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ABSTRACT
A fundamental part of studying human mobility is to detect
dwelling. When we dwell at places such as our homes, the
supermarket or the local park, we are not necessarily still
or stationary, but move around in a confined area. Most,
but not all, of our significant places are indoors, which ham-
pers the detection using GPS. In this work, we discuss three
different sensor sources and their idiosyncrasies when used
for dwelling detection. In particular, we use geolocation ser-
vices based on collected WiFi fingerprints and show that
they may be used complementary to GPS information. Our
study is based on data collected on mobile phones in cities
of various sizes in four different European countries.

1. INTRODUCTION
Understanding human mobility is crucial for many different
application areas such as traffic prediction, city planning,
and for determining social interactions. Therefore human
mobility has been widely empirically studied in the social
sciences, e. g., [2, 16]. Note that understanding mobility
has two components: (i) Understanding how we move, i. e.,
determining transportation modes [13]. (ii) Understanding
where we stop, i. e., determining the (important) points of
interests (POIs) in our life [16]. For determining whether
we stop at a POI, we need to distinguish whether we are
dwelling at a location, e. g., at home or at our local super-
market, or if we are mobile. The focus of this paper is to
determine whether users are dwelling based on traces col-
lected on their mobile phone.
In previous work, empirical data has often been very coarse-
granular, e. g., GSM cell tower information [15] or merely
cellphone call data [2, 16]. However, modern smart phones
provide a wealth of data including GPS and WiFi connec-
tivity. Social sciences can benefit from these additional “sen-
sors”by increasing the fidelity of models of human mobility.
As with any sensor technology, the information measured is
subject to noise, uncertainty and availability issues. Addi-
tionally, sensing, e. g., using the GPS chip, consumes energy.
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This may negatively impact user experience by draining the
battery; hence, the use of sensors needs to be carefully ex-
amined.
This work presents a comparative study of three different
sensors and their quality w. r. t. determining whether users
were dwelling. The sensors we consider are GPS, the “raw”
WiFi scan information about surrounding access points (APs),
and a geolocation service based on WiFi data. The contri-
butions of this paper can be summarized as:

• We introduce an off-the-shelf geolocation service as a
beneficial sensor type for detecting dwelling.

• We compare the data from three sensors for determin-
ing whether users are mobile or dwelling and the cor-
responding POIs based on offline analysis of mobile
phone measurement traces.

• We present idiosyncrasies of the sensor types and iden-
tify that the information obtained by different sensors
may be used complementary.

In the following we show how our work relates to previous
work in Section 2. We present the sensors and their cor-
responding features that we utilize in Section 3. Section 4
discusses the data we collected. In Section 5 we present an
evaluation of dwelling and POI detection on the collected
data. We conclude in Section 6 with a summary.

2. RELATED WORK
Several researchers have proposed systems to detect mobil-
ity by monitoring the signal strength of beacons received
from fixed network infrastructure such as GSM and WiFi
APs. As a user moves around, the set of stations her mobile
phone can overhear and the received signal strength (RSSI)
of the corresponding beacons of these station, change over
time. Moreover, the RSSI of individual base stations tends
to fluctuate more when the receiving device is in motion.
Sohn et al. [15] apply these principles to GSM cell tower
information and propose a classifier based on seven fea-
tures. The classifier distinguishes between three mobility
states (stationary, walking, and driving), and achieves an
overall accuracy of 85%. Muthukrishnan et al. [10] show
how to determine whether a user is in motion using similar
features, however on information from WiFi scans. In [9]
a combination of both GSM and WiFi was used to differ-
entiate between the same three states as [15], achieving a
classification rate of 88%.
Other sensors commonly found on mobile phones are ac-
celerometers and GPS. These have been used in [13] to
determine a classifier with an average accuracy of 93.6%.
Using speed as indicated by the GPS receiver in combina-



tion with features extracted from the accelerometer data,
the proposed classifier can additionally recognize biking and
running.
Users move from one location to another; in between, they
spend a certain amount of time at each location. Extracting
these significant locations, i. e., POIs, can be done by analy-
sis of time-annotated location traces. For example, [1] uses
the fact that a GPS signal is lost indoors, and detects these
cut-off points in the trace. Clustering is then used to gather
such locations into POIs. However, relying on GPS signal
loss will miss many important landmarks such as outdoor
locations, indoor locations where GPS is still available, and
will generate false-positives in urban canyons. Other ap-
proaches have focused on finding spatially and temporally
constrained clusters in GPS traces [5, 6], but these assume
clusters to be circular point clouds, and we found them not
to be robust against noisy location estimates (cf. Figure 4).
The DJ clustering algorithm [17] has fewer assumptions on
clusters and performed the best in our experiments (cf. Sec-
tion 5). In this paper we focus on simple decision tree mod-
els based on selected features and spatial clusters. How-
ever there may be a benefit for temporal modeling, e. g.,
using hidden Markov models [13] and conditional random
fields [8]; we leave this as future work. Nurmi et al. [11] ex-
plore statistical methods in particular Markov chain monte
carlo methods for detecting spatial clusters based on loca-
tion information. Clusters are modeled as multivariate nor-
mal distributions. The described approach suffers from false
positives as any data point no matter if part of a location
or from travel between locations must be part of a cluster.
Moreover, this approach only uses location information, it
cannot directly use sequence or temporal information and
cannot benefit from the wealth of information that mobile
phones can collect.
Finally, SensLoc [7] integrates motion- and place detection
using accelerometers, WiFi access point scanning, and GPS,
to deliver a highly accurate system for location recognition
and path tracking. However, WiFi scan results are used
only for recognizing previously visited POIs and detecting
entrance- and departure events, while localization relies en-
tirely on GPS. In contrast, we perform a comparative study
of different sensor sources, features and algorithms for the
actual localization of POIs.

3. SENSORS
In the following we describe the three different sensors that
we consider and the features that we extract from each in-
dividual sensor.

3.1 GPS
Most, if not all, modern smart phones come equipped with
GPS sensors. These provide accurate measurements of both
position and speed in outdoor locations, but signal quality
is reduced or completely lost in indoor environments. More-
over, phone users tend to keep GPS turned off when not in
use to avoid battery drain. When the GPS signal is available
however, it tends to be a very good candidate for differenti-
ating between dwelling and mobility [13].
We extract the following features for GPS: (i) Measured
speed provided directly by the GPS, (ii) speed calculated
from the distance of GPS locations, (iii) the difference be-
tween calculated and measured speed, (iv) a boolean that
indicates whether the GPS had a fix, and (v) the number of

location samples around the current location within a spe-
cific radius rloc .

3.2 WiFi
Continuous scanning for WiFi APs has been used in context-
aware computing to detect user mobility. This method is
attractive because it can be performed on-line and in real-
time, both desirable qualities for this class of applications.
Several features have been discussed in literature, of which
we have selected the following: (i) The Euclidean distance
of RSSI measurements, (ii) the number of stations that are
in the fingerprint (scan result) and (iii) the Jaccard index
as a measure of difference between consecutive fingerprints.

3.3 Geolocation
An alternative to studying WiFi scan results directly is to
pass them into a localization service such as Google’s geolo-
cation API [3] or Skyhook Wireless’ localization service [14].
These services use large databases of location-annotated ac-
cess point scans to compute a user location based on WiFi
scan results. In this way the WiFi chip can act as a “poor
man’s” GPS, providing estimates of user location. Google
trains its database using a background service built into An-
droid devices that reports GPS coordinates and WiFi scan
results to their servers at regular intervals. This results in
good accuracy and broad coverage. Because of this and the
open nature of the API, we chose this service for our ex-
periments. We extract the following features: (i) the speed
calculated from location distances, and (ii) the number of
location samples around the current location within a spe-
cific radius rloc . Note that these features are corresponding
to those based on GPS locations.

Combinations.
In order to investigate whether individual sensor sources can
be combined for an additional benefit in detection accuracy,
we also look at the combinations of sensors.

4. DATA COLLECTION
We collected data traces from various locations in seven
cities in The Netherlands, Germany, Denmark, and Switzer-
land using a custom Android application on ZTE Blade and
Sony Experia phones. The users are knowledge workers at a
university and were asked to log and annotate parts of their
day where they traveled by foot or bike to some place of in-
terest in their lives. During the collection process users man-
ually annotated traces with their state (walking, dwelling,
...) using the Android application on their mobile phones.1

Since our emphasis is on detecting dwelling and POIs, we
sought out suitable locations such as supermarkets, bars,
bus stops, university buildings, and homes. In the following
we discuss our data collection approach and the sensor data
idiosyncrasies we identified in the collected data traces.

4.1 Data collection
WiFi scans were performed at 2 second intervals; for each
scan we recorded the returned list of APs and their signal
strengths, along with the most recent GPS measurement.
The raw traces were sanitized by removing GPS outliers as
well as WiFi beacons from locally administered APs [7] in

1We excluded driving in this work because it is considerably
easier to distinguish from other activities.
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Figure 1: Sensor idiosyncrasies. GPS and WiFi-Geolocation measurements shown in blue crosses and magenta
circles, respectively. Note that in (d) there are two WiFi clusters.

Users Traces Samples GPS/WiFi POIs (unique)

2 57 115,406 / 75,738 93 (54)

Table 1: Overview of the collected data from four
western european countries. Note that we selected
traces for a variety in activity and points of interests.

order to rely on fixed APs only. We then obtained geolo-
cation data by passing the WiFi scan results to the Google
geolocation service [3]. The returned result is a location and
an estimate of its accuracy. Querying can be done either on-
line from the phone if an Internet connection is available, or
off-line at a central server.
Table 1 summarizes the data we collected over the course of
6 weeks. We selected 57 traces, containing a total of 115,406
GPS and 75,738 WiFi samples, collected in 8 different-sized
cities (from ≈ 40, 000 to about 500, 000 inhabitants) across
Western Europe. These traces include 93 dwelling locations.
54 locations are unique, i. e., some locations are visited mul-
tiple times like the users’ home and a favorite café. 34 of
the unique locations are indoors, while 20 are outdoors.

4.2 Sensor idiosyncrasies
GPS locations, especially from such low-end to mid-range
smart phones as the ones used in this study, are not always
perfect. Figure 1(a) shows the GPS trace drifting signif-
icantly through housing blocks. The geolocation estimates
show the true path taken. On the other hand, we found that
we were able to get a GPS lock in a surprisingly large num-
ber of indoor locations. For example, Figure 1(b) shows a
trace from a supermarket. This shows that the assumption
that GPS is always lost indoors simply does not hold.
The quality of Google’s geolocation service depends on the
accuracy of their database and how many APs are in range
at a given location. We identified two interesting phenomena
when inspecting the geolocation data. First, we found that
even when a user is moving through a city at constant speed
(i.e. walking), the returned locations are not spread out
evenly, but rather tend to cluster around focal points along
the route, as illustrated in Figure 1(a) and Figure 1(c). The
second phenomenon was for dwelling locations: the reported
location sometimes“jumped”between two points spaces sev-
eral hundred meters apart when the user was dwelling, as
shown in Figure 1(d).

5. EVALUATION
Based on the collected data, we performed two experiments:
(i) Classification of user state, i. e., whether a user is mobile

or dwelling, and (ii) detecting the POIs where a user dwells.
Note that these two approaches are closely related, yet take
a different approach. While the first merely relies on a single
set of features at a given instant in time, the second approach
focuses on spatial distribution of determined locations.2

5.1 Classification
We perform classification on the set of features of each indi-
vidual sensor. In particular, we want to distinguish between
mobile users and users that are dwelling.3 In the follow-
ing we therefore focus on supervised learning based on the
two class labels. We use the weka data mining toolset [4]
and in particular the J48 implementation of the C4.5 de-
cision tree algorithm [12]. The selection of classifiers is a
multi-objective problem: we want to maximize both (i) pre-
cision and (ii) recall. For each sensor (or set of sensors),
we determine the power set of its features and determine a
decision tree for each combination of features individually.
We determine the Pareto set of classification results by max-
imizing for both precision and recall. Precision and recall
are calculated by using 10-folds cross-validation in order to
understand the generalization performance.
The extracted features have three distinct parameters: a
RSSI threshold parameter for WiFi APs, a window size that
determines the time intervals considered for a given feature
and a density parameter for the clustering algorithm. We
explored different parameter settings and compared the re-
sults based on the hyper-volume of the solution set. Our
exploration yields the best results for a RSSI threshold of
-80 dB, a window size of 50 seconds and a density radius
rloc = 30m.
Figure 2 details on the performance of the classifiers.4 While
two GPS classifiers are dominated by geolocation classifiers,
the other two GPS-based classifiers have better recall than
geolocation information, however with lower precision. The
(pure) WiFi-based classifiers have good recall, yet a lower
precision and are thus dominated by both geolocation and
GPS results. Evident from the figure, the most accurate
classifier can be obtained by using both GPS and geolocation
data. Note that the combined classifiers do not necessarily
use all available information. For the following presentation

2Another difference is that for classification, we perform su-
pervised learning and rely on user annotations in the traces.
3Since we are focusing on dwelling in this work, for the clas-
sification we label all non-dwelling activities as mobile. We
sanitize traces by removing instances without a class label.
4For the sake of clarity, we omit other combinations of sensor
sources than gps and geolocation.
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Figure 2: Plot of precision and recall results for dif-
ferent sensor sources. Intuitively the best classifier
is near the upper right, i. e., has a precision close to
1 and a recall close to 1. Note that to show detailed
differences both axis do not start at 0. The anno-
tated classifier is a simple GPS classifier using only
2 features.

we annotate the simplest of the determined GPS classifiers
in Figure 2. This GPS classifier merely uses 2 out of 5
features: (i) the difference between measured and calculated
GPS speed and (ii) the information on whether GPS had a
fix. For the sake of brevity we omit the full decision tree; it
is fairly simple with 55 nodes and 28 leaves.

5.2 Dwelling Locations
In the following we focus on extracting POIs from GPS and
geolocation localization data. Extracting POIs from sensor
traces involves scanning the data for locations where the user
spent a certain amount of time (i.e. more than two minutes).
Such algorithms operate under the assumption that when a
user is stationary, so are the location measurements. Un-
fortunately when this does not hold, as is common for both
GPS and WiFi, it means that not all POIs will be found.
In order to determine how GPS and WiFi geolocation com-
pare for detecting POIs we extracted sub-traces from our
data set of dwelling sessions lasting at least three minutes.
This resulted in a set of 93 POIs, where 21 are outside and 72
are indoors. We compute the coverage of both localization
data, GPS and geolocation, at each of these POIs. Coverage
is calculated as the number of samples where the sensor was
able to compute an up-to-date location divided by the total
number of samples. Figure 3 shows the distribution of this
metric. We found, in accordance with our intuition, that
WiFi is available in almost any urban setting. GPS cov-
erage varied from site-to-site, but still was able to provide
good coverage, even in many indoor locations.
We evaluate the quality of the two sensors and their appli-
cability to the location detection problem by investigating
their location point clouds. Figure 4 shows two examples, an
indoor and outdoor location respectively. The GPS cloud is
much more compact in the outdoor case, whereas the WiFi
cloud is much more concentrated in the indoor example.
Several low-complexity clustering algorithms have been pro-
posed in literature for POI extraction. We implemented four
different algorithms: Ashbrook et al. [1], Hariharan et al. [5],
the time-based clustering algorithm found in [6], and the
DJ-Cluster algorithm from [17]. All four algorithms use pa-
rameters in both the spatial and time domain. The distance
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Figure 3: Coverage (%) of WiFi and GPS location
services.

(a) Café (b) Outdoor Coffee Place

Figure 4: Dwelling locations. GPS and WiFi mea-
surements shown in blue crosses and magenta circles
respectively.

parameter is set to 20m; the time threshold for a location to
be identified as a POI is set to two minutes.
From visual inspection of the results, we found that most
algorithms were not able to cope with oddly-shaped point
clouds. Figure 5 shows a particularly extreme case where
WiFi coverage is low, and the location estimates drift over
time. Only the DJ-Cluster algorithm was able to detect this
cloud as a single cluster, because DJ-Cluster contains logic
that merges overlapping clusters.
We compare GPS and geolocation by running the cluster-
ing algorithms on the respective point clouds of each of the
traces. In the ideal case, a single cluster should be returned
for each trace. When a clustering algorithm returns zero
clusters, this is counted as a false negative. When more than
one cluster is returned, these extra clusters are counted as
false positives. We also perform a simple heuristic to com-
bine results from both sensors. We gather the clusters ex-
tracted from the GPS and geolocation data, and then remove
all geolocation clusters that overlap with GPS clusters. In
this way the WiFi chip acts as a back-up for when GPS is
not available.
Table 2 shows the results. As previously mentioned, the
first three algorithms generate many false positives when
the location estimates are noisy, resulting in low precision.
DJ-Cluster provides the best results overall, so we will focus
our discussion on the DJ-cluster results in the lower part of
Table 2. When only using GPS, precision is high but recall
is only 70.97% simply because sensor data was not available
everywhere. WiFi geolocation on its own yields surprisingly
good results but has a lower precision because the “jump-
ing”problem discussed in Section 4.2 caused it to yield more
false positives. When the sensors are combined, overall cov-
erage is increased. In several cases where the geolocation was
“jumping”, GPS was actually available to provide a single,
concentrated cluster. The combined results therefore miss
fewer locations and generate fewer false positives, which re-
sults in a precision of 98.88% and a recall of 94.62%.
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Figure 5: Clustering algorithms applied to a noisy WiFi point cloud.

Method Precision Recall

Ashbrook GPS 58.59% 80.65%
Ashbrook WiFi 73.33% 94.62%
Ashbrook GPS+WiFi 60.00% 96.77%

Hariharan GPS 63.12% 95.70%
Hariharan WiFi 51.72% 96.77%
Hariharan GPS+WiFi 55.09% 98.92%

Timebased GPS 69.70% 74.19%
Timebased WiFi 70.49% 92.47%
Timebased GPS+WiFi 70.08% 95.70%

DJ-Cluster GPS 98.51% 70.97%
DJ-Cluster WiFi 96.63% 92.47%
DJ-Cluster GPS+WiFi 98.88% 94.62%

Table 2: Clustering results

5.3 Discussion
Our comparative study of different sensors is based on em-
pirical data. As such the selection of users, mobile phones
using the Android OS and the selection of POIs may be bi-
ased; however, we specifically collected data from various
different cities across several European countries. The dif-
ference in these locations varies the sensor measurements,
however the discussed phenomena remain the same. Never-
theless, we identified in our traces characteristics of Western
European cities: Firstly, the population density in urban
areas results in urban canyons that considerably challenge
GPS measurements. Secondly, WiFi coverage is excellent.
The geolocation information based on WiFi scans provides
mostly accurate location estimates. In turn, in these en-
vironments GPS and WiFi can be seen as complementary
sensor sources. Still, larger studies are needed to validate
these findings.

6. SUMMARY
In this work, we studied how GPS and WiFi information
can be used in order to detect that a user dwelled at a cer-
tain POI. Firstly, we studied how the different sensors sup-
port the building of a decision tree classifier for detecting
dwelling. Secondly, we investigated the use in the detection
of places where the users dwelled, their points of interest.
We verified that GPS is the prime candidate for determin-
ing dwelling of users. Additionally, we could identify that
geolocation is an interesting sensor that is complementary
to GPS information and helps dwelling and POI detection.
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