three problems set the context for two bodies of research work that eventu-

ally led to Differentiated Services, a scalable, technical solutionto the above three prob-

lems. The two bodies of research work are Integrated Services and InternetPricing, coming

from Internet community and the economics community, respectively. The Integrated Ser-

vices research proposes solutions to resolve the first two problems and the Internet Pricing

research addresses the last problem. We will describe these two bodies of work in Sec-

tion 1.2.1 and Section 1.2.2 before describing the general idea of Differentiated Services in

Section 1.3.
1By accounting, we refer to the measurement of traffic profiles of the Internetand the attribution of such

profiles to the corresponding users. It is not to be confused with billing, nor pricing. Billing refers to the
process of compiling the accounting information and charging the users for such usage, whereas pricing
refers to the formation of prices for different types of services, usuallythrough elaborate economic models.
See [16] for a more detailed discussion.
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1.2 Previous Research

1.2.1 Integrated Services

Integrated Services (IntServ) is an Internet service model that includes bothtraditional

best-effort service and real-time services. IntServ research started in early 1990s, and has

generated much interest and discussions by 1994[4, 10, 26, 39, 49, 67, 59]. The problem

IntServ research work addresses is how to provide network support for real-time appli-

cations as well as for non-real-time applications. The researchers make the observation

that many emerging real-time applications — multimedia teleconferencing,remote video,

computer-based telephony, remote visualization, etc — will have very different Quality of

Service (QOS) requirements than the traditional text-based non-real-timeapplications like

ftp or telnet. A network architecture that can tailor itself to servicereal-time applications

is a major departure from the Internet architecture. One could conceivably build two sepa-

rate networks, one offering real-time services and the other offering non-real-time services;

however, an integrated network offering both sets of services seems more attractive because

it would be cheaper to build the network and easier for the application developers.

IntServ researchers realized that they were designing a service model that is based on

conjectures about future applications, institutional requirements, and technicalfeasibility[59].

In [10, 59], Clark, Shenker and Zhang divide applications into those areelastic, and those

arereal-time. Elastic applications adjust easily and flexibly to delay in delivery; thatis, a

packet arriving earlier helps performance and a packet arriving later hurtsperformance, but

there is no set need for a packet to arrive at a certain time. Typical Internet applications are

elastic in nature, and the Internet service model has performed well for them. Therefore,

a service model consisting of several classes of best-effort services will be sufficient for

them. In contrast, real-time applications have more stringent requirements. As observed by

Shenker[59], “the performance of elastic applications is more closely related to the average

delay of the packets, whereas the performance of real-time applications is more closely

related to the maximum delay of the packets”. Real-time applications canbe further clas-
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sified astolerantor intolerantapplications. Intolerant applications need a service that has

a firm worse-case bound on delay; tolerant applications, on the other hand, only need a

service that can offer a loose bound on delay.

Services for both tolerant and intolerant real-time applications involve admission con-

trol; before commencing transmission, applications must request service from the network.

This request consists of a traffic QoS descriptorflowspec, in which applications specify

their traffic load, and a filter specification (filter spec), which describes the subset of the

traffic from this application that is to receive the resources. In contrast, there is no admis-

sion control for the best-effort service classes (for elastic applications). Thus, for real-time

service, the prominent failure mode is that requests can be rejected, and for best-effort

service, the failure mode is that best-effort packets can be dropped.

The Integrated Service model is anextensionto the original Internet best-effort archi-

tecture, and it includes two services targeted towards real-time applications [4]:guaranteed

service andpredictedservice.Guaranteedservice involves pre-computed worse-case delay

bounds andpredictedservice uses the measured performance of the network in computing

delay bounds.

Based on the above considerations, the researchers believe that the Integrated Service

model would 1) keep additional flow state in routers; 2) require an explicit setupmecha-

nism to install and eliminate flow state in routers. The proposed solution, then,is to have

end hosts initiate a quality of service (QoS) request prior to the transmissionof traffic to

networks. Such request will be carried by a reservation protocol called RSVP. If such re-

quest is accepted by networks, then the network will create per-flow state to guarantee such

QoS request during the transmission. If the network does not have enough resources, then

the QoS request is denied.

Integrated Service effort has done a very good job in 1) analyzing the requirements of

real-time applications and 2) arguing for the efficiency of an integrated network offering

different kind of services instead of disjoint networks each with a distinct service model.

However, the implementation framework IntServ has raised serious concerns. Is it feasible
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to implement and maintain per-flow state in routers, especially in thosewhich handle a lot

of aggregated traffic? The RSVP protocol is complex, and it may be unrealistic toexpect

routers to devote much resources to interpreting RSVP requests and handling admission

control for established state. Last, there is the partial deployment problem for RSVP itself.

If there are routers on a path which do not understand RSVP and can’t make reservations,

then it would be impossible to make any guarantees on end-to-end delay bounds.

1.2.2 Pricing for the Internet

Network researchers looked into accounting mechanisms and pricing schemes as early as

in the beginning of the 1990s. In [11, 12], Cocchi et al. studied the intertwining of pricing

policies and multiclass service disciplines. Pricing policies provide monetary incentives,

whereas multiclass service disciplines produce performance incentives. In[11], Cocchi,

et al. developed a multiclass network discipline which uses a FIFO queue and isable to

drop packets depending on whether the packets have priority flags set. The authors useda

pricing model that is a graduated set of prices with the lower quality of service class being

cheaper. In order to evaluate the different pricing and performance schemes,they used

a simple user utility function. Using simulations, they demonstrated that it is possible to

set the prices so that every user is more satisfied with the combined cost and performance

of a network with graduated prices and a multiclass service discipline than that without a

pricing model and a multiclass service discipline.

In [12], Cocchi et al. presented a more elaborate formulation of service disciplines and

pricing policies, and argued that forany multiclass service discipline to have the desired

effect of maximizing network performance, some form of service-class sensitive pricing

is required. The authors concluded that effective multiclass service disciplines allow net-

works to focus resources on the performance sensitive applications, while effective pricing

policies allow service providers to spread the benefits of multiple service classes around to

all users, rather than just having these benefits remain exclusively with the users of appli-

cations that are performance sensitive. Using simulations, they find that itis possible to set
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the prices so that users of every application type are more satisfied with the combined cost

and performance of a network with service-class sensitive prices than without. For some

application types, the performance penalty received for requesting a less-than-optimal ser-

vice class is offset by the reduced price of the service. For the other application types, the

monetary penalty incurred by using the more expensive, higher quality service classes is

offset by the improved performance they receive.

Though their conclusions are hardly surprising, their work was the first to combine

many disparate issues, such as service disciplines, application performance, user behaviors,

congestion externalities, and incentives. The limitation of the work is thatit uses simple

models in each issue in order to make the problem more tractable.

In 1995, two economists, Jeffrey MacKie-Mason and Hal Varian, reflectingon the end

of government funding for the Internet, asked the question of how to price a commercial

Internet[42]. They observed that if the Internet is to be utilized as a public good and free for

all, then it will soon suffer from a well-known economic phenomenon called the “tragedy

of the commons”. That is, without instituting new mechanisms for charging for the usage

of the Internet, the Internet is likely to be over-grazed. Therefore, some kind of pricing

structure has to be in place to manage congestion, encourage network growth, and guide

resources to their most valuable usage.

As a general rule, users should face prices that reflect the resource costs that they gen-

erate so that they can make informed decisions about resource utilization. MacKie-Mason

and Varian observe that most of the Internet connection cost is fixed, and the incremental

cost of sending extra packets if the network is not congested is zero. However, when the

network is congested, the cost of sending a packet is not zero, therefore, the pricingshould

also be positive. To reflect the congestion cost, they propose the “smart market” mecha-

nism, in which each packet carries a bid in its header to indicate how muchits sender is

willing to pay to send it. The network admits all packets with bid prices that exceed the

current cutoff amount, determined by the marginal congestion cost imposed by the next

additional packet. Users do not pay for price they actually bid, but rather, they pay for the
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market-clearing price, which is always lower than the bids of all admitted packets.

MacKie-Mason and Varian made an important contribution in analyzing the interesting

problem of pricing the Internet, and how to charge for the cost of transmitting a packet when

the network is congested. However, their proposed smart-market scheme is notfeasible

with the mechanisms available in the current Internet.

In [59], Shenker observes that access-based pricing—charging only for the size ofthe

access link—is both technically easy and predictable. However, access-based pricing can-

not provide incentives for users to specify the appropriate service class, nor prevent re-

selling. Therefore, access-based pricing is not economically efficient. He argues for usage-

based pricing, which is economically efficient. However, the concern for usage-based pric-

ing is the level of accounting granularity. Depending on the granularity chosen, the cost of

usage-based accounting can be prohibitive. Additionally, usage-based accounting implies

a major shift in operating systems as well as in networks, which might be not practical.

In [8], Clark analyzes the advantages and disadvantages of flat-rate pricing and usage-

based pricing. Flat-rate pricing, he argues, is simple to implement and encourages usage

(if the marginal cost is zero, it is not a problem). The disadvantages of flat-rate pricing

is that it does not reflect the congestion cost. A usage-based pricing scheme, on theother

hand, can drive away big users and lead the providers to increase prices to recuperate costs.

The current Internet architecture lacks the necessary mechanisms needed todo accurate

usage-based pricing. He proposed a concept called the “expected capacity” to capture the

advantages of both schemes. Expected capacity specifies the service users are expected

to receive from the network when the system is congested. Users are charged only on the

expected capacity they have contracted from their ISPs. If the system is notcongested, then

the users can send beyond their expected capacity and the extra amount of traffic they send

is not charged.

Expected capacity has a direct relationship to the facility costs of the provider. The

provider must provision enough to carry the expected capacity from all its subscribers, and

thus its provisioning costs directly relate to the total of the expected capacity it has sold.
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This would help the provider to provision for the fixed cost of network. Expected capacity is

not a measure of actual usage; rather it is the expectation that the user has of potential usage.

Therefore, it encourages network usage while sets users’ expectations. Expected capacity

also leads to a very simple implementation because it is not based on accurate accounting

of packets transferred, but on an expected usage, which is known before transmission.

1.3 Differentiated Services

Differentiated Services (DiffServ) has benefited from the previous two areas of research

work. It shares the same goal as IntServ—to provide QoS to applications—but empha-

sizes ascalablesolution. The central idea is simple. DiffServ defines a small set of packet

classes, and creates mechanisms in the network to treat different classes of packets differ-

ently during congestion. When there is no congestion, all packets are forwarded justthe

same. Users contract Service Level Agreements (SLAs) from their respective ISPs. Each

SLA defines the expected service profiles the user pays for and expects to receive. Such

SLAs and policy elements are stored only at the edge of the network. Traffic from users is

classified and mapped into one of a few classes of packets at the edge of the network, and

is forwarded within the network core receiving consistent treatment based onthe class it

belongs to. The mechanisms within the core remain simple.

DiffServ benefits from the research work on pricing and accounting and insights from

the expected capacity work. It defines service profiles—contracts between a service provider

and a customer that describe the service the customer expects to receive fromthe network—

which are essentially the same concept asexpected capacity. One could imagine an SLA to

be either a simple profile or a sophisticated profile. If we apply Cocchi’s work, then an SLA

can be constructed using a few primitive services associated with eachclass of packets, and

the price of such a sophisticated SLA can be the user’s utility function based onthe pricing

for each of the primitive services. This way, more sophisticated pricing schemes can be

supported by the underlying DiffServ mechanisms.
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Since 1996, DiffServ has generated a tremendous amount of research interest. Early

work like [9] focuses on architecture and mechanisms. Later work [14, 61, 62, 19, 20, 17,

32] focuses on different types of services that can be supported by DiffServ architecture

and the necessary mechanisms to achieve those types of services. The different proposals

are testimonies that DiffServ architecture is flexible enough to support different types of

services.

1.4 Thesis Organization

This thesis contributes to the Differentiated Service research. It describes and discusses

the architecture of DiffServ, then proposes an integrated set of mechanismsfor allocating

different bandwidths to TCP traffic and offers an evaluation on those mechanisms. This

thesis is organized as follows.

In Chapter 2, we first describe the current Internet service model, as well asthe In-

tegrated Services, and its respective mechanisms. In essence, the DiffServ architecture

tries to combine the best of both worlds by offering service assurance to applications with

scalable, efficient network mechanisms. We then introduce the DiffServ architecture and

compare it with previous approaches. We proceed to discuss a few aspects that DiffServ

offers, e.g., a variety of services, sender-based control and receiver-based control and how

DiffServ can be seen as a preliminary network defense against Denial-of-Service (DOS)

attacks. Within the same flexible architecture, there have been a number of proposals for

an integrated set of mechanisms, which we will discuss. These proposals, along with what

we will propose in Chapter 3, can be seen as different schemes to satisfy different kinds of

DiffServ services.

In Chapter 3, we describe a set of mechanisms for robust and precise allocationof

network bandwidth for TCP traffic. Though the specific mechanisms can be seen as mod-

ifications to the existing congestion control mechanisms in both routers and end hosts,

we do provide a framework to think about other possible designs of bandwidth allocation
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schemes. The set of mechanisms include RIO, a preferential dropping algorithm; TSW,

a probabilistic tagging algorithm, and three mechanisms for end hosts, collectively called

TCP-DiffServ. Those mechanisms are simple modifications to the existing Internet mech-

anisms, and are practical and deployable.

In Chapter 4, we evaluate the proposed mechanisms using elaborate simulations anda

limited set of testbed experiments. We first consider applying only the router mechanisms:

RIO and TSW, and we explore different aspects of the DiffServ architecturein this setup.

Then we consider applying both router mechanisms and end host TCP mechanisms. We

conclude that with the set of integrated mechanisms we propose, a DiffServ domain could

allocate network bandwidth in a fair, robust, and precise manner.

Finally, in Chapter 5, we offer some perspectives on how DiffServ can be connected to

other part of the Internet architecture, as well as speculating on how to achieve end-to-end

DiffServ.
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Chapter 2

Architecture

In this chapter, we describe theDifferentiated Servicesarchitecture. We first describe two

related architectures: the current Internet architecture characterized by thebest-effortser-

vice model and thefate-sharingprinciple, and the proposed Integrated Services (IntServ)

architecture. Then, we introduce the Differentiated Services architecture, which is an at-

tempt to combine the best of the two previous architectures: efficiency from the current

Internet and provisioning for QoS from IntServ.

We proceed to discuss a few aspects of DiffServ: its flexible support for a variety

of services, provisioning issues, and its support for sender-controlled as well as receiver-

controlled schemes. Unlike the current Internet architecture, DiffServprovides a prelim-

inary protection against denial-of-service attacks. Finally, we discuss related work in the

DiffServ research and standardization efforts.

2.1 The Best-effort Service Model

Topologically, the current Internet can be modeled as an arbitrary interconnection of Au-

tonomous Systems (ASes). Each autonomous system mirrors a real-world entity,e.g., an

Internet Service Provider (ISP), or a university. There is a two-tier routing structure in to-

day’s Internet. Within one AS, routers exchange routing information using an interiorgate-
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way protocol (IGP). There is a consistent routing metric being used by all routers within an

AS. ASes further exchange routing information using an exterior gateway protocol (EGP).

The most recent version of EGP is called Border Gateway Protocol, or BGP [53]. BGP can

handle different routing policies. Therefore, the Internet is a heterogeneous environment

of many inter-connected ASes, each with its individual routing policies and belonging to

different constituents.

Within each AS, there are two types of devices: routers and end hosts. Routers ex-

change routing information with each other, multiplex IP packets streams from different

incoming links, and forward IP packets to their neighbors. Routers provide a very simple

unreliable service to IP packets called the best-effort service. Such service is usually im-

plemented with a queuing mechanism calleddrop-tail queuing, in which a router drops all

arriving packets if its queue is full. The end hosts implement the TCP/IP protocolsuite, and

provide a reliable, sequential transport-layer service to high-level applications. Figure 2.1

depicts the components in the current Internet architecture.

The reason that the Internet chooses the best-effort model can be traced to itsmilitary

research network roots. The Internet was conceived in late 1960s as an extension to the

ARPANET, a defense research project funded by the Advanced Research Project Agency

(ARPA). The primary design goal of the Internet was “survivability in the face of failure”

[6]. That is, if two entities are communicating over the Internet and some failure occurs

and temporarily disrupts the Internet, the two entities should still be able tocommunicate

without re-establishing their conversation. The approach chosen to implement this is called

fate-sharing[9], which puts the state information at the endpoint of the network. This way,

the only way that state information is completely lost is when the communicating party

itself has failed. The building block chosen then was IP datagram (packetized data), and

consequently, routers are stateless packet switches. It is up to the end hosts to maintain the

state information about connections.

In the current Internet, the network resource allocation scheme is built on a set of con-

gestion control mechanisms in both routers and end hosts. In routers, there are drop-tail
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queues that drop packets when the buffers are full. Lost packets in networks aredetected

by TCP in the end hosts, and are taken as congestion signals. TCP slows down its sending

rate upon detecting congestion. This alleviates network congestion, and the end host TCP

then gradually increases its sending rate. The bandwidth a TCP connection receives from

the network is dependent on the network congestion state of the routing path and how many

other simultaneous connections there are, and is not always predictable.

The current Internet uses a simple architecture that is characterized by the following

three attributes:

• Distinction between two types of devices: routers and host devices

The routers are network-level (IP) devices that exchange routing information and col-

laboratively deliver a packet from its source to its destination. They forma consistent

substrate to deliver packets generated by end hosts. The end hosts are transport-layer

(TCP or UDP) devices that send and receive IP packets to be delivered by therouters.

• No explicit contract on service provided by network to end hosts

End hosts can send traffic into the network without explicit connection setup. The

routers use a simple mechanism to deliver IP packets, in which routers drop packets

if they are congested or have failed. It is up to the transport-layer protocols atthe

end hosts to ensure that a packet eventually arrives at its final destination.Therefore,

there is no explicit commitment from the network to end hosts as to whether a packet

will be delivered or when a packet will be delivered.

• One type of service provided by a consistent network substrate

At the network level, all packets are subjected to the same treatment from the net-

work, i.e., forwarded according to the destination IP address and dropped if the

routers are congested.

The best-effort service model is simple and allows a great deal of statistical multiplex-

ing, which leads to efficient use of the network resources. The pitfall of this approach is
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that without explicit support from the network, it is difficult to provide any kind of service

assurance or guarantees to end host traffic.

2.2 Integrated Services

As briefly discussed in Chapter 1, the Integrated Services model is an extension to the

original Internet best-effort architecture[4]. It includes two servicestargeted towards real-

time applications:guaranteedand predictedservice. Guaranteedservice involves pre-

computed worse-case delay bounds andpredictedservice uses the measured performance

of the network in computing delay bounds.

Based on these considerations, network researchers believe that the Integrated Services

model will 1) keep additional flow state in routers; 2) require an explicit setup mechanism

to install and eliminate flow state in routers. Therefore, in terms of implementations, an

Integrated Services framework has four components:

• Packet Scheduler

The packet scheduler manages the forwarding of different packet streams using aset

of queues or perhaps other mechanisms like timers.

• Classifier

When a packet arrives at a router, it is firstclassifiedby the classifier, i.e., mapped

into some classes. Packets in the same class get the same treatment from the packet

scheduler. The classifications are decided by the upper layer policies and can be used

for accounting purposes.

• Admission Control

Admission control implements the decision algorithm that a router or a host uses to

determine whether a new flow can be granted the requested QoS without impact-

ing earlier guarantees. Admission control is invoked at each router to make a local

accept/reject decision.

16



• Reservation Protocol

A reservation protocol is the signaling protocol that carries QoS requests from end

host applications to routers on the routing path. QoS requests are necessary to cre-

ate and maintain flow-specific state along the path of a packet stream. Towards this

end, Zhang, Deering, Estrin and Shenker in [67] proposed a setup protocol called

RSVP. RSVP is a receiver-initiated reservation protocol that can accommodate the

needs of both unicast and multicast traffic. The general idea is that RSVP carries

QoS requests—a list of parameters called aflowspec[49]—along the reverse path of

the data stream, and make reservations in each router. If any router does nothave

sufficient resources to accept such request, its admission control module rejects the

request, and the rejection is carried by RSVP to the initiating end host. Ifall routers

along the data path accept the flowspec, then RSVP is responsible for maintaining

and refreshing the QoS state that has been established by the routers. The state

kept in the routers issoft state, that is, it expires if not refreshed by periodic RSVP

requests. This provides graceful support for dynamic membership changes and auto-

matic adaptation to routing changes.

IntServ’s proposed mechanisms are a major departure from those in the best-effort

model in that IntServ requires both explicit setup prior to traffic transmission and keeping

per-flow state in the network. Architecturally, IntServ is similar tothe best-effort model

in that there are two types of devices: routers and host devices. However, in IntServ, the

routers are much more complicated. They have to implement a reservation protocol to es-

tablish QoS state and maintain mechanisms to keep, delete or refresh QoSstate. We list the

attributes of an IntServ architecture below.

• Distinction between two types of devices: routers and host devices

Just like that in the best-effort model, the routers are network-level (IP)devices that

exchange routing information and collaboratively deliver a packet from its source to

its destination. The routers form a consistent substrate to deliver packets generated
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by end hosts. In addition, they have to implement protocols to establish, delete and

refresh QoS state at the requests of end hosts. The end hosts are transport-layer (TCP

or UDP) devices which generate and receive IP packets to be delivered by therouters.

Additionally, they initiate RSVP protocols to establish QoS state.

• Explicit contracts on service between the network and the end hosts

In order to receive a certain QoS, the end hosts have to specify explicit QoSrequests

(flowspec) to the network. The traffic generated by the end hosts to receive such QoS

requests is also subjected to explicit checking and policing by the network.

• Fine-grained, per-flow levels of services by a consistent network substrate

Inside the network, packets that belong to flows having QoS specifications and having

been admitted into the network receive per-flow, QoS treatment by all routers on the

routing path. Since QoS requests by end hosts are fine-grained, the services provided

by IntServ network to end hosts are also fine-grained.

It is clear that if IntServ mechanisms can be implemented in the network, then the

network can support explicit QoS requests from the end hosts. However, this particular

feature comes at the cost of losing some network efficiency. Explicit reservations for flows

mean that there is less or no statistical sharing of network resources amongflows that

have requested explicit QoS. Since statistical multiplexing is what made the best-effort

service model efficient, IntServ’s approach reduces the network efficiency. Another serious

concern is about the complexity involved in establishing, maintaining, and deleting QoS

state at per-flow granularity in IntServ’s approach.

2.3 Differentiated Services

Differentiated Services (DiffServ) tries to combine the benefits of the best-effort model and

the IntServ model. The primary goal is to preserve the statistical multiplexing nature of the
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current Internet, while using scalable, flexible mechanisms to provide a wide range of QoS

services. A secondary goal is to make network resource usage accountable.

The general idea of the DiffServ architecture is to mark packets into a small number

of classes at the edge of the network and to create mechanisms inside the networkto dif-

ferentially treat different classes of packets. Each user is associated with aService Level

Agreement(SLA), which is a contract between a customer and an Internet Service Provider

(ISP) that specifies the expected forwarding service a customer should receive. An SLA

also specifies a profile of what a customer’s traffic will look like. The customer pays for

the SLA, under the condition that the ISP delivers the specified forwarding service to traf-

fic within the profile. Any traffic that is in excess of the profile is consideredopportunistic

traffic and is not provided with any kind of service assurance.

At the edge of the network, the ISP’s edge routers classify packets and map traffic

to their respective SLAs. Traffic sent within the profiles in SLAs are marked by edge

routers into different classes of packets. Traffic sent outside the profiles in SLAs are left

unmarked by the edge routers and is considered opportunistic traffic. In this thesis, we

illustrate the different classes of packets with only two types of packets, IN packets and

OUT packets. IN packets represent packets within a profile and OUT packets represent

packets beyond a profile. The edge routers mark packets as IN packets if the traffic is

within a customer’s SLA; anythingin excessof the SLA is tagged as OUT packets. Inside

the network, core routers only need to distinguish between two types of packets and give

IN packets preferential treatment in terms of bandwidth or delay, or both.

In DiffServ, only edge routers need to keep per-flow state and the core routers keep no

per-flow state. This way, the complexity of the system is pushed to the edge of a network.

Putting per-flow state in only edge routers makes DiffServ architecture more scalable than

IntServ. Additionally, SLAs serve as a basis for ISPs to account for the network resource

usage.

Figure 2.2 depicts a Differentiated Services network with two DiffServdomains. The

core routers adopt simple mechanisms on its forwarding path and give preferential treat-
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ments to different classes of packets. The edge routers deploy mechanisms—called Traffic

Conditioners—that classify, monitor, and tag packets. Finally, DiffServ might alsorequire

simple mechanisms to be deployed in end hosts to achieve precise resource allocation. De-

tails on mechanisms can be found in Chapter 3.

A connection that spans multiple DiffServ domains goes through several edge routers;

its packets are marked and remarked at the edge routers of each domain. For example, in

Figure 2.2, a connection from H1 to H2 spans two adjacent DiffServ domains. Packets from

the connection are marked for the first time at edge router ER1 of Domain 1. The marking

is according to an SLA between customer H1 and Domain 1. When packets exit Domain

1 and enter Domain 2, they are marked again by edge router ER2. This time, the packets,

together with packets from other connections traversing from Domain 1 to Domain 2, are

marked according to an SLA between Domain 1 and Domain 2. In other words, edge router

ER2 marksaggregatedtraffic, since ER2 does not keep SLAs for individual connections.

Compared to both the current best-effort Internet and the IntServ, the DiffServ archi-

tecture has the following four attributes:

• Distinctions between edge routers, interior routers and end hosts

The DiffServ architecture distinguishes between end hosts, which implementtransport-

layer protocols, and routers, which implement network-layer protocols, just as the

current Internet does. Additionally, it further distinguishes between two types of

routers: edge routers and interior routers. Edge routers keep state informationabout

SLAs, classify packets, mark packets into different classes and then police the ar-

riving packets according to the service profiles. Interior routers do not need to keep

per-flow state, they only need to distinguish among a relatively few classes of packets

and give preferential treatments to different classes of packets.

• Explicit contracts on services between the network and the end hosts

The service provided by the network to the end hosts is described in SLAs, which

are long-term, static service profiles. An SLA describes the expected traffic speci-
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fications from an end host to the network. Traffic from an end host can exceed the

specified SLA as long as it doesn’t congest the network. If the network is congested,

the end host is expected to slow down to the specified profile. The difference between

an SLA and aflowspecin IntServ is that the former is long-term,expectedservice

profile and the latter is an exact description of traffic specification corresponding to

an explicit QoS request.

• A few differentiated levels of services by a consistent network of interiorrouters

In the DiffServ architecture, once packets are inside the core of the network,they

are treated as aggregates. Interior routers distinguish between a few classes of pack-

ets by examining the Type of Services (TOS) field of IP headers and treat different

classes of packets differently. The interior routers form a network substrate that pro-

vide consistent treatment of packets of different classes. Packets insidethe network

are aggregated, and enjoy a high degree of statistical multiplexing, as in the best-

effort service model. This design preserves the network efficiency that comes with

statistical multiplexing.

• A variety of services provided to end hosts

DiffServ architecture hopes to provide a variety of services, in terms ofbandwidth

and delay requirements, to either aggregated traffic or per-flow traffic. This is done

by having different traffic conditioners at the edge of the network.

Architecturally, DiffServ takes an approach that combines the best of both worlds: a

high degree of aggregation from the best-effort model and QoS assurance from the IntServ.

The edge routers keep per-flow state, and monitor and mark traffic using traffic condition-

ers. The interior routers are still stateless, as in the current Internet. This approach is more

scalable in terms of mechanisms than that of the IntServ.

Like IntServ, DiffServ takes advantage of the same observation that many real-time

applications are adaptive and do not require stringent network guarantees. However, it

differs from IntServ in a number of ways. Instead of trying to support a very fine level of
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QoS specifications in networks itself, DiffServ only supports that level of specifications at

the edge of the network, where it maps these QoS specifications to a few classes ofpackets.

In the interior of the network, DiffServ treats different classes of packets differently. This

design immediately simplifies the design of the interior network and makes themechanisms

scalable.

DiffServ separates theimplementable servicesfrom the actualimplementing mecha-

nisms. DiffServ aims to support many different flexible services, whether they are for

fine-grained, per-flow traffic or aggregated traffic, and whether they are sender-based or

receiver-based. In terms of the actual implementations, however, theseservices can be sup-

ported by one or many integrated sets of mechanisms. For example, there can be different

approaches to providing differentiated levels of bandwidths to applications and each ap-

proach proposes an integrated set of mechanisms for implementation. From an ISP’s point

of view, this provides a number of implementation alternatives to choose from. From the

users’ perspective, applications can run transparently on top of different mechanisms as

long as the mechanisms can achieve what’s specified in the profile.

In terms of time scale of service profiles, IntServ expects to support walk-in, dynamic

traffic that establishes a reservation prior to sending. In contrast, DiffServ service profiles

are long-term and static.

In terms of mechanisms used, IntServ uses a hop-by-hop, receiver-initiated reservation

protocol RSVP, and shaping and policing mechanisms to admit traffic into the network.

In DiffServ, there are quite a few proposals on what the actual mechanisms could look

like. Some require admission, shaping and dropping traffic at the edge of the network and

scheduling mechanisms in the interior of the network; others require only marking packets

at the edge of the network and a dropping mechanism in interior routers. Since there are

only a few different classes of packets inside the network, interior routers do notneed

to support a complex protocol like RSVP. Table 2.1 summarizes the differences between

IntServ and DiffServ.
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Table 2.1: Differences between IntServ and DiffServ
IntServ DiffServ

Service profiles fine-grained, per-flow per-flow or aggregate
receiver-based sender-based or receiver-based

Time scale walk-in long-term
of service profile dynamic static

Mechanisms per-hop RSVP separate edge and interior
involved mechanisms, flexible

2.4 Issues in DiffServ

In the next four sections, we discuss a few selected aspects of DiffServ architecture1.

2.4.1 A Variety of Services

In designing the DiffServ framework, we are serving two potentially conflicting goals.

First, we would like to implement a set of simple services that are usefuland easy to under-

stand and adopt; second, we do not want to embed the above services into the mechanisms

so that the framework cannot adapt to new applications with new service requirements in

the future. The decoupling of the SLAs at the edge of the network from the differential

treatment of packets in the center of the network allows this flexibility. To over simplify,

the preferential dropping scheme adopted in routers will not change over time and can be

standardized; whereas the characteristics of a service are defined and captured by its cor-

responding traffic conditioners and it is only necessary to create new traffic conditioners at

the edge of the network to adopt a new service.

The services provided by this framework are diverse. As a simple example, it could be

the equivalent of a dedicated link of some specified bandwidth from a source to a desti-

nation. Such a model is easy for users to understand. A more elaborate model can be an

aggregated commitment to a range of destinations, or anywhere within an ISP, sometimes

1Section 2.4.1, section 2.4.2, and section 2.4.3 are taken in large part from a joint work by Dave Clark
and the author
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called a Virtual Private Network (VPN). A virtual network is by nature more difficult to

offer with high assurance since offering commitments to “anywhere within aVirtual Net-

work” implies that the ISP has provisioned its resources adequately to support allusers

sending IN traffic simultaneously to any destination.

Not all Internet traffic is continuous in its requirement for bandwidth. In fact, most

Internet traffic is very bursty. It may thus be that a “virtual link” servicemodel is not what

users really want. It is possible to support bursty traffic by changing the traffic conditioners

to implement this new sort of service. The key issue is to ensure, in the center of the

network, that there is enough capacity to carry this bursty traffic, and thus actually meet

the commitments implied by the outstanding profiles. This requires a more sophisticated

provisioning strategy than the simple “add ‘em up” needed for constant bit-rate virtual

links. However, in the center of the existing Internet, especially at the backbone routers

of major ISPs, there is a sufficiently high degree of aggregation that the bursty nature of

individual traffic flows is no longer visible. This suggests that providing bursty SLAs to

individual users will not create a substantial provisioning issue in the center of the network,

while possibly adding significant value to the service as perceived by the users.

A more sophisticated SLA would be one that attempts to provide a specified and pre-

dictable throughput to a TCP stream. This is more complex than a profile that emulates

a fixed capacity link, since TCP hunts for the correct operating rate by increasing and de-

creasing its window size, which causes rate fluctuations to which the profilemust conform.

The service allocation profile is easy for a user to test by simply running a TCP-based appli-

cation and observing the throughput. This is an example of a higher level profile, because

it is less closely related to some existing network components and more closely related to

the users’ actual demands. This kind of service is the focus of this thesis. The mechanisms

and evaluations we offer are targeted throughput for a TCP connection.

In summary, three things must be considered when describing an SLA:

• Traffic specification

What exactly is provided to the customer in terms of bandwidth, delay or both? For
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example, a SLA can specify a 5Mbps average bandwidth, or an end-to-end delay of

no more than 100ms, or both.

• Geographic scope

To where this service is provided. Examples might be a specific destination, a group

of destinations, all nodes on the local provider, or “everywhere”. The specifics of this

condition reflect the geographic scope of the domain with which DiffServ services

are provided, as well as the set of upstream and downstream domains (where the

possible destination machines are) this domain is connected to.

• Probability of assurance

With what level of assurance is the service provided. Since DiffServ does not provide

a hard guarantee, the probability of assurance is a metric a service provider should

also include in the SLAs.

These things are coupled; it is much easier to provide “a guaranteed one megabit per

second” to a specific destination than to anywhere in the Internet.

2.4.2 Network Resource Allocation and Provisioning

The statistical multiplexing nature of the Internet makes efficient use of bandwidth and

supports an increasing number of users and new applications. However, it does leadto some

uncertainty as to how much of the bandwidth is available at any instant. The approach we

take to allocating network resources is to follow this philosophy to the degree that the user

can tolerate the uncertainty. In other words, a capacity allocation schemeshould provide

a range of service assurance. At one extreme, the user may demand an absolute service

assurance, even in the face of some network failures. Less demanding users may wish

to purchase a SLA that isusually available, but may still fail with low probability. The

presumption is that a higher assurance service will cost substantially more toimplement.
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Thus, DiffServ takes a different approach than the previous Integrated Services effort.

In Integrated Services, applications that require a higher level of commitment than the

best-effort service take explicit actions to make reservations along thetraversing route,

using protocols like RSVP [67]. In DiffServ, SLAs areexpectedservices from the network.

The termexpectedsuggests that the SLAs do not describe a strict guarantee, but rather

an expectation that the user can have about the service he will receive during times of

congestion. This sort of service somewhat resembles the Internet of today in that users

have some expectation of what network performance they will receive; the keychange is

that our mechanism permits different users to have different expectations.

It should be noted that traffic requiring this higher level of assurance can stillbe ag-

gregated with other similar traffic. It is not necessary to separate out each individual flow

to ensure that it receives its promised service. For example, there could betwo queues in

the router, one for traffic that has received a statistical assurance, andone for this higher or

guaranteed assurance. Within each queue, IN and OUT tags would be used to distinguish

the subset of the traffic that is to received the preferred treatment.

Fundamentally, statistical assurance is a matter of provisioning. Theoretically, provi-

sioning a network with an arbitrary set of links and required capacity is an NP-complete

problem [40]. There are only solutions to reduce it to a NP problem using heuristics. In

practice, however, an ISP monitors and measures the amount of traffic crossing various

links over time, and provides enough capacity to carry this subset of the traffic, even at

times of congestion. This is how the Internet is managed today. Using DiffServ,the ad-

ditional classification of packets will give an ISP a better idea of how muchof the traffic

at any instant isvaluedtraffic, and how much is discretionary or opportunistic traffic for

which a more relaxed attitude can be tolerated.

2.4.3 Sender-controlled and Receiver-controlled Schemes

Up to this point, we have assumed that it is the sender that is concerned with getting pref-

erential treatment of its packets and is willing to pay for the profiles. However, in today’s

27



Internet, the receiver of the traffic, not the sender, is often the more appropriate entity to

make such decisions. For example, some video-on-demand subscribers are willing to pay

for a better delivery of traffic to their homes. We will show that the DiffServ architecture is

flexible to allow receiver-controlled schemes, hence, receiver-based pricing.

The receiver-based scheme in the DiffServ framework is the complementof the sender-

based scheme. It relies on a newly proposed change to TCP called the Explicit Congestion

Notification (ECN) bit [21]. In ECN semantics, congested routers turn on the ECN bit in

a packet instead of dropping the packet. The TCP receiver copies the ECN bit intothe

acknowledgment (ack) packet, and the sender TCP gracefully slows down upon receiving

an ack with the ECN bit on.

In the receiver-based expected capacity scheme, routers are ECN-compatible routers;

they turn on the ECN bit in a packet when there is congestion, instead of dropping them.A

traffic conditioner, installed at the receiver checks whether a stream of received packets is

inside of the profile. Each arriving packet debits the receiver’s service allocation profile. If

there is enough profile to cover all arriving packets, the traffic conditioner will turn off the

ECN bits in those packets which had encountered congestion since the receiver is entitled

to receive at this rate. If the receiver’s profile is exceeded, packetswith their ECN bits on

will be left unchanged at the traffic conditioner. If packets arrive at the TCPreceiver with

ECN bits still on, it means that the receiver has not contracted for sufficientcapacity to

cover all the packets that encountered congestion, and the sender will be notified to slow

down.

There are a number of interesting asymmetries between the sender-based and the receiver-

based schemes, which arise from the fact that the data packets flow from thesender to the

receiver. In the sender-based scheme, the packet first passes through the traffic conditioner,

where it is tagged, and then through any point of congestion. In contrast, in the receiver-

based scheme the packet first passes through any points of congestion, where it is tagged,

and then through the receiver’s traffic conditioner. The receiver scheme canconvey to the

end point dynamic information about the current congestion levels, since routers only set
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the ECN bit if congestion is actually detected. In the sender scheme, in contrast, traffic

conditioners must tag the packets as IN or OUT without knowing if congestion is actually

present. Thus, we could construct a service, based on the receiver scheme, tobill user for

actual usage during congestion.

On the other hand, the receiver scheme is more indirect in its ability to respond to

congestion. Since in the sender scheme, a packet carries the explicit assertion of whether

it is IN or OUT of profile, the treatment of the packet is evident when it reachesa point of

congestion. In the receiver scheme, the data packet itself carries no suchprofile indication,

so at the point of congestion, the router must set the ECN bit, and still attempt to forward

the packet, trusting the sender will correctly adjust its transmission rate. Of course, if

the traffic conditioner at the receiver’s side employs a dropping algorithm that dropsany

packets that exceeds the profile, the sender will slow down if it is a properly behaved TCP.

Another difference between the two schemes is that in the sender scheme, the sending

application can set the IN/OUT bit selectively to control which packetsare favored during

the congestion. In the receiver scheme, all packets sent to the receiver pass through and

debit the traffic conditioner before the receiver host gets them. Thus, in order for the

receiver host to distinguish those packets that should receive preferred service, it would be

necessary to install some sort of packet filter in the edge router that keeps the SLA.

2.4.4 Denial-of-Service Attacks

As the Internet has transitioned from a closed research network to an open, heterogeneous

network, it has become vulnerable to malicious Denial-of-Service (DOS) attacks. As some

events in early 2000 [54] demonstrate, Denial-of-Service attacks come in various forms.

One common attack is to use spoofed but valid IP addresses as source addressesof packets

and inject packets into the targeted network. The amount of bogus packets injected into

a targeted domain is so great as to overwhelm the routers and stall the normal operations

of the network. The difficulty in detecting and preventing DOS attacks is that thenetwork

has no way of telling agoodpacket—packet that is from a valid host and should be carried
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through the network—from abadpacket, a packet with a spoofed IP source address. The

lack of detection mechanisms prevents a network from quickly filtering out the badpackets

and recovering from the attacks.

The DiffServ architecture, if deployed, is not immune to such attacks. In this section,

we discuss problems and solutions when a DiffServ domain is under a DOS attack.

2.4.4.1 Sender-based Scheme

In the sender-based scheme, traffic from a customer is allowed into a DiffServ domain if

it already has an SLA with the service provider. Traffic from customers whodo not have

SLAs with the service provider is at the whim of the service provider. A discrete service

provider may choose to implement explicit admission control at the edge of the network

and drop all traffic that does not have an SLA contract. In this case, the networkis less

vulnerable to DOS attacks because it must have provisioned enough to handle all “inside

profile” traffic. In the case where a service provider does not implement explicit admission

control, but only classify and mark packets to different DiffServ classes, the mechanisms

in core routers should be able to handle the extreme condition when the network is under

heavy attacks.

In DiffServ, the criteria of good and bad packets is very clear: packetswithin the SLAs

are considered good packets and should be delivered by the network; packets outside the

SLAs are considered bad, or opportunistic traffic, and can be dropped. Since DiffServ in-

troduces a criteria to distinguish among packets and installs admission control mechanisms

at the edge of the network, it presents a preliminary shield against DOS attacks.

There are three scenarios when a DiffServ domain is under DOS attacks.

• All spoofed sources do not have valid SLAs

This is the best scenario. In this case, all traffic generated to mount DOS attacks are

OUT packets. Since DiffServ networks are already capable of shielding IN packets

from OUT packets under various congested state, the network can easily filter out the

bad packets (they happen to be OUT) and can resume normal operations.
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• All spoofed sources do have valid SLAs

This is the worse scenario. In this case, all traffic generated to mount DOSattacks

are IN packets. Since a DiffServ domain is supposed to carry all IN packets, all

this traffic is allowed into the network, and the DiffServ domain has no additional

criteria to distinguish between the good and bad packets and therefore, the domain is

vulnerable to disruptions. In this case, a DiffServ domain is no more vulnerable than

the current Internet because it still has admission control at the edge to determine

the amount of IN packets allowed into the network. Since it should have provisioned

enough to carry IN packets, the network should be able to carry spoofed IN packets.

• Some of the spoofed sources have SLAs and some do not

Between the two above scenarios, there could be a spectrum of scenarios, each with

an arbitrary mix of the above two scenarios. In any case, the ability of aDiffServ

domain to shield IN packets from OUT packets will prevent itself from being over-

whelmed by DOS packets which are OUT packets; the overall provisioning of a

DiffServ domain will prevent itself from being overwhelmed by DOS IN packets.

Therefore, this scenario is no worse than case 2.

Therefore, we have shown that a domain implementing sender-pay DiffServ mecha-

nisms is less vulnerable to DOS attacks than it is without those mechanisms. This is be-

cause the DiffServ mechanisms define a criteria for distinguishing between goodpackets

and bad packets and have sufficient provisioning for the good packets. Under DOS attacks,

the DiffServ mechanisms for distinguishing good and bad packets can provide a shielding

effect by dropping the bad packets, thus dampening the possible effect of DOS attacks.

2.4.4.2 Receiver-based Scheme

The receiver-based scheme, however, poses a bigger security threat and requires additional

robust and scalable network mechanisms in order to work. In the receiver-based scheme, a

receiver purchases an SLA from a DiffServ domain, and any sender sending to that receiver
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can turn on a bit—the receiver-pay bit—indicating it is the receiver, not the sender, who is

paying for the traffic. A DiffServ domain allows the traffic with the receiver-pay bit on into

the network. The traffic is delivered to the edge of the network and the traffic conditioners

check the traffic against the receiver’s profile. If the receiver’s SLAcovers the amount of

traffic, the packets are further directed to the receiver; otherwise,the network can drop the

packets at the edge of the network.

In this scheme, the information of whether the receiver has enough profile to cover the

traffic is not known at the point when trafficentersthe network but when the trafficexits

the network. If the receiver does not have enough profile, these packets are dropped only

after they have unnecessarily consumed network resources. The network is prone to a new

type of Denial-of-Service attack, in which, a malicious host can simply markall its traffic

as receiver-pay with a spoofed destination and inject into the network. This is the converse

scenario to the normal DOS attacks in the current Internet. In other words, ifreceiver-based

scheme is adopted, a DiffServ domain is more open to DOS attacks.

There are two possible approaches to deal with this. One approach is a preventive mea-

sure, in which a receiver’s SLA is installed atall edge routers (other than just the edge

router closest to the receiver), along with an access list of hosts whichare authorized to

use this SLA. All traffic, whether it is sender-pay or receiver-pay, is subjected to admis-

sion control by traffic conditioners when they enter the network. This approach is robust,

however, not scalable because all edge routers have to maintain an access list for every

receiver-pay SLA.

An alternative approach in dealing with potential DOS attacks are to “detect and penal-

ize”. We expect that even in an increasingly heterogeneous Internet, end host misbehavior

will be the exception and not the rule. Detect-and-penalize is a cheaper method than a pre-

ventive measure if DOS attacks is an infrequent event, but it is less robust because it takes

time for the network to identify and react to misbehaving hosts. However, webelieve that

as long as the penalty imposed is sufficiently harsh, this approach should also provide the

proper incentives for users and end hosts to behave appropriately.
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In the context of receiver-pay schemes, a misbehaving end host is one that sends unau-

thorized receiver-pay traffic. The challenge here is not only in detecting itbut rather detect-

ing it early enough to minimize the damage it might have caused. Since the egress router

closest to the receiver knows the receiver’s SLA, detecting an unauthorized receiver-pay

traffic stream at this egress point is easy. The problem is how to quickly communicate this

information back to the ingress point of the DiffServ domain so the offending traffic can

be dropped as early as the ingress point. There are a number of solutions. First, we could

use explicit control messages, such as IP Source Quench [50] messages from egress routers

to ingress routers, who ultimately will take responsibilities for penalizing the unauthorized

source. Another option is to adopt a push-back mechanism, such as a protocol described

in [65]. In this protocol, the desired information is pushed back hop-by-hop by the routers

along the reverse direction of the packet stream.

Once a DiffServ domain has detected a misbehaving host, the traffic conditioner in the

edge router that is the closest to the misbehaving host must apply an appropriate penalty.

The penalty serves two purposes: 1) limit the damage to the network that misbehaving

hosts can cause; and 2) provide the proper (dis)incentives to discourage abusive behavior.

One method of penalty is to simply drop all packets of the offending flow. Alternatively,

edge router could downgrade the traffic to OUT packets, or turn into sender-pay packets

and count against the sender’s profile.

2.4.4.3 Summary of DOS Attacks in DiffServ Domains

In summary, DiffServ architecture, with its flexibility to support both sender-pay and receiver-

pay schemes, opens new challenges in the face of Denial-of-Service attack. IfDiffServ

only supports sender-pay schemes, then the resulting environment is better than thecurrent

Internet in its defense against DOS attacks. This is because DiffServ architecture has in-

strumented a criteria for distinguishing betweengoodandbadpackets, and good packets

always have priority over bad packets to network resources. However, thereceiver-pay

scheme opens up another loophole for DOS attacks and additional network mechanisms
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are needed before DiffServ architecture can support them. We discussed twoapproaches: a

preventive measure that is robust but not scalable; and a “detect and penalize” measure that

can potentially be both scalable and robust. We propose a few mechanisms in detecting and

penalizing offending flows.

2.4.5 Framework for Designing DiffServ Mechanisms

As described previously, a DiffServ network can allocate different network resources to

different entities by putting scalable tagging and dropping mechanisms in routers.These

mechanisms, as we shall see in Chapter 3, will be integrated into existing Internet mecha-

nisms. At a high-level, the idea is simple: edge routers maintain policy information (SLAs),

classify and tag packets; interior routers create differentiations among different classes of

packets. The actual implementation of this idea, however, may choose from any of the

three designs depicted in Figure 2.3.

Each design occupies a row, depicted by an end host, an edge router and an interior

router. The edge router and the interior router represent the network (shaded area). Un-

like the current Internet, in DiffServ there is a trust boundary between end host and the

network. Everything inside the network is owned and trusted by an ISP, and everything

outside the network is not. When traffic crosses the trust boundary from end hosts to the

network, it is subjected to classification, tagging, shaping, policing and even dropping.

Collectively, these are the functions of atraffic conditioner. There are two types of traffic

conditioners: active and passive. Active traffic conditioners can shape and drop packets,

essentially, affecting traffic patterns, whereas passive traffic conditioners only classify and

tag packets but do not affect traffic patterns. Tagging algorithms, or taggers,are passive

traffic conditioners. We focus on taggers only.

In design 1, the tagger is placedinside the end host. It communicates with the edge

router using a signaling protocol that can inform itself about the SLA. This design hasthe

advantage that the tagger can access the internal state variables of TCP, especially those

used in TCP’s congestion control algorithm, e.g., round trip time (RTT) estimate and the
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congestion windowcwnd. Since these TCP state variables are dynamic, knowing them

will help the tagger to tag packets precisely and accurately. Moreover, the tagger can be

integrated with TCP’s congestion control algorithms in controlling the rate that the end

host’s TCP is sending. Since the tagger communicates with the edge router to obtain the

latest SLA, the pace at which end hosts send is well-controlled.

The problem with this design is that the tagger is placedoutsidethe trust boundary

of the network. In this case, there has to be some kind of authentication and verification

mechanism to verify that the tagger has not been tampered with inside the end host, and is

tagging/pacing the traffic according to SLAs. Minimally, the network has to do additional

checking, or policing, at the edge of the network to check that the end host is not cheating.

In design 2, the tagger is placed at the edge router,inside the trust boundary. The

end host is not modified. The tagger is configured with the latest SLA stored in edge

routers, but they do not have access to the internal state of TCP. This particular design is

the most practical approach because the router mechanisms can be relativelyeasily adopted

and changed by ISPs. On the other hand, since the tagger does not have knowledge of the

dynamic state in the end host, this design limits the precision and the accuracyof the tagger.

A tagger designed this way will have to be versatile enough to work with different traffic

mixes, with different round trip times.

In design 3, the tagger is placed at the edge router, inside the trust boundary, we propose

a more radical change to the current Internet by taking TCP congestion control mechanisms

out of the end hosts and placing them in the edge router. What’s left between end hosts and

the edge routers is a flow control mechanism that tells the end host TCP the amount of

packets to be sent into the network2. We place the congestion control mechanism into the

edge router and keep per-flow state in the edge routers. The tagger then can be integrated

with congestion control mechanism in edge routers. In essence, this design keepsthe entire

congestion control loop within the network itself. At the edge router, the congestion control

mechanism is very much the same as that of the TCP, but it is now combined witha tagging

2For example, the control can be in the form of setting TCP’s receiver’s window.
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algorithm for each flow. The interior routers implement congestion avoidance and control

schemes. Since a tagger is integrated with congestion control mechanism in anedge router,

it can provide very accurate indication about the flow of the traffic to internalnetworks.

This design does not require authentication and verification mechanisms betweenend

hosts and edge routers as in design 1, and is more accurate than design 2. The disadvantage

of this design is that it is a more radical approach and might not be practical in actual

deployment3.

In designing our mechanisms, we start with design 2 because this is the most practi-

cal approach, we end up proposing mechanisms which can also be used in the other two

designs.

2.5 Related Work

The inception of the idea that eventually led to DiffServ research can be traced to early

work by David Clark. In [8], Clark proposed an idea in which accounting information is

installed at the edge of the network for pricing and cost allocation purposes, and packets

are classified and marked differently according to this accounting information. Inside the

network, routers distinguish packets with one bit and treat packets differently. In [7], Clark

also mentioned the implications of combining sender-pay and receiver-pay schemes in con-

sidering Internet pricing schemes. [9] was the first research paper that demonstrates these

ideas can be implemented in the real TCP/IP network and have promising results. Soon af-

ter that, there were quite a few different proposals on mechanisms to implement DiffServ,

which eventually led to a standardization effort by IETF. Currently, there are two proposed

interior router forwarding services proposed by IETF: Assured Forwarding and Expedited

Forwarding.

There has been quite a flurry of research on DiffServ since 1997. The rest of this

section describes these efforts. Though they conform to the same DiffServ architectural

3The idea of separating congestion control mechanism from TCP and treating it as a very general mecha-
nism can also be found in “Congestion Manager” [3].
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approach, they differ primarily in two ways: the high-level user perceivableservices and

the mechanisms required in order to achieve such services.

2.5.1 Proportional DiffServ

TheProportional DiffServ[14] offers a different perspective on differentiated services. In-

stead of offering anabsolutebandwidth or delay to a class of packets, Proportional DiffServ

offers relativedifferentiated service under the premise that the service received by higher

classes will be better, or at least no worse, than that of lower classes. In this context, ap-

plications and users do not get an absolute service level assurance, such as an end-to-end

delay bound or bandwidth, since there is no admission control and resource reservations.

Instead, the network assures them that higher classes will be proportionally better than

lower classes, so it is up to to the applications and users to select the class that best meets

their cost and policy constraints.

In [14], Dovrolis et al. identify and evaluate two packet schedulers, WTP and BPR, that

approximate the proportional delay differentiation model in heavy-load conditions, even in

short time scales. They conclude that although both schedulers are appropriate for relative

delay differentiation, their studies illustrate that WTP is significantlybetter than BPR in

the context of proportional delay differentiation. These schedulers give network operators

“tuning knobs” to adjust the quality spacing between classes. They demonstrate that such

per-hop and class-based mechanisms can provide consistent end-to-end differentiations to

individual flows from different classes, independent of the network path and flow charac-

teristics.

In the proportional DiffServ model, the network does not implement admission control

at the edge of the network and relies on its queuing mechanisms to create differentiations

among classes of packets. When the network is moderately loaded, the two proposedqueu-

ing schemes BPR and WTP [14] may not create sufficient differentiation because the class

queues are not sufficiently long for these schedulers to distribute the class delays. When

the network is heavily loaded, if the queues are sufficiently long, the schedulers perform
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well. However, if there is only limited buffers in routers, the networkcan be overwhelmed

by the heavy load and incur losses, and there is not sufficient class queues for the schedules

to distribute class delays either.

2.5.2 Minimum Rate Guarantees in Networks

Another series of work by Feng, et al. [19] explores mechanisms in routers and TCPsthat

enable the network to guarantee minimal levels of throughput to different TCP sessions.

The service realized by the proposed mechanisms can be seen as a possible implementation

of the “controlled-load” service in IntServ, in that those modifications allow the network to

guarantee a minimal level of end-to-end throughput to different network sessions.

In [19], Feng et al. proposes policing traffic at the source and marking packets using a

token bucket. Inside the network, routers use Enhanced Random Early Detection (ERED)

algorithm, which is a minor modification of the Random Early Drop (RED) algorithm4.

ERED uses thresholds for dropping unmarked (non-conformant) packets and does not drop

marked (conformant) packets unless the queues are full. In ERED, the thresholdshave to

be set appropriately to ensure no marked packets are dropped.

At the end host, each TCP is configured with a token bucket policing and marking unit.

There are a few mechanisms proposed to TCP to utilize the marking schemes available.

First, TCP’s sending pace is no longer controlled by the acknowledgment packets from the

receiver, but controlled by adelayedtimer and aperiodic timer. These timers help TCP to

utilize the available tokens in the token bucket more effectively: if there are no tokens avail-

able, TCP withholds its sending by the delayed timer until new tokens becomes available;

if there are tokens in the bucket, the TCP sender is eligible to inject new data packets into

the network even when no acknowledgment packets have arrived. Second, TCP’s conges-

tion control algorithm is modified. The essential idea is to divide TCP’s congestioncontrol

windowcwndinto two parts: reserved window, which reflects the minimal guaranteed rate

from the network, and the rest of the available bandwidth to the connection. The conges-

4We will describe RED in detail in Chapter 3.
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tion control algorithm is modified so that when TCP detects congestion signals fromthe

network (typically packet drops), it does not reduce its congestion window below the min-

imal guaranteed rate. The author warns that these modified congestion control algorithms

in TCP should be exercised if and only if the network supports minimum rate guarantees

through end-to-end signaling, admission control, and resource reservation. Without such

mechanisms in place, the use of this modified TCP may cause congestion collapse.

In a similar piece of work[20], Feng et al. propose an adaptive marking engine that

can either be integrated with TCP or be transparent to the end hosts. In eithercase, the

marking engine maintains local state that includes the target rate requested for a connection

or a group of connections. It passively monitors the throughput of a connection (or the

aggregated throughput of connections) and adjusts packet marking in order to achieve the

target rate by the user. The overall framework can provide simple servicedifferentiation,

without the risk of congestion collapse.

In terms of approach, Feng et al.’s work is the closest to this thesis. We bothfocus on

mechanisms in routers and end host TCPs, even though the services we try to achieve are

different. Feng’s work focuses on providing minimum network bandwidth guarantees, and

we focus on providing an average throughput for TCP traffic. Feng’s proposed changes to

TCP are complex and it is not clear whether they can actually be deployed.

2.5.3 IETF Standardization Efforts

Research work on DiffServ started to appear in late 1997. By early 1998, a working group

for Differentiated Services (DiffServ WG) was chartered in IETFand active standardization

process was in progress. The DiffServ WG attempts to standardize the use of Type of

Service (TOS) byte in both IPv4 and IPv6 headers.

There are two Per-Hop Behavior (PHB)—behaviors defined for interior routers—groups

currently defined in DiffServ: the Assured Forwarding PHB group [28] and the Expedited

Forwarding PHB group [32]. Each PHB group is allocated three bits of the DiffServ field,

or six out of eight bits in TOS byte. The other two bits in the TOS byte are currently being
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considered for Explicit Congestion Notification (ECN) mechanism [22].

2.5.3.1 Assured Forwarding PHB

Assured Forwarding (AF) PHB is a means for a DiffServ domain to offer different levels of

forwarding assurances for IP packets received from a customer of a DiffServ domain. Four

AF classes are defined, where each AF class in each DiffServ node is allocated a certain

amount of forwarding resources (buffer space and bandwidth). IP packets that wishto use

the services provided by the AF PHB group are assigned by the customer or the provider

of a DiffServ domain into one or more of these AF classes according to the services that

the customer has subscribed to.

Within each AF class, IP packets are marked with one of three possible dropprecedence

values. In case of congestion, the drop precedence of a packet determines the relative im-

portance of the packet within the AF class. A congested DiffServ node tries toprotect

packets with a lower drop precedence value from being lost by preferably discarding pack-

ets with a higher drop precedence value.

In a DiffServ node, the level of forwarding assurance of an IP packet thus depends

on (1) how much forwarding resources has been allocated to the AF class that thepacket

belongs to, (2) what the current load of the AF class is, and in case of congestion within

the class, (3) what the drop precedence of the packet is. The recommended interiorrouter

mechanism to implement AF PHB is an algorithm similar to RIO, presentedin Chapter 3.

2.5.3.2 Expedited Forwarding PHB

In contrast, the Expedited Forwarding (EF) PHB group is designed to build a low loss, low

latency, low jitter, assured bandwidth, end-to-end service through a DiffServ domain. Such

a service appears to the endpoints like a point-to-point connection or a “virtual leased line”.

In [32], Jacobson, et. al state that a service that ensures no queues for some aggregate is

equivalent to bounding rates such that, at every transit node, the aggregate’s maximum ar-

rival rate is less than that aggregate’s minimum departure rate. Thus, in the interior routers,
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the queuing scheduling should be such that it guarantees that the aggregate has a well-

defined minimum departure rate, independent of the dynamic state of the router. Often,

the interior router implements such guarantees by a priority queue, which allowsunlimited

preemption of other traffic if necessary. At the edge routers, the traffic conditioners should

ensure that arrival rate of an aggregate at any interior router is always less than that router’s

configured minimum departure rate.

2.5.4 LIRA and SCORE Network

In [61], Stoica and Zhang propose an alternative Assured Forwarding service, LIRA (Lo-

cation Independent Resource Accounting). LIRA does not provide absolute bandwidth

profiles, but rather, it defines service profiles in units of resources tokens. Thenumber of

resource tokens charged for each “in profile” packet is a dynamic function of the path it

traverses and the congestion level. The assessment of congestion level of a link is through

a utility function. The authors leverage the existing routing infrastructure to distribute the

path costs to edge routers. Since such costs are dynamically generated, reflecting the con-

gestion level along the path, the costs can also be used to design dynamic routing andload

balancing. Defining service profiles in terms of resource tokens allows more dynamic and

flexible network control algorithms that can simultaneously achieve high utilization and

ensure high probability delivery forin profilepackets. In LIRA, Stoica and Zhang demon-

strate how the routing subsystem can be integrated with packet delivery to achieve both

high network utilization and service assurances.

In [62], Stoica and Zhang propose the Scalable Core (SCORE) architecture, in which

only edge routers perform per-flow management while core routers do not. They attempt

to use SCORE to provide end-to-end per flow delay and bandwidth guarantees as defined

in IntServ, but without per flow management. Thus, they can have the best of both worlds,

i.e., providing services as powerful as those defined in IntServ, while utilizing algorithms

as scalable and robust as those used in stateless network as DiffServ.

Current IntServ solutions assume a stateful network in which two types of per flow
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state are needed:forwarding state, which is used by the forwarding engine to ensure fixed

path forwarding, andQoS state, which is used by both the admission control module in the

control plane and the classifier and scheduler in the data plane. In [62], Stoica and Zhang

propose two algorithms for providing QoS state, one to schedule packets, and the other to

perform admission control. The primary technique is called Dynamic Packet State (DPS).

Each packet carries in its header some state that is initialized by theingress router. Core

routers process each incoming packet based on the state carried in the packet’s header,

updating both its internal state and the state in the packet’s header before forwarding to

the next hop. Therefore, DPS is essentially asynchronizingandcoordinatingmechanism

piggybacked on the packet itself. Since such mechanism must traverse the same path as

data payload, distributed algorithms can be designed to approximate the behavior of a broad

class of stateful networks using networks in which core routers do not maintain perflow

state.

In terms of actual implementation, Stoica and Zhang propose to use the fragmenta-

tion field of IPv4 header (13 bits) as well as four bits from the TOS byte to encode the

state information. They have implemented an testbed to demonstrate such algorithms are

possible.

SCORE pushes the idea of DiffServ further in that the packet itself carries out the task

of a traditional signaling protocol by synchronizing and coordinating with routers.
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Chapter 3

Mechanisms

This chapter presents mechanisms that implement the Assured Forwarding model.Al-

though the specific mechanisms can be seen as modifications to the existing congestion

control mechanisms in both routers and end hosts, we also provide a framework to think

about other possible designs of bandwidth allocation schemes. We first describe the exist-

ing congestion control mechanisms in routers and end host TCP, in section 3.1. In the next

three sections, we describe three mechanisms: 1) for interior routers, we propose RIO, a

probabilistic early dropping algorithm that can create preferential treatment of packets in

different classes; 2) for edge routers, we describe TSW, a rate estimatorand a probabilistic

tagging algorithm for marking packets; and 3) for end host TCP, we propose TCP-DiffServ,

a collection of three mechanisms to make TCP robust, fair, and meet the specified SLA.

Finally, in Section 3.5, we discuss our design choices.

3.1 Congestion Control in the Current Internet

3.1.1 Network Congestion

Network congestion has long been an active research topic. Fundamentally, network con-

gestion exists because of a mismatch in either memory sizes, processing speed, or link
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bandwidth of network devices [34], and it becomes more pronounced and frequent as net-

works become more heterogeneous. Early debate in the 1980s centered around a few issues,

namely, whether congestion control should take the form of a prior-reservation or awalk-in;

whether it should be rate-based [63, 2, 64, 60, 66, 5] or window-based; whether the control

should be done in the routers [43, 13] or at the end hosts [31, 33, 38, 55]; and whether

an open-loop or a close-loop mechanism would suffice. In [35], Jain presents an objective

comparison of the alternatives and argues that a complete congestion management strategy

should include several congestion controls and avoidance schemes that work at different

levels of protocols and handle congestion of varying duration.

The Internet suffered a congestion collapse in the late 1980s because of a lack of con-

gestion control mechanisms. In 1988, Jacobson [31] proposed a collection of practical

congestion control mechanisms for TCP. The mechanisms significantly improved TCP’s

performance and alleviated network congestion. The particular mechanisms havesince

been widely adopted and implemented. Later research work in congestion controlinvolves

mechanisms on the router side [27, 43, 41], as well as improvements to TCP’scongestion

control [30, 15, 23, 5], but the adoption and deployment of these is slow.

We are interested in congestion control and avoidance mechanisms because theseare

the mechanisms by which Internet bandwidth is allocated. In the current Internet, conges-

tion control and avoidance mechanisms include those in end host TCP and those in routers.

In the following two subsections, we describe router mechanisms and TCP mechanisms,

respectively.

3.1.2 Congestion Avoidance Mechanisms in Routers

Most of today’s Internet routers use a drop-tail algorithm to manage incoming their queues.

A drop-tail queue uses FIFO scheduling and drops packets when it runs out of buffer space.

The problem with a drop-tail queue is that it doesn’t do any congestion avoidance: it only

drops packets when the congestion is already severe. This tends to create a phenomenon

calledglobal synchronization, in which many TCP connections tend to synchronize in their
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increase and decrease phases when a drop-tail queue is used in routers1. This is because

when the queue is full, packets from all connections are dropped together. The connec-

tions all try to recover packets, and after a period of silence, start again, so the queues at

congested routers will move between full and empty. Global synchronization canlead to

low network utilization. One proposal to solve this problem is to use a randomized drop

queuing discipline[43], instead of the drop-tail queuing.

The most effective detection of congestion occurs in routers because routers can reli-

ably distinguish between propagation delay and queuing delay, as well as between transient

congestion and persistent congestion. There have been a few proposals on putting conges-

tion detection and avoidance mechanisms into routers. The DECbit congestion avoidance

scheme [37] is an early example of congestion detection in the router. DECbit routers give

explicit feedback when the average queue size exceeds a certain threshold. Another exam-

ple, which combines the idea of DECbit and randomized drop, is RED, or Random Early

Drop gateway, proposed by Sally Floyd and Van Jacobson. The RED algorithm can detect

incipient congestion, avoid global synchronization, and keep the overall throughput high

while maintaining a small average queue size.

The RED algorithm operates as follows. First, it computes the average queue size

(avg). The average queue size is calculated using a low-pass filter of instantaneous queue

size (instqueue), once upon every packet arrival (Formula 3.1).

avg = avg ∗ wq + instqueue ∗ (1 − wq); (3.1)

wherewq is a configurable parameter.

Then, it uses the calculatedavg to determine whether an arriving packet should be

dropped. If the average queue size is below a minimum threshold (minth), the arriving

packet is not dropped. When the average queue size exceedsminth but is less than a

maximum threshold (maxth), RED drops the arriving packet with a certain probability.

This probability is calculated as a function of the average queue size (avg) and a parameter

1Though this shouldn’t be a problem if the TCP connections have verydifferent round trip times.
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Pmax, as in Formula 3.2.

Pdrop = (avg − minth)/(maxth − minth) ∗ Pmax; (3.2)

The closeravg is to maxth, the higher the dropping probability. When the average

queue size exceeds the maximum threshold,maxth, RED drops all arriving packets with

probability 1.

RED allows routers to tolerate transient bursts but to detect incipient and persistent

congestion. By using a low-pass filter to calculateavg, RED can filter out transient bursts

and temporary congestion. Persistent congestion in the router is reflected by a high average

queue size, which results in a high dropping probability. Thus, RED can detect persistent

congestion.

RED also allows routers to detect congestion early. This is done by startingto drop

packets when the average queue size exceeds a minimum threshold, not when the router is

out of buffer space. This allows a grace period for congestion detection.

Finally, RED drops packets randomly so end host connections (especially TCP connec-

tions) can back off at different times. This mechanism avoids the global synchronization

effect we mentioned earlier. Therefore, RED is able to keep the overall throughput high

while maintaining a small average queue length, and tolerate transient congestion.

3.1.3 Congestion Phases in RED

A RED router is configured with the following parameters:minth, maxth, wq, andPmax.

It works as illustrated in Figure 3.1. The X axis isavg, the average queue size. The Y axis

is the probability of dropping an arriving packet. There are three phases in RED: normal

operation, congestion avoidance, and congestion control. The three phases are defined by

the average queue sizeavg in the range of [0,minth), [minth, maxth), and [maxth, ∞),

respectively.

• Normal operation (phase 1):avg is between [0,minth)
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Figure 3.1: RED Algorithm

In this phase, the router is operating with no congestion; the amount of arriving

packets is well below the router’s capacity. The router sees very short instantaneous

queues and a very small average queue. No packets are dropped.

• Congestion avoidance (phase 2):avg is between [minth, maxth)

In this phase, the router observes that the queue is gradually building up. It starts

dropping packets as a congestion signal to end hosts. The packets are dropped early

and randomly to avoid global synchronization. If the end hosts implement the ap-

propriate congestion control algorithm[31], they will back off and congestion at the

router will dissipate. This phase is a buffering phase with a relatively steady dropping

rate.

• Congestion control (phase 3):avg is between [maxth, ∞)

In this phase, the router is congested. The router drops all arriving packets in the

hope to control congestion. The router degrades into a drop-tail router, which has

a few undesirable consequences. A drop-tail router is more likely to drop multiple

packets from the same TCP connection, and if the TCP connection fails to recover

those packets using its retransmission mechanism, it will go into a timeoutperiod
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and suffer a long period of silence. A drop-tail queuing mechanisms can also leadto

global synchronization effect. This is the operating phase that a router should avoid.

3.1.4 Congestion Control and Avoidance Mechanisms in TCP

TCP is the only transport protocol that implements congestion control and avoidance mech-

anisms. The mechanisms were introduced in the late 1980s by Van Jacobson [31]. Immedi-

ately preceding this time, the Internet was suffering from a congestion collapse: end hosts

would send their packets into the Internet and quickly congest the network. The routers

would drop packets once they run out of buffers. The end hosts would time out and retrans-

mit packets again, resulting in even more severe congestion.

The mechanism proposed by Jacobson was to have TCP probe the available bandwidth

available in the network and pace its injection of new packets into the networkby the arrival

of acknowledgment packets. However, determining the available capacity in the network

is not an easy task. TCP does this by increasing the number of packets it injects into the

network until a packet is dropped—the underlying assumption is that a packet is always

dropped because network congestion has occurred—at which point, TCP determines that

correct operating point should be one half of the number of outstanding packets2, and re-

duce its sending rate by one half. This is often called the “linear increase, multiplicative

decrease” algorithm, first proposed by Raj Jain, et al. in [38].

In Jacobson’s mechanism, each sending TCP maintains a new state variable called con-

gestion window, or cwnd. cwndis dynamically adjusted to reflect the number of packets a

given TCP can send into the network. There are two phases in TCP’s congestion window

adjustment algorithm: exponential increase phase (accomplished by a mechanism called

“Slow-Start”), and linear increase phase (accomplished by a mechanism called “Conges-

tion Avoidance”). During the exponential increase phase,cwndis doubled every round trip

time (RTT). During the linear increase phase,cwndis increased linearly, or by one packet

2Assuming the buffer space in the congested router equals the number of packets currently in the “pipe”,
then cutting down the TCP window size by one half will match TCP’s operating point to the number of
packets in the pipe, or reduce the queue in the router to zero.
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every round trip time.

TCP maintains another new state variable called “Slow-Start threshold”or ssthresh,

which marks the turning point when TCP switches from the exponentially increase phase

to the linear increase phase. When thecwndis less thanssthresh, TCP uses the Slow-Start

mechanism to exponentially increase itscwnd; once thecwndgoes beyondssthresh, TCP

switches to Congestion-Avoidance, linearly increasing itscwnd. ssthreshis typically pre-

configured to be 64Kbps and is set to be one half ofcwnd, after a packet drop. Intuitively,

ssthreshreflects an estimation of the equilibrium operating point of the TCP connection.

The ideal operating region of TCP uses Congestion Avoidance mechanism only and

stays in a linear-increase phase until a packet drop, at which point TCP readjusts bothcwnd

andssthreshto be one half of whatcwndwas prior to the packet drop. Since the new value

of cwnd is equal to the newssthresh, TCP stays in the linear-increase phase and uses the

congestion-avoidance mechanism again. Slow-start is only evoked when a TCP initially

starts and does not know its ideal operating point, or after TCP has a timeout. However,

it is often the case that a TCP loses a number of packets in the same congestion window

when congestion occurs, in which case, TCP has to recover through a timeout mechanism.

If a timeout occurs, TCP is usually silent for a while before it can send packets again. Since

TCP doesn’t have a very accurate timer, this silent period can be long. If thisoccurs, TCP’s

achieved throughput can be unpredictable.

Figure 3.2 illustrates four TCP epochs of linear increase and packet drops. Each “x” in

the figure indicates a packet drop, after which, thecwndandssthreshis reduced to one half

of the value ofcwnd.

3.2 RIO Dropping Algorithm

As discussed in Section 2.4.5, there are a few possible approaches in designing DiffServ

mechanisms and we start with design 2. In the next few sections, we will describe our expe-

riences in designing an interior-router mechanism (RIO), an edge-router mechanism (TSW)
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Figure 3.2: TCP Operating Epochs Using Congestion Avoidance Mechanism

and TCP mechanisms, then we conclude by revisiting the three designs in Section 3.5.

In addition to detecting congestion and manage congestion, the algorithm in interior

routers has to have two additional attributes:versatilityanddifferentiation. In other words,

the algorithm should create differentiated treatment of packets regardless the traffic mix and

network conditions. For example, the network might be very well-provisioned, and there

is a low utilization of network at any instant. Alternatively, the network might be heavily

congested but most of the packets are OUT packets, or the network is under-provisioned,

and a major portion of the packets causing long queues are in fact IN packets. In all cases,

the router algorithm has to perform well.

We designed a preferential dropping algorithm, RIO, based on Random Early Drop

(RED) algorithm. RIO stands for Random Early Drop (RED) with IN/OUT. We start our

design with RED algorithm because RED can detect congestion early, manage congestion,

and avoid global synchronization.

RIO uses twin RED algorithms, one for IN packets and the other for OUT packets,and

gives preferential treatment to IN packets. RIO retains all attributes of RED algorithm:

detecting incipient congestion, avoiding global synchronization and keeping the overall

throughput high while maintaining a small average queue size. Additionally, RIO creates

service discrimination to different classes of packets.
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3.2.1 Twin Algorithms in RIO

RIO uses the same early drop mechanism as RED, but is configured with two sets of pa-

rameters, one for calculating the probability of dropping IN packets, and the other for cal-

culating the probability of dropping OUT packets. RIO works as follows. When a packet

arrives, RIO first exams whether it is an IN packet or an OUT packet. Ifit is an IN packet,

RIO calculatesavg in, the average queue size for IN packets. Then RIO uses the same al-

gorithm RED uses to determine whether to drop this IN packet. There are two configurable

thresholds: the minimum thresholdmin in for IN packets and the maximum threshold

max in for IN packets. Ifavg in is less thanmin in, then the packet is not dropped; if

avg in is between two thresholdsmin in andmax in, then the packet is dropped with a

probabilityPdrop in calculated based on Formula 3.3; ifavg in is beyondmax in, then the

packet is dropped with a probability of 1.

Pdrop in = (avg in − min in)/(max in − min in) ∗ Pmax in (3.3)

Similarly, if the arriving packet is an OUT packet, RIO determines whether to drop this

packet with the following algorithm. It first calculatesavg total, the averagetotal queue

size forall arriving packets (both IN and OUT)3. There are two configurable thresholds:

the minimum thresholdmin out for OUT packets and the maximum thresholdmax out

for OUT packets. Ifavg total is less thanmin out, then the packet is not dropped; if

avg total is between two thresholdsmin out andmax out, then the packet is dropped with

a probabilityPdrop out calculated based on Formula 3.4; ifavg total is beyondmax out,

then the packet is dropped with a probability of 1.

Pdrop out = (avg total − min out)/(max out − min out) ∗ Pmax out (3.4)

Figure 3.3 contains the pseudo code for RIO algorithm.

3We consider both IN and OUT packets when calculating the dropping probability of OUT packets. This
is a subtlety which we discuss at the end of this section.
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For each packet arrival
if it is an IN packet

calculate the average IN queue size avg_in;
calculate the average queue size avg_total;

If it is an IN packet
if min_in < avg_in < max_in;

calculate probability Pin;
with probability Pin, drop this packet;

else if max_in < avg_in;
drop this packet;

if this is an OUT packet
if min_out < avg_total < max_out;

calculate probability Pout;
with probability Pout, drop this packet;

else if max_out < avg_total;
drop this packet;

Figure 3.3: RIO Algorithm

Figure 3.4 shows the twin algorithms in RIO.

3.2.2 Designing RIO

We didn’t arrive at this particular design easily. There were a few other attempts, mostly

focusing on what metric (the X axes in the twin algorithms) we should use to decide the

congestion state of the router. In RED, the value ofavg q is particularly important because

this estimate should accurately reflect the congestion state of the router, and in turn, de-

termine the dropping probability. In RIO, we have to determine the proper metricsto use

for both IN packets and OUT packets. Determining the metric for IN packetsis relatively

straightforward because IN packets represent the provisioned traffic, so the network service

providers should know the amount of IN packets to expect. Therefore, the metric for IN

packets is the averaged queue size for IN packets, i.e., the weighted averageof instanta-

neous queue sizes of IN packetsonly. However, determining that for the OUT packets is
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Figure 3.4: Twin Algorithms in RIO

not that easy. There are three possible choices:

• Usingavg out q

We could use a similar metric for OUT packets, namely, the weighted average of

instantaneous queue sizes of OUT packetsonly. This design has a problem because

the OUT packets represent the amount of opportunistic packets not provisioned for,

so the ISP has no idea about the appropriate amount of OUT packets to expect. For

example, a lot of arriving OUT packets may be due to the fact that there are very few

IN packets in the network so the sending flows can send beyond their service profiles,

thus generating a lot of OUT packets; or this is because some non-conforming flows

are sending a lot of OUT packets to congest the network. In these two cases, the

congestion state of the network are very different. However, by examiningavg out q

alone, the routers do not have enough information to determine the proper congestion

state.

• Usingavg in q

We could useavg in q to determine the proper rate to drop OUT packets. At first,

this design seems counter-intuitive. However, it makes sense with the following

rationale. The amount of IN packets is what the network has provisioned for. If the

avg in q is small, then it means that the routers should havemorebuffers available
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for OUT packets. Conversely, ifavg in q is large, then it means that the routers

should havelessbuffers for OUT packets. In other words, the average queue size for

IN packets can determine how much room the router has for OUT packets. However,

the problem with this particular design is that it works well whenavg in q is large;

when there are very few IN packets in the network, using this metric can lead to a

very lenient treatment of OUT packets, resulting a long delay for arriving packets

and eventually congestion.

• Usingavg total

Finally, we come up with a design that has the benefits of the above two designs.

We useavg total, or the average queue size forboth IN and OUT packets as the

metric. For IN packets, we still useavg in q. This way, the dropping probability

of IN packets is determinedonly by the amount of IN packets in the queue, but that

for OUT packets is determined by all arriving packets, regardless what kindof traffic

mix. This way, the dropping algorithm is versatile, and can maintain short queue

length and high throughput no matter what kind of traffic mix the arriving packets

have.

3.2.3 Congestion Phases in RIO

Figure 3.5 illustrates RIO graphically. RIO divides up the router’s congestion state into five

phases4:

• Congestion free phase (phase 1)

The router is operating with no congestion: the amount of IN and OUT packets are

well below its capacity. It sees very short instantaneous queues and a very small

average queue. No packets are dropped.

4We merged the two pictures in the previous graph into one. However, please note that the X-axes of
the two previous pictures areavg in andavgtotal respectively. In this graph, the X-axis isavg total, the
average queue size for both IN and OUT packets.
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Figure 3.5: Phases in RIO Algorithms

• Congestion sensitive phase (phase 2)

The router suspects that the queue might be building up so it starts dropping packets

as congestion signals, however, it drops OUT packets only. During this phase, the IN

packets only see short instantaneous queues and they are never dropped.

• Congestion tolerance phase (phase 3)

All OUT packets are dropped, but no IN packets are dropped. This is the buffering

phase for the IN packets before routers start dropping any IN packets. During this

phase, the average queue size is building up with the arriving IN packets. In practice,

max out andmin in can be the same, then, this phase is eliminated.

• Congestion alarm phase (phase 4)

All OUT packets are dropped. In addition, the router starts to drop IN packets as

a means to keep the queue from overflowing. This is an undesirable phase for ISP

because it compromises the ISP’s SLAs by dropping IN packets.
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• Congestion control phase (phase 5)

The system is congested. The router drops both IN and OUT packets with probability

1. In this phase, the router has switched its primary goal from creating differentia-

tions among two types of packets to congestion control. The router degrades into a

drop-tail router. If the router constantly operates in this phase, it is a sure sign that

either the system is under-provisioned or the parameters of traffic conditioners/RIO

are not set correctly.

Phases 2 and 3 are the ideal operating phases for a router because both the instantaneous

and average queue sizes are short, but the network link is highly utilized. Only OUT

packets are dropped, which doesn’t compromise an ISP’s service profiles to its customers.

When operating in phase 1, the router sees little congestion but the link capacityis not well

utilized. When the input traffic is predictable, an ISP should try to configure itssystem to

avoid phases 4 and 5, and operate mostly in phases 1, 2 and 3.

3.2.4 Creating Differentiation with RIO

The discrimination against OUT packets in RIO is created by carefully choosing the pa-

rameters (min in, max in, Pmax in), and (min out, max out, Pmax out). A RIO router

is more aggressive in dropping OUT packets on three accounts: first, it drops OUT pack-

ets much earlier than it drops IN packets, this is done by choosingmin out smaller than

min in. Second, in the congestion avoidance phase, RIO drops OUT packets with a higher

probability, by settingPmax out higher thanPmax in. Third, by choosingmax out much

smaller thanmax in, RIO goes into congestion control phase for the OUT packets much

earlier than for the IN packet. In essence, RIO drops OUT packets first when it detects

incipient congestion, and drops all OUT packets if the congestion persists. Only asa last

resort, occurring when the router is flooded with IN packets, does it drop IN packets in

the hope of controlling congestion. In a well-provisioned network, this should never hap-

pen. When a router is consistently operating in a congestion control phase by dropping IN
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packets, this is a clear indication that the network is under provisioned.

We had some heuristics in choosing the parameters for RIO for our simulation exper-

iments. Usually, we decide the maximum tolerable delay for arriving packetsbefore the

router starts to drop OUT packets, and this would set themin out. For example, if we

decide that when arriving packets have an average queuing delay of 5ms, it is time to start

dropping OUT packets, then themin out (in bytes) is set to be the multiple of 5ms and the

link bandwidth (bytes/sec). Similarly, we determine the maximum delay tolerable for all

arriving packets before the router drops all arriving packets. For example, if we decide that

when an arriving packet sees a 20ms of queuing delay this router is in a heavily congested

state and all arriving packets have to be dropped, then,max in is set to be the multiple of

20ms and the link bandwidth. Similar heuristics are used formax out andmin in. We

usually usemin in to be at least one half ofmax in andmin out to be at least one half of

max out. The respectivePmax for IN and OUT are chosen to be different enough to create

strong discrimination between the two types of packets. In our simulations, wesetPmax in

to be 0.02 andPmax out to be 0.5.

A conservative choice of buffer size of a router is at least the number of packets in the

pipe, i.e., the multiple of link speed and the longest round trip time of connections going

through this router. For example, if the link speed is 1.5Mbps, and the RTT of the longest

connection going through this router is 100ms, then the buffer size is 0.15M bits.

3.3 Tagging Algorithms

In this section, we discuss the design of tagging algorithms (or taggers). First,we de-

scribe the desired attributes of an ideal tagging algorithm. Instead of evaluating a tagging

algorithm for all kinds of traffic, we focus on long-lived TCP traffic and describeour expe-

riences in designing a tagger for such traffic. We describe a few previous attempts and the

difficulties we run into in each case. Finally, we describe a tagging algorithm called Time

Sliding Window (TSW), which has overcome those difficulties. We use TSW tagger in our
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subsequent simulation experiments.

3.3.1 Ideal Algorithms

In our design, taggers reside in edge routers and should be able to work withany type of

traffic coming from the end hosts. A tagger does notactivelycontrol the speed and spacing

of end host traffic, but onlypassivelymonitors and tags the end host traffic. The flow’s

behavior is therefore determined by the combined effect of its tagger and the dropping

algorithms in the network. We believe an ideal tagger should have the following attributes:

• Versatility

The ideal tagger should be able to work with all types of traffic, whether it is TCP,

UDP, bursty, long-lived or interactive traffic.

• Long-term Perspective

In designing different taggers, we are less concerned about the particular behaviorof

a flow over a short period of time, for example, during one round trip time. Rather,

we are concerned about eliciting the correct behavior of a flow—meeting the service

profile—over a long period of time, e.g., minutes, because this is the time granularity

that ISPs are concerned about. That is, if we have a number of taggers to compare and

evaluate, the determining criteria is that whether this tagging algorithm hasaffected

the behaviors of a sending flow to achieve the target rate in SLA over a long period

of time.

This particular observation has two implications. The tagger should be able to 1)

induce a reduction in a flow’s speed by tagging if the flow has been sending above its

target rate. The more a flow exceeds the target rate, the more this flow should scale

back during the next period of time; 2) tolerate a burst of packets after the flow has

been sending below its target rate. These two tagging behaviors are complementary

to each other, and they both require the ideal tagger to have some memory of the past
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history. We define the first kind of memory as “negative memory”, i.e., the tagger

remembers that the flow has sent beyond its target rate and should be clamped down.

Similarly, we define the second type of memory “positive memory”, i.e., a memory

that tolerates a bursts of packets from the flow.

3.3.2 Tagging TCP Traffic

In the following, we focus on a particular type of traffic: long-lived TCP traffic. We de-

scribe the idiosyncrasies of a tagger for such kind of TCP traffic. We chose TCP traffic

because it represents about 97% of entire Internet traffic. Most of file transfers on the In-

ternet are long-lived TCP traffic. However, while TCP’s behaviors are well understood,

the effect of a tagger on such traffic is not. Additionally, evaluating the effect of a tagger

on long-lived TCP traffic is relatively straightforward. Since a long-lived TCP traffic flow

always has packets to send, a connection’s behavior depends only on the combined effect

of tagging and dropping algorithms, and not on upper-layer applications. If a flow doesn’t

reach its specified targeted rate, we can safely conclude that it is because the tagging and

dropping algorithms do not work well, not because the upper-layer applications do not have

packets to send. Therefore, the evaluating criteria is simple: we look atthe time average of

a long-lived TCP traffic after it has reached a stable state, and see howclose this particular

flow comes to its target rate.

The pitfall in choosing on long-lived TCP traffic is that this might not be representative

of TCP traffic on the Internet. We think majority of the TCP traffic are in fact short-lived,

transactional TCP transfers, given the popularity of the Web.

In previous sections, we have described how TCP adjusts its sending rate using its

congestion control and avoidance algorithms, and it usually keeps a sawtooth behavior.In

a DiffServ system, after having both taggers and droppers in place, the ideal behavior of

a long-lived TCP connection trying to achieve an average target rateRt could look like

what’s depicted in Figure 3.6.

In Figure 3.6, the X axis is time, and the Y axis is the sending rate of a TCP connection.

60



�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

Sending Rate

0.66 R_t

1.33 R_t

X X

rtt

Time

R_t

Figure 3.6: Ideal TCP Operating Epochs

At any point, the thick, dark line respects the sending rate of a TCP connection. Each x in

the figure symbolizes a packet drop. After a packet drop, the TCP connection cuts its rate

down by one half and starts increasing its rate again. The time between two packet drops

is an epoch. In Figure 3.6, there are three epochs.

There are three things worth noting:

1. TCP keeps consistent sawtooth swings between1.33Rt and0.66Rt.

2. Once TCP has gone beyond1.33Rt, part of its traffic is marked as OUT.

3. The OUT packets in TCP will eventually trigger packet drops or congestion indica-

tions from the network, which will lead TCP to cut it sending rate by half, and back down

to 0.66Rt.

The choice of1.33Rt and0.66Rt, or the high sending rate when TCP traffic is marked

as OUT and the low sending rate TCP is reduced to, is not incidental. Let H denote the

high sending rate, and L denote the low sending rate, and they have to meet the following

two equations:

(H + L)/2 = Rt (3.5)
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H/2 = L (3.6)

Equation 3.5 is because a TCP connection swings between the two sending rates should

achieve an average ofRt over time; Equation 3.6 is because TCP’smultiplicative decrease

window reduction algorithm always cuts the sending rate by one half5. Solving the above

two equations, we will get the high sending rate to be1.33Rt, and the slow sending rate to

be0.66Rt.

Ideally, packet drops happen at the point when the TCP connection has just passed the

1.33Rt threshold, and the tagging algorithm has started tagging some of the packets as

OUT. In actuality, this is hardly the case. For one, there will be a feedbackdelay between

the time when a packet is tagged and when a congestion signal is received, whichis at least

a round trip time. Secondly, the sending TCP might suffer from packet drops (congestion

signals) before it reaches the1.33Rt point.

Let’s calculate the time it would take for a TCP connection to increase from 0.66Rt to

1.33Rt, or theperiodof the TCP epochs. We assume that TCP stays in the linear increase

phase, then each round trip time (RTT), the connection opens up its window by one packet,

or increases its sending rate by1pkt/rtt (bytes/sec). In Figure 3.6, the lightly shaded box

depicts the one packet increase in TCP’s window. The width of box is one RTT time be-

cause TCP increases its congestion window by this packet during one RTT time. Therefore,

the height of the box is the rate increase for the connection within this RTT time, which is

1pkt/RTT .

Therefore, to increase its sending rate from0.66Rt to 1.33Rt, a connection would have

to take
(1.33Rt − 0.66Rt)

1pkt/RTT
=

0.67Rt ∗ RTT

pkt

5We are simplifying things here a little and ignoring the Fast Retransmit and Fast Recovery here, which
would create a short gap between two consecutive epochs.
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round trip times, or
0.67Rt ∗ RTT 2

pkt

seconds. In other words, the period of ideal TCP epochs is a function of both the target rate

Rt and the RTT of a TCP connection. In order to give a precise indication of when a TCP

connection has exceeded its target rate and by how much, the tagger has to have knowledge

of both the RTT and the target rateRt, so it can accurately tag the traffic.

3.3.3 Token Bucket Tagging Algorithm

We have designed and tried a number of tagging algorithms. One possibility is a simple

token bucket, which works as follows. There is a bucket of depthD (measure in bytes)

and it is constantly being filled by tokens at a replenish rate ofR (bytes/sec). However, the

number of tokens in the bucket never exceedsD. Packets passing through the token bucket

tagger will be tagged as IN if there are enough tokens in the bucket for the size of packets

(bytes); if not, the packet will be tagged as OUT. For example, if the sending rate of the

flow is 2R, whereR is the replenish rate of the token bucket; then it would first takeD/R

time for the flow to drain all the tokens already in the bucket, during which, all packets will

be IN. After this point, every other packet will be an OUT packet.

One is tempted to use a simple token bucket tagging algorithm, since the replenish rate

R matches the target rateRt in an SLA well. However, when using a token bucket tagger

for general traffic, we run into two problems. The first is how to set the depth ofthe a token

bucket. Without knowing anything about the traffic, the depthD is difficult to configure.

Second, the idea of abucketis to havepositive memory, i.e., if the flow has been sending

below its target rate, then tokens will be accumulated in the bucket, so it will allow a burst

of packets up toD after a while. However, missing in the design of a token bucket is the

negative memory. If a flow has been sending above its target rate for a while, then the

bucket will be exhausted, at this point,R−Rt

Rt

percent of the packets are tagged as OUT.

However, whether the flow was twice exceeding the target rate or three times exceeding the
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target rate is not recorded, or eventually, reflected in future tagging. This doesnot meet the

second attribute of an ideal tagger.

One could argue that the design of a token bucket tagger is to specify the minimum

guaranteed rate, and therefore, having a positive memory is sufficient. Thereare desirable

attributes associated with token bucket controlled traffic that meets the requirement of hav-

ing minimum guaranteed. In [47, 48], Parekh and Gallager show that if all end host sources

use token buckets to pace their respective traffic, then the overall network can offer a delay

bound, no matter what topological configurations the network has. However, in this case,

the token bucket algorithm is used toactivelyshape and control the sending rate of end

hosts, i.e., if the end host cannot receive a token, it won’t be able to send. However, in

our case, the tagging algorithm cannot alternate the pace or speed of a traffic flow and can

only tag packetspassively. Therefore, a flow can still send beyond the burst ofD and the

overshoot part should eventually be compensated for in the long run. That’s why we think

in designing taggers,negative memoryis important as well.

When using a token bucket tagger for a more specific long-lived TCP traffic we are

experimenting with, we could have a better assessment of the depth of a token bucket. To

see this, we have to go back to Figure 3.6. When TCP is sending below its target rate

Rt, it does not exhaust any of the tokens in a token bucket, so the bucket is full. Only

when TCP is sending beyondRt, is it going to use both the tokens being replenished and

tokens already in the bucket. At some point, the tokens in the bucket are exhausted and then

the tagger starts to tag packets as OUT. In order to keep TCP in the ideal, perfect epochs

depicted in Figure 3.6, the token bucket should run out of tokens precisely at the timewhen

TCP exceeds1.33Rt. This implies the depth of the token bucket should be the amount of

tokens that will supply the TCP connection fromRt to 1.33Rt in excessof theRt. This is

the shaded triangle area depicted in the figure. The height of the triangle is0.33Rt, and the

width of triangle is0.33∗Rt∗RTT 2/pktsize, so the area of1/2∗height∗width, measured

in bytes. It should not be surprising that the depth of the bucket has to be dependent on the

RTT of the connection.
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However, we find that even if we have the right configuration ofD, a token bucket

tagger still does not work well with long-lived traffic. This is because the time when a

token bucket tagger runs out of tokens does not coincide with the the time when TCP runs

at 1.33Rt (or, when TCP is running atRt, the token bucket is full with depthD). It is in

fact very difficult to synchronize the state of the token bucket with the quite unpredictable

behaviors of a TCP connection. If the TCP connection starts with a burst of packets, as

normally it would during the exponential increase phase, then this burst would drain the

token bucket initially, and then the token bucket would start tagging packets as OUT before

TCP is sending at1.33Rt. Conversely, if the TCP connection has stopped sending for a

while, and then starts again, it is very difficult to make sure the token bucket is full when

the sending rate of TCP has reachedRt.

Our experience with a token bucket tagger has convinced us that we need to have a

tagger that has bothpositive memoryandnegative memory. In other words, this is a tagger

that can remember the rate that a flow has been sending in some past time frame, whether

it is beyond the target rate or below the target rate, and can gradually forget thepast history

to reflect the new sending rate. What we also learned from using a token bucket tagger is

that there are in fact two separate parts to a tagger: first part is the rate estimator, which

has to keep certain amount of past history, and second is the tagging algorithm, which

tags packets based on the estimated rate. The second part is relativelyeasy. We know

the estimated sending rate, the tagging can be done probabilistically with a probability

P = R−Rt

Rt

, when the estimated sending rateR has exceeded the target rateRt. So we set

out to design a good rate estimator.

At first, we used a low-pass filter rate estimator, similar to that in RIO. We could use a

weighted average of past sending rate and an instantaneous rate. Upon each packet arrival,

we estimate an instantaneous rate,Rinst, and calculate the average rate using the following

formula:

R = (1 − w) ∗ R + w ∗ Rinst (3.7)
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whereR is the estimated rate. Instantaneous rateRinst can be easily calculated by

dividing packet size over the inter-packet arrival time.

There are two problems with this way of calculating the average sending rate. First,

packets from end hosts can be bursty and arrive at the tagger back to back, so theinter-

packet arrival time can be zero, which makes calculating instantaneous arrival rate difficult.

Second, this way of discounting past history is biased towards fast-sending flows. Since

each discounting event happens when a packet arrives, the faster a flow sends, the quicker

this flow forgets the past history. Conversely, if a flow has not sent for a while, the rate

estimate still uses the rate that was recorded before the silent period, no matter how long

the silent period is.

After a few more experiments, we eventually settled on a simple tagging algorithm that

meets the above criteria. This algorithm, called Time Sliding Window, is described in detail

in the next section.

3.3.4 TSW Tagging Algorithm

The Time Sliding Window (TSW) tagging algorithm runs on the edge routers that tag pack-

ets as IN or OUT according to specific service profiles. It has two independent components:

a rate estimatorthat estimates the sending rate over a certain period of time, and atagger

that tags packets based on the rate reported by the rate estimator. The rateestimator accom-

modates both the burstiness6 and silence often observed in TCP traffic, and smoothes out its

estimate to approximate the actual sending rate at the source TCP. With the estimated rate,

the TSW tagger determines whether the sending host has exceeded its target rate.If the

source is sending below the target rate, the tagger will tag all packets as IN; if the source

is sending above the target rate, the tagger will tag those packetsin excessof the target

rate as OUT. The tagger also tags OUT packets probabilistically to reducethe likelihood of

packets within a TCP window being dropped together in interior routers.

6The burstiness of TCP traffic can be caused by a phenomenon called “compressed acks”[68], in which
acknowledgment packets arrive at the sender back to back, triggering data packets to be sent in reverse
direction as a burst.
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The logical relationship of the rate estimator and the tagger is shown in the following

block diagram 3.7.

Rate
estimator

Tagger
Stream
Packet Tagged Packet

Stream (IN and OUT)

Rate

Figure 3.7: TSW Block Diagram

3.3.5 TSW Rate Estimator

As discussed in the previous section, ideally, the decaying function embodied in therate

estimator should be independent of connections’ sending rates, but according to time. This

is how the TSW estimator works. It estimates the sending rate upon each packet arrival and

decays the past history over time. Since the decaying is according to time, thedecay factor

is the same regardless how fast the source is sending.

The algorithm in TSW is simple, as shown in Figure 3.8. TSW maintains three local

variables:Win length, which is measured in units of time,Avg rate, the rate estimate

upon each packet arrival, andT front, the time of the last packet arrival.Win length is

the only parameter that needs to be configured;Avg rate andT front are local variables

that are updated each time a packet arrives. TSW only needs to execute four lines of code

for each packet. In essence, TSW remembers the amount of “history” inWin length and

decays it over time. TSW also incorporates the instantaneous arrival rateof the arriving

packets.

Figure 3.9 illustrates how TSW calculatesAvg rate. There are three packet arrivals,

depicted as crosses on the time line, at time t1, t2 and t3, respectively.In the figure, the

lightly shaded box depicts the TSW rate estimator. The width of the box is theWin length,
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Initially:

Win_length  = a constant;
Avg_rate      = connection’s target rate, R_t;
T_front         = 0;

Upon each packet arrival, TSW updates it state variable follows:

Bytes_inTSW = Avg_rate * Win_length;                                (1)
New_bytes       = Bytes_in_TSW + packet_size;                      (2)
Avg_rate         = New_bytes / (now - T_front + Win_length);  (3)

whereas, now is the time of current packet arrival, packet_size is the packet size.

T_front            = now;                                                              (4)

Figure 3.8: TSW Rate Estimator Algorithm

along the Time axis. The height of the box is theAvg rate; the higher the box, the higher

the estimatedAvg rate. The right edge of the box is theT front, or the time of last

packet arrival. The bytes contained in the TSW is the area covered by the shaded box, or

the amount ofmemorythat TSW keeps about a particular flow.

TSW works as follows:

• At time t1, TSW calculates a newAvg rate after a packet arrival. TSW is depicted

by a shaded box and the height of the box is the newly recordedAvg rate.

• At time t2, a new packet (in dark) arrives. The area of the box depicts the sizeof the

new packet in bytes.

• The TSW rate estimator spreads both the bytes in its memory and the bytes in the

new packet across the sum of itsWin length and the inter-packet arrival time. This

is depicted in Figure 3.9 as both the shaded box and the dark box are spread across

the time span of (Win length + (t2 - t1)).

• This is the decaying phase of the TSW, where TSW remembers only theAvg rate
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1. Time t1.  This is what the TSW looks

upon the arrival of packet 1.  The height

like having completed the calculations

of the TSW is the current Avg_rate.

2. Time t2.  Packet 2 arrives, the tall

striped bar depicts the packet size.  TSW

calculates line 1 of the algorithm
described above.

3. Time t2.  TSW calculates the new

Avg_rate using lines 2 and 3 in the above

algorithm.  Visually, TSW spreads the

of the bytes in the TSW and the packet
size over the time span ((t2-t1)+

Win-length), where (t2 - t1) is the 

inter-packet arrival time.

4. Time t2.  TSW executes the last

line of the algorithm, effectively

"forgetting" the number of bytes beyond

a Win-Length ago.  This is the decaying

part of TSW.

5. Time t3.  A new packet, packet

3 arrives, TSW updates the Avg_rate 

and T_front again.
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Time
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Figure 3.9: The Operations of TSW Rate Estimator
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of its newly calculated rate, and forgets everything beyond aWin length period of

time. This happens when TSW resets itsT front to be the current time (line 4 in

Figure 3.8). A proof of this decaying function is given below.

• A new packet arrives at time t3. TSW restarts its cycle of incorporating the new

arrival rate and decaying the past history.

3.3.5.1 Decaying Function

We now present a proof for the decaying function embedded in TSW rate estimator. Similar

proofs can be constructed for non-constant arrival rates as well.

Let w denote the size of each packet, letδ denote the arriving interval between packets,

therefore, the sending rate isw/δ. LetL denote theWin length of a Time Sliding Window

rate estimator. LetR0 denote the estimated rate by TSW at timet0, and subsequently,Ri

denote the estimated rate by TSW upon receivingith packet. Then, after receiving the first

packet;

R1 = R0(
L

L + δ
) +

w

L + δ

and, after receiving the second packet;

R2 = R1(
L

L + δ
) +

w

L + δ

or,

=
(

R0(
L

L + δ
) + (

w

L + δ
)
)

(
L

L + δ
) +

w

L + δ

= R0(
L

L + δ
)2 +

w

L + δ
(

L

L + δ
) +

w

L + δ

....

after receiving thenth packet;
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Rn = R0

(

L

L + δ

)n

+
w

L + δ

(

L

L + δ

)n−1

+
w

L + δ

(

L

L + δ

)n−2

+ ... +
w

L + δ
(3.8)

The lastn − 1 terms are of exponential series, so Equation 3.8 can be reduced:

Rn = R0

(

L

L + δ

)n

+
w

L + δ
•

n−1
∑

i=0

(

L

L + δ

)i

(3.9)

Recall that
∑n

i=0 qi, whereq < 1, is 1−qn

1−q
, or 1

1−q
, wheren goes to∞. Additionally, since

n = L
δ
, the first term in Equation 3.9 becomes

(

L

L + L
n

)n

=

(

1

1 + 1

n

)n

Therefore, Equation 3.9 is

Rn = R0

(

1

1 + 1

n

)n

+
w

L + δ
•




1 −
(

L
L+δ

)n

1 −
(

L
L+δ

)



 (3.10)

whenn → ∞, or when theWin length is usually much greater than the inter-packet

arrival rate,δ, Equation 3.10 can be reduced:

lim
n→∞

Rn = R0 • 1

e
+

w

L + δ
• 1
(

L+δ−L
L+δ

) .

or

lim
n→∞

Rn = R0 • 1

e
+

w

δ
.

In summary, ifWin length is much greater than inter-packet arrival rateδ, the TSW

rate estimator decays the sending rateR0 by a factor ofe for everyWin length time period,

and reflects the new sending rate. In other words, the TSW rate estimator decays past

history by a constant factor over a certain period of time, independent of the connection’s

sending rate.
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It should be fairly obvious then that the TSW rate estimator has bothpositive memory

andnegative memory, because it discounts both high sending rate (bursts) and low sending

rate (silence) equally over time.

3.3.5.2 Configuring the Rate Estimator

Configuring the variableWin length depends on two factors. On one hand, since TSW

keeps a long-term perspective on estimating sending rates, we wantWin length to be

much bigger than the typical RTTs of a TCP flow. On the other hand, we want a value

of Win length that is small enough so that the rate estimator is sensitive to the changing

rate of the connection. In our simulation experiments, we have TCP connections whose

RTT range from 30ms to 150ms, and we useWin length to be between 0.6 seconds and

1 seconds. As a rule of thumb, choose aWin length that is an order of magnitude larger

than the RTT. Subsequent experimental studies by Seddigh, Nandy, and Pieda[45] have

used aWin length value of 1 second for scenarios where the contracted traffic consisted

of multiple TCP flows with different RTT values.

3.3.6 Probabilistic Tagger

We use a probabilistic tagging algorithm to mark an arriving packet as either IN or OUT

based on the rate that the TSW rate estimator reports. The probabilistic tagger is configured

with a target rate, or Rt. It marks traffic within the target rate as IN packets, and marks

traffic in excessive ofthe target rate as OUT packets. Equivalently, if the estimated rate isR,

the probabilistic tagger marks all arriving packets with a probabilityP = (R − Rt)/Rt, if

R > Rt. The algorithm for the probabilistic tagging algorithm is described in Figure 3.10.

Although we present a tagging algorithm to mark two types of packets, the tagging

algorithm can be easily extended to mark a few types of packets, corresponding todifferent

drop preference within a class in Assured Forwarding (AF) PHB. In [18], weextend the

tagging algorithm to mark three types of packets: red, yellow and green. The colorsred,

yellow and green translate into DiffServ codepoints representing drop precedence 2, 1, and
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Estimate sending rate R;

if R < R_t;
mark packet as IN;

else
calculate P = (R - R_t) / R_t;
with P, mark the packet as OUT;

Figure 3.10: TSW Probabilistic Tagging Algorithm

0 of a single AF class, respectively.

3.3.7 Discussion

Both RIO and TSW use a probabilistic function to spread out the dropping and tagging

of OUT packets. This is to keep TCP operating in the more controllable Fast-Retransmit

phase of its congestion control algorithm. Current TCP implementations have a mecha-

nism called “Fast Retransmit and Fast Recovery” which can recovera couple of packets

lost within a TCP’s sending window. When this mechanism is evoked, TCP’s behavior is

robust. However, if multiple packets within the same TCP window are lost, current TCP

implementations rely on a timeout mechanism to recover lost packets. A timeout can be

a long period of silence. When this happens, TCP’s performance is neither robust nor

predictable.

If the network is heavily congested, then the preferential dropping algorithm has to

drop every single OUT packets in order to control congestion (phases 2 & 3 in Figure3.5).

In this scenario, we would like TCP to stay in the Fast-Retransmit phase, therefore, the

tagger should avoid tagging multiple packets within a TCP window as OUT as to reduce

the probability of all of them being dropped by a congested router. Thus, in designing

the two router algorithms, we incorporate a probabilistic function in both: when dropping

packets, interior routers will drop randomly, with fairly regular intervals; when tagging
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packets, the tagger tries to space OUT packets evenly across time. The combined effect

is to decrease the likelihood of consecutive OUT packets from the same connection being

dropped by a router.

It should be noted that although TSW is presented here strictly as a tagging algorithm, it

can incorporate an early drop function and a discrimination mechanism as in RIO to serve

as a policer. In this case, the mechanisms in RIO—early, preferential and probabilistic

dropping—are duplicated in TSW; the interior routers might simply use a drop-tail algo-

rithm or a RED algorithm to achieve the combined effect of RIO+TSW presentedabove.

3.4 DiffServ Mechanisms for TCP

The previous two sections have primarily focused on router mechanisms, however, the

effectiveness of such schemes is limited by the impreciseness and biases in the window-

based congestion control algorithms of TCP. More specifically, the rate adjustment scheme

in the current Internet depends on a feedback loop completed by both TCP’s congestion

control algorithm and the router’s congestion avoidance algorithm. Thus, by changing

mechanisms in routers alone, the rate adjustment schemes are not very effective or precise

in achieving the targeted SLAs.

The congestion control mechanisms in TCP have been very successful in dealing with

the growth of the Internet. However, the mechanisms in the current TCP are notideally

suited for a DiffServ network in that they are not fair or robust enough to meet the speci-

fications of SLAs very well. This section focuses on mechanisms that can be incorporated

into TCP’s congestion control algorithm in meeting requirements of SLAs. We first de-

scribe the problems with the current congestion control algorithm and then propose these

mechanisms.
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3.4.1 Problems

3.4.1.1 Bias in Window Open-Up Algorithm

During the slow start phase, TCP doubles its window each round trip time (RTT), and dur-

ing the congestion avoidance phase, TCP increases its window by one packet per round

trip time. To see why this particular window open-up algorithm is biased against long-

RTT connections, we can simply look at TCP’s algorithm during the congestion avoidance

phase. In congestion control phase, TCP opens up its window by one packet (measured in

bytes) per RTT (measured in seconds). Letri denote sourcei’s average round trip time,

including queuing delays. After each RTT seconds, TCP increases its sending rate from

cwnd/rtt to (cwnd + 1)/rtt (bytes/sec). The longer the RTT is, the slower the TCP con-

nection is to increase its sending rate. If two TCP connections are sending atthe same rate

prior to their respective drops, it would take the long-rtt connection a significantly longer

time to its previous throughput than it does for a short-rtt connection. The same thing can

be said for TCP during its slow-start phase.

3.4.1.2 Not SLA-aware

As discussed in section 3.1, the value ofssthreshreflects the perceived network available

bandwidth to a TCP. In the current TCP,ssthreshis set using a set of mechanisms.ssthresh

is initially set to a default value and is readjusted after each packetdrop to be one half of the

cwndbefore the packet drop. A packet drop is recovered either through Fast Retransmit and

Fast Recovery, or through a timeout mechanism. When a single packet is lost, the Fast Re-

covery and Fast Retransmit mechanism recovers the lost packet successfully and bothcwnd

andssthreshare reduced to one half ofcwndprior to the packet drop. At that point, TCP

continues to operate in the linear window increase phase with a reducedssthresh. When

multiple packets are dropped within a window, current implementations of TCP (Reno)

usually fail to recover the lost packets and have to rely on a timeout mechanism. This is

because when packets are lost, TCP (Reno) receiver generates duplicated acknowledgment
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packets (duplicate acks), and the TCP senderinfersthat a packet has been lost. When mul-

tiple packets within the same congestion window are lost, the sender won’t be ableto put

enough packets into the network to generate sufficient duplicate acks to trigger additional

Fast Recovery and Fast Retransmit. Therefore, ultimately, TCP uses the timeout mecha-

nism to recover. However, for each successive packet loss, TCP reduces itsssthreshby one

half, so when TCP eventually recovers from packet loss via a timeout mechanism, TCP

operates with a much reducedssthresh.

In the DiffServ architecture, bandwidth allocation is based on SLAs. The underlying

premise is that each entity is assured of its target throughput specified in its SLA when con-

gestion is experienced, and can exceed such profiles when there is no congestion. With the

knowledge of these target throughputs, the ISP is supposed to provision the network so that

all service profiles are satisfied. However, since DiffServ relieson statistical multiplexing

of shared resources and not strict admission control, there will still be cases when either

the ISP fails to provision properly or certain routers experience incipient congestion. In the

DiffServ domain, when a TCP connection loses a packet, how shouldssthreshandcwndbe

set? The underlying DiffServ premise implies that the ideal behavior of TCP is to reduce

its sending rate when congestion is experienced, but can recover to its target throughput

robustly. In other words, TCP should be SLA-aware.

3.4.1.3 A Lack of Robustness

As described in Section 3.4.1.2, the mechanisms TCP has in recovering packets—using ei-

ther Fast Retransmit or Fast Recovery or a timeout mechanism—are not particularly robust.

Some recently proposed changes to TCP include the use of Explicit Congestion Notifica-

tion (ECN) mechanisms to improve TCP’s ability to recover lost packets. ECN de-couples

congestion control notification from packet drops and can be implemented in both end host

TCPs and RED gateways [22]. In this proposed scheme, RED routers mark an ECN bit in

a packet’s header instead of dropping the packet, and TCP responds to the explicit conges-

tion notifications instead of inferring congestion from duplicated acknowledgments. This
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mechanism has the advantage of avoiding unnecessary packet drops and unnecessary delay

for packets from low-bandwidth delay-sensitive TCP connections. A second advantage of

the ECN mechanism is that TCP doesn’t have to rely on coarse granularity of itsclock to

retransmit and recover packet losses. TCP-SACK, on the other hand, uses a completely

different acknowledgment mechanism from the current TCP. TCP-SACK receiver gener-

ates a bitmap of packets it has received so the TCP-SACK sender can selectively retransmit

packets. TCP-SACK also improves TCP’s robustness.

There is a similarity in the ECN mechanism and the DiffServ mechanism.Both allow

routers to mark one bit in packet headers to convey information on the data path. In ECN,

this information is between routers and the end host TCP; in DiffServ, this information

is between edge routers and interior routers. If we decide that the end host TCP can be

modified to incorporate some additional mechanisms, then this change will completethe

feedback loop between routers and end host TCP in a DiffServ architecture, just as that

in the ECN mechanism. The question is whether the end host TCP can take advantageof

additional DiffServ information from the routers.

3.4.2 Mechanism 1: Fair Window Open-Up Algorithm

In the DiffServ architecture, each entity (potentially at the finest granularity of a single TCP

connection) is associated with an SLA that defines a target throughput rate. Althoughthe

SLA definition has not been finalized by the IETF DiffServ working group, there are two

potential definitions to choose from. Each definition will in turn determine the underlying

window open-up algorithm. We use the fairness index proposed in [36],

F =
(
∑n

i=1 xi)
2

n(
∑n

i=1 x2
i )

wherexi is the resource allocation to theith user. This fairness index ranges from 0 to

1, and is maximized when all users receive the same allocation. This index isk/n whenk

users equally share the resource, and the othern−k users receive zero allocation. Examples
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of possible definition of resource allocation include response time, throughput, throughput

times hops, and so on [36].

In the first definition, an SLA includes both a target throughput as well as a range

of RTT values within which the target throughput can be met (BWtarget, (min RTT,

max RTT) ). The bigger the RTT value, the smaller the corresponding target throughput.

For example, an SLA could be (1Mbps, (50ms, 100ms)), which says that if a connection’s

round trip time is between 50ms and 100ms, it should expect to receive 1Mbps of band-

width. A network domain with similar provisioning can offer other SLAs like (3Mbps,

(20ms, 50ms)) and (0.5Mbps, (100ms, 200ms)). Corresponding to this definition, the un-

derlying TCP window increase algorithm is that TCP increasesc ∗ rtt packets per round

trip time, wherec is a constant, chosen as a scaling factor, and RTT is TCP’s round trip

time estimate variable. Using this algorithm, a connection that goes throughk bottleneck

gateways will share1/k of a bottleneck link bandwidth as a connection which goes through

one bottleneck gateway. This definition will meet the criteria of fairness index when the

resource allocation is defined as throughput times the number of gateways.

In the second definition, an SLA simply includes a target throughput (BWtarget), which

implies that the ISP is to assure the target throughput regardless of the round trip time of

the connection. The underlying algorithm for this definition is that TCP increasesc ∗ rtt2

packets per round trip time, where RTT is the TCP round trip time estimatevariable. Using

this algorithm, whenn connections are sharing a single bottleneck gateway, the window

open-up algorithm allows all connections to receive1/n of the bottleneck bandwidth, re-

gardless of their RTT. This will maximize the fairness index when the resource allocation

is defined as throughput of individual connections.

The related SLA definitions and their corresponding window open-up policy and fair-

ness criteria are tabulated in Table 3.1.

It should be noted that both alternatives to the current window algorithm of TCP still

fall under thelinear increaserule. Only that the linear increase is byc packets per RTT

(the first policy), or byc packets per second (the second policy).
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Table 3.1: SLAs and the corresponding TCP mechanisms to achieve fairness
Policy 1 Policy 2

SLA [BWtarget, (min RTT , max RTT )] BWtarget

Definition Throughput * # of routers Throughput
Window Algorithm c ∗ rtt c ∗ rtt2

3.4.2.1 Choice ofc

Another way of viewing the change in TCP’s linear window increase algorithm is thefol-

lowing: instead of increasing TCP’s congestion window by one packet each round trip

time, the proposed mechanism opens upcwnd by one packet during a certain standard

unit of time. If all TCP implementations adopt such algorithm, then they will all increase

their windows at the same rate regardless of their RTTs. Thus, the choice ofc, which

determines the value of such standard unit of time is a crucial one. For example, if c is

chosen to be 100, then, the standard unit of time is implicitly set to be 100ms (C ∗RTT 2 =

100∗(0.1)2 = 1pkt). In other words, all TCP implementing the above proposed mechanism

will be increasing their congestion windows at the same rate as a current TCPimplementa-

tion with an RTT of 100ms. Essentially, this algorithm make those TCP connections with

RTT less than 100ms less aggressive than the current implementations, and thosewith RTT

greater than 100ms more aggressive than the current implementations.

Two potential problems arise from this. The first is how to choose a value that can

be universally agreed upon. The technical merits of the proposed mechanism have been

argued, but the ultimate choice lies in the policies by which the choice ofc makes sense.

One problem of choosing a relatively smallc (less than 100ms, for example) is that for

long-RTT connections, the new algorithm results in an effective rate increase even greater

than during the slow start phase. For example, if a 1sec TCP connection uses the proposed

algorithm, it means it will open up its window at the rate of one packet each 100ms,which

is 10 packets each RTT. Depending on the current number of packets outstanding, this rate

can be greater than that during the slow start phase, which is already very fast. This can lead
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to a congestion collapse. The problem with choosing a relatively largec is that this makes

TCP window increase algorithm very slow and if this algorithm is universally adopted, it

might result in low utilization of link bandwidth immediately after a congestion epoch.

One possible solution is to define a set of inclusive RTT ranges, and within which,

modified TCP connections will open up their window at the same rate, but each rangehas

a different window open rate. A reasonable heuristic is that the longer RTT, the slower

the window increase rate is because the longer the connection, the more resources (buffer

space, or packets in the pipe) it would take. Such ranges of RTTs can be easilyspecified

in the SLAs as the ISP will set a lower expected throughput for longer connections. The

range of RTTs can be chosen to reflect actual market concerns. For example, wecould de-

fine four ranges of RTTs, inclusively: (0, 50ms) for LANs and WAN range of connections;

(50ms, 100ms) for intra-continental connections; (100ms, 200ms) for inter-continental con-

nections; and (200ms,∞) for non-tether connections. Of course, such policies have to be

universally agreed upon and standardized. These ranges define the particular algorithm and

the corresponding values forc. Table 3.2 lists one possible way of choosing constantc.

Table 3.2: Choice ofc in TCP fair window algorithm

RTT range ConstantC Equivalent RTT

(0, 50ms) 1024 31.2ms
(50,100ms) 256 62.5ms
(100,200ms) 64 125ms
(200ms,∞) 4 500ms

Another problem with the choice ofc lies in incremental deployment of such algorithm.

When TCPs with different implementations operate in a heterogeneous environment, TCPs

observing the fair algorithms might be at a disadvantage. Fortunately, DiffServrouter

mechanisms offer a solution for migrating TCPs to the fair algorithms. See Section 4.8.6

in Chapter 4 for a detailed discussion of this point.
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3.4.3 Mechanism 2: Settingssthreshfor TCP

We propose the following changes to reflect the change in the underlying premise from a

purely best-effort service model to a DiffServ model. Each TCP is made aware of the upper-

layer policy SLA, and the targeted rate,Rtarget, that it is supposed to be running at. This

can be done via a signaling protocol between end host TCP and an edge router or a policy

server. Then TCP sets itsssthresh(in bytes) as the multiple of its knownRtarget (bytes/sec)

and its estimated RTT (sec). There are two instances where TCP setsits ssthresh. Initially,

before TCP starts transmitting packets, it estimates its round trip time during its three-way

handshake. With this initial estimate of RTT, it can set its initialssthresh. This helps to

“gauge” the operating point of TCP. Additionally, we propose that TCP sets itsssthresh

similarly when congestion is detected. When TCP detects congestion via either implicit

or explicit mechanisms, it resets itsssthreshto be the multiple of its knownRtarget and

the estimated RTT then. Since RTT might change during the course of a TCP connection,

thessthreshwill change as well. TCP reducescwnd to be one-half of the previous value

before the packet drop, as it would in current implementations. This has the effect of

reducing instantaneous sending rate of TCP connections to alleviate temporary congestion,

but allows each TCP connection to quickly throttle back to its target operating point.

3.4.4 Mechanism 3: ECN-enabled TCP in a DiffServ Domain

Mechanisms similar to ECN could be deployed in the DiffServ architecture. Instead of

dropping packets, the RIO gateway can also take advantage of the ECN mechanismby

marking them. A RIO gateway can apply its preferential algorithm in which it marks an

OUT packet as experiencing congestion with a much higher probability than an IN packet

[9]. Both the ECN bit and the IN/OUT bit will be copied by the transport-layer receiver

and relayed back to the sender. The TCP sender has to be able to recognize the two types

of packets (IN and OUT), and respond to ECN bits in them differently.

When an OUT packet arrives back at the TCP sender with the ECN bit marked,it in-
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dicates that the RIO gateway is operating in the congestion sensitive phase (phase 2 in

Section 2.1). When a RIO gateway deploys the ECN mechanism as the congestion no-

tification mechanism, TCP window reduction should be no more aggressive than whena

packet is dropped in the current TCP implementations. We recommend that TCP reduces

its cwndto be one half of the currentcwndvalue, and resetsssthreshto be the the multiple

of Rtarget and RTT. Depending on the value ofcwndandssthreshprior to receiving the

ECN signal, TCP can be operating in either the linear increase mode or the exponential in-

crease mode again. In either case, the reduction in the window size will inducea temporary

reduction in TCP’s sending rate to alleviate congestion, but still keep TCPoperating close

in the targeted operating point.

When an IN packet arrives back at the TCP sender with the ECN bit marked, it in-

dicates that the RIO gateway operates in the congestion control phase (phases 4 & 5in

Section 3.2.3), meaning that the gateway has seen persistent long queues and is forced to

mark both IN and OUT packets with probability 1. When such packet is received, the TCP

sender should react to the congestion signal more drastically. We recommend that TCP

reduces itscwndto be one packet, and resetssthreshto be the multiple ofRtarget and RTT.

This is the same window reaction as in the current implementation when a packet has been

dropped but TCP starts in its slow start phase with a configuredssthresh. This will cause a

more drastic reduction in TCP’s sending rate, but since the newssthreshwill be greater than

the newcwnd, TCP will quickly recover to the target operating point using exponential in-

crease window increase algorithm. Table 3.3 tabulates the combined mechanisms—in both

TCP and routers—proposed in this chapter.

3.5 Revisit Designs and Discussion

As mentioned in Section 2.4.5, we started with our second design, i.e., modifying router

mechanisms only. We developed RIO and TSW algorithms and did simulation experiments.

Our simulation experiments demonstrate that with RIO and TSW in place, a DiffServ net-
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Table 3.3: Summary of mechanisms in routers and endhost TCP
TCP sender Tagger RIO TCP receiver

ECN-capable Turn ECN bit off

if (ECN) {
if (IN)

cwnd = 1;
else

cwnd = cwnd/2;
ssthresh = byte equi. of (Rt * RTT);

}
else{

increasecwndby c ∗ RTT 2;
}

Mark IN/OUT
bit according
to profile

if (ECN bit off) {
mark packets
differentially;

}
else{

drop packets
differentially;

}

Copy ECN and
TOS bits to
ack pkts

ECN-incapable Turn ECN bit ON

if (packet dropped){
ssthresh = byte equi. of (Rt * RTT);
cwnd = cwnd/2;

}
else{

increasecwndby c ∗ RTT 2;
}

Mark IN/OUT
bit according
to profile

Drop packets
differentially

Copy ECN to
ack pkts
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work can create discriminations between two types of packets. The design of TSW and

RIO is also versatile enough to deal with different mixture of traffic. Theparameters of

RIO can be chosen as to create strong discriminations under different network conditions.

The simulation results show that there are still discrepancies between the SLAs and the

achieved targeted rate.

We then realized that much of the difficulties in meeting the specific SLAslies in TCP

itself. As discussed in the previous section, the current version of TCP (Reno)is neither

robust nor fair. We have experimented other versions of TCP: TCP-SACK[15, 23], TCP-

newreno[30], or TCP with ECN mechanism [22]. These three versions improve TCP’s ro-

bustness in recovering packets, but do not change TCP’s window increase algorithm, there-

fore, they are also biased against long-RTT connections. Then, we proposed mechanisms

that can both improve TCP’s robustness, fairness, as well as make TCP SLA-aware—the

three TCP-DiffServ mechanisms. This DiffServ-enhanced TCP can work very well with

both RIO and TSW. Figure 3.11 illustrates how different versions of TCP fall inthe Ro-

bustness and Fairness space.

TCP w/ DiffServ-TCP

TCP-SACK
TCP-newreno
TCP w/ ECN

mech 3

Non-robust Robust

TCP-Reno

Fair

Unfair

TCP w/ DiffServ-TCPTCP w/ DiffServ-TCP
mech 1

Figure 3.11: Different Versions of TCP on Robustness and Fairness Scale

In hindsight, the realization that we have to change TCP should not be surprising. Since

the bandwidth allocation scheme in the current Internet relies on a congestion feedback loop
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and mechanisms in both routers and TCP, and the essence of Assured Forwarding isto re-

design the bandwidth allocation model, then, only changing mechanisms in routers willnot

be particularly effective. Changes have to affect end host congestion control mechanisms

as well.

If this is the case, shouldn’t we have used alternative designs? For example, indesign

1 proposed in Section 2.4.5, we incorporate tagging algorithms with end hosts and modify

both end hosts and routers. In fact, once we realize we have to modify the end hostsTCP

anyway in design 2, the difference between designs 1 and 2 is small. Basically, the differ-

ence is where to do the proper authentication and verification. In design 1, we incorporate

TSW in end hosts, and have a signaling protocol between end hosts and edge routers. There

is also an additional checking and verification function in edge routers. In design 2, we in-

corporate TCP-DiffServ in end hosts, TSW in edge routers, but we also need asignaling

protocol between end hosts and edge routers to inform the enhanced TCP the SLA. The

checking function is done by TSW.

Design 3 avoids the authentication and verification problem altogether by moving the

new bandwidth allocation scheme to the networks entirely, and leaving end hosts TCP/UDP

to do flow control only. This is a more radical change. In essence, this proposal believes

that congestion control should be left in the network itself and not in the end hosts. This

meets the requirements of a commercial network really well because the endhost transport

protocol is leftpassivelysending and receiving packets through network, so there is no

chance that end hosts can flood the network, as they could in today’s Internet.

It should be noted that the mechanisms proposed in this chapter are not limited to design

1. They are a group of mechanisms that can provide fair and robust allocation of bandwidth

meeting specific requirements of SLAs, and they are versatile enough to dealwith different

type of traffic mix. They can be applied in all three designs, regardless what theultimate

DiffServ networks looks like.
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Chapter 4

Evaluation

We use extensive simulations to evaluate our proposed mechanisms. This chapter presents

the evaluation results. At a high level, we organize this chapter in the following manner.

We categorize the proposed mechanisms into two groups—mechanisms in routers (RIO

and TSW), and mechanisms in end hosts (TCP-DiffServ). In the first set of simulation

experiments, we apply the router mechanisms (RIO and TSW) to a Diff-Serv domain, and

evaluate various aspects of the DiffServ architecture.

For this set of simulations, we go into depth for each simulation scenario. We study

the sender-controlled scheme, in which TSW taggers are installed in the ingress routers

of the domain and RIO droppers are installed in the interior routers of a domain (Section

2). Using a similar setup, we evaluate how router mechanisms work with a more robust

version of TCP, TCP-sack (Section 3). We also consider the receiver-controlled scheme, in

which TSW taggers are installed in theegressrouters of a domain, and RIO droppers are

installed in the interior routers (Section 4). We then consider the effect ofcascaded taggers

on individual connections (Section 5), and the impact of taggers on an aggregation of TCP

connections (Section 6). Finally, we study how TCP connections co-operate with non-

responsive connections after we apply the RIO and TSW algorithms to a domain (Section

7).

We conclude from the above scenarios that though a DiffServ domain with router mech-
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anisms can differentially allocate network bandwidth according to the specified service

profiles, the extent to which such differentiation can be achieved is not always predictable.

The limitations, as we discussed in Chapter 3, are in TCP itself.

Our subsequent experiments are studies on the combined effects of applying both the

TCP-DiffServ mechanisms and the router mechanisms. We compact the simulations some-

what with one simulation run going through four network congestion states: start-up,

under-provision, recovery and over-provision. We conclude that neither group of mech-

anisms, by itself, is sufficient to achieve robust, precise allocation ofbandwidth. However,

when both groups of mechanisms are applied to a DiffServ domain, the domain can allocate

bandwidth resources in a robust and precise manner under a variety of traffic conditions.

4.1 Simulation Methodology

We use thens[1] network simulator to evaluate the proposed router mechanisms.Ns is

a discrete event simulator for network research. It provides substantial support for TCP,

router queuing mechanisms, and various topologies, making it ideal for evaluating theDiff-

Serv architecture. We developed modules for RIO, TSW, and TCP-DiffServmechanisms,

and compiled those intons. Simulations scripts are written in Tcl and based on some early

research work in [24]. Each script defines a topology, sets attributes of network devices,

defines parameters, and describes network events during a period of time frame. This

section describes the common simulation setup we used; each of the following sections

(Sections 4.2 - 4.7) uses additional topologies as well. The complete simulation scripts and

modules can be found at http://www.cs.princeton.edu/ wfang/papers.html.

• TCP Connections

Unless otherwise specified, all TCP connections are configured as follows: theyare

TCP-Reno with support for Slow-Start, Fast-Retransmit and Fast-Recovery. The

packet size is 1000 bytes and the TCP timer granularity (tcptick variable in the de-

fault.tcl file) is 0.1 second. The receiver’s advertised window is usually configured
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large enough so that it is never a limit on the TCP sender’s window. The TCP con-

nections start at a slightly different time from each other, but all withinthe first 5

seconds of the simulations. Each simulation simulates 20 seconds of network condi-

tion unless otherwise specified.

• Interior Routers and RIO Algorithm

We implement the RIO algorithm in interior routers. We present simulation results

in tables to save space, with the parameters of RIO described in table headers. The

parameters are presented in the format of (min in, max in, Pdrop in) for IN Packets,

and (min out, max out, Pdrop out) for OUT packets. The thresholds are measured

in number of packets, and the dropping probability is a fraction. We use heuristics

described in Section 3.2.4 to choose the RED and RIO parameters.

• Edge Routers and TSW Algorithm

We implement the TSW algorithm as a module on the access link to edge routers. In

the simulator, a tagger is implemented as a subclass of a drop-tail link (drop-tail.cc).

Data traffic from sending hosts will reach a TSW tagger before arriving at a router.

In an actual router implementation, a TSW tagger should be a module sitting after

packet classification and before the forwarding function. Logically, our simulator

implementation is equivalent to a router implementation as long as there is only one

connection on every single access link, which is the case for all our simulations.

• SLAs

We define a very simple SLA, which is “average TCP throughput ofRt from this

host to anywhere”, whereRt is a target rate. The Round Trip Times (RTTs) used in

the simulations range from 20ms to 150ms. In our simulations, we try to push the

envelope by choosing very differentRts and very different RTTs.

• Evaluating Metric
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As the evaluating metric, we use the average throughput each host’s TCP achieves.

Average throughput is calculated at the receiver’s side after a TCP connection has

reached a steady state. We consider the simulations to have reached a steady state

after 5 seconds. Average throughput is defined as the total amount of data received

over total transfer time. Total amount of data is the data packets TCP layerpresents

to upper layer applications, excluding all unnecessary retransmissions. The closer

the average throughput is to the respective target-rate,Rt, the better a scheme works.

• Presentations

Simulation results are presented in a number of ways. Most throughput results are

presented in tables to save space. In addition, we use two types of graphs. They are:

– Throughput graphs

These are graphs of achieved throughput vs. TCP’s round trip time. Each data

point on the graph is a throughput for a particular TCP connection with a certain

RTT. Each data point is calculated by averaging the results from 5 simulation

runs. These graphs are to illustrate the effectiveness of the router mechanisms

under different network scenarios.

– TCP window oscillation graphs

These are graphs of TCP congestion window (cwnd) vs. time in a typical sim-

ulation run. They are to illustrate the robustness of different versions of TCP.

• Topology

We use the topology depicted in Figure 4.1, in which, ten hosts are connected to ten

other hosts, sharing a common link between routers A and B. Each host (i) has a TCP

connection to its peer host (i + 10). Altogether, there are 10 TCP connections. The

ten connections are of different RTTs. They can be divided into five groups. The two

connections in each group have the same RTTs, but different target rates,Rt. For

example, connections 0 and 1 both have 40ms round trip time, but have 5Mbps and
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1Mbps as target rates, respectively. Each of the five groups has a different RTT from

the other groups. The RTTs for the five groups are 20ms, 40ms, 50ms, 70ms and

100ms, respectively.

Figure 4.1: Topology for Sender-based Scheme
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4.2 Sender-based Scheme

This section presents two sets of simulation experiments. In Section 4.2.1, weuse simu-

lations to illustrate the network bias against long-RTT TCP connections. In Section 4.2.2,

we presents the results of experiments using sender-based scheme to allocatenetwork re-

sources in a DiffServ domain.

4.2.1 Network Bias Against Long-RTT Connections

As discussed in Section 3.4.2, current Internet, when allocating resources, hasa bias against

long-RTT connections. This bias is due to TCP’s window increase algorithm. During each

RTT, TCP opens up its window size by exactly one packet (in bytes). The longer the RTT

(seconds), the slower TCP increases its sending rate (bytes/seconds). After a TCP con-

nection reduces its sending rate following a packet loss, it takes a long-RTTconnection a
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longer time to recover to its original sending rate than a short-RTT connection.If routers

drop the same number of packets from a long-RTT connection as from a short-RTT connec-

tion, the short-RTT connection will receive more bandwidth than the long-RTT connection

over time.

We simulate this with the following network configurations using the topology in Fig-

ure 4.1: bottleneck link A-B has a link speed of 6Mbps, and there are ten TCP connections,

each with a different RTT. All connections start sending within the first five seconds of

simulation. The simulation results are listed in column 3 of Table 4.1. The respective RTTs

for the connections are listed along with the average throughputs they achieve. Thissimu-

lation reflects current situation in the Internet, where most hosts implement TCP-Reno. We

make two observations. First, the network bandwidth is distributed accordingto the RTTs

of TCP connection and there is a strong bias against long-RTT connections. Second, in

TCP-Reno, the congestion window oscillations are usually drastic and unpredictable. As a

result, the throughput TCP-Reno can achieve is usually unpredictable, e.g., connections2

& 3 have the same RTT, but differ significantly in their throughput (22%).

Table 4.1: TCP’s bias against long-RTT connections. Link A-B capacity = 6Mbps. RED
gateway

Conn # RTT (ms) Achieved Bandwidth Achieved Bandwidth
by Reno-TCP(Mbps) by Modified TCP (Mbps)

0 20 0.829482 0.623805
1 20 1.0932 0.620590
2 40 0.541590 0.600449
3 40 0.694729 0.655939
4 50 0.690377 0.674704
5 50 0.538202 0.527582
6 70 0.430481 0.503961
7 70 0.384579 0.620259
8 100 0.389476 0.671800
9 100 0.419572 0.511367

Total 6.011688 6.010456

Further, we want to verify that this bias is caused by TCP’s window increase algo-
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rithm. The current TCP window increase algorithm works as follows: upon receiving each

acknowledgment packet, TCP sender calculates its congestion windowcwndas

cwnd+ = 1/cwnd;

Therefore, after receivingcwndnumber of acknowledgment packets, TCP’scwnd is in-

creased by one packet. Since within each RTT, there are alwayscwndnumber of packets

outstanding, this algorithm essentially increasescwndby one packet each RTT.

If the algorithm were to increase TCP window by a constant factor regardless ofthe

RTT (algorithmically, this is to increaseRTT 2 for each RTT period of time), then all TCP

connections would equally share the link bandwidth. This hypothesis can be verified using

thenssimulator. We change TCP’s window increase algorithm to be

cwnd = cwnd + c ∗ RTT 2

for every acknowledgment packet received, and re-run the same simulation. The result of

this simulation are listed in column 4 of Table 4.1. It is clear that the bias against long RTT

is eliminated, as the 10 connections sharing the 6Mbps link have roughly 0.6Mbps each.

4.2.2 Sender-based Scheme

In this section, we study the case of a sender-based allocation scheme. We implement the

RIO algorithm for interior routers and the TSW algorithm for edge routers, and incorporate

them intons, one TSW tagger for a TCP connection. We use the topology depicted in

Figure 4.1. Each of the 10 sending hosts has a contracted SLA and a respective target

rate,Rt, of either 1Mbps or 5Mbps. We choose very differentRts to experiment how well

the over system deals with varying target rates. The 10 TCP connections alsohave very

different round trip times. The sum of allRts is 30Mbps, and the bottleneck link speed is

set to be 33Mbps. This allows 10% buffering during the congestion. The respectiveRts

and RTTs are listed in columns 2 and 4 in the table.
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We run two simulations: one simulates the current Internet, where none of the con-

nections has an SLA or a tagger, and the other simulates a Diff-Serv network, where 10

connections each has its respective tagger and SLA. RIO is used in the bottleneck router A.

A note on how to choose RED and RIO parameters. As discussed in Section 3.2.4, we

use heuristics in choosing the RED and RIO parameters. For example, we set RED param-

eters to be (10, 30, 0.02), or 10 packets asmin (the minimum threshold), and 30 packets as

max (the maximum threshold). This is equivalent to saying that when the average queue

size exceeds 2.4ms, the RED queue starts to drop packets randomly1. Similarly, by the

time the average queue size exceeds 7.2ms, RED is incongestion avoidancephase and

drops all arriving packets. RIO parameters are configured similarly.

Table 4.2: Comparison of current Internet scenario and a DiffServ network withrouter
mechanisms. Link BW=33Mbps. Parameters for RED router: (10, 30, 0.02); parameters
for RIO:(40,70, 0.02) forINs and (10, 30, 0.2) forOUTs. Used TCP-Reno

Conn # RTT (ms) Current Internet(Mbps) Rt DiffServ (Mbps)

0 20 7.04873 1 2.27289
1 20 6.22214 5 5.7619
2 40 2.83662 1 1.28011
3 40 2.28316 5 5.26757
4 50 2.62307 1 1.21957
5 50 2.81556 5 5.18823
6 70 1.61073 1 1.34831
7 70 1.57837 5 4.12794
8 100 1.64488 1 0.99633
9 100 1.85132 5 4.12563

total 30.51458 31.588476

Table 4.2 compares the results from these two simulations. Column 3 lists the achieved

rate for all TCP connections in the current Internet. The network bias against longRTT con-

nections is pronounced. Similar to simulations in Section 4.2.1, TCP window oscillations

are drastic and unpredictable. Column 5 lists the throughputs achieved by the connections

in a Diff-Serv environment. The total link throughputs in both simulations are comparable:

110 packets of 1000 bytes is 80,000 bits, divided by 33Mbps, gives close to 2.4ms queuing delay.
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30.51Mbps vs. 31.6Mbps, or 92.5% vs. 96% link usage.

We observe that all being equal, the network bandwidth in the current Internet can be

distributed according to the RTTs of the connection, and strongly in favor of connections

with short RTTs. The throughput achieved by TCP is subject to congestion in routers and

can be very unpredictable. In contrast, a DiffServ network with router mechanisms can

allocate network capacity according to the respective service profiles theusers have con-

tracted for. For TCP connections with the same service profiles but differentRTTs, (e.g.

connections 1 and 9), there is a bias against long-RTT connection, but the bias has been

significantly mitigated (though not eliminated) by having the router mechanisms in place.

Most importantly, now the system can provide quite different throughputs to differentcon-

nections with reasonable assurance.

Figure 4.2 presents the throughput graphs for these two scenarios. For each graph,

we run five simulations of the exact same configuration; each simulation uses a randomly

generated seed, and we get a slightly different result each time. Each data point on the

throughput graph is the average of 5 simulations runs. In both graphs, the X axis is the

TCP’s round trip time, measured in ms; and the Y axis is the achieved throughput ofa

connection, measured in Mbps. The left graph plots the throughput in the current Inter-

net scenario. Since every two TCP connections have the same RTT, there are two data

points for a given RTT. The achieved bandwidth decreases as the RTT increases. There

is a varying difference in the two throughput data points for a given RTT, showing the

unpredictability in the current Internet environment. The right graph plots the achieved

throughput with their respective target rates. The target rates are 1 Mbps and5 Mbps, in

dotted lines. A visual interpretation of how well a scheme works is how close theachieved

throughputs are to the dotted lines. It is clear that the network bias is still visible, as shown

by the slowly decreasing throughput line as RTT increases. However, such biashas been

much mitigated since the slop is not as deep as that in the left graph.

94



Figure 4.2: Throughput Graphs for Current Internet and DiffServ Scenarios
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4.3 DiffServ with TCP-sack

TCP-Sack[15, 23], or TCP with Selective Acknowledgment, has a very different approach

for handling acknowledgment packets from the previous versions of TCP, TCP-Reno or

TCP-Tahoe. In previous versions of TCP, the receiver acknowledges the highest sequence

number of a data packet it has received. When a packet is lost, either due to a congested

gateway or a lossy link, the receiver sends duplicate acknowledgments (duplicateacks)

upon receiving successive packets after the lost packet. For example, if packet #4 is lost,

the TCP receiver receives packets #3, #5 and #6. The respective acknowledgment packets

the receiver sends would be #3, #3 and #3. The first ack #3 acknowledges the receipt of

packet #3 but the last two acks indicate that packet #4 has not been received.

The sender infers from the duplicate acks that a packet had been lost, and retransmits

the presumably lost packet, usually, the packet immediately after the one that the duplicated

acks acknowledge. In the above example, the sender would retransmit packet #4. Each such

retransmission also results in a reduction in congestion windowcwnd, and subsequently, a

reduction in sending rate.

Since in TCP-reno the information as to which packet was lost is implicitconveyed to

the sender, the sender can onlydeducewhich packet has been lost. This leads to either
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unnecessary retransmissions of packets that did not get lost, or successive reduction of

congestion windowcwnd, and eventually, acwndso small that the sender can no longer

recover the lost packets. The sending TCP will have to wait for a timeout torecover the

lost packets, and start from Slow-Start again, with a much reducedssthresh. This has a

much more drastic effect on TCP performance, and a DiffServ domain triesto avoid it by

adding probabilistic functions to both the tagging and dropping schemes.

TCP-SACK uses a completely different approach than that of TCP-reno: the acknowl-

edgments now contain complete information as to which packets have been received and

which have not. This complete information allows the TCP sender to retransmit packets

selectively, and avoid unnecessary retransmits. The TCP sender can also recover multiple

packet losses within a window by only reducing the congestion window once. Therefore,

TCP-sack is more robust than TCP-reno, and can stay in the Fast-Retransmit phase and

avoid using timeouts to recover packets. Because the end host is better at handling net-

work congestion signals, RIO parameters can be chosen to createstrongerdiscrimination

against OUT packets, without fearing consecutive OUT packet drops will driveend host

TCP to timeouts. This way, the overall system can create stronger differentiations among

connections if end hosts use TCP-SACK.

4.3.1 Results

We use the same topology as in the previous section. We replace TCP-reno with TCP-

Sack and repeat those simulations. There are two scenarios as well, the first scenario is to

simulate the current Internet; the second case is to simulate a DiffServdomain. The taggers

are installed on the access links. Table 4.3 lists the simulation results.

The two primary observations from Section 4.2.2 (sender-based, TCP-Reno) stillhold

here: in the current Internet, network bias against long-RTT TCP connections is evident,

and in the DiffServ network, allocation of bandwidth is roughly according to the target

ratesRt. However, TCP-sack is morerobustin handling congestion signals, so we use (10,

30, 0.5) for OUT packets, compared to (10, 30, 0.2) in the previous section. When using
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Table 4.3: Using TCP-Sack in Diff-Serv. Parameters for RED routers are (10, 30, 0.02), and
those for RIO routers are (40, 70, 0.02) for INs and (10, 30, 0.5) for OUTs. BW=33Mbps

Conn # RTT(ms) Current Internet(Mbps) Rt (Mbps) DiffServ(Mbps)

0 20 6.74918 1 1.33071
1 20 6.47331 5 6.13875
2 40 2.64113 1 1.2283
3 40 3.09084 5 5.38146
4 50 2.17542 1 1.13145
5 50 2.65581 5 5.20269
6 70 1.75715 1 0.98892
7 70 1.90942 5 4.92265
8 100 1.12921 1 0.89991
9 100 1.49762 5 4.68653

total 30.0791 30 31.9114

TCP-SACK, the overall system can achieve better throughputs, i.e., throughputs that are

closer to the targeted rates.

In the following sections, whenever possible, we will use TCP-SACK as the end host

TCP.

4.4 Receiver-based Scheme

In DiffServ, the receiver-based scheme complements the sender-based scheme. A receiver-

based scheme can be implemented if 1) end host TCP implementations understand Explicit

Congestion Notification (ECN) semantics; and 2) RED2 gateways also understand ECN

mechanism, and theymark, instead of drop, packets when congestion occurs. Taggers for

the receiver-based scheme are installed on the access link from the receiving hosts to the

network, or the egress routers of the network.

In the receiver-based scheme, a TSW tagger monitors the arriving traffic stream from

the network to the receiver, and resets the ECN bit of a packet if the arrival rate is less

2Note: the interior routers are RED gateways, not RIO gateways, because when packets arrive at an
interior gateway, they are haven’t gone through any taggers and are not marked. There is no differentiation
among them.
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than the subscribed service profile (SLA). This means that even if a packet had caused

congestion at the network, as long as this packet is still within the receiver’s service profile,

the network should have provisioned for it, and the receiver’s TSW tagger will turn off

the ECN bit so no congestion signals are sent to the end host TCP. If the arrival rate is

higher than the subscribed service profile, then the tagger will only turn off the ECNbit

for packets which are within service profile, and leave thosein excessof the service profile

intact. This way, packets arriving at the TCP receiver with their ECNbits still on are

those that are beyond the receiver’s profileand have caused congestion in the network.

These packets will cause the TCP sender to slow down by the ECN mechanism, and thus,

control the sender to conform to a sending rate that is within the receiver’s service profile.

Because there are no explicit packet drops, and the congestion control signals from network

is clearly conveyed to end hosts, the end hosts typically operate in thecongestion avoidance

phase. Therefore, the overall system is responsive.

4.4.1 TSW Tagger for Receiver-based Scheme

Figure 4.3 contains the pseudo code for the TSW tagger in the receiver-controlled scheme.

A receiver-controlled tagger turns off ECN bit in a packet if the traffic hasnot exceeded the

corresponding service profile (SLA).

We use a similar network topology as that in Section 4.1. The only difference is thatthe

profile meters are installed at the receivers’ side, instead of at the senders’ side. Figure 4.4

illustrates the receiver-controlled scheme. Configurations for this topology are the same as

those in Figure 4.1.

4.4.2 Results

The simulation setup for end hosts is the same as in the sender case. We simulate two

scenarios: one is the current Internet and the other is a DiffServ domain with RIO routers

and TSW taggers for the receiver-based scheme.
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Estimate sending rate R;

causedCong = whether ECN bit in pkt is set;

tagged = mark_packet (pkt, R);

if  (causedCong) {

	 if (! tagged) 

		 turn ENC bit off;

	 else

		 /* leave ECN bit on, do nothing */

}

/* else, if it didn't cause congestion, let the pkt through */





mark_packet (pkt, R)

{

	 if R < Rt, return 0;

	 if R > Rt, with Pmark = (R - Rt)/Rt, return 1;

}




subroutine:

Figure 4.3: Receiver-based TSW Algorithm
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Figure 4.4: Topology for Receiver-controlled Scheme
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Table 4.4: Receiver-based scheme in a DiffServ domain. BW = 33Mbps. RED routeris
configured with parameters (15, 40, 0.02). Used TCP-Reno with ECN semantics

Conn # RTT (ms) Current Internet Rt (Mbps) DiffServ with
(Mbps) RIO+TSW(Mbps)

0 20 6.18994 1 2.71758
1 20 5.69154 5 5.38844
2 40 3.30375 1 1.65922
3 40 4.06525 5 5.02699
4 50 2.67894 1 1.3496
5 50 3.19256 5 4.83154
6 70 2.16772 1 1.04867
7 70 2.28335 5 4.7517
8 100 1.84308 1 0.868532
9 100 1.46514 5 4.41489

Total 32.88127 33 32.057

Table 4.4 lists the results from two simulation runs. Column 2 is the round trip times

(RTTs) of TCP connections. Column 3 is the results using the current Internet mechanisms

when both TCP and routers use ECN mechanisms. Column 4 is the respective target rates,

or Rt, for the ten connections, and Column 5 is the achieved bandwidths in a DiffServ

environment using the receiver-based scheme.
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Figure 4.5: Bandwidth Allocation Using Receiver-based Scheme

The two primary observations from the previous two sections still hold here: in today’s

network (column 3), short-RTT connections have a clear advantage over long-RTT connec-

tions. In the DiffServ architecture (column 5), the network allocates bandwidth according

to the target rates,Rt, in times of network congestion, and there is a bias against long-RTT

connections. The overall throughput is slightly better than that of the sender-based scheme:

32.88Mbps vs. 30.51Mbps (Table 4.2). The reason is that the receiver-controlled scheme is

essentially a scheme using ECN mechanisms, which is a more robust way for TCP to deal

with congestion. Like TCP-SACK, TCP’s ECN mechanisms can adjust TCP’ssending rate

responsively but not drastically, so the overall system utilization is higher.

However, the receiver-based scheme is different from a sender-based scheme which

also uses the ECN mechanism. If TCP sending hosts use ECN, and the RIO algorithm

is changed to be marking instead of dropping packets, we would have seen a result that

is quite similar to that of TCP-SACK. In this case, sending end hosts are robust against

packet drops, and RIO can therefore be configured to discriminate against OUT packets

without driving end host TCPs to timeout and eventually Slow-start. In the receiver-based

scheme, however, whether the packet is an IN packet or an OUT packet is not known at

the time when network congestion happens. This piece of information is only known when

the packet isexitingfrom the network, therefore, there is no way for the network to create

stronger discrimination against receiver-pay packets. Therefore, a receive-based scheme
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doesn’t provide better service differentiations, but only better network utilization.

Figure 4.5 gives the throughput graphs for the receiver-based scheme. For each graph,

we run five simulations of exactly the same configuration. Each simulation uses arandomly

generated seed, and we get a slightly different result each time. Each data point on the

throughput graph is the average of 5 simulations runs. In both graphs, the X axis is a TCP’s

round trip time, measured in ms; and the Y axis is the achieved throughput of a connection,

measured in Mbps. The left graph plots the throughput in the current Internet scenario.

Since every two TCP connections have the same RTT, there are two data points for a given

RTT. The achieved bandwidth decreases as the RTT increases. There is a varying difference

in the two throughput data points for a given RTT, showing the unpredictability in the

current Internet environment. The right graph plots the achieved throughput with their

respective target rates. The target rates are 1 Mbps and 5 Mbps, in dotted lines. A visual

interpretation of how well a scheme works is how close the achieved throughputs areto

the dotted lines. It is clear that the network bias is still visible, as shown by the slowly

decreasing throughput line as RTT increases. However, such bias has been much mitigated

since the slop is not as deep as that in the left graph.

4.5 Cascaded DiffServ Domains

If the DiffServ architecture and mechanisms are fully deployed in the Internet, a packet

might traverse multiple DiffServ domains to reach its destination. EachDiffServ domain

has ingress routers implementing tagging algorithms and interior routers implementing

dropping algorithms. Therefore, a packet from a sending host will traverse through ase-

ries of taggers and droppers before reaching its final destination. For example, Host1 in

Figure 2.2 will go through two taggers, one in AS 1 and another in AS 2 to reach its final

destination, Host 2.

The taggers in each DiffServ domain interpret service level agreements(SLAs). Each

SLA specifies a bilateral agreement between two neighboring domains or betweena do-
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main and an end host. The closer the tagger is to the sending source, the more applicable

the service level agreement is to a particular source. At the edge of the network, a SLA can

be specified for a particular host or source. However, in the middle of the network,a SLA

between two domains is only applicable to the aggregated traffic between two domains,

and therefore, less effective on any particular connection.

In a well-provisioned network, an ISP could contract a profile from its downstream ISP

(data flows from source to destination, or from upstream to downstream) equal toor greater

than the sum of all upstream profiles it has contracted out. This would ensure that all IN

packets from upstream will remain IN packets throughout. However, this is often not the

case, because not all IN packets from upstream willsimultaneouslygo through the same

downstream egress router to the next domain. The outgoing traffic can be just as dispersed

as the incoming traffic. Therefore, ISPs often contract a service profilelessthan the total

sum of all upstream profiles, and hope the multiplexed traffic from all upstream sources will

still be less than the downstream service profile. If this is the case, thenIN packets could

be turned into OUT packets at the ingress router of a downstream domain. In this section,

we study how cascaded taggers affect bandwidth allocation in a DiffServ environment.

4.5.1 Setup

The simulation setup is listed as following:

• Topology

There are two topologies used for this set of simulations. Figure 4.6 is what we call

the “controlled” case. There are five taggers, and one for each of the five connections.

Figure 4.7 is what we call the “compared” case, where five connections go through

their respective taggers as well as an aggregated tagger in a subsequent domain.In

the compared case, each connection first traverses its individual tagger, a dropper in

router A, an aggregated tagger in router B, and finally a dropper and a congested

bottleneck in router C.
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In both cases, the individual access link from a host to the first router is 10Mbps.

Each individual tagger is set to have a 1Mbps target rate (Rt). The RTTs of different

connections range from 30ms to 70ms. In the compared case, links from router A

to router B, and from B to C, are 10Mbps each. Link C-D has a speed of 5.6Mbps,

which is a 12% mark-up over the sum of allocatedRts (5Mbps). Link C-D is the

only bottleneck. For the aggregated tagger in router B, we try different target rates.

The corresponding connections in the two cases have the same RTTs.

• RIO Parameters

TCP packet size is set to be 500 bytes. In the controlled case, the configurations

for RIO router (router A) are: (7,14, 0.02) for IN packets and (5, 10, 0.5) for OUT

packets. This is equivalent of setting 5ms3 and 10ms average queuing delays for the

respectivemin in andmax in; and setting 3.5ms and 7ms average queuing delays

for the respectivemin out andmax out. In the compared case, the configurations

for RIO router (router C) are: (7, 14, 0.02) for IN packets, and (5, 10, 0.5) for OUT

packets.

• Cascaded Tagger

The cascaded tagger at router B uses a TSW algorithm. The algorithm differs slightly

from the one presented in Chapter 3: it estimates the average rate of incoming IN

packets only, and when this estimated rate exceeds the contracted target rateRt, it

tags IN packets into OUT packets. In other words, the cascaded tagger does not

re-mark incoming OUT packets, but may turn IN packets into OUT packets if the

aggregated traffic exceeds the SLA. The OUT packets from upstream representout of

profile traffic, which the network is not provisioned for. Therefore, there is no reason

for a cascaded tagger to re-mark an OUT packets into an IN packet. However, an IN

packet could be marked to be OUT if the upstream domain has contracted too little

service profile from the downstream domain, and the downstream domain can change

37 packets of 500 bytes each is 28,000 bits, divided by 5.6Mbps, is equivalent of 5ms queuing delay.
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some IN packets to OUT packets as to meet the specifications of a bilateral SLA. The

cascaded tagger marks packets probabilistically, just as TSW. In our simulation, the

cascaded tagger has a target rate of 5Mbps.

4.5.2 Results

The throughput results from two simulations are listed in Table 4.5. The respective RTTs

and target ratesRt for the five connections are listed in columns 2 and 3. The results for

the controlled case are listed in column 4 and those for the compared case arein column 5.

The simulation results show that if the cascade tagger has a service profile that is sufficient

for all upstream traffic, then its impact on end-to-end TCP throughput is rather negligible.

To further confirm this, we traced the number of IN and OUT packets tagged at each

individual taggers (columns 6 and 7 respectively). We then counted the number of IN

packets which are re-marked by the cascaded tagger into OUT packets. Weobserve that

out of the total 118574 IN packets that go through the cascaded tagger, only 158 are turned

into OUT packets. The 158 IN-turned-into-OUT packets are randomly distributed among

the five connections. Since the number of re-marked packets is significantly fewer than

the number of OUT packets marked originally by the individual taggers in the upstream

domain (column 7), the impact of a cascaded tagger is small.

We also simulated the above scenarios when the cascaded tagger has a targetrate of

4Mbps, which is significantly less than the sum of all upstream individual profiles. The re-

sults of that simulation are listed in column 4 of Table 4.6. In this case, the limiting factor

is the bottleneck link speed of 5.6Mbps and not the cascade tagger. Each connection still

achieves a throughput similar to that listed in Table 4.5. Having an additional downstream

tagger has no effect on the throughputs if the network is well-provisioned. This case is sim-

ilar to a well-provisioned network where the contracted profile is less thanthe bottleneck

link speed, in which case, a connection can go beyond its profile.

4The sum of all IN packets from upstream taggers, or 11858 packets, minus one, which was dropped at
Link A-B.
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Table 4.5: Results for cascaded domains: the controlled case and the compared case. Bot-
tleneck link speed = 5.6Mpbs. The cascaded tagger has a target rate of 5Mbps. Used
TCP-SACK

Conn # RTT(ms) Rt(Mbps) Controlled Compared # of IN pkts # of OUT pkts
Case (Mbps) Case (Mbps)

0 30 1 1.30024 1.22604 2549 437
1 40 1 1.09194 1.17093 2450 323
2 50 1 1.09401 1.01913 2413 480
3 60 1 1.06269 1.107 2362 255
4 70 1 0.95335 0.932333 2084 193

Total 5.502227 5.455433 11858

However, one should realize that if there is additional congestion in the downstream,

then the under-contracted profile will have an impact on individual connection’s end-to-end

performance. We simulate this scenario by changing the bottleneck link speed (Link C-D)

from 5.6Mbps to 4Mbps; the results are listed in column 5 of Table 4.6. In this case, the

link speed becomes a limiting factor, and the case is similar to that of anunder-provisioned

network where neither connection can achieve its target profile.

We should note here that when downstream congestion happens, other competing traffic

sharing the bottleneck bandwidth of 5.6Mbps, then the re-marking by the cascaded tagger

will have an effect on upstream traffic. We study this case in Section 4.6.2.

Table 4.6: Cascaded tagger case, when the network is under-provisioned
Conn # RTT(ms) Rt (Mbps) The link C-D is 5.6Mbps When the network

but the cascaded taggeris under-provisioned.
is 4Mbps Link C-D = 4Mbps

0 30 1 1.20459 0.874846
1 40 1 1.17409 0.794778
2 50 1 1.00739 0.740870
3 60 1 1.0069 0.835148
4 70 1 0.954569 0.734181

Total 5.347539 3.979823
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4.6 Aggregated Profiles

In this section, we study how a Diff-Serv domain allocates bandwidth when traffic is aggre-

gated from a number of TCP sources. Aggregated traffic has different characteristics from

that of an individual TCP connection. Usually, aggregated traffic is more stable,and does

not have the pronounced sawtooth swings typical in a TCP connection. Aggregated taggers

are taggers located at routers where traffic has already been mixed. In particular, we are in-

terested in studying the distribution of bandwidth among connections, and how aggregated

traffic taggers can control the individual traffic rate. We study these two questions in two

separate sender-based simulations.

4.6.1 Taggers in the Center of the Network: Aggregated Traffic

We use the topology presented in Figure 4.8. The simulation setup is similar to thatin

section 4.2.2 except now the taggers are for a number of hosts instead of an individual host

(Figure 4.1). There are two taggers, one tagger is for aggregated traffic from hosts0, 1, 2,

3 and 4, and the other is for packets from hosts 5, 6, 7, 8 and 9. The topology is used to

study behaviors of individual connections when there is an aggregated tagger for a number

of TCP connections.

The bottleneck link A-B has a link speed of 5.6Mbps. The two aggregated taggers are

configured with target rates of 4Mbps and 1.5Mbps, respectively. Hosts 0 - 4 share the

aggregated tagger 1 (4Mbps), and hosts 5-9 share the aggregated tagger 2 (1.5Mbps). We

compare two scenarios. In the first scenario, hosts 0-4 each has a TCP connection, sharing

aggregated tagger 1; simultaneously, only host 6’s TCP is active and using tagger 2. The

results are listed in column 4 of Table 4.7. In the second scenario, all hosts have active TCP

connections. The first five TCPs (from hosts 0-4) share tagger 1, and the second five TCPs

(from hosts 5-9) share tagger 2. The results are listed in column 5 of Table 4.7.

When we apply a service profile and a tagger for aggregated traffic, the marked packets

are distributed over then flows which are currently sharing the same service profile. Since
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Figure 4.8: DiffServ Domain with Taggers for Aggregated Traffic

Table 4.7: Taggers for aggregated traffic. Topology 4.1. Bottleneck link A-B = 5.6Mbps.
Parameters for RIO routers are (12, 30, 0.02) for INs and (2, 15, 0.5) for OUTs

Conn # RTT (ms) Rt (Mbps) Scenario 1 Scenario 2
individual rate (Mbps) individual rate (Mbps)

0 20 1.14091 1.19158
1 40 1.0318 0.891620
2 50 0.960004 0.787156
3 70 0.643260 0.575159
4 100 0.392509 0.564507

Subtotal 4 4.168483 4.01

5 20 N/A 0.443117
6 40 1.41626 0.347406
7 50 N/A 0.320943
8 70 N/A 0.235642
9 100 N/A 0.232686

Subtotal 1.5 1.41626 1.57979

Link Total 5.6 5.584743 5.58979

aggregation allows more statistical multiplexing and better link utilization, the service pro-

file at edge routers can be better utilized than when there is only one flow using theprofile.

On the other hand, since the tagged packets are distributed overn flows, the aggregated

tagger loses the fine control it has when tagging only one connection, therefore, bandwidth
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allocation among all flows will be quite similar that in the current Internet.

This is what we have observed in our simulation. First, among the connections that

share the same tagger and service profile, the distribution of the bandwidth is primarily

according to the RTT of each connection, just as in the current Internet. For example, in

scenario 1 (column 4), as the RTT increases, the achieved throughput decreases. Connec-

tion 4, with an RTT of 100ms, achieves 0.392Mbps, whereas connection 0 (RTT=20ms)

achieves 1.14Mbps. Similarly, in scenario 2, within each service profiles,the bandwidth is

shared primarily according to the RTT of each connection.

Second, the effect of having a tagger and a service profile is to ensure the connec-

tions achieve the contracted share of bandwidth when otherout-of-profiletraffic is present.

For example, in scenario 1, connection 6 has a 1.5Mbps service profile, and achieves

1.416Mbps. Had connection 6 not have such a profile, it would have achieved a through-

put comparable to that of connection 2 (1.01318Mbps), since they have the same RTT of

40ms. Combining these two effects together, we observe that in scenario 2 (column 5), tag-

ger 1 ensures all its five connections achieve an aggregated rate of 4.01Mbps, and tagger

2 ensures that all its five connections achieve an aggregated rate of 1.5Mbps. Within each

service profile, however, the bandwidth allocation is according to the RTTs of individual

connection.

Third, the aggregated service profile is better utilized by an aggregation of flows. For

example, in Scenario 2, when the second aggregated profile is used by five simultaneous

TCP connections, the overall throughput (1.579Mbps) is higher than it is used by one indi-

vidual TCP (1.41Mbps, a little less than the target rate). This is because aggregation leads

to greater statistical multiplexing, which leads to better service profile utilization.

The aggregated case here is very simple: we only consider aggregation of five TCP

flows. By no means, this is representative of Internet aggregation traffic.However, we

think the simulation has demonstrated the essential points for the aggregated profile case.

We think as the aggregation becomes larger, the real question is what would be the right

profile for an aggregated traffic ofn flows, each with some targeted rate. A simple “add’em
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up” algorithm to calculate the aggregated profile will not be very efficient.

4.6.2 Combined Effect of Aggregate Taggers and Cascade Taggers

In this set of simulations, we study how different taggers—individual, aggregated, and

cascaded—affect the performance of individual TCP connections. We compare the perfor-

mance of five connections sharing one aggregated tagger with that of five connections, each

with an individual tagger.

4.6.2.1 Setup

• Topology

We did two simulations, one controlled case, and one compared case. The two

topologies are depicted in Figure 4.9 and Figure 4.10, respectively. In the controlled

case (Figure 4.9), connections 0-4 traverse through two adjacent domains, and there-

fore, two taggers, one individual tagger (on the access link) and one aggregated tag-

ger (in router B). Connections 5-9 share an aggregated tagger (in router C) in this

scenario. In the compared case (Figure 4.10), the set up for connections 0-4 is the

same. However, in this case, connections 5-9 each has an individual tagger.

In both cases, each access link (from host to the first router, either A or C)is an Eth-

ernet link, with 10Mbps. The speed of links between routers are shown in the figures.

Connections 0-5 each has an individual profile of 1Mbps, and the aggregated profile

for them is 5Mbps, enforced by the aggregated tagger at router B. The bottleneck in

both cases is the link between routers D and E, which is 10Mbps.

In the controlled case, router C has an aggregated tagger of 5Mbps, shared among

five connections 5-9. In the compared case, connections 5-9 each has an individual

tagger of 1Mbps, same as that of connections 0-4.

• RIO Parameters
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In both the controlled and compare cases, parameters for the RIO algorithm in router

A are (7, 14, 0.02) for INs—7 packets formin in, 14 packets formax in and 0.02

for Pdrop in—and (5, 10, 0.5) for OUTs. On a 5.6Mbps link, an average queue of 7

packets is equivalent of 5ms of average queuing delay. In both cases, the parameters

for the RIO algorithm in router D are (7,18,0.02) for INs, and (5, 15, 0.5) for OUTs.

TCP packet size is 500 bytes. We use TCP-Sack.

• Cascaded Tagger

The cascaded tagger at router B uses a TSW algorithm. The algorithm differs slightly

from the one presented in Chapter 3: it estimates the average rate from IN packets

only, and when this estimated rate exceeds the contracted target rateRt, it tags IN

packets into OUT packets. In other words, the cascaded tagger does not mark up-

stream OUT packets, but may turn IN packets into OUT packets if the aggregated

traffic exceeds the SLA. The cascaded tagger marks packets probabilistically. In the

simulation, the cascaded tagger has a target rate of 5Mbps.

4.6.3 Results

The results from the above two cases are tabulated in Table 4.8. Results from the controlled

case, where connections 5-9 share an aggregated service profile, are listed in column 4.

Results from the compared case, where connections 5-9 each has an individual service

profile, are listed in column 5.

Performance of connections 0-4 is fairly consistent in both the control and the compared

cases. Each achieves a rate close to the 1Mbps target rate subscribed in their service profile.

The more interesting results come from the bottom half of the table, where throughputs of

connections 5-9 differ considerably when they have different taggers. When the tagger is

for aggregated traffic (the controlled case, column 4), the network bias againstlong RTT

connections is very visible. In contrast, when the taggers are for each individualconnection,

such bias is ameliorated.
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Table 4.8: Aggregated taggers and cascaded taggers. Bottleneck link speed= 10Mpbs.
Used TCP-SACK

Conn # RTT (ms) Rt (Mbps) Aggregated Tagger Individual Tagger
Achieved Bw (Mbps) Achieved Bw (Mbps)

0 30 1 1.02679 1.09818
1 40 1 0.943344 1.02829
2 50 1 0.949632 0.979580
3 60 1 0.929313 1.00836
4 70 1 0.901795 0.950515

subtotal 4.750874 5.064925

5 30 1 1.46652 1.06329
6 40 1 1.1965 1.00333
7 50 1 0.936831 0.980113
8 60 1 0.831452 0.876147
9 70 1 0.752801 0.855813

subtotal 5.184104 4.778693

Total 9.934978 9.843618

There are two things worth noting. First, a careful trace of the IN and OUT packets for

both cases lead us to draw the same conclusion as in the previous section (Section 4.5): an

additional cascaded tagger does not have a significant impact on the traffic performance,

as long as the cascaded tagger has sufficient profile for all upstream traffic. Second, in the

controlled case, connections 5-9 are sharing one aggregated service profile and the aggre-

gated tagger can not regulate individual TCP flows very well. TCP window graphs show

less frequent, but more drastic window swings. In contrast, connections 0-4 eachhas an in-

dividual tagger, drops at regular intervals, and the individual taggers regulate TCP window

swings very well. This can be explained as follows. When a connection has an individ-

ual tagger, the rate estimation is sensitive to the rate change in this individual connection,

hence, the tagging mechanism is sensitive as well. For example, when the connection ex-

ceeds its target rate, the tagger is likely to tag packets as OUT immediately. This way, the

overall feedback mechanism—individual TSW tagger and RIO—is responsive. In contrast,

when a connection is aggregated with other traffic before reaching a tagger, statistical mul-
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tiplexing of all flows will dampenbursts from individual flows, so the aggregated tagger is

not sensitive to any particular individual flow. Therefore, the overall feedback mechanism

will not be as accurate as that when there are individual taggers.

4.7 Non-responsive Connections

4.7.1 Non-responsive Connections in a DiffServ Network

Non-responsive connections refer those that do not have any congestion avoidance mech-

anisms and do not slow down when their packets are dropped at the routers[25]. In the

current Internet, when non-responsive connections are present, TCP, or any transport layer

protocol that implements congestion avoidance mechanisms, is at a disadvantage. While

TCP backs off upon detecting congestion, non-responsive connections will get their packets

through while continuing to cause congestion.

There has been research work done on 1) limiting the effect of non-responsive con-

nections on TCP connections (or congest-control compatible transport-layer protocols);2)

detection mechanisms of non-responsive connection so network can penalize them, so as

to provide proper incentives to a fair network resource utilization. Towards the first goal,

John Nagle in [46] proposed aFair Queuingmechanism.Fair Queuing, and the later, more

elaborated work by Demers et. al.[13], propose to queue the connections (or flows) sepa-

rately, thus, any given packet sees only the queuing delay created by packetsin the same

connection and is shielded from potential damaging effect from other connections. Fair

queuing and its variations are mechanisms toisolatenon-responsive connections. Towards

the second goal, Floyd[25] proposed algorithms to study the drop statistics of the RED

algorithm, thus identifying and detecting non-responsive connections.

In this section, we study the effect of non-responsive connections in a DiffServ environ-

ment. Our proposed mechanisms utilize the congestion feedback loop between routersand

end host TCP. When a connection exceeds its contracted service profile, its traffic is marked

by TSW taggers as a mixture of IN and OUT packets. When the network is congested, RIO
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routers either send implicit signals to end hosts by dropping packets, or they send explicit

signals to end hosts by marking packets ashaving experienced congestion(ECN bit). If the

transport layer protocol in end host implements congestion control algorithms like TCP, the

end host slows down, and eventually to a point below its contracted service profile. Then

its traffic is marked only as IN. However, if the transport layer protocol in the end host is

not congestion control compatible, then it will not respond to the congestion signals from

the network. Therefore, the traffic is still a mixture of IN and OUT packets.This means

that the drop statistics from RIO, especially those of the OUT packets, are indications of

the flows which are not responsive to congestion signals from the network. Thus, in a

DiffServ environment, RIO drop statistics provide a mechanism to identifyand detect non-

responsive connections. Conceivably, one could make use of this mechanism as a basisfor

penalizing or policing the non-responsive flows.

4.7.2 Setup

We use a similar topology that is depicted in Figure 4.1 (the sender-based scenario). As

shown in Figure 4.11, ten hosts are connected to ten peer hosts. They share a common link

between routers A and B. Each host (i) has a TCP connection to its peer host (i+10). There

are altogether 10 TCP connections. The ten connections are of different Round Trip Time

(RTTs). They can be divided into five groups. The two connections in each group have

the same RTTs, but different target rates (Rt). Each of the five groups has a different RTT

from another other groups. The RTTs for them are 20ms, 40ms, 50ms, 70ms and 100ms,

respectively. Parameter configuration is very similar to that in the sender-based scenario

as well. The bottleneck link speed is 33Mbps and the RIO parameters are set tobe (40,

70, 0.02) for IN packets, and (10, 30, 0.5) for OUT packets. This is equivalent of setting

(2.4ms, 7.2ms) as the respectivemin andmax thresholds for OUT packets on a 33Mbps

link, and setting (10ms, 17ms) as the respective thresholds for IN packets. TCPpacket size

is 1000 bytes and we use TCP-SACK.

We use a constant bit rate (CBR) source to model non-responsive sources since a CBR
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Figure 4.11: In Presence of Non-responsive Connections

source does not have a congestion control mechanism. We add a CBR connection to the

above scenario, with a sending rate of 6Mpbs, or roughly 20% of the total bandwidth.

The achieved throughput of the CBR connection is calculated by creating a receiver sink

(CBR-sink) and calculated the received packets over time.

4.7.3 Results

We run two separate simulations. In the first, we simulate the current Internet environment.

We have 11 connections (10 TCP connections and 1 CBR connection). We use RED gate-

ways and there are no DiffServ router mechanisms. The results are listedin column 3 of

Table 4.9. In the second simulation, we simulate a DiffServ domain. We use the same

11 connections. In addition, we implement RIO and TSW algorithms in interior and edge

routers, respectively. The results are listed in column 5 of Table 4.9.

In today’s Internet, a non-responsive connection causes persistent congestion in routers,

and TCP connections with congestion control algorithm will back off as a result. Column

3 in Table 4.9 lists this effect: the CBR connection gets almost all its packets through, and
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all TCP connections have a drastic performance degradation, compared to what theycould

have achieved when connection 11 is not present (column 3 in Table 4.2). In contrast,

in a DiffServ network (column 5), connections with service profiles are protected from

non-responsive connections: the link bandwidth is allocated according to the contracted

service profile while packets from CBR are severely dropped. The CBR connectionre-

ceives 1.78Mbps or 29.6% of its 6Mbps sending rate in our framework, vs. 5.85Mbps or

97% of its sending in today’s Internet.

Table 4.9: 10-connection case with a non-responsive connection (CBR). BW= 33Mpbs,
CBR is sending at 6Mbps. RIO parameters: (40, 70, 0.02) for INs and (10, 30, 0.5) for
OUTs. Used TCP-SACK

Conn # RTT(ms) Current Internet (Mbps) Rt (Mbps) with RIO-TSW (Mbps)

0 20 5.40752 1 1.21924
1 20 5.36329 5 5.87978
2 40 1.98478 1 1.1372
3 40 2.56938 5 5.15273
4 50 2.443 1 0.989687
5 50 2.54567 5 4.99475
6 70 1.28912 1 0.837817
7 70 1.53377 5 4.86143
8 100 1.1074 1 0.720575
9 100 1.50127 5 4.72234

CBR 50 5.85338 0 1.78195
Total 31.59858 30 32.297499

4.8 TCP-DiffServ Mechanisms

The previous section concludes our simulations using router mechanisms— RIO and TSW—

only. We explore different aspects of a Diff-Serv architecture: sender-based vs. receiver-

based, aggregated profiles and cascaded profiles. We also explore using differentversions

of TCP with RIO-TSW: TCP-reno (sender-based scheme), and TCP-SACK.We conclude

that while RIO/TSW alone can create service differentiations to end host TCP connections,
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such differentiations are neither precise nor fair. The reason lies in TCPitself. TCP’s win-

dow increase algorithm is not fair, TCP’s congestion control mechanisms are not robust

enough and are not aware of the upper-layer policy of SLA.

In this section, we explore the effect of applying both the TCP-DiffServ mechanisms

and RIO+TSW. Unlike previous sections, where we go in depth for each individual sce-

nario, in this section, we choose to compact our simulations somewhat and focus our dis-

cussion on TCP-DiffServ mechanisms.

4.8.1 Setup

We use a simulation topology similar to that in the previous sections, in which six TCP

connections are sending to six respective receivers. We also use long-lived FTP/TCP con-

nections, with two different RTTs: 80ms and 30ms. We feel that we have understoodthe

effect of RTTs on TCP performance so we will not explore this dimension any more. The

80ms connections represent long-RTT connections and the 30ms connections represent

short-RTT connections. Between the first pair of sender and receiver (host 0 andhost 6),

there is also a CBR connection that sends for a period of time. The only bottleneck is the

link between R3 and R4, which is set at 8Mbps. All the other links are 10Mbps and are not

bottlenecks.

Each simulation run has four different phases. The first phase is thestart-upphase in

which all six FTP/TCP connections reach their respective operating points.The second

phase is acongestedphase, in which, a constant bit rate (CBR) connection starts, running

at 1/4 of the bottleneck bandwidth, or 2Mbps. This causes heavy congestion in the router

and TCP connections back off during this phase. The third phase is therecoveryphase,

in which the CBR source stops and all FTP/TCP connections recover to their respective

operating points. The fourth phase is theover-provisionedcase, during which, one of the

FTP/TCP connections (TCP1) stops sending and the available bandwidth is shared among

the rest five FTP/TCP sources. Each individual phase lasts for 25 seconds. All packet sizes

are set to 1000 bytes. We use TCP-Reno, and receiver windows are large enough to notbe
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a constrain on the congestion windows.
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Figure 4.12: Topology for Applying DiffServ TCP Mechanisms

Table 4.10: Configurations of TCP connections
RTT (ms) Rt (Mbps)

TCP0 80 2
TCP1 80 2
TCP2 80 1
TCP3 30 1
TCP4 30 0.6
TCP5 30 0.6

The parameters for RED and RIO gateways are set comparably. The bottleneck speed

is 8Mbps. The low threshold (min th) for RED is the byte-equivalent of 5ms of queue

delay, the high threshold (max th) is the byte-equivalent of 10ms of queuing delay, and

the dropping probabilityPmax is 0.1. Since the packet size is 1000 bytes, 5ms of queue

delay on a bottleneck link of 8Mbps is equivalent of 5 packets.

We set parameters for RIO comparably: (5, 10, 0.5) for OUT packets, and (10, 20, 0.02)

for IN packets. This is equivalent to (5ms, 10ms) queuing delays for the respective thresh-

olds for OUT packets, and (10ms, 20ms) for the IN packets. We use tables to represent the
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time-averaged throughput of three representative connections during different phases. Each

setup is run three times with a different random seed, and the data presented in the tables

are averages of the three runs. For each scenario, we show the throughput of 1) a long-rtt

FTP/TCP (with and without a target throughput of 2Mbps); 2) a short-rtt FTP/TCP (with

and without a target throughput of 0.6Mbps); and 3) a CBR connection with sending rate

at 2Mbps during the congested phase. The constantc in TCP’s window open-up algorithm

is chosen to be 100, which is equivalent of increase one packet each 100ms.

The total allocated throughput to TCP connections is 7.2Mbps, or 90% of the bottleneck

link. The details of the simulation set up are listed in Table 4.10.

4.8.2 Impact of TCP-DiffServ Mechanisms

Table 4.11: Comparison of Diff-Serv mechanisms applied to routers and endhost TCP;
Modified TCP = standard TCP + three TCP-DiffServ mechanisms. All measured in Mbps

Start-Up Congested Recovery Over-provision
Phase Phase Phase Phase

Standard TCP0 (80ms, no target)0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms, no target)1.622382 1.126404 1.585279 1.804911
(Scenario1) CBR 1.978168

Modified TCP0 (80msRt=2Mbps) 1.86133 1.31369 1.81553 2.30319
TCP+RED TCP3 (30msRt=1Mbps) 1.11268 0.84987 1.12360 1.42987
(Scenario2) CBR 1.92003

Standard TCP TCP0 (80msRt=2Mbps) 1.43707 1.32511 1.40382 1.49129
+RIO+TSW TCP3 (30msRt=1Mbps) 1.05836 0.90249 1.11443 1.37187
(Scenario3) CBR 1.78891

Modified TCP TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
RIO+TSW TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
(Scenario4) CBR 1.00350

We separate the mechanisms into two groups: Diff-Serv mechanisms to be applied in the

end hosts (combinations of all the mechanisms proposed in Section 3.4) and Diff-Serv

mechanisms to be applied in the router (RIO and TSW algorithms). We consider four

different scenarios: 1) standard TCP-reno algorithm with RED gateways; 2) Diff-Serv
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enhanced TCP (incorporating TCP-DiffServ mechanisms) with RED gateways; 3) standard

TCP with RIO and TSW gateways; and 4) Diff-Serv enhanced TCP with RIO andTSW

gateways. Table 4.11 lists the results from four different scenarios.

Scenario 1 is our basis for comparison, representing the currentbest-effortmodel. It

illustrates two well-known phenomena: 1) short-RTT TCP connections have advantage

over long-RTT connections when sharing the same bottleneck (first body row vs. second

body row); and 2) a non-congestion controlled source has a detrimental effect on TCP

connections (second body column), where TCP0 and TCP3 throughput dropped by 30%

when CBR starts. In this case, the CBR source gets almost all its packets through a RED

gateway at the expenses of other TCP connections’ throughput.

Scenario 2 illustrates the effect of the mechanisms incorporated into TCP. With config-

ured knowledge of target throughputs, TCP could robustly recover to its target rate after

packet losses. The proposed window open-up algorithm also corrects the bias againstlong-

RTT connections, e.g., in the Start-up and Recovery phases, TCP0, with anrtt of 80ms,

doesn’t suffer from network bias and gets close to its allocate target rate (1.86Mbps or

93%). However, in the presence of a non-congestion controlled source, all TCP sources

suffer, e.g., a drop in TCP0 and TCP3’s throughput (30%) when CBR starts. The RED

gateway is not capable in discriminating against anout-of-profilesource.

Scenario 3 shows the results of applying only the router mechanisms. Compared to

scenario 2, the RIO algorithm discriminates againstout-of-profilesources to limit the detri-

mental effect OUT packets have on IN packets during congestion. In this case,the CBR

source is getting 89% of its packets through vs. 96% of its packets in scenario 2. (Thebot-

tleneck link has enough available bandwidth to accommodate 50% of the CBR packets.)

The service differentiation among TCP connections with varying RTTs is the most pro-

nounced during congestion (body column 2). When the network is well-provisioned, the

service discrimination effect of RIO is dampened by the TCP window algorithm.Short-

RTT connections obtain most of the available bandwidth in the over-provisioned situation.

In other words, when free of congestion, the innate TCP biases can override the targeted

122



bandwidth allocation created by the Diff-Serv mechanisms in routers.

Scenario 4 illustrates the effects of the mechanisms in both the end host TCPand

routers. Compared to scenario 2, the improvement lies in the congested phase,in which the

RIO algorithm is able to shield IN packets from the interference of OUT packets. In this

case, the CBR source is able to get 50% of its packets through (body column 2), which is

roughly what the router can accommodate besides all its pre-allocated resources. Compared

to scenario 3, the improvement lies in allocating bandwidth according to each connection’s

profile regardless of itsrtt and the network conditions. When the network is congested,

each TCP receives close to its targeted throughput; when the network is well-provisioned,

the allocation of extra available bandwidth is fair among all TCP connections.

In summary, we observe that by incorporating Diff-Serv mechanisms in endhosts, the

combined scheme can allocate resources fairly, precisely and differentially among connec-

tions, regardless of network conditions. In fact, if the endhost TCP has incorporatedthe

Diff-Serv mechanisms, the RIO algorithm in routers can be configured to create strong dif-

ferentiation among classes of packets, therefore, more effectively shield traffic that within

SLAs from those that are outside SLAs.

4.8.3 Impact of Individual TCP-DiffServ Mechanisms

In this section, we isolate the effect of each of the host mechanisms proposed. Westart with

scenario 3 of Table 4.11, which has standard TCP-reno implementations and has applied

Diff-Serv mechanisms to routers (tagging and RIO algorithm), and we add each proposed

mechanism to TCP. We denote the three proposed mechanisms with the following abbre-

viations: WinAdj for changing the window open-up algorithm withc ∗ rtt2; Ssthreshfor

configuring TCP’sssthreshwith the target throughput; andECNfor incorporating differen-

tial ECN mechanisms into TCP. Table 4.12 lists the four stages of the progressive changes,

by applying ECN, Ssthresh and WinAdj to TCP. The first stage corresponds to scenario 3

in Table 4.11, and the last stage corresponds to scenario 4 in Table 4.11.

The second stage shows an improvement over stage 1: all TCP connections gain more
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Table 4.12: Comparison of individual endhost mechanisms applied to TCP
Start-Up Congested Recovery Over-provision
Phase Phase Phase Phase

Standard TCP TCP0 (80msRt=2Mbps) 1.43707 1.32511 1.40382 1.49129
+Tagging+RIO(3) TCP3 (30msRt=1Mbps) 1.05836 0.90249 1.11443 1.37187

CBR 1.78891

TCP+ECN TCP0 (80msRt=2Mbps) 1.6858 1.6902 1.7006 1.8257
+Tagging+RIO TCP3 (30msRt=1Mbps) 1.2576 0.9696 1.2144 1.6694

CBR 1.4154

TCP+ECN TCP0 (80msRt=2Mbps) 1.95429 1.81875 1.95571 2.08191
+ Ssthresh TCP3 (30msRt=1Mbps) 1.08955 0.95229 1.08742 1.50265
+Tagging+RIO CBR 0.93761

TCP+ECN TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
+Ssthresh+WinAdj TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
+Tagging+RIO(4) CBR 1.00350

bandwidth in all phases than they did in stage 1 and the CBR source gets less than it did in

stage 1. This is because after incorporating ECN, TCP only reacts to packet losses at most

once per round trip time, thus it is robust in reacting to congestion signals. However, notice

that the short RTT TCP (tcp3) has an advantage over the longer RTT connection (tcp1) due

to a bias in the window open-up algorithm.

The third stage shows an improvement over stage 2 as well. The effect of setting

ssthresh to gauge TCP’s operating point is obvious: both TCPs, with different targeted

rates, operate close to their respective targeted rate. Compared to stage 2, the higher target-

rate TCP (tcp1) has improved bandwidths in all phases and operates close to its2Mbps

targeted rate; the lower target-rate TCP (tcp3) has lower bandwidths in all phases, and also

operates close to its 1Mbps target rate. Thus, settingssthresh makes TCPs operate more

precisely to its target rate. The effect of TCP’s bias against long RTT connections is damp-

ened in all phases where there is congestion (phase 2). However, such bias is quite visible

when there is sufficient bandwidth for all TCPs (phases 1, 3 and 4). CBR, in this stage,

can get only 47% of its bandwidth. Thus, when the ECN and Ssthresh mechanisms are

applied, TCP can effectively operate at its targeted rate and is shielded from unresponsive
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connections.

The final stage shows results after TCP has incorporated all three mechanisms. Com-

pared to stage 3, the bias between the two TCP connections has disappeared during all

phases. Especially in phase 4, where there is extra available bandwidth for all TCP con-

nections, and there is no particular bias of one TCP against another. In this stage,the CBR

source actually getsmorepackets through the gateway than it did in stage 3. This is due to

the following subtle reason. We configure all TCP connections with a new window open-

up algorithm using a constant of 100, which is equivalent to the window open-up rate of 1

packet per 100ms during thelinear increasephase. Since 100ms islongerthan the RTT of

both TCP connections (30ms and 80ms), the new TCPs areless aggressivein opening up

their windows than their counterparts before incorporating the mechanism. As a result, the

CBR connection gains more bandwidth through the gateway. This is similar to the prob-

lem of deploying such fairness mechanisms in a heterogeneous environment [29]. We will

come back to this point in Section 4.8.6.

4.8.4 Robust Recovery from Losses

This section focuses on the details of TCP’s window behaviors before and after incorpo-

rating the Diff-Serv mechanisms. We illustrate the effects in Figure4.13. The left graph

shows TCP0’scwndandssthreshthroughout the entire 100 seconds of simulation (scenario

1 setup in Table 4.11, in which TCP uses the standard Reno algorithm). The right graph

shows TCP0’scwndandssthreshthroughout time (scenario 4 in Table 4.11, in which TCP

incorporates all three Diff-Serv mechanisms). The most pronounced and visible difference

lies in howssthreshis adjusted in the two graphs: in the left graph, thessthreshadjustment

is according to the perceived network conditions and can be drastic and unpredictable. For

example, from time 25 to 50 seconds, when there is a CBR source keeping the networksin

a congested state, the TCP sources usually detect this and run at a much reducedoperat-

ing point. There are several cases in whichssthreshis adjusted multiple times, each for a

packet drop within the same congestion window. (Not visible given the granularityof the
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Figure 4.13: TCP Window Algorithm Before and After Incorporating Diff-Serv Mecha-
nism

graph.) From time 80 second and onwards, the network is in a over-provisioned state, and

the rate adjustments are infrequent and thessthreshis high. In contrast, in the right graph,

ssthreshis set by the targeted throughput, so after a packet drop, TCP’scwnd is reduced

but not itsssthresh. Note thatssthreshis adjusted if the estimated RTT changes, because it

is set to be byte-equivalent to the target-rate delay product. This is shown inthe graph as

a few discreet values ofssthresh: 40, 45 and 50 packets, etc. By keepingssthreshnear its

target operating point, TCP can quickly recover from its packet losses and not beaffected

by worsening network conditions caused by non-congest control sources.

Another difference between the two graphs lies in the rate at which TCP adjusts its

window, or the slope of each discrete segment of the TCP window adjustments. During

the congestion control phase, the enhanced TCP uses a constantc of 100 in calculating its

window increase rate and opens its windowslowerthan its counterpart before incorporating

the Diff-Serv mechanisms. The right graph appears to have afasterrate of increase than

the left graph because most of the time. TCP operates in theSlow Startphase after a

packet drop. This is because thessthresh(set by multiplying RTT and target rate) is greater
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thancwnd. The fact that TCP is operating in theSlow Startphase is also a sign that the

TCP connection is not meeting its targeted throughput. In the left graph, TCP operates in

the congestion avoidance phase after a packet drop because in the current TCP congestion

control algorithm, bothssthreshandcwndare re-adjusted after a packet drop.

4.8.5 Backward Compatibility

Among the above three proposed mechanisms, the first and second mechanisms require

only the TCP sender to change its window adjustment algorithm, and does not require the

receiver’s cooperation.

The second mechanism needs some policy servers that keep information about SLAs,

and additionally, a signaling protocol for communicating between the transport layerat the

end host and the edge router if the profile is changing in real time. The information kept in

policy servers is used to configure TCP with its initialssthreshvalue and thessthreshvalue

after each packet drop.

The third mechanism requires TCP to be aware of the IN/OUT bit (TOS field) of the

IP header. This mechanism can be deployed at the same time as the ECN field. The

mechanism works as follows: a TCP sender always sends out packets with IN/OUT bit as

OFF. A packet goes through a traffic conditioner, which in turn tags the packet’s TOS field

as eitherONorOFF. A RIO and ECN capable gateway will mark packets differentially, and

turn on ECN field for those packets if necessary. The transport layer at the receiver side has

to copy both the ECN field and the TOS field of the IP header in the due acknowledgment

packet. The sending TCP will react to a packet with both ECN and TOS bits (an IN packet)

set differently from that with only ECN bit set (an OUT packet).

4.8.6 Heterogeneous Environments

Among the mechanisms we propose, the first mechanism has been studied in a context of

improving fairness for TCP connections with varying RTTs [29]. One important problem
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Table 4.13: Heterogeneous deployment of TCP mechanisms, measured in Mbps.Mech1
is the fair window open up algorithm,new include all three mechanisms

Start-Up Congested Recovery Over-provision
Phase Phase Phase Phase

Standard TCP0 (80ms, Reno) 0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms, Reno) 1.622382 1.126404 1.585279 1.804911
(Scenario1) TCP5 (30ms, Reno) 1.541346 1.122553 1.610749 1.850088

CBR 1.978168

Mixed TCP TCP0 (80ms, w/ mech1)0.851694 0.499243 0.898498 0.90222
algorithms TCP3 (30ms, w/ mech1)0.950140 0.584215 0.792326 1.3719
+RED TCP5 (30ms, Reno) 1.893473 1.462454 1.845942 2.018788
(Scenario2) CBR 1.986283

Uniform TCP TCP0 (80ms,Rt=2, new) 2.02678 1.89689 2.02658 2.36111
algorithms TCP3 (30ms,Rt=1, new) 1.04109 0.91049 1.04853 1.33992
+TSW+RIO TCP5 (30ms,Rt=0.6, new) 0.659625 0.533941 0.629245 0.969653
(Scenario3) CBR 1.00350

Mixed TCP TCP0 (80ms,Rt=2, new) 1.984425 1.917876 1.991106 2.18545
algorithms TCP3 (30ms,Rt=1, new) 0.993548 0.924187 0.991756 1.182006
+TSW+RIO TCP5 (30ms,Rt=0.6, Reno) 0.602984 0.424578 0.591179 0.940206
(Scenario4) CBR 1.151985
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pointed out by [29] lies not in the algorithm itself, but its interaction with thestandard TCP

algorithm when they both exist in a heterogeneous network environment. As discussed

before, the fair algorithm makes all TCP connections open up their windows at the same

rate. With a chosen constantc corresponding to some standard unit of time, this algorithms

makes any TCP connections with RTT shorter than the standard unitless aggressivethan

their current implementation, and any TCP connections with RTT longer than the standard

unitmore aggressivethan their current implementations. As a result, if two TCP implemen-

tations co-exist in a heterogeneous network environment and their RTTs are both shorter

than the standard unit of RTT, the connection with the current implementation will be more

aggressive than the connection with the fair algorithm implementation. This takes away any

incentives for people to deploy the fair algorithm. Of course, connections with RTT longer

than the standard unit RTT will be more aggressive than their current implementation, and

there would be an incentive for people to deploy such an algorithm.

The first half of the Table 4.13 illustrates this case. We include the results of another

30ms TCP connection (TCP5). Scenario 1 is the case when all TCPs use the standard algo-

rithm and RED is used by routers as the queuing discipline. The two 30ms TCP connections

have a clear advantage over the 80ms TCP connection, as expected from the current TCP

window algorithm. Scenario 2 illustrates the case when TCP0 and TCP3 haveupgraded to

use the new and fair window algorithm, while TCP5 remains the same. The constantc is

chosen to be 100, which makes both TCP0 and TCP3lessaggressive than their counter-

parts in scenario 1. We see that TCP0 and TCP3 achieve comparable results, (0.85Mbps

and 0.95Mbps), whereas TCP5 has gained an advantage over both (1.89Mbps). TCP0 per-

forms slightly better than its counterpart in scenario 1 (0.67Mbps), but TCP3 performs

much worse (1.62Mbps).

Fortunately, we find that the Diff-Serv mechanisms in routers can be used toassist in

such migration. We find that when the Diff-Serv router mechanisms are deployedfirst and

TCPs incorporate all three proposed mechanisms, the allocation of bandwidth is according

their respective SLAs (for those TCPs which have respective SLAs), andthere is no clear
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advantage for standard TCP over enhanced TCP. Scenarios 3 and 4 in Table 4.13 illustrate

this. In scenario 3, all TCPs have upgraded to incorporate the Diff-Serv mechanisms,

and the allocation of resources is according to their respective service profiles regardless

the state of the network. When the network is over-provisioned, the available bandwidth is

equally distributed among all connections. In scenario 4, TCP4 (not shown) and TCP5 both

use the standard TCP window open-up algorithm. The results show current TCP algorithm

has no clear advantage over the fair TCP algorithm in the Diff-Serv environment. This

preserves the incentives for customers to update their TCP to incorporate the fair algorithm.

4.9 Testbed Implementations

The algorithms described in this thesis—RIO, TSW and TCP-DiffServ—have been imple-

mented and evaluated in a testbed environment. In [58], Seddigh et al. reported implement-

ing both RIO and TSW algorithms in an experimental testbed. They used a RIO algorithm

configured with three classes of packets and three levels of assurances and use topology

setups similar to those in our sender-based simulations. They verify our simulation exper-

iments that service differentiation can be achieved when router algorithmsare applied, but

they are not certain to what extent the differentiations can be predicted.

As a follow-up work to the above [57], Seddigh et al. studied the five factors that

impact throughput assurances for TCP and UDP flows in an experimental network. The

five factors are RTT, number of flows in an aggregation, size of the target rate, packet size

and presence of non-responsive flows. They show that in an over-provisioned network, all

target rates are achieved regardless of the five factors, but in an under-provisioned network,

none of the target rates may be achieved. The role of the RTT, target rate size and packet

size play in determining throughput rates can be explained via the following equation[44]:

BW <
packetsize

RTT ∗ √
target − rate

The effect of non-responsive flows (UDP) is similar to what we have experimented in sim-
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ulation. They recommend using intelligent marking schemes that take in account packet

sizes, target rate and RTTs.

Table 4.14: Effect of C in a testbed environment (throughput measured as Mbps)
TCP0 (30ms) TCP1 (80ms)

Both using Reno 2.7 2.0

C=50 2.7 2.0
C=100 2.5 2.3
C=200 2.4 2.4
C=500 2.3 2.6
C=1000 2.2 2.7

We have implemented the first two TCP mechanisms (window open-up algorithm and

settingssthresh) in a testbed. The testbed currently has edge routers that implement the

TSW tagging algorithms, and a RIO algorithm with three dropping preferences, conform-

ing to the Diff-Serv WG standard. The end hosts use Linux RedHat 2.3.39 distribution,

which has the standard TCP-Reno algorithms. We incorporated the first two mechanisms

in an end host kernel, and ran some initial test experiments. By the time of thesis submis-

sion, we have only conducted a few simple test experiments. This is on-going work.

In a simple test case to study the effect of constantc, we have two TCP connections,

with the new mechanisms and the other without. Both share a 5Mbps bottleneck connec-

tion. The standard TCP (TCP0) connection has an RTT of 30ms, and the TCP connection

with the new mechanisms (TCP1) has an RTT of 80ms. When both TCPs use TCP-reno,

we observe a network bias against long-rtt connections (2.7Mbps for TCP0 and 2.2Mbps

for TCP1). Then we configure TCP1 with increasingly large values ofc, and therefore,

an increasingly aggressive window open-up algorithm. We observe the effect ofc. TCP1,

with the new window algorithm, can gradually overcome the network bias. Eventually, the

effect of an aggressive window open-up algorithm (c = 1000) is limited because the actual

sending window is limited by the receiver’s window, instead of the congestion window.

The results are summarized in Table 4.14.
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4.10 Conclusions

In this chapter, we apply two groups of mechanisms—router mechanisms TSW and RIO,

and TCP-DiffServ mechanisms—to a DiffServ domain and evaluate the effectiveness of

the mechanisms.

We observe that when we apply only the router mechanisms—RIO and TSW algorithms—

, a Diff-Serv domain can create service differentiations among connectionswith different

target rates. We have explored different aspects of this setup. We consider sender-based as

well as receiver-based schemes. We find in a DiffServ domain with RIO and TSW, both

the sender-based and the receiver-based schemes can allocate bandwidth according to the

service profiles. We use the most widely deployed TCP, TCP-reno, as well as amore robust

version, TCP-SACK. We find TCP-SACK is more robust in dealing with congestion sig-

nals from the network and can cope with the RIO/TSW algorithms better. We simulate and

experiment with the effect of having cascaded service profiles on a single connection. We

observe that as long as an additional tagger has sufficient service profile, it does notaffect

the end-to-end performance of TCP connections. If the additional cascaded tagger does

not have enough service profile for all upstream traffic, then it turns somein profile traffic

to out of profile, and consequently affects the end-to-end performance of the TCP connec-

tions. We also consider the case where a tagger is for an aggregation of connections instead

of a single TCP connections. We find that a tagger for an aggregate of upstream traffic

does not regulate the traffic as precisely as one for an individual connection. An aggregate

tagger is effective in regulating traffic within its profile against other traffic regulated by

other profiles. Finally, we experiment with the case where there are non-responsive flows

together with TCP connections that implement congestion control mechanisms and have

service profiles. We find that the router mechanisms in DiffServ can protectconnections

from being severely affected when non-responsive flows are present. The combination of

TSW and RIO can also provide a means of identifying non-responsive flows by analyzing

the dropping statistics of OUT packets, thus, making it possible to isolate a non-responsive

flow in the middle of a congested network.
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However, in all above cases, we find that even though the routers mechanismscan

allocate services according to service profiles, the overall system is notfair or robust. The

problem lies in TCP’s congestion control mechanism itself, and cannot be corrected by

changing router mechanisms alone.

We therefore study the effect of applying our three proposed TCP mechanisms (called

TCP-DiffServ) to end hosts. We experimented with a few scenarios. We start with the

current Internet scenario as the comparison case. We then apply either of the two groups

of mechanisms individually—RIO/TSW and TCP-DiffServ. We find that when applying

TCP-DiffServ mechanisms only, TCP connections will not be able to enjoy any service

differentiation when the network is congested. In other words, although each TCP has a

configured target rate, it does not get special treatment from the network. In the presence

of non-responsive connections, TCP will not achieve its target rate. When only RIO/TSW

mechanisms are applied, the overall system is not robust or fair enough. When we apply

both groups of mechanisms, the overall system can allocate bandwidth in a robust,precise

manner.

Finally, we describe testbed experiments by us and our collaborators on verifyingthose

simulation results in an experimental testbed network.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary and Conclusions

The current Internet assumes thebest-effortservice model. In this model, the network

allocates bandwidth among all the instantaneous users as best it can, and attempts to serve

all of them without making any explicit commitment as to bandwidth or delay. Routers keep

no state about end host connections, and when congestion occurs, routers drop packets.

End host connections are expected to slow down and achieve a collective sending rate

that is equal to the bottleneck speed. Therefore, what each connection achievesin terms

of network bandwidth is determined by the network congestion state and the number of

simultaneous connections sharing the same path, and is not always predictable.

As the Internet has transitioned from a research network to a commercial,heteroge-

neous network, three problems arise. First, an increasing number of real-timeapplications

require some kind of quality of service (QoS) guarantees from the Internet than the simple

best-effortservice. Second, a heterogeneous user base has a variety of different require-

ments from the network and some are willing to pay to have their requirements satisfied,

and the current Internet service model cannot offer a range of flexible services. Third, in a

commercial network, Internet Service Providers (ISPs) have to find ways tocharge for the

service rendered and recuperate the cost of provision the network, and the current Internet
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is missing mechanisms to account for network usage.

This thesis describes theDifferentiated Services, a scalable architecture that can pro-

vide flexible services which address the above three issues. In theDifferentiated Services

architecture, or DiffServ, a network classifies packets into different classes, and gives dif-

ferentiated service to different class of traffic. Network users canchoose from the available

service levels that best suited for their applications. They subscribe and payfor Service

Level Agreements (SLAs) with their ISPs, and receive different services. What specified

in an SLA is the expected service a user will receive and pay for. If the network is not

congested, then the user can send traffic beyond its SLA. The architecture augments the

current Internet devices—network routers and end hosts—and pushes the complexity of

the system towards the edge of the network, therefore, is scalable. A varietyof services can

be constructed using the simple primitives provided by the DiffServ architecture, therefore,

DiffServ offers very flexible services to users with different requirements. Pricing based on

SLAs, instead of the actual usage, reflects the nature of Internet provisioning: mostly the

Internet connections incur a fixed cost and the marginal cost of delivery only occurs when

there is congestion. Thus, this kind of pricing structure can manage congestion, encourage

network growth and recuperate cost without complex implementation.

After describing the architectural components of Differentiated Services, we proceed

with a design framework in which different mechanisms can be implemented.We focus

on the Assured Forwarding service model within DiffServ architecture and propose mech-

anisms to allocate bandwidths. This is a particular implementation of a general DiffServ

architecture.

The current Internet accomplishes its bandwidth allocation by mechanisms in a conges-

tion control feedback loop between network routers and end host TCPs. We propose a set

of modifications to this congestion control feedback loop. We propose RIO, a differentiated

dropping algorithm for interior routers of a DiffServ domain. We propose TSW (Time Slid-

ing Window), a probabilistic tagging algorithm for monitoring and tagging packets at the

edge routers of a DiffServ domain. Finally, we propose three modifications to TCP’s con-
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gestion control algorithm, collectively called TCP-DiffServ mechanisms. The mechanisms

include 1) a change of TCP’s window increase algorithm; 2) adjusting TCP state variable

ssthreshto reflect the contracted SLAs; and 3) a combined use of TCP ECN mechanism

and DiffServ codepoints to give accurate feedback of network conditions.

We use elaborate simulation experiments to evaluate the above proposed mechanisms.

We observe that when applied router mechanisms (RIO and TSW) only, a Diff-Serv do-

main is able to allocate differentiated bandwidths according to the specified service profiles.

However, routers mechanisms are not sufficient to overcome bias against long-RTT con-

nections, which is a result of TCP’s window increase algorithm. We then proceed to apply

only TCP-DiffServ mechanisms to end hosts in a DiffServ domain. We find thatwhile the

enhanced TCP is robust and fair, in times of congestion or in presence of non-responsive

connections, TCP connections with service profiles are not protected from those without.

Since the current Internet allocates its resources using a congestion control loopcompleted

with mechanisms in both routers and end hosts, and changing one without changing the

other will not achieve an effective allocation scheme. Finally, we applyboth router mech-

anisms and TCP-DiffServ mechanisms and conclude a DiffServ system could allocate re-

sources in a robust and precise manner when both groups of mechanisms are applied.

5.2 Discussion and Future Work

This thesis is just the beginning of some interesting research directions whichcan be further

pursued. We list them below.

5.2.1 End-to-end DiffServ

In DiffServ architecture, we see a clear divergence in functionalities of routers. There

are two types of routers: edge routers and interior routers. In addition to providingtradi-

tional router functionalities like routing and forwarding, edge routers are now maintaining

necessary state information (SLAs) in order to classify, monitor, tag,and police packets.
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Similarly, interior routers have the additional functionality of creating differentiated ser-

vice to different class of packets. However, the design of DiffServ architecture is to keep

interior routers as simple as possible while keeping all necessary state information in edge

routers. This is because the number of edge routers is relatively few compared to the pos-

sible interior routers in a network. (In contrast, the Int-Serv mechanisms need to affect all

routers.) This design significantly simplifies DiffServ architecture and makes it scalable.

This kind of divergence in router functionality can also be founded in routing. The cur-

rent commercial Internet is an arbitrary interconnection of Autonomous Systems(ASes).

Within one AS, an interior gateway protocol (IGP) with a single routing metricis used. Be-

tween ASes, an exterior gateway protocol (EGP) [56] is used. The most widelyaccepted

and deployed exterior gateway protocol is the Border Gateway Protocol (BGP) [53].At the

boundary of each AS, there are routers which are BGP speakers, and they exchange routing

information with both BGP speakers in neighboring domains and interior routers in its own

domain. Inside each domain, interior routers exchange routing information with its peers

using some kind of interior gateway protocol (IGP), e.g., OSPF, RIP. The introduction

of two-level of routing protocols—BGP and IGP—came when the Internet was growing

to connect thousands of networks and millions of hosts, and a simple routing protocol is

not sufficient to keep up with the growth. Separating routing functionality into two levels

allows both autonomy and isolation among Autonomous Systems (ASes): each AS can

choose an interior routing protocol and a routing metric that is best suited for itself without

affecting others, so long as they can use BGP to exchange routing information. BGPis also

designed with mechanisms to allow each AS to apply its own policies as whether to allow

certain traffic traverse it or not.

One question we never explicitly pointed out in the thesis is where to place the edge

routers and interior routers. The terms “edge routers” or “interior routers” do notnecessar-

ily refer to the actual placement in the network, they are simply terms describing the func-

tions routers implement. However, putting DiffServ in perspective withother components

of the Internet architecture, we suggest implementing edge routers in the BGP speakers
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and implementing interior routers in the IGP routers within a single Autonomous System

(AS)1. BGP speakers, in this case, will keep not only routing policies of a domain, butalso

the SLA specifications with its neighboring domains as well. IGP routers can adoptthe

mechanisms of DiffServ interior routers, creating differentiations amongdifferent classes.

Figure 5.2.1 depicts a two-tier structure of DiffServ domains coincide with ASes.

Figure 5.1: End-to-end DiffServ
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This begs the question of how to achieve end-to-end differentiated services? Theset

of mechanisms we proposed in this thesis—RIO, TSW and TCP-DiffServ—are justone

possible set of mechanisms that can provide precise and robust bandwidth allocation for

DiffServ. Just as there could be many IGP protocols, there could also be manycombina-

tions of mechanisms that can meet the requirements specified in SLAs. The elegance of

having a two-tier architecture is to be able to de-couple intra-AS mechanismsfrom inter-

1AS, though originated as a purely routing concept, has become a synonym of Administrative Domain,
which mirrors a real-world entity with administrative policies, e.g., a corporation, a university, etc.
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AS mechanisms. One could conceive that a domain can achieve the same kind of SLAs

using any of the alternative DiffServ approaches described in Chapter 2, or even using

IntServ mechanisms since they maybe scalable within a domain. However, aslong as the

mechanisms within a domain can meet the specifications of SLAs, end-to-end differenti-

ated services can be constructed by concatenating a series of SLAs. This matches routing

very well.

Just as end-to-end routing is done by concatenating a series of intra-AS routes, end-

to-end differentiated services can be done by concatenating SLAs, each SLA specifies the

edge-to-edge requirements between two neighboring ASes. Therefore, a series ofAS do-

mains, each meeting the specific SLAs specified, will be able to provide end-to-end Diff-

Serv services.

Since there are already a number of proposals for intra-AS mechanisms like the ones we

proposed in this thesis, the question of providing end-to-end differentiated services is then

reduced to designing an inter-AS QoS protocol that is equivalent of BGP in routing. This

is an interesting future research direction. At this point, we can only speculate what this

protocol would look like. This protocol is very much inter-wined with the routing protocols

(IGP and BGP) because any route changes will definitely affect the ability for a domain to

meet its SLA. We could imagine an internal protocol to be used to convey congestion

information within a domain among the edge routers. The protocol provides feedback

between edge routers to adjust either 1) routes, or 2) traffic directed on any particular route

in order to fulfill the requirements of SLA, or both. In essence, this protocol embodies

what we call “edge-to-edge” congestion control mechanism, i.e., a congestion control loop

operates between two edge routers of a DiffServ domain, and relay feedback from interiors

routers to edge routers and back forth. At the inter-AS level, another protocol is needed to

adjust the long-term committed SLAs between ASes.
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5.2.2 Deployment Strategy

In this section, we offer some perspectives on deploying the mechanisms we proposed in

a DiffServ domain. There are two possible routes to deploy both the router mechanisms

(RIO+TSW) and end host mechanisms (TCP-DiffServ) that can migrate a domain from

best-effortto a DiffServ domain. Figure 5.2.2 illustrates the two routes. In the first route

(solid lines), ISPs deploy the router mechanisms first; then each individual users will up-

grade their end host TCPs to adopt their respective TCP-DiffServ mechanisms. In the

second route (dashed line), each individual users will first upgrade their end host TCPs to

adopt the respective TCP-DiffServ mechanisms, and then, ISPs will deployrouter mecha-

nisms.

Figure 5.2: Possible DiffServ Deployment Strategies
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There are practical as well as technical arguments for either route. Typically, in order for

a mechanism to be adopted by industry, it has to go through IETF standardization process

and be adopted by vendors. In the case of adopting router mechanisms, it is a relative

simple matter because there are only a handful of router vendors, namely, Cisco, Nortel and
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Lucent. It is conceivable that an ISP can choose to adopt a new version of router software

which has incorporated the respective DiffServ mechanisms and upgrade its network in a

matter of days. In terms of adopting end host TCP mechanisms, however, it is a bit more

complicated because there are many variations of TCP implementations, offered by many

vendors of end hosts. Even if an IETF working group has standardized some modifications

to TCP, one shouldn’t expect those modifications to be adopted by all implementations of

TCP, nor should one expect those modifications to be deployed completely. Rather, one

should expect that there will be a long time when the Internet has a great mix of old TCPs

(TCP-Reno) and TCPs with TCP-DiffServ. This is thepartial deploymentproblem.

We explore thepartial deploymentproblem in Chapter 4, in which, we make the ob-

servation that if the DiffServ router mechanisms are deployed first, theywould facilitate

deployment of TCP-DiffServ because they offer incentives in performance forthose users

who want to adopt TCP-DiffServ mechanisms. On the other hand, if TCP-DiffServ mech-

anisms were deployed first, the end users might find them in a situation where theperfor-

mance of their TCPs isworsethan what they had before, depending on the value of the

constant factorc in TCP’s window increase algorithm. This can happen when the new

TCP’s window increase algorithm islessaggressive than that of the older, existing TCPs

when the two versions of TCPs have the same round-trip-time connections. This strategy

of deployment would create businessdis-incentives to adopt DiffServ. Therefore, based

on the simulation results in this thesis, we would recommend route 1, i.e., adoptingrouter

mechanisms first and then adopting end host TCP mechanisms. With this route, we can

gradually migrate the current Internet to a DiffServ network.

5.2.3 Interactions with Applications

While the IntServ research started by analyzing the requirements of applications and then

proposed mechanisms in networks to support such requirements, DiffServ went througha

different route. DiffServ started by designing simple, scalable network mechanisms that

can provide different levels of services. While DiffServ has been quite successful in its
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research and standardization effort, there is no research work to demonstrate that applica-

tions can actually take advantage of the services provided by DiffServ networks and end

users can see a visible difference. Seamless integration of the network QoSservices and

applications will be the “Holy Grail” of QoS research effort.

There are a number of issues to consider. First of all, there has to be an interface

between applications and network protocols like TCP/IP by which, the applicationscan

convey the necessary QoS requirements to the network protocols. Second, the end host

operating system will check whether such service requirement fits within its contracted

SLA with the ISP. If such request is beyond the SLA, then such request will likely not be

satisfied and the application should be informed of such. (There is still a chancethat such

requestcanbe satisfied if the network is not congested.) If the request is within the SLA,

then the applications can be assured at this point that such request can be satisfied. It is

up to the end host operating system to adjust the amount of system resources (memory,

CPU cycles, and the necessary target-rate that would configure this TCP connection, for

example) dedicated to this application. Third, the end host must have a signaling protocol

between itself and the immediate edge router. This protocol is to automate the process

of updating SLA information between edge routers and end hosts. An update can happen

because the customer explicitly requests a change of upper-layer contract or the ISPadjusts

the SLA due to some unexpected network conditions, or the end host’s operating system

requests a short-term change of the SLA. If the application’s request is beyond the long-

term SLA between the customer and the ISP, the end host still has the option to send a

request to temporarily increase the SLA for the duration of this application which might

be granted by the edge router. Such handshakes can be accomplished by such signaling

protocol.
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