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Abstract

Co-regulation is a common phenomenon in gene expression. Finding posi-

tively and negatively co-regulated gene clusters from gene expression data

is a real need. Existing techniques based on global similarity are unable

to detect true up- and down-regulated gene clusters. This paper presents

an expression pattern based biclustering technique, CoBi, for grouping both

positively and negatively regulated genes from microarray expression data.

Regulation pattern and similarity in degree of fluctuation are accounted for

while computing similarity between two genes. Unlike traditional biclustering

techniques, which use greedy iterative approaches, it uses a BiClust tree that

needs single pass over the entire dataset to find a set of biologically relevant

biclusters. Biclusters determined from di↵erent gene expression datasets by

the technique show highly enriched functional categories.
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1. Introduction1

Clustering is a popular analysis tool in data mining applica-2

tions (1, 2) such as scientific data exploration, information retrieval3

and text mining, spatial database applications, Web analysis, net-4

work security, marketing and medical diagnostics. Clustering tech-5

niques are also widely used in genomic studies, particularly in the6

context of microarray gene-expression data analysis (3, 4, 5, 6).7

Each microarray provides expression measurements for thousands of genes8

and clustering is a useful exploratory technique for analyzing gene expression9

data since it groups similar genes together and allows biologists to identify10

groups of potentially meaningful genes which have related functions or are11

co-regulated. This, in turn helps find relationships among genes in the form12

of gene regulatory networks (7). Another common use of cluster analysis is13

grouping samples (arrays) by similarity in expression patterns, i.e., finding14

groups of co-expressed genes.15

A cluster is a group of objects that are similar to one another16

within the group but dissimilar to the objects of other groups (8, 9).17

Clustering is an unsupervised technique to discover hidden pat-18

terns. Some well known clustering approaches are partitional (10),19

hierarchical (11), grid based (12) and density based (9). Tradi-20

tional clustering techniques are only e↵ective in finding global pat-21

terns by maximizing the intra-class similarity and minimizing the22
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inter-class similarity. This similarity, calculated based on the en-23

tire set (space) of attributes, tends to overlook local patterns where24

di↵erent objects are similar based on only a subset (subspace) of25

attributes. It has frequently been observed that subsets of genes26

are co-regulated and co-expressed under a subset of environmental27

conditions or time points (13). However, clustering normally parti-28

tions genes into disjoint groups according to the similarity of their29

expressions across all conditions. Biclustering algorithms tackle the30

problem of finding a set of submatrices where each submatrix or bi-31

cluster meets a given homogeneity criterion. This special sub-class32

of clustering algorithms was originally introduced by Hartigan (14)33

and later successfully applied in di↵erent application areas such as34

text mining (15), collaborative filtering (16) and privacy preserving35

data mining (17).36

Biclustering techniques are widely applied in gene expression37

data clustering. Cheng and Church (18) apply biclustering in ex-38

pression data to capture the coherence of a subset of genes under39

a subset of conditions. In Cheng and Church’s approach, the degree of40

coherence is measured using the concept of mean squared residue (MSR) and41

the algorithm greedily inserts or removes rows and columns to arrive at a cer-42

tain number of biclusters achieving some predefined residue score. The lower43

the score, the stronger the coherence exhibited by the biclusters, and better44

is the quality of the biclusters. Followed by Cheng and Church, a number45

of biclustering techniques have been proposed (18, 19, 20, 21, 22, 23, 24, 25,46

26, 27) to determine quality biclusters.47
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A greedy iterative search (18, 19) approach finds a local optimal solu-48

tion with an expectation to finally obtain a globally good solution. A divide49

and conquer (14) approach divides the whole problem into sub-problems and50

solves them recursively. Finally, it combines all the solutions to solve the51

original problem. In exhaustive biclustering (26), the best biclusters are52

identified using exhaustive enumeration of all possible biclusters extant in53

the data, in exponential time. A detailed categorization of heuristic ap-54

proaches is available in (20). A number of techniques based on metaheuris-55

tics such as evolutionary and multi-objective evolutionary frameworks have56

been explored (21) when generating and iteratively refining an optimal set57

of biclusters. All of them use MSR as the merit function. An MSR based58

technique is e↵ective in finding optimized maximal biclusters. From a bio-59

logical point of view, the interest resides in finding biclusters with subsets60

of genes showing similar behavior and not just similar values. Interesting61

and relevant patterns from a biological point of view, such as shifting and62

scaling patterns, may not be detected using this measure as it considers only63

expression values, not the pattern or tendency of gene expression profiles. It64

is important to discover this type of patterns because, frequently the genes65

show similar behavior although their expression levels vary in di↵erent ranges66

or magnitudes. Aguilar-Ruiz (22) has proved that the MSR is not a good67

measure in discovering patterns in data when the variance of gene values is68

high, that is, when the genes show scaling and shifting patterns. To detect69

biologically relevant biclusters with scaling and shifting patterns, a scatter70

search approach is proposed (23). This method uses a fitness function based71

on the linear correlation among genes and an improvement method to select72
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just the positively correlated genes. Often, it has been observed that genes73

share local rather than global similarity in their expression profiles and only74

under a few conditions or time points. Thus, correlation based technique75

may not be e↵ective when deciding pair wise similarity between two gene76

expression profiles. A few frequent itemset mining (1, 2, 28) based bicluster-77

ing techniques have also been introduced (29, 27, 30). In addition, various78

pattern-based approaches have also been proposed (24, 25, 31, 32) for dis-79

covery of biclusters, where expression levels of genes rise and fall in a subset80

of conditions or time points.81

It has been observed that (33) co-regulated genes also share82

negative patterns or inverted behaviors, which existing pattern83

based approaches are unable to detect. In this work, we capture84

biclusters of both positively and negatively regulated genes as co-85

regulated genes. A bicluster can be considered a quality bicluster86

only when participating genes exhibit consistent trends and similar87

degrees of fluctuation under consecutive conditions (34). We con-88

sider both up- and down-regulation trends and similar degrees of89

fluctuations under consecutive conditions for expression profiles of90

two genes as a measure of similarity between the genes. Available91

biclustering techniques are NP-complete (20) in nature requiring92

either large computational cost or use lossy heuristics approaches93

to minimize cost. Our approach deterministically finds all biclus-94

ters using a non-greedy approach. We use what we call a BiClust95

tree for generating biclusters in polynomial time with a single pass96

of the dataset.97
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2. Patterns in Expression Data98

Biological processes are regulated in many ways. Examples include the99

control of gene expression, protein modification or interaction with protein or100

substrate molecules. Expression patterns with similar tendency or behavior101

are normally termed positively regulated and inverted behavior as negatively102

regulated. As described in Amigo1, negative regulation or down regulation103

stops, prevents, or reduces the frequency, rate or extent of a biological pro-104

cess and positive regulation or up-regulation does the reverse. To illustrate105

the fact we consider examples of co-regulated clusters from a real microarray106

human datset, GDS825, given at the NCBI2 website. A profile plot is given107

in Figure 1. In the figure, we easily observe that genes GALNT5 and IDH3B108

show similar patterns or positive co-expression patterns. On the other hand,109

IDH3B or GALNT5 show inverted or negative patterns with APOE. As sug-110

gested by gene ontology, the three genes are involved in regulation of plasma111

lipoprotein particle levels and triglyceride-rich lipoprotein particle remodel-112

ing. Pronounced inverted or negative patterns can be observed in Figure 2,113

taken from NCBI Rat dataset GDS3702. Gene ontology suggests that both114

are responsible for regulation of interferon-beta production. A group of genes115

may share a combination of both positive and negative co-regulation under116

a few conditions or at some time points. A majority of existing approaches117

try to capture genes with similar tendency. In this work, we address the118

issue of finding both up- and down-regulated gene groups as biclusters of119

co-regulated genes based on local patterns of gene expression profiles. Un-120

1http://amigo.geneontology.org/cgi-bin/amigo/term details?term=GO:0048519
2www.ncbi.nlm.nih.gov
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like MSR or correlation based techniques, we use a pattern similarity based121

approach.122

3. Biclustering of co-regulated genes123

Let G = {G
1

, G
2

, · · ·GN} be a set of N genes and T = {T
1

, T
2

, · · · , TM}124

be the set of M conditions or time points of a microarray gene ex-125

pression dataset. The gene expression dataset D is represented as126

an N ⇥M matrix DN⇥M where each entry di,j in the matrix corre-127

sponds to the logarithm of the relative abundance of mRNA of a128

gene.129

For a given gene expression dataset D, biclustering finds a set of130

submatrices {(I
1

, J
1

), · · · , (Ik, Jk)} of the matrix DN⇥M (with Ii ✓ N ,131

Ji ✓ M 8i{1, · · · , k}), where each submatrix (bicluster) meets a given132

homogeneity criterion. Unlike traditional clustering approaches,133

biclustering attempts to cluster a set of genes which are similar134

under a subset of conditions or time points.135

Traditional biclustering techniques normally use global similarity mea-136

sures such as Euclidean distance, Pearson correlation or MSR. These mea-137

sures sometimes fail to capture the true grouping. In addition, most exist-138

ing techniques give less emphasis to pattern matching based on local sim-139

ilarity. It has been observed that the genes share local rather than global140

functional similarity in their gene expression profiles. Moreover, they share141

co-regulation in terms of up- and down-regulation. When computing similar-142

ity, well-known techniques do not consider a positive- or negative-regulation143

pattern as co-expression or co-regulation, with accompanying having bio-144
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logical significance. We try to capture the pair-wise similarity purely by145

pattern matching, followed by construction of biclusters by expanding co-146

regulated gene pairs. We consider both positive- and negative-regulation as147

co-regulation. In this paper, we develop a pattern similarity based approach148

to find biclusters among co-regulated genes.149

We measure the similarity of two expressions based on the degree of fluc-150

tuation between the two and the regulation patterns of gene expression pro-151

files. To capture the pattern of an expression profile, the edge between two152

consecutive expression values of a gene is considered. Thus, for an expres-153

sion data with M conditions or time points, there are (M � 1) edges. The154

degree of fluctuation of an edge is the angular deviation of the edge in 180-155

degree normal plane. The regulation pattern represents the up, down and no156

regulation of a pattern or edge.157

3.1. Terminology158

Definition 1. (Pattern Similarity): Given degrees of fluctuation A =159

{a
1

, a
2

, · · · , aM�1

} and regulation patterns R = {r
1

, r
2

, · · · , rM�1

} of a gene,160

derived from gene expression profile, two genes’ kth expression patterns are161

similar if the di↵erence in degrees of fluctuation of the two genes’ kth edge is162

less than some given threshold ⌧ . In order to compute the di↵erences in the163

degrees of fluctuation, we consider two cases: when the regulation patterns164

are the same (in case of up-regulation) and when the patterns are di↵erent165

(in case of down-regulation) under a particular edge. Mathematically it can166
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be defined as follows:167

sim(Gik, Gjk) =

8
>>>>>>>>><

>>>>>>>>>:

1 if |Gi(ak)�Gj(ak)| < ⌧

when Gi(rk) = Gj(rk) and

if |180�Gi(ak) +Gj(ak)| < ⌧

when Gi(rk) 6= Gj(rk)

0 Otherwise.

(1)

Definition 2. (Co-regulated Bicluster): Given a gene expression dataset168

D of N genes and C conditions, a co-regulated bicluster is a sub-matrix of n169

genes and c conditions where the number of genes n, satisfies a user specified170

MinGene criterion and the number of edges c, in the bicluster is greater than171

threshold ✓, and all pairs of genes in the bicluster satisfy pattern similarity172

across all c edges.173

CorBiClust(DN⇥C ,MinGene, ✓) =
{Dn⇥c|8Gi=1···n 2 Dn⇥c, |n| > MinGene,

|c| > ✓ ^ sim(Gik, Gjk) = 1, 8k = 1 · · · (c� 1)}.
(2)

3.2. Preprocessing174

To capture patterns of each gene expression, researchers use either angles175

between the edges for every pair of conditions (30) or regulation patterns in176

terms of up- or down-regulation (26). Angles or regulation patterns between177

the edges of the two conditions alone, are ine↵ective in capturing the true178

expression pattern of a gene. We compare two gene expressions, both in179

terms of degrees of fluctuation and regulation patterns between two adjacent180

conditions (edges), simultaneously. To capture both regulation patterns and181
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degree of fluctuation of each gene, we read rows of original data with M182

number of expression values or conditions and convert them into another row183

of (M � 1) columns, each column of which contains the degree of fluctuation184

and the regulation pattern of two adjacent conditions. We consider regulation185

information as triplet values [1, 0,-1] to represent up-regulation, no changes186

and down-regulation respectively. The regulation value in the kth edge of a187

gene Gi , Gi(rk), based on two consecutive conditions (say, Ok�1

and Ok),188

can be calculated as:189

Gi(rk) =

8
>>><

>>>:

1 if Ok�1

< Ok

0 if Ok�1

= Ok

�1 if Ok�1

> Ok.

(3)

To calculate the degree of fluctuation, we compute the arc tangent be-190

tween two adjacent expression levels (x, y) as in (30), on the 180 degree191

plane. For computing arctangent, we use a two-argument atan2 function.192

atan2(y, x) is the angle between the positive x-axis of a plane and the point193

(x, y) on it, with positive sign for counter-clockwise angles and negative sign194

for clockwise angles. Next, we convert the angle in the 180 degree plane as195

follows:196

DegreeOfF luctuation(x, y) =

8
<

:
180� abs(arctan2(y, x)) if y < x

abs(arctan2(y, x)) otherwise.

(4)

The fact is illustrated in Figure 3 with an example of a gene’s expression197

values G = {343, 314, 409} under three conditions. After preprocessing, the198

value of the expression become G = {138,�1; 52, 1}.199
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To find co-regulated biclusters based on pattern similarity, we use a Bi-200

Clust tree based technique. The main advantage of the proposed technique201

is that it requires only a single scan of the database for finding biclusters.202

4. Co-regulated biclustering using BiClust tree203

BiClust tree is an m-way tree where each non-leaf node represents an204

edge or a set of edges and a leaf node represents a gene or a group of genes205

that are co-regulated or co-expressed under the edge or set of edges. CoBi206

starts by creating an initial BiClust tree as shown in Figure 4(a).207

In the figure, four edges are shown as non-leaf nodes E1, E2, E3 and208

E4. We use a dataset D0 to construct the initial BiClust tree BT . D0 is a209

transformed dataset generated from the original dataset D to capture degrees210

of fluctuation and regulation from the expression pattern of each gene. The211

initial BiClust tree contains (M � 1) edges as initial non-leaf nodes for a212

dataset with M conditions or time points. The leaf nodes are created by213

forming a kth cluster of genes based on similarity of genes under the kth edge214

by using Equation (1). For each gene, it tries to form a cluster with other215

genes belonging to a particular cluster. Otherwise, it creates a new cluster216

when there are no matching clusters. Thus, multiple clusters or leaf nodes217

may be formed under a particular edge. The same process is repeated for all218

edges. G1, G2 and G3 form a cluster C
1

, whereas G4 and G5 form another219

cluster C
2

under E1. When creating the kthcluster, we transpose the dataset220

D0, so that each row represents the degree of fluctuation and regulation221

pattern for all genes under each edge. By doing so, we can compare easily all222

genes’ expression patterns under the kth edge. Creating the initial BiClust223
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tree requires a single pass over the dataset. No further consultation of the224

dataset is required in the following steps. To maintain a moderate number225

of gene clusters under an edge or a set of edges, it performs a pruning step.226

Cluster Ci is pruned if the cluster size is less than a user given threshold ✓.227

Next, BT is expanded to produce biclusters using ExpandCluster function.228

The proposed technique, CoBi is shown in Algorithm 1.229

In the cluster expansion phase, iteratively tree branches are merged to230

produce higher order biclusters. When merging two sub-trees, we apply231

merging in two ways, one at a non-leaf level and the other at the cluster232

level. Thus, from the initial BiClust tree, edges E1 and E2 are combined to233

form a new node { E1, E2 }. Next, cluster leaf nodes under both nodes E1234

and E2 are merged to get a new cluster node for {E1, E2 }. Cluster C
1

is235

compared with C
3

and C
4

. A new cluster node [G1, G2] is formed with all236

the elements that are common in both C
1

and C
3

, or C
1

and C
4

. In other237

words, it performs a intersection operation between the two clusters. Since238

the number of genes in a dataset is normally high compared to the number of239

conditions, the cluster list in the subtree is expected to be large. This is more240

critical especially in the initial stages of the tree. To handle the situation,241

we use a bit vector for storing gene IDs as a cluster. For merging we use242

the bitwise AND operation. It is very fast compared to perform normal243

intersection between two clusters. In order to merge two non-leaf edges, we244

use the concept of union taken from (35). The BiClust tree thus formed after245

the expansion of the initial BiClust tree is shown in Figure 4(b). The clusters246

that do not contain a minimum number of genes are pruned from the tree.247

During the merging of clusters under a non-leaf node, there may be a chance248
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that a new cluster is formed such that its superset cluster is already present249

under the same non-leaf. Such subsets are redundant and removed. The250

process of sub-tree expansion continues until no further expansion is possible251

and all biclusters are stored in a list with a minimum number of condition ✓.252

After the final expansion of a sub-tree, the biclusters are extracted from the253

list. The same process is applied to all sub-trees in the BiClust tree. A final254

BiClust tree is shown in Figure 4(c), where the minimum number of genes255

is two. The node {E1, E2, E4} is pruned from the final tree as it contains256

a cluster with size one only. Other nodes are not shown in the final tree as257

they are pruned as well. The biclusters formed are: {E1, E2, E3 } [G1, G2]258

and {E1, E3, E4 } [G2, G3].259

input : D0 (Transformed Dataset), MinGene (Minimum number of

Gene), ✓ (Minimum number of edge)

output: BiClust (List of Biclusters)

1 Construct initial BiClust tree BT;

2 Prune cluster Ci from BT, if |Ci| < MinGene;

3 BiClust = ExpandCluster (BT, MinGene,✓) ;

4 BiClust = RemoveSubCluster (BiClust);

Algorithm 1: CoBi: Co-regulated Biclustering

The proposed method is shown in a compact manner in Algorithm 1. At260

first, CoBi, constructs an initial BiClust tree using the transformed database261

D0. The initial BiClust tree is pruned based on a user specified threshold262

MinGene. Next, the algorithm iteratively expands the tree to discover all263

biclusters. The ExpandCluster procedure is given in Algorithm 2. Two sub-264
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input : BT (BiClust tree), MinGene (Minimum number of Gene),

✓ (Minimum number of edge)

output: BiClust (List of Biclusters)

1 Create a new BiClust tree BT’ ;

2 foreach non-leaf node Ei = 1 ! En�1

of BT do

3 Create a subtree ST of BT0 ;

4 foreach non-leaf node Ej = Ei+1

! En of BT do

5 V = Merge(Ei, Ej,MinGene) ;

6 Prune subset of V ;

7 Add V to ST;

8 end

9 Add ST to BT0;

10 end

11 foreach subtree STi of BT0 do

12 if STi can expands further then

13 BiClust = BiClust [ ExpandCluster(STi,MinGene, ✓);

14 else

15 return GetBiClusters(STi, ✓);

16 end

17 end

Algorithm 2: ExpandCluster

trees are merged using Merge function and pruned when the number of genes265

in the merged tree is less than MinGene. Once the subtree reaches the end of266

expansion so that no further merging is possible, it extracts biclusters from267
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the final BiClust subtree using GetBiClusters function. The same process268

is repeated for all subtrees. At the end, the ExpandCluster function returns269

the list of all biclusters generated. The biclusters returned may contain some270

redundant clusters, where genes in the clusters are the same, although the271

conditions or time points are a subset of the other. RemoveSubCluster func-272

tion takes the list of biclusters and eliminates such clusters from the final273

list.274

4.1. Complexity analysis275

The complexity of the biclustering problem depends on the exact prob-276

lem formulation, and particularly on the merit function used to evaluate the277

quality of a given bicluster. However, most interesting variants of this prob-278

lem are NP-complete requiring either large computational e↵ort or the use279

of lossy heuristics to short-circuit the calculation (20). Our approach deter-280

ministically finds all biclusters using a non-greedy approach in polynomial281

time. The cost of our algorithm consists of two parts: initial BiClust tree282

construction from D0 (CIB) and the cost for expanding the BiClust tree and283

extracting biclusters (CEX).284

(a) Construction of initial BiClust tree: Let us assume that the pre-processed285

dataset D0 contains N genes and M edges. So, to scan the database, the cost286

is (M ⇤N). For creating clusters under an edge node, it requires the calcu-287

lation of pattern similarity among all genes under an edge. Thus, the time288

requirement for creating clusters is N2. The total time complexity for con-289

struction of the initial BiClust tree is CIB = O(M ⇤N2) .290

(b) BiClust tree expansion: Let us assume that the maximum number of it-291

erations for the algorithm is k, which is the number of conditions in the final292
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bicluster. Let ⇣ be the number of edges or non-leaf nodes per iteration and293

the number of clusters under an edge be C. The cost of merging two clusters294

is O(C2). We observe that with increase in k, usually C decreases. The rea-295

son behind this is that compared to the number of clusters in (k � 1) steps,296

fewer clusters take part in the intersection in the kth step. Thus the worst297

case complexity for bicluster expansion is no more than CEX = O(k ⇤⇣ ⇤C2).298

Most real microarray datasets contain a larger number of genes compared299

to the number of conditions. Scanning of the database is a costly activity.300

Although the complexity of the algorithm is polynomial, compared to the301

cost of database scanning, it is negligible.302

5. Experimental Results303

This section provides details of the experiments conducted, the304

data sets used and biological validation of the results. We use Java305

1.6 running on a Windows 7, 2.53 GHz machine for implemen-306

tation. A software implementation of CoBi as Java executable is307

available for download 3. To demonstrate the e↵ectiveness of CoBi308

in determining co-regulated and functionally enriched clusters, we309

use nine benchmark gene expression datasets. We analyze the re-310

sults in terms of biological significance with the help of the GO311

annotation database. The ability of CoBi to find co-regulated bi-312

clusters is demonstrated visually using cluster profile plots. Since313

it is di�cult to present all results, we present some significant find-314

3https://sites.google.com/site/swarupnehu/publications/resources
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ings from each dataset.315

5.1. Datasets316

Expression datasets are selected from four di↵erent organisms317

for our experiments. We use four di↵erent datasets belonging to318

Yeast and two from Homo Sapiens. A short description of di↵er-319

ent gene expression datasets used in analysis is given in Table 1.320

Normalized expression datasets are used after removing all rows321

with missing values.322

5.2. Input parameters323

To obtain moderate sized biclusters, we avoid very small bi-324

clusters by setting the parameter MinGene in the range of 3 to 5.325

During our experiments, we observe that higher number of edge326

matches in a bicluster gives more biologically significant biclus-327

ters. Thus, in most of the experiments, we try to keep the value328

of ✓ above 50% of the total number of edges or conditions present329

in the dataset. In order to calculate similarity between two ex-330

pression profiles in terms of degree of fluctuation, we achieve good331

results with ⌧ ranging between 15 to 25.332

Below we present few results from our experiments. We first333

visualize the clusters and next evaluate the results in terms of334

statistical significance and biological relevance.335

5.3. Cluster profile plot336

A cluster profile plot shows for each bicluster the normalized ex-337

pression values with respect to the conditions or time points that338
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are represented in the bicluster. In Figure 5, we present profile339

plots of some obtained biclusters. From the figure, we can ob-340

serve that both positive and negative co-regulations are common341

in biological data and they are well captured by our technique.342

5.4. Statistical significance343

We use Gene Ontology (GO) and compute p-values (7) to eval-344

uate the results. To determine the statistical significance of the345

association of a particular GO term with a group of genes in a346

cluster, we use online tools from the GO Project4. These tools347

use the hypergeometric distribution to calculate the p-value, which348

evaluates whether the clusters have significant enrichment in one349

or more function groups. The p-value is given as follows:350

p = 1�
kX

i=0

(fi )(
g�f
n�i )

(gn)
(5)

The p-value gives the probability of seeing at least k genes out351

of the total n genes in a cluster annotated with a particular GO352

term, given the total number of genes in the whole genome g and353

the number of genes in the whole genome that are annotated with354

that GO term f . It is important to note that p-value measures355

whether a cluster is enriched with genes from a particular category356

to a greater extent than what would be expected by chance. If the357

majority of genes in a cluster appear in one category, the p-value358

of the category is small. That is, the closer the p-value to zero,359

4http://www.geneontology.org
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the more the probability that the particular GO term is associated360

with the group of genes. In our experiments, we use the following361

tools: FuncAssociate (36), Fatigo (37), GOTermFinder (38) and362

OntoExpress (39).363

Table 2 shows details of selected biclusters from di↵erent datasets ob-364

tained by applying our biclustering technique. For each bicluster, an iden-365

tifier of the bicluster, the number of genes, the number of conditions, the366

volume and MSR score are presented. The MSR score can be used to com-367

pare the quality of the biclusters with those obtained by other algorithms.368

We also report Q value and the associated GO terms for some functionally369

enriched groups provided by the online tool GeneMANIA (40) in Table 3.370

The Q-value is the minimal False Discovery Rate (FDR) at which this gene371

appears significant. Q-values are estimated using the Benjamini Hochberg372

procedure (41).373

5.5. Biological relevance374

To evaluate biological significance of the results produced by our375

technique in terms of associated biological processes, cellular com-376

ponents, and gene function, we apply the Yeast GO term finder5 to377

some of the biclusters from the sporulation data. Out of 22 genes378

from the cluster Sp1, the genes {YDR523C, YLR227C, YGR059W,379

YDR218C, YGL170C, YLR341W, YJL038C, YLR213C} are in-380

volved in the process of sporulation, anatomical structure for-381

mation involved in morphogenesis and cell di↵erentiation, while382

5http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
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genes {YDR523C, YGL170C, YLR341W, YGR059W, YLR213C,383

YDR218C} are involved in sexual reproduction and sexual sporula-384

tion process resulting in formation of a cellular spore. On the other385

hand, genes {YCR002c, YGR059W, YDR218C} are involved in386

GTP binding and guanyl ribonucleotide binding and genes {YGL170C,387

YCR002c, YLR227C, YGR059W, YDR218C} take part in struc-388

tural molecular activity. With respect to cellular component ontol-389

ogy, terms associated with genes {YDR523C, YCR002c, YGR059W,390

YDR218C} are ascospore-type prospore, intracellular immature391

spore, prospore membrane, septin complex. Similarly, from Sp2392

({YDR523C, YGR225W, YLR227C, YPL027W, YLR343W, YDR516C,393

YDR218C, YNL204C, YGL170C, YIL099W, YCR002c, YDR260C,394

YJL038C, YLR213C, YOR242C, YNL225C, YGR059W, YLR054C,395

YNL128W, YOL132W, YLR308W, YMR017W, YLR341W}), the396

most significant biological processes are sporulation and anatomi-397

cal structure formation involved in morphogenesis with a p-value398

4.476e-19. GO terms observed in molecular function categories399

are glucanosyltransferase activity and 1,3-beta-glucanosyl trans-400

ferase activity. In case of cellular components, genes {YDR5-401

23C, YMR017W, YCR002c, YGR059W, YLR314C, YPL027W,402

YLR054C, YDR218C} are involved in prospore membrane, intra-403

cellular immature spore and ascospore-type prospore formation.404

For the YeastKY dataset, we observe that a majority of the genes405

are involved in ribosome constituent activity with Q value 1.01e-406

119.407
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To verify the biological significance of the results from RatCNS408

data, we submitted our resulting biclusters to Onto-Express, and409

obtained a hierarchy of functional annotations in terms of GO for410

each cluster. An example of the GO tree for a co-regulated gene411

cluster RatCNS1 is shown in Figure 6. We further investigated412

the genes in the clusters for RatCNS2. A majority of genes in413

RatCNS2 are involved in the protein binding process and the rest414

of the genes are involved in activities like Calcium ion binding,415

growth factor activity, and transferase activity. Additional results416

are available for download6.417

5.6. Performance comparison418

To evaluate performance of CoBi in comparison to other algorithms,419

we consider three popular biclustering techniques: Bimax (42), Cheng and420

Church (CC) (18) and OPSM (4) for the purpose. We used four Yeast421

datasets and the BicAT tool (43) for analysis. We compared performance422

based on functional enrichment of the biclusters. For the purpose of compar-423

ison, we set the parameter values of the other algorithms as recommended in424

the original papers. The functional enrichment of each bicluster is measured425

based on the Q-value associated with each GO category. For each bicluster,426

we calculated the average of the percentage of the number of genes from427

the biclusters with a given function against all genes in the genome with428

the function. Figure 7 shows the average of the functional enrichments of429

each bicluster obtained by di↵erent biclustering algorithms on four di↵erent430

6https://sites.google.com/site/swarupnehu/publications/resources
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datasets.431

From the graphs, we observe that CoBi outperforms all three algorithms432

in obtaining functionally enriched biclusters. However, in case of YeastCho433

dataset, the Cheng and Church (CC) approach performs better than the434

other algorithms.435

6. Conclusions436

In this paper, we present a new biclustering technique, CoBi,437

that is capable of detecting positively as well as negatively co-438

regulated genes. Unlike traditional proximity measures such as439

MSR, Euclidean distance or correlation, it uses a pattern based440

approach for finding similarities among genes. Unlike available bi-441

clustering techniques, which are generally NP-complete in nature,442

it extracts all biclusters in polynomial time. To generate biclusters,443

it uses a tree-based algorithm called BiClust. An advantage of Bi-444

Clust is that it requires a single pass over the database to generate445

all biclusters. The results establish that co-regulated biclusters are446

significant from statistical and biological points of view. Work is447

underway to develop a user friendly tool based on CoBi that may448

help biologists in finding interesting patterns over a large number of449

gene expression datasets. In addition, there is an ongoing e↵ort to450

introduce a similarity measure to e↵ectively handle both shifting451

and scaling patterns including positive- and negative-regulations452

with minimum computational cost. We are also working towards453

exploiting the advantages of BiClust trees to develop a one pass454
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technique to find all frequent itemsets from market basket data.455

Tuning and extension of our biclustering technique to apply456

to other application domains, including information retrieval, text457

mining, collaborative filtering, target marketing, market research,458

database research and data mining is certainly one of the important459

open issues for future research.460
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Figure 1: Human genes showing positive- and negative-regulation

Figure 2: Expression profile of RAT genes showing negative-regulation
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Figure 3: Degree of fluctuation for three expression values of a gene
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(a) Initial BiClust tree

(b) BiClust tree after expanding initial tree

(c) Final BiClust tree

Figure 4: Stages of Biclust tree
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Table 1: Short description of the datasets

Organism Dataset No. of No. of Source

genes samples

YeastDB 2884 17 http://arep.med.harvard.edu/

biclustering/yeast.matrix

Yeast Sporulation 474 7 http://cmgm.stanford.edu/

pbrown/sporulation

Yeast KY 237 17 http://faculty.washington.edu

/kayee/cluster/

YeastCho 384 17 http://faculty.washington.edu

(cell cycle) kayee/cluster

Rat Rat CNS 112 9 http://faculty.washington.edu/

kayee/cluster

Human GDS3712 325 12 NCBI

Fibroblast 517 13 http://www.sciencemag.org/

Serum feature/data/984559.hsl/

Mouse GDS958 308 12 NCBI

Rice Thaliana 138 8 http://homes.esat.kuleuven.be/

s̃istawww/bioi/thijs/Work

/Clustering.html
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Figure 5: Expression profile plots of biclusters from Yeast, Yeast

Sporulation, RatCNS, GDS3717 and Fibroblast Serum data
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Table 2: Biclusters results from Yeast, Sporulation and Rat CNS data

Dataset Bicluster No. of No. of Volume MSR p-value GO

Id Gene Cond. attributes

YDB1 268 17 4556 654.41 2.075e-9 Cytoplasmic

translation

YeastDB YDB2 343 15 5145 664.20 3.318e-7 Ribosome

YDB3 430 13 5590 608.91 8.960e-7 Structural

constituent of

ribosome

Sp1 22 7 154 0.01557 4.543e-9 Cellular development

process

Sporula- Sp2 69 5 345 0.1285 4.476e-19 Anatomical

tion structure

formation for

morphogenesis

Rat CNS RatCNS1 9 5 45 0.051 6.81e-4 Male sex

determination

RatCNS2 12 4 48 0.233 4.71e-4 Insulin receptor

substrate binding
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Table 3: Q-values and GO attributes from di↵erent biclusters

Dataset Bicluster Q-value GO attributes

Id

Mouse1 2.18e-12 cytosolic part and ribosomal subunit formation

GDS958 Mouse2 5.57e-7 nuclear DNA-direct RNA polymerase complex

Mouse3 1.76e-6 proteasome complex

Rat1 1.82e-14 regulation of neuron apoptosis

Rat CNS Rat2 3.59e-14 regulation neurological system process

Rat3 1.14e-13 positive regulation of glucose import

Rat4 5.27e-10 growth factor binding

Cho1 4.03e-10 chromosomal part

YeastCho Cho2 2.38e-10 DNA repair

Cho3 4.23e-6 protein glycosylation

SP1 4.48e-19 anatomical structure formation

SporulationSP2 8.86e-18 cellular component assembly involved in morphogenesis

SP3 4.54e-9 cellular developmental process

YeastKY KY1 1.01e-119 Structural constituents of ribosome

KY2 1.83E-110 ribosome

Th1 4.19e-13 glutathione transferase activity

Thaliana Th2 6.69e-08 toxin catabolic process, glutathione transferase activity

Th3 1.32e-6 glutathione transferase activity

35



Figure 6: Significant GO terms on molecular function, biological process

and cellular component from RatCNS1
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Figure 7: Comparison on functionally enriched biclusters from di↵erent

biclustering techniques
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