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SUMMARY
The study of HIV dynamics is one of the most important developments in recent AIDS research.
It has led to a new understanding of the pathogenesis of HIV infection. But although important
findings in HIV dynamics have been published in prestigious scientific journals such as Science
and Nature in the last three years (Ho et al., 1995; Wei et al., 1995; Perelson et al., 1996 and
1997), the model-fitting procedures used in these publications have not been studied in any
detail. In this paper we evaluate the performance of four model-fitting procedures proposed and
used in biphasic HIV dynamic data analysis via extensive Monte Carlo simulations. We propose
some guidelines for practitioners to select an appropriate method for their own data analysis.

Real data examples from an AIDS clinical trial are provided as illustrations.
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1. Introduction

Recently there has been a great interest in estimating HIV dynamic parameters in order
to acquire a greater understanding of the pathogenesis of HIV infection. HIV dynamic
models can also provide theoretical principles to guide the development of treatment
strategies for HIV-infected patients (Ho et al., 1995; Wei et al., 1995; Perelson et al., 1996
and 1997; Wu et al., 1997, 1998b). Essunger et al. (1997) and Ding and Wu (1998) have
also proposed using viral dynamics to evaluate the efficacy of anti-HIV therapies.

Although important findings in HIV dynamics have been published in prestigious sci-
entific journals such as Science and Nature in the last three years (Ho et al., 1995; Wei
et al., 1995; Perelson et al., 1996 and 1997), the model-fitting procedures used in these
publications have not been studied in any detail. In case where clinical data were not
sufficient for estimation of all parameters, an ad hoc substitution method (substituting
unknown parameters from other studies) was used (Perelson et al., 1997). Wu and Ding
(1998) proposed another procedure to reduce complicated HIV dynamic models to es-
timable functions by reparameterization, while Perelson et al. (1996, 1997) proposed
using a pre-treatment steady-state assumption to reduce the number of estimated param-
eters. However, the steady-state condition is difficult to validate and may not hold for
some situations, such as newborn infants (Luzuriaga et al., 1998; Wu et. al. 1998¢). Thus
it becomes more and more important to study these proposed model-fitting procedures
and to select an appropriate and efficient procedure for different cases in order to avoid
misleading results in this critical field of AIDS research.

In this paper we evaluate the proposed model-fitting procedures and model assump-
tions using extensive Monte Carlo simulations. Our purpose is to provide guidelines for
practitioners to select appropriate HIV dynamic model-fitting procedures based on the
situations in their own studies. In Section 2, we introduce the four major biphasic HIV
dynamic models and parameter estimation procedures used and proposed in the literature
(Perelson et al. 1997; Wu and Ding, 1998; Luzuriaga et al., 1998; Melvin et al., 1998).

In Section 3, we compare the four model-fitting procedures under three viral load mea-



surement schedules. The performance of the four procedures is evaluated based on these
simulation results. Real data examples from an AIDS clinical trial are used to illustrate
the procedure selection principles in Section 4. We conclude the paper with some discus-

sions.

2. HIV Dynamic Models and Estimation Procedures

The use of a system of differential equations to describe the interaction between HIV and
its host cells can be traced back to the end of the 1980s (Merrill, 1987; Anderson and
May, 1989; Perelson, 1989). A deterministic model for HIV dynamics after initiation of
antiviral treatments can be written as (Perelson, Kirschner and Boer, 1993; Kirschner

and Perelson, 1995; Wu and Ding, 1998; Ding and Wu, 1998):

%Tz = (1—m)kTV, - 61,
%Tp = (1= %)kTVi — 6,1}, (1)
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where T',T;,T,.V;, and Vy; denote the concentration of uninfected target cells, long-
lived infected cells, productively infected cells, infectious virus and noninfectious virus,
respectively. The target cells (T") can be infected and become long-lived infected cells
(T}) at a rate of k,V; without treatment and (1 — )k V7 during treatment with reverse
transcriptase inhibitor (RTI) drugs. The target cells can also become productively infected
cells (7},) at a rate of k,V; without treatment and (1 —r,)k,V; during treatment with RTI
drugs. Parameters v, and 7, are the treatment effects of the RTI drugs (y, = 7, = 1
means perfect treatment and 7, = 7, = 0 means no treatment effect). We denote 1 — ng
as the proportion of infectious virus produced by infected cells without the intervention
of protease inhibitor (PI) antiviral drugs. It will be reduced by factors of 1 — 1, and
1 — 1, for long-lived and productively infected cells, respectively, during treatment with
PI drugs. Parameters 7, and 7, are the treatment effects of the PI drugs, and N; and

N, are the average numbers of virions produced per long-lived or productively infected

2



cell, respectively, during their lifetimes. Parameters py, d;, 9, and c are the death rates
of T',T;, T, and virus, respectively. More details on these notations and assumptions can
be found in Perelson, Kirschner and Boer (1993), Kirschner and Perelson (1995), Wu
and Ding (1998) and Ding and Wu (1998). This model will be used to generate the true
trajectory of viral decay in our simulations (Section 3).

This model had not been used in clinical trials to estimate HIV dynamic parameters,
due to the complexity of the model, until the recent development of simplification and
approximation techniques (Ho et al., 1995; Wei et al., 1995; Perelson et al., 1996 and
1997; Wu and Ding, 1998). Only two infected cell compartments (productively infected
cells and long-lived infected cells) can be identified based on plasma viral load data due
to the limitations of current assays. These two compartments are believed to produce
a biphasic viral decay during treatment with potent antiviral therapies (Perelson et al.,
1997). Under the assumption of a constant target cell concentration, a solution for the

total viral load can be obtained as (Ding and Wu, 1998),
V(t) = Poefdg(tftd) + Ple*dl(t*td) + P26*d2(t*td)7 t >ty (2)

where t is treatment time and t; denotes the time of intracellular and pharmacological
delay (Perelson et al., 1996; Herz, 1996). Under the assumption of perfect therapy, the
exponential decay rates, dy,d;, and dy are the exact death rates of free HIV virions,
productively infected cells and long-lived infected cells, ¢, d,, and 0;, respectively (Perelson
et al., 1997; Wu and Ding, 1998). If therapy is not perfect, approximate formulas for dy, d;,
and dj are also derived by Ding and Wu (1998). Parameters Py, Py, and P, are coefficient
parameters for each corresponding compartment. In practice, the target cell concentration
may not remain constant during long-term clinical trials and should be modeled by a
complicated differential equation, but equation (2) is still a good approximate solution
(Wu and Ding 1998).

In model (2), there are 7 unknown parameters, P; and d;, i = 0, 1,2, and ¢,. However,
not all of these parameters can be identified based on repeated measurements of viral load

V(t),t =1,2,...,n. The time of intracellular and pharmacological delay, t4, is almost



impossible to estimate accurately unless we have frequent measurements of both viral load
and pharmacokinetics/pharmacodynamics (Herz et. al. 1996), which are not practical
due to limitations on the amount of blood drawn within a fixed time period. Since most
clinical trials are not designed to have intensive measurements of viral load during the
first 1 or 2 days, as in Perelson et al. (1996), parameter dy (= ¢, the clearance rate of free
virions) also cannot be obtained for each patient. In order to estimate other parameters
such as d; and dy based on biphasic plasma viral decay data, several ad hoc methods have

been proposed and used (Perelson et al., 1997; Wu and Ding, 1998).

Method 1 (NAIVE): Since the term Pye~%(~*) in model (2) is negligible compared to
the other two terms after 1 or 2 days of treatment and t; is as short as only several
hours (Perelson et al., 1996), we can simply ignore them and fit all the data to a biphasic
exponential model,

V(t) = Pre Mt 4 pe=d2t (3)
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Due to its simplicity, we refer to this method as a “naive” method. It was used to fit the
data from a study of HIV-1 infected infants and children by Melvin et al. (1998). This
method certainly would introduce bias into the estimates of parameters P;, P,, d; and d».
However, since all the data are used and the model is parsimonious, the variance of the

estimates may be small. The trade-off between the bias and the variance of the estimates

has to be considered carefully for this method.

Method 2 (WD): In order to reduce the bias in the above naive method, Wu and Ding
(1998) proposed ignoring the data obtained during the first 1 or 2 days of treatment and
fitting the bi-exponential model (3) using only the data after the small shoulder produced
by the term Pye %(~%a) and the pharmacological delay, ty. Since we ignore the data that
are not on the bi-exponential model, the estimation bias will be reduced. However, since
the data are not sufficiently used, the variance of the estimates will be larger. Thus we

still need to consider the trade-off between the bias and variance. We refer to this method



as the Wu-Ding method (WD).

Method 3 (PNSS): Perelson et al. (1997) proposed and used a substitution method, i.e.,
they substituted the unknown parameters dy (= ¢) and t4 by estimates from a previous
study. In Perelson et al. (1996), the estimate of ¢ ranges from 2.06 to 3.81 with a mean of
3.07. The estimate of ¢, ranges from 2 to 6 hours with a mean of 3.6 hours. Thus Perelson
et al. (1997) substituted dy & ¢ by its mean 3.0. Because t, turns out to have very little
effect on the estimates of d; and ds, it is simply substituted by t; = 0. Thus only 5 pa-
rameters in model (2) need to be estimated. Nevertheless, this mean substitution method
may still introduce bias into the estimates of parameters, since the parameters ¢ and t4
for a particular patient may depart far from the mean estimates of the previous study.
This method uses all the data, but one more parameter needs to be estimated compared
to Method 1 and 2. Since the steady-state assumption is not used in this method, we
refer to this method as the Perelson non-steady-state method (PNSS). Luzuriaga et al.
(1998) used this method in their study.

Method 4 (PSS): To reduce the number of parameters that need to be estimated, Perel-
son et al. (1997) assumed a steady-state before treatment. Then model (2) can be

re-written as
V(t) = Vg[Ae @(t-ta) 4 Bemd(t-ta) 4 (1 — A — B)e~dl-ta)], (4)

where dy = ¢, d; = ), dy = §; under the assumption of perfect therapy, and A = a/(c—0,)
and B = (¢ — a)/(c — ;) (Perelson et al., 1997; Wu and Ding, 1998). Here o = NkT,
where N is the number of virions produced for each infected cell in its lifetime, & is the
infection rate, and Vz and T are the baseline concentrations of virions and target cells.
Again we can substitute dy = ¢ = 3 and t; = 0. Now only 4 parameters, Vg, «, d; and d,
need to be estimated. However, this method has the same problem as Method 3, and in
addition, the steady-state assumption is difficult to validate in practice. We refer to this

method as the Perelson steady-state method (PSS).



Intuitively, the NAIVE method may give the smallest variance for the estimates since
all data are used and the fewest number of parameters is estimated. Also, due to its simple
form of solution, the convergence rate of numerical computation would be the highest for
the NAIVE method. However, since it uses the data on the small shoulder during the
first one or two days of treatment (Perelson et al., 1996; Herz, 1996; Wu and Ding, 1998)
and these data do not follow the biphasic decay model, it would produce the largest bias
for the estimates. The WD method may give the smallest bias for the estimates since
it ignores the data on the small shoulder where the biphasic model does not apply. The
WD method also excludes the possible bias due to the biased substitution of ¢ and t; and
that produced by the steady-state assumption. However, as mentioned previously, this
method may produce a larger estimation variance compared to other methods since it
does not use all the data. It may also run into numerical instability problems if the data
are not sufficient after excluding the data on the small shoulder.

Since the PNSS method needs to estimate one more parameter compared to the other
methods, the convergence rate might be lowest. The convergence rate for the PSS method
is almost as good as the NAIVE method unless the steady-state assumption departs too
far from the truth, since the number of parameters and the number of data points are
the same for both the PSS and NAIVE methods. The bias of both the PNSS and PSS
methods depends on the bias of the substituted values of ¢ and t;. The bias of the PSS
method also depends on the departure of the steady-state assumption from the truth.
It is very difficult to intuitively evaluate the estimate variance from the PNSS and PSS
methods due to the complicated trade-off between the number of estimated parameters,
the number of data points, and the steady-state assumption.

All four methods have their advantages and drawbacks. The picture is murkier when
we evaluate their performance in terms of estimate bias, variance, and numerical stability
simultaneously. Therefore a simulation study is necessary to quantify the bias, variance
and numerical stability for the four methods in various cases to provide a guideline for

practitioners.



3. Comparison Studies

3.1 Factors Affecting the Performance of Estimation Methods

Since different assumptions are made for the different estimation methods introduced in
the above section, the performance of these methods may differ under different situations.
Therefore we may not be able to find one method which always outperforms the others
in all cases. Although many factors may affect the performance of these methods, we
consider three major factors in our comparison studies, i.e., the steady-state assumption,
the substituted values of ¢ and t4, and the sampling schedule.

Pre-treatment steady-state was assumed in the PSS method (Perelson et al., 1997), i.e.,
the interaction between virus and its host cells was assumed to be in a steady-state before
initiation of antiviral therapy. This assumption may not be true in cases such as infected
adults during acute (primary) infection (Phillips, 1996) and vertically infected infants and
children. The PSS method may only be favored if the pre-treatment condition is truly in a
steady-state. We can evaluate the steady-state assumption using the production/clearance
ratio, R. If the steady-state holds, R = 1, i.e., the viral production equals the clearance
and the patient’s viral load should be stable. If R > 1, the viral production is greater than
the clearance; the patient’s viral load is increasing. On the other hand, if R < 1, the viral
production is less than the clearance; the patient’s viral load is decreasing. Thus, pre-
treatment viral load measurements may be used to determine whether the steady-state
assumption holds.

In the PNSS and PSS methods, the parameter ¢ is substituted by an estimate from a
previous study (usually ¢ = 3 from Perelson et al., 1996). The substituted value of ¢ may
affect the performance of these methods. The true ¢ for different patients and in different
studies may differ from the substituted value (it is more likely greater than 3 according
to a new study by Zhang et al., 1998). The substituted value of t; may also affect the
performance of the PNSS and PSS methods, but the effect of £, on the estimates of d;

and ds is small.



The sampling schedule of viral load measurements may affect the convergence and the
estimates of the four methods. If the sampling schedule is sparse, numerical convergence
is a serious problem. In this case, the NAIVE and PSS methods may be favored since the
smallest number of parameters needs to be estimated and all the data points are used. On
the other hand, if the sampling schedule is frequent enough, the numerical convergence
may no longer be a problem. The trade-off between the variance and bias of the estimates

needs to be considered carefully in this case.

3.2 Design of Simulation Experiments

To evaluate the performance of the four methods, we conducted Monte Carlo simu-
lations for various cases. First, we generated the true trajectory of total viral load
V(t) = Vi(t) + Vni(t) along time ¢ based on model (1), with parameters obtained from
the published literature (Table 1) or from the estimates of real data (see next section).
Second, we generated the observed viral load by adding measurement error to the true
value of V'(t). In medical research, people prefer to use the log,, scale for viral load. After
log transformation, the measurement error approximately follows a normal distribution
with a constant variance. Thus we generated the observation of viral load at measurement

times tq,1s,...,1t, from
yi = logio|V (t:)] + &4, i=1,...,n (5)

where ¢; are i.i.d. measurement errors with N(0,0%). Based on estimates from ACTG
356 data (Luzuriaga et al., 1998), we chose o = 0.17.

To evaluate the effect of the three major factors (mentioned in Subsection 3.1) on
the performance of the estimation methods, we simulated the different situations with
different combinations of the three factors. For the factor of the steady-state assumption,
we selected the steady-state, R = 1; the state of viral load decreasing, R = 0.5; and the
state of viral load increasing, R = 3. For the clearance rate of free virions, we substituted
¢ = 3 in our model-fitting when using the PNSS and PSS methods as in Perelson et

al. (1997). But the true values of ¢ were taken as ¢ = 2,3 and 6 respectively when we
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Table 1: Parameter Values Used in the Simulation Study

Parameters Values Parameters Values
dp 0.95 ki 2x107° x R

0y 0.05 k, 3.8x 107" x R

o 0.9 N, =N, 200
=T 0.9 Vi(0) 5000
Y=Y 0.8 T(0) 1000

simulated the true viral load data. We assumed that £, = 0 and ¢; = 6 hours respectively
in our model-fitting, but the true value of t; was generated from a uniform distribution
between 2 and 10 hours.

Three sampling schedules were used in our simulation studies. The first schedule is
very frequent (ideal), which may not be practical, but is used for comparison purposes.
The second and third schedules followed the actual schedules of AIDS Clinical Trial Group
protocols 356 and 315 (Luzuriaga et al., 1998; Wu et al., 1998b).

e Schedule 1 (Ideal): Days 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 28.
e Schedule 2 (ACTG 356): Hours 0, 3, 8, and Days 1, 3, 7, 14, 28, 56, 84.

e Schedule 3 (ACTG 315): Days 0, 2, 7, 10, 14, 21, 28, 56.

Based on the above parameter specification and sampling schedule, we simulated the
viral load observations y;, i = 1,2,...,n using models (1) and (5). Then we used the
nonlinear least squares method to estimate the viral dynamic parameters based on the
four methods introduced in Section 2. We are interested in the estimates of the viral decay
parameters, d; and dy. We compared the estimated d; and ds from the four methods to
the true values (estimated from the data without measurement error). We repeated each

simulation case 500 times. The results are summarized in the next subsection.



3.8 Results of Simulation Ezperiments

The simulation results for R = 0.5, 1, and 3 are reported in Table 2-4 respectively. Since
the results using t;, = 0 and t; = 6 are similar, only the results for t; = 0 are reported
in these tables. The numerical convergence rates based on the 500 simulation runs for
the different methods are given in the fourth column of these tables. We report the bias
and standard deviation (STD) of the estimates for dy and dy as well as the standard error

(SE) which is defined as the square root of the mean-squared error (MSE):

SE = \/mean(czl —dy)? = VBias? + ST D> (6)

for one individual, and

SE = \/Bias? + STD?/n (7)

for a population sample size n. The results for one individual, n = 16 (ACTG 356
sample size), and n = 50 (ACTG 315 sample size) are given in the table. To evaluate
the performance of the estimation methods, we can compare their biases and standard
deviations separately or compare their SEs directly.

In Table 2-4, we use boldface to indicate the smallest bias, standard deviation and
SE among the four methods for different situations (if the convergence rate is lower than
85%), the method is not considered). From these results, it is clear that we may not be
able to find one method which is consistently the best in terms of convergence rate, bias,
standard deviation and SE. However, when we consider these factors together, we suggest
one or two favored methods for each case (boldface in Table 2-4).

As we expected, the numerical convergence is reasonably good in most cases, except
that the convergence rates of the PNSS and WD methods are low when the sampling
schedule is sparse (ACTG 315). The estimates of dy from the four methods are quite
similar, although the PNSS estimates are a little better than the other three methods
when the sampling schedule is frequent, and the PSS estimates are a little better in
the other two sampling schedules (ACTG 356 and ACTG 315). These results are what

we expected since these four estimation methods differ mainly in how they deal with
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the earlier data. This difference has little effect on the estimation of dy, which depends
mainly on the data during the second phase. Thus the evaluation and selection of the
four methods would be based on the estimates of d;.

The diversity of the performance of the four methods is great in estimating d;. But we
still can see a clear trend. The individual estimate from the NAIVE method is the best
among the four methods when the viral load is decreasing before treatment (R < 1) or
when the true clearance rate of free virions, ¢, is larger than the substituted value in the
PNSS and PSS methods in the pre-treatment steady-state condition; otherwise, the PSS
method is preferable. For population estimates, the WD method is preferable when the
sampling schedule is not too sparse; otherwise, the PSS method is better. However, due to
the diverse simulation results for different situations, we suggest that the reader conduct
a simulation based on the situation in their study and select an appropriate method for

their data analysis using the ideas outlined in this section.

4. Real Data Example

Ideally, the factors which affect the performance of the estimation methods are homoge-
neous for the patient population in a study. In that case, one method may be selected for
the whole population based on the population SE with sample size n in Table 2-4. How-
ever, in some cases, differences in these factors exist among the patient population. The
best estimation method is different for different individuals. In this case, the individual
SE should be used to select the estimation method. Data from ACTG 356 are used to
illustrate this idea as follows.

Sixteen infants aged from 15 days to 2 years enrolled in ACTG 356 and initiated com-
bination antiretroviral therapy with zidovudine (ZDV), lamivudine (3TC), and nevirapine
(NVP). Plasma viral load measurements (V) were taken just prior to therapy and at 3
and 8 hours; at 1, 3, 7, 14, and 28 days; and then every 28 days. A biphasic viral decay
was observed for all patients. More details on clinical results from this study are reported

in Luzuriaga et al. (1998). We obtained individual estimates of the viral decay rates, d;
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and dy, from all four methods. However, we reached convergence for all 16 patients using
the NAIVE method; for 14 patients using the WD method; and for 15 patients using the
PNSS and PSS methods, respectively. In order to suggest one estimate for each patient
to medical investigators, we need to evaluate the estimates from the four methods based
on the simulation results in Table 2-4. However, two major factors, ¢ and R, discussed in
previous sections, need to be evaluated patient by patient. Since a new study (Zhang et
al., 1998) has shown that the clearance rate of free virions, ¢, is probably greater than 3
(the value we used in our simulation), we may choose ¢ > 3.

It is not easy to accurately estimate R. Fortunately there are usually several viral load
measurements prior to therapy in most AIDS clinical trials. These measurements may be
used to roughly determine R. In the ACTG 356 study, we have 2 or 3 data points during
patient screening and at baseline prior to therapy. A linear regression of these viral load
measurements, 1;, versus time, ¢;, may be used to determine whether the viral load is

stable (R = 1) before treatment, i.e.,
Yi =yo+ 5 Xt +ei

where y; is usually a log scale viral load measurement. The slope S can be used to roughly
decide R. If S = 0, the viral load of the patient is likely to be in a steady-state (R = 1);
if S < 0, the viral load is decreasing (R < 1); if S > 0, the viral load is increasing
(R > 1). From ACTG 356, we selected 3 individual patients who represent 3 different
cases to discuss in detail. The estimates of d; and d, from the four methods for these 3
individuals are given in Table 5.

The viral load data for these 3 patients are shown in Figure 1. The estimated slopes
for the three subjects are S = —0.095,5 = 0.009, and S = 0.155, respectively. The
first subject with S = —0.095 may be considered as non-steady-state with viral load
decreasing (R < 1); the second subject with S = 0.009(= 0) may be considered as steady-
state (R = 1); and the subject with S = 0.155 may be considered as non-steady-state with
viral load increasing (R > 1). Notice that the determination of R in this example is very

rough and it is just used for purposes of illustration. However, if the data before treatment
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are sufficient, a formal statistical test may be used to determine whether R < 1, R =1 or
R>1.

For the first subject, we looked up Table 2 for the sampling schedule from ACTG 356.
When ¢ = 3 or 6, the NAIVE method gave the smallest SE in the estimate of d; for one
individual (n = 1) and almost the same SE in the estimate of dy. Thus we propose the
estimate from the NAIVE method for this individual. For the second subject, we looked
up Table 3, since the viral load of this patient was approximately in a steady-state. The
NAIVE method also gave the smallest SE in the estimate of d; for one individual (n = 1)
and almost the same SE in the estimate of dy when ¢ = 3 or 6. Therefore we prefer the
estimate from the NAIVE method for this subject too. For the third subject, we looked
up Table 4. We suggest the PNSS method for this subject, since the PNSS method gave
the smallest bias and SE for the estimates of d; and dy when ¢ = 3 or 6, although the
PSS method produces a slightly better SE when ¢ = 6 and n = 1. The fitted curves from
the suggested methods for these 3 subjects are shown in Figure 1.

Above, we have illustrated how to select the appropriate estimation method for ob-
taining individual estimates. However, one might like to select one method for the whole
population in a study. In this case, the factor R needs to be determined for the whole
population and one looks up the appropriate simulation tables (or does one’s own simu-

lations) based on the sample size n.

5. Discussion

Several factors and assumptions affect the performance of estimation procedures for bipha-
sic HIV dynamic parameters. The selection of these methods for a particular study should
not be arbitrary. To select the most appropriate and efficient method, Monte Carlo simula-
tions may provide a useful tool. If a study is similar to one of the simulation experiments
in this paper, the simulation results in Table 2-4 can be used to select an appropriate
method. If one has a different study, we suggest conducting a simulation study based on

the actual situation and the simulation procedure illustrated in Section 3.
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We used nonlinear least squares methods in our comparison study and our comparisons
were based on individual or population averages of parameter estimates. The comparison
for the population estimate based on hierarchical mixed-effect models (Wu, Ding and
DeGruttola, 1998a; Wu and Ding, 1998) may be similar, but further simulation studies

may be needed under this setting.
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Figure 1: The plasma viral load data (log,, scale) and fitted curves for three subjects
from ACTG 356 using the suggested methods. Dots denote the observed data, solid lines

denote the fitted curves, dots connected by dash lines are pre-treatment data.



Table 2: Simulation results of different estimation methods based on 500 runs. Initial
Production/Clearance Ratio, R = 0.5. The numbers reported are percentages.
d1 d2
S.E. S.E.
Sche- Me- Conv n= n= n= n— n— n—
C dule thods rate Bias STD 1 16 50 Bias STD 1 16 50
2 Ideal Naive 100 -14.3 164 21.7 14.9 14.5 -11.3 445 46 15.9 129
WD 100 1.4 28 28 7.1 4.2 -54 45.1 455 125 8.4
PNSS 96 6.1 32.3 329 10.1 7.6 -3.4 439 44.1 115 7.1
PSS 99.6 -4.8 21.4  21.9 7.2 5.7 -6.9 443 44.7 13 9.3
ACTG Naive 98.8 -22.5 184 29 23 22.6 -2 13.2 134 3.9 2.7
356 WD 98 -5.4 34.7 352 10.2 7.3 -1.8 13.6 13.8 3.8 2.6
PNSS 88.8 -2.5 33.7  33.7 8.8 5.4 -1.2 14 14 3.7 2.3
PSS 99.2 -11.9 25.1 27.8 135 124 -1.2 132 13.2 3.5 2.2
ACTG Naive 99.4 -25 22.1 33.3 25,6 252 -6 23.4 24 8.4 6.9
315 WD 59.2 -254 31.2 40.2 26.6 258 -9.6 25.8 274 11.6 10.3
PNSS 27.6 -5.3 25.2  25.6 8.2 6.4 -4 20.4  20.8 6.5 4.9
PSS 98.6 -12 31.9 34 14.4 12.8 -4.8 234 23.8 7.6 5.8
3  Ideal Naive 100 -10.7 181 21.2 11.6 11 -9.2 431 441 14.2 11
WD 99.4 5.5 32.5 33 9.8 7.2 -5 439 44.1 12.1 8
PNSS 94.8 9.6 35.2 36.5 13 10.8 -3.8 435 437 11.5 7.2
PSS 99.8 1 25.2 25.2 6.4 3.7 4.6 431 43.3 11.7 7.6
ACTG Naive 99.6 -15.2 21.7 26.5 16.1 155 -1.2 13 13 3.5 2.2
356 WD 98.2 1.6 40.1  40.1 10.2 5.9 -1.4 13.8 13.8 3.7 2.4
PNSS 87 5.1 36.1 364 104 7.2 -0.8 13.2 13.2 3.4 2
PSS 99.6 -2.1 30.1  30.2 7.8 4.7 -0.6 128 12.8 3.3 1.9
ACTG Naive 984 -204 25.7 32.8 21.4 20.7 -5.2 23.2 238 7.8 6.1
315 WD 56.4 -30.5 325 445 31.6 30.8 -10.2 27 288 122 10.9
PNSS 22 94 246 262 11.2 10 -3.6 20 20.2 6.2 4.6
PSS 98.8 -4.6 374 376 10.4 7 -4.2 232 23.6 7.2 5.3
6 Ideal Naive 99.8 -5.1 21 21.6 7.3 5.9 -7 42.4 428 127 9.2
WD 99.6 9.7 384 396 13.6 11.1 4.6 434 436 11.8 7.7
PNSS 90 14.9 40.7 43.3 18 16 -2.8 42 42 10.9 6.6
PSS 99.8 9.7 32 33.4 12.6 10.7 -2.6 422 422 10.9 6.5
ACTG Naive 994 -6.8 26 26.8 9.4 7.7 -0.8 12.8  12.8 3.3 2
356 WD 97.4 4.9 44.8 45 12.2 8 -1.4 13.8 14 3.7 2.4
PNSS 85.8 11.6 396 41.2 153 129 -1 13 13 3.4 2.1
PSS 99.6 114 49 50.2 16.7 13.3 0 12.8 12.8 3.2 1.8
ACTG Naive 974 -12.6 30.2 32.8 14.7 13.3 -4.4 23 23.4 7.2 5.5
315 WD 55.6 -35.6 285 45.6 36.3 35.8 -11.8  31.8 34 14.2 12.6
PNSS 17.2  -10.3 225 246 11.7 10.8 -5.2 19.6  20.2 7.1 5.9
PSS 97.8 8.3 44.4 45.1 13.9 10.4 -3.4 228 23 6.6 4.7




Table 3: Simulation results of different estimation methods based on 500 runs. Initial
Production/Clearance Ratio, R = 1. The numbers reported are percentages.
d1 d2
S.E. S.E.
Sche- Me- Conv n= n= n= n— n— n—
C dule thods rate Bias STD 1 16 50 Bias STD 1 16 50
2 Ideal Naive 996 -16.5 153 225 16.9 16.6 -13.3 455 473 175 148
WD 100 0 26 26 6.5 3.7 5.7  46.1  46.3 129 8.7
PNSS 97.2 4.1 29.8 30.1 8.5 5.9 -4 45.7 459 12.1 7.6
PSS 99 -8 19.5 21.1 94 8.5 -8.1 45.1 45.7 139 10.3
ACTG Naive 98.8 -26 16.7 30.9 26.3 26.1 -24 13.4 13.6 4.1 3.1
356 WD 98.6 -7.1 342 349 11.1 8.6 -2 14 14 4 2.8
PNSS 89.8 -6.2 29 29.7 9.5 7.4 -1.2 13.4 13.4 3.6 2.2
PSS 99.4 -17.1 224 28.2 18 17.4 -1.8 134 13.6 3.8 2.6
ACTG Naive 99 -27.2 202 338 277 273 -6.6 23.6 244 8.9 7.4
315 WD 60.6 -23.1 28.6 36.6 24.2 235 -9.2 25.4 27 11.2 9.9
PNSS 30.4 -4.7 22.2 226 7.3 5.7 -3.2 21.2 214 6.2 4.4
PSS 98.4 -16 28.8 32.9 17.5 16.5 -5.4 232 23.8 7.9 6.3
3  Ideal Naive 100 -13.6 169 21.7 14.2 13.8 -10.8 437 451 154 124
WD 99.8 4 30 30.2 8.5 5.8 4.8 445 447 12.1 7.9
PNSS 96.8 8.2 33.2 34.1 11.7 94 -3.6 443 443 11.6 7.2
PSS 99.8 -3.3 22.7 228 6.6 4.6 -6.2 43.7 44.1 126 8.8
ACTG Naive 99.4 -19.6 19.1 27.4 20.2 19.8 -1.8 13 13.2 3.7 2.6
356 WD 99 -0.3 374 374 9.4 5.3 -1.4 13.8 13.8 3.7 2.4
PNSS 88.8 2.2 33.9 34 8.8 5.3 -1 13.2 13.2 3.4 2.1
PSS 98.8 -7.9 26.5 27.6 10.3 8.7 -1 13 13 3.4 2.1
ACTG Naive 99.6 -239 232 33.3 246 24.1 -5.8 23.4 24 8.2 6.7
315 WD 59 -26.4 31.7 413 276 26.8 -9.8 26.2 28 11.8 10.5
PNSS 27.2 -5.4 28.5  28.8 8.9 6.7 -4.6 22 22.4 7.2 5.6
PSS 98.4 -10.3 33.8 353 13.3 11.4 -4.8 232 23.6 7.5 5.8
6 Ideal Naive 99.8 -8.4 194 21.1 9.7 8.8 -84 428 43.6 13.6 104
WD 99.4 8.4 35.5 36.5 12.2 9.8 4.6 43.6 43.8 11.8 7.7
PNSS 94.6 12.6 376 39.6 15.7 13.7 -3.4 434 436 11.4 7
PSS 99.6 4.8 28.5  28.9 8.6 6.3 -4 42.8 42.8 114 7.3
ACTG Naive 100 -11.3  23.7 26.2 128 11.8 -1 13 13 3.4 2.1
356 WD 98.4 5.8 449 452 126 8.6 -1.2 13.8 13.8 3.7 2.3
PNSS 88 9.7 36.9 38.1 134 11 -0.6 13.2 13.2 3.4 2
PSS 99.8 4.2 39.6 39.8 10.8 7 -0.4 128 12.8 3.2 1.9
ACTG Naive 996 -17.1 27.7 32.5 184 175 -4.6 23.2  23.6 7.4 5.7
315 WD 56.2  -32.7 29.1 43.7 33.5 33 -10.8 29 30.8 13 11.6
PNSS 21 -10.3  24.6 26.6 12 10.9 -3.6 204  20.6 6.2 4.6
PSS 97.8 0.6 41 41 10.3 5.8 -3.8 232 23.4 6.9 5




Table 4: Simulation results of different estimation methods based on 500 runs. Initial
Production/Clearance Ratio, R = 3. The numbers reported are percentages.
d1 d2
S.E. S.E.
Sche- Me- Conv n= n= n= n— n— n—
C dule thods rate Bias STD 1 16 50 Bias STD 1 16 50
2 Ideal Naive 99.6 -22.3 129 257 225 224 -20.8 48.8 53.1 241 21.9
WD 100 -3.2 209 21.2 6.1 4.4 -6.9 48.6 49 14 9.7
PNSS 94.8 0.7 23.5 23.5 5.9 3.4 -3.5 476 47.8 124 7.6
PSS 90.8 -14.7 14.6 20.8 15.1 148 -12.7 478 494 174 144
ACTG Naive 99.4 -34.2 134 36.8 344 34.3 -3.2 22.3 225 6.4 4.5
356 WD 98.2 -10.5 28.9 30.7 12.7 11.3 -2.4 15.3 15.3 4.5 3.2
PNSS 90.8 -14.1 228 26.9 152 145 -2 14 14.2 4 2.8
PSS 96 =279 16.5 324 28.2 28 -3.2 14 14.2 4.7 3.8
ACTG Naive 99 -31.3 159 352 316 314 -8.2 24.1 255 10.2 8.9
315 WD 67.6 -12.4 28.6 31.2 14.3 13 -7.6 24.7 25.9 9.8 8.4
PNSS 37.6 3.5 239 24.1 6.9 4.9 -2.8 21.5 21.7 6.1 4.1
PSS 96.4 -23.5 214 31.8 24.1 23.7 -7 23.9 24.9 9.2 7.8
3  Ideal Naive 99.6 -20.4 14 24.8 20.7 20.5 -17.1 46.3  49.3  20.6 18.3
WD 99.6 1 24.3 243 6.2 3.6 -5 46.5 46.7 12.7 8.3
PNSS 984 4.6 28.2 28.6 8.4 6.1 -3.4 46.1 46.1 12 7.4
PSS 97.2 -12.5 17.1 21.2 13.2 12.7 -10.7 45.7 469 15.7 125
ACTG Naive 99.2  -29.9 15 33.5  30.1 30 -3.4 13.6 14 4.8 3.9
356 WD 98.8 -3.2 323 324 8.7 5.6 -1.4 13.6 13.6 3.7 2.4
PNSS 94 -6.1 269 27.6 9.1 7.2 -1.2 134 13.4 3.6 2.2
PSS 98 -21.9 193 292 224 221 -24 13.6 13.8 4.2 3.1
ACTG Naive 98 -31 17.7 357 31.3 31.1 -7.8 239 251 9.8 8.5
315 WD 64.2 -16.9 30.7 35 18.6 17.4 -8.6 24.7 26.1 10.6 9.3
PNSS 36 -1.2 26.5 264 6.7 3.9 -4.6 21.5  22.1 7.1 5.5
PSS 97 -22.2 246 33.2 23 22.5 -6.6 23.7 24.5 8.9 7.4
6 Ideal Naive 99.8 -16.4 16 229 16.9 16.6 -13.8  44.7 47 17.8 15.2
WD 100 6.3 29.2  29.8 9.6 7.5 -3.4 453 455 11.8 7.3
PNSS 98.6 10.4 33.7 353 134 114 -2.4 455 455 11.6 6.9
PSS 99 -7.1 21 22.1 8.8 7.7 -8.2 445 45.1 13.8 10.3
ACTG Naive 98.6 -23.2 173 289 23.6 23.3 -2.6 13.4 13.6 4.2 3.2
356 WD 99.2 4.6 38.1 384 10.6 7.1 -1 13.4 13.4 3.5 2.1
PNSS 944 4.1 30.9 31.1 8.7 6 -0.8 132 13.2 34 2
PSS 99.4 -12.3 241 27.1 13.7 12.8 -1.6 13.2 134 3.7 2.5
ACTG Naive 994 -276 21.3 35 28.1 27.8 -6.8  23.7 24.7 9 7.6
315 WD 61.4 -22.8 288 36.6 23.9 232 -9.2 25.7 273 11.2 9.9
PNSS 31.8 -3.9 23.5 23.7 7.1 5.1 -4.8 21.5  22.1 7.2 5.7
PSS 98.2 -16.5 30.6 34.6 18.2 17.1 -5.4 233 23.9 7.9 6.3




Table 5: The estimates of d; and dy for three subjects using the four methods.

Sub- dy dy
ject R NAIVE WD PNSS PSS NAIVE WD PNSS PSS

1 R<1 0673 0.624 0.594 0.709 0.041  0.041 0.040 0.041
2 R=1 0763 1.750 1.043 0.830 0.058  0.064 0.060 0.058
3 R>1 0549 0.794 0.563 0.598 0.045 0.046 0.045 0.045




