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Abstract

Worm detection and response systems must act quickly
to identify and quarantine scanning worms, as when left
unchecked such worms have been able to infect the ma-
jority of vulnerable hosts on the Internet in a matter of
minutes [11]. We present a hybrid approach to detecting
scanning worms that integrates significant improvements
we have made to two existing techniques: sequential hy-
pothesis testing and connection rate limiting. Our re-
sults show that this two-pronged approach successfully
restricts the number of scans that a worm can complete,
is highly effective, and has a low false alarm rate.
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1 Introduction

Human reaction times are inadequate for detecting
and responding to those fast scanning worms, such as
Slammer, that can infect the majority of vulnerable sys-
tems in a matter of minutes [20, 11]. Thus, today’s
worm response proposals focus on automated responses
to worms, such as quarantining infected machines [12],
automatic generation and installation of patches [16, 17],
and reducing the rate at which worms can issue connec-
tion requests so that a more carefully constructed re-
sponse can be crafted [28, 24].

Even an automated response will be of little use if it
fails to be triggered quickly after a host is infected. In-
fected hosts with high-bandwidth network connections
can initiate thousands of connection requests per sec-
ond, each of which has the potential to spread the infec-
tion. On the other hand, an automated response that
triggers too easily will erroneously identify hosts as in-
fected, interfering with these hosts’ reliable performance
and causing significant damage.

Many scan detection mechanisms rely upon the obser-
vation that only a small fraction of addresses are likely
to respond to a connection request at any given port.

Many IPv4 addresses are dead ends as they are not as-
signed to active hosts. Others are assigned to hosts be-
hind firewalls that block the port addressed by the scan-
ner. When connection requests do reach active hosts,
many will be rejected as not all hosts will be running
the targeted service. Thus, scanners are likely to have a
low rate of successful connections, whereas benign hosts,
which only issue connection requests when there is rea-
son to believe that addressees will respond, will have a
much greater rate of success.

Existing methods for detecting scanning worms within
a local network use fixed thresholds for the number of
allowable failed connections over a time period [18] or
limit the rate at which a host can initiate contact with
additional hosts [28]. However, these threshold based
approaches may fail to detect low-speed scanning. They
may also require an excessive number of connection ob-
servations to detect an infection or lead to an unneces-
sary number of false alarms.

To detect inbound scans initiated by hosts outside
the local network, previous work on which we collab-
orated [8] used an approach based on sequential hypoth-
esis testing. This approach automatically adjusts the
number of observations required to detect a scan with
the strength of the evidence that the observed host is,
in fact, scanning. The advantage of this approach is its
ability to reduce the number of packets required to de-
tect scanners, while ensuring that scanners are identified
with a level of certainty that ensures an acceptable false
alarm rate.

While this approach has promise for detecting infec-
tions of local hosts by scanning worms, there are sig-
nificant hurdles to overcome. For one, to determine
whether a request to connect to a remote host will fail
one must often wait to see whether a successful connec-
tion response will be returned. Until enough connec-
tion requests can be established to be failures, a sequen-
tial hypothesis test will lack the observations required
to conclude that the system is infected. By the time the
decision to quarantine the host is made, a worm with a
high scan rate may have already targeted thousands of
other hosts.
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This earlier work used a single sequential hypothesis
test per host and did not re-evaluate benign hosts over
time. Unlike an intrusion detection system observing re-
mote hosts, a worm detection system is likely to observe
benign traffic originating from an infected host before
it is infected. It is therefore necessary to adapt this
method to continuously monitor hosts for indications of
scanning.

WDS

Figure 1: A local network is monitored by a Worm De-
tection System (WDS).

We introduce an innovative approach that enables a
Worm Detection System (WDS) to continuously monitor
a set of local hosts for infection, requiring a small number
of observations to be collected after an infection to detect
that the host is scanning (Figure 1).

To detect infected hosts, the detection system need
only process a small fraction of network events; a sub-
set of connection request observations that we call first-
contact connection requests and responses that complete
first-contact connections. A first-contact connection re-
quest is a packet (TCP or UDP) addressed to a host
with which the sender has not previously communicated.
These events are monitored because scans are mostly
composed of first-contact connection requests.

In Section 2, we introduce a scan detection algorithm
that we call a reverse sequential hypothesis test (

←−−
HT ),

and show how it can reduce the number of first-contact
connections that must be observed to detect scanning.1

Unlike previous methods, the number of observations←−−
HT requires to detect a host’s scanning behavior is not
affected by the presence of benign network activity that
may be observed before scanning begins.

In Section 3, we introduce a new credit-based algo-
rithm for limiting the rate at which a host may issue the
first-contact connections that are indicative of scanning
activity. This Credit-Based Connection Rate Limiting
(CBCRL) algorithm results in significantly fewer false
positives (unnecessary rate limiting) than existing ap-
proaches.

When combined, this two pronged approach is ef-
fective because these two algorithms are complemen-

1The letters in this abbreviation,
←−−
HT , stand for Hypothesis

Testing and the arrow indicates the reverse sequential order in
which observations are processed.

tary. Without Credit-Based Connection Rate Limiting,
a worm could rapidly issue thousands of connection re-
quests before enough connection failures have been ob-
served by Reverse Sequential Hypothesis Testing so that
it can report the worm’s presence. Because Reverse Se-
quential Hypothesis Testing processes connection suc-
cess and failure events in the order that connection re-
quests are issued, false alarms are less likely to occur
than if we used an approach purely based on Credit-
Based Connection Rate Limiting.

We demonstrate the utility of these combined algo-
rithms with trace-driven simulations, described in Sec-
tion 4, with results presented in Section 5. The limita-
tions of our approach, including potential means with
which a worm might attempt to avoid detection, are
presented in Section 6. We discuss related work, includ-
ing previous approaches to the scanning worm detection
problem, in Section 7. Our plans for future work are
presented in Section 8, and we conclude in Section 9.

2 Detecting Scanning Worms
by using Reverse Sequential
Hypothesis Testing

A worm is a form of malware that spreads from host to
host without human intervention. A scanning worm lo-
cates vulnerable hosts by generating a list of addresses to
probe and then contacting them. This address list may
be generated sequentially or pseudo-randomly. Local ad-
dresses are often preferentially selected [27] as commu-
nication between neighboring hosts will likely encounter
fewer defenses. Scans may take the form of TCP con-
nection requests (SYN packets) or UDP packets. In the
case of the connectionless UDP protocol, it is possible
for the scanning packet to also contain the body of the
worm as was the case with the Slammer worm [11].

In this section, we present an on-line algorithm for
detecting the presence of scanners within a local net-
work by observing network traffic. We use a sequential
hypothesis test for its ability to adjust the number of
observations required to make a decision to match the
strength of the evidence it is presented with.

2.1 Sequential Hypothesis Testing

As with existing approaches to scan detection [8, 19,
28, 24], we rely upon the observation that only a small
fraction of addresses are likely to respond to a connection
request at any given port. Benign hosts, which only
contact systems when they have reason to believe that
this connection request will be accepted, are more likely
to receive a response to a connection request.

Recall that a first-contact connection request is a
packet (TCP or UDP) addressed to a host with which
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the sender has not previously communicated. When a
local host l initiates a first-contact connection request
to a destination address, d, we classify the outcome of
the attempt as either a “success” or a “failure”. We let
Yi be a random (indicator) variable that represents the
outcome of the ith first-contact connection request by l,
where

Yi =
{

0 if the connection succeeds
1 if the connection fails

Figure 2 shows a sequence of outcomes, Y1, Y2, . . . ,
for a local host l. Detecting scanning by local hosts is a
problem that is well suited for the method of sequential
hypothesis testing first developed by Wald [26], and used
in our earlier work to detect remote scanners [8].

event Y1 Y2 Y3 Y4 Y5 . . .
outcome 0 0 1 0 1 . . .

Figure 2: A sequence of observed first-contact connec-
tion outcomes, for connections originating at host l.
Outcomes are represented as a string of ones (failed con-
nections) and zeros (successful connections).

We call H1 the hypothesis that host l is engaged in
scanning (indicating infection by a worm) and H0 the
null hypothesis that the host is not scanning. We as-
sume that, conditional on the hypothesis Hj , the ran-
dom variables Yi|Hj i = 1, 2, . . . are independent and
identically distributed (i.i.d.). That is, conditional on
the hypothesis, any two connection attempts will have
the same likelihood of succeeding, and their chances of
success are unrelated to each other. We can express the
distribution of the Bernoulli random variable Yi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1

Given that connections originating at benign hosts are
more likely to succeed than those initiated by a scanner,
θ0 > θ1.

Sequential hypothesis testing chooses between two hy-
potheses by comparing the likelihoods that the model
would generate the observed sequence of events, Yn ≡
(Y1, . . . , Yn), under each hypothesis. It does this by
maintaining the ratio Λ(Yn), the numerator of which
is the likelihood that the model would generate the se-
quence of events Yn under hypothesis H1, and the de-
nominator under hypothesis H0.

Λ(Yn) ≡ Pr[Yn|H1]
Pr[Yn|H0]

(1)

The i.i.d. assumption in the model enables us to state
this ratio in terms of the likelihoods of the individual

events.

Λ(Yn) ≡
n∏

i=1

Pr[Yi|H1]
Pr[Yi|H0]

(2)

We can write the change to Λ(Yn) as a result of the
ithobservation as φ(Yi):

φ(Yi) ≡ Pr[Yi|H1]
Pr[Yi|H0]

=





θ1
θ0

if Yi = 0 (success)

1−θ1
1−θ0

if Yi = 1 (failure)

This enables us to rewrite Λ(Yn) inductively, such
that Λ(Y0) = 1, and Λ(Yn) may be calculated itera-
tively as each observation arrives.

Λ(Yn) =
n∏

i=1

φ(Yi)

= Λ(Yn−1)φ(Yn)

One compares the likelihood ratio Λ(Yn) to an upper
threshold, η1, above which we accept hypothesis H1, and
a lower threshold, η0, below which we accept hypothesis
H0. If η0 < Λ(Yn) < η1 then the result will remain
inconclusive until more events in the sequence can be
evaluated. This is illustrated in Figure 3.

Y2 Y4Y3 Y5Y1

η1

η0

10 1 0 1
0

Figure 3: A log scale graph of Λ(Y) as each observation,
Yi, is added to the sequence. Each success observation
(0) decreases Λ, moving it closer to the benign conclu-
sion threshold η0, whereas each failure observation (1)
increases Λ, moving it closer to the infection conclusion
threshold η1.

Writing the probability of correctly reporting detec-
tion (declaring host is infected when indeed it is) as PD

and the probability of a false positive (declaring host is
infected when in fact it is not) as PF , we can define our
performance requirements as bounds α and β on these
probabilities.

α ≥ PF

β ≤ PD

Because every false positive can decrease productivity
of both the users of a host and the security staff who
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need to inspect it, one would expect to use α values
that are small fractions of a percentage point. Since
scanners generate enough traffic to clearly differentiate
their behavior from that of benign systems, a β of greater
than 0.99 should be an achievable requirement.

Wald [26] showed that η1 and η0 can be bounded in
terms of PD and PF .

η1 ≤ PD

PF
(3)

1− PD

1− PF
≤ η0 (4)

Given our requirement parameters α and β, we assign
the following values to our thresholds, η0 and η1:

η1 ← β

α
(5)

η0 ← 1− β

1− α
(6)

From Equations 3 and 5, we can bound PF in terms
of α and β. Since 0 < PD < 1, we can replace PD with
1 in Equation 3 to yield:

η1 ≤ PD

PF
<

1
PF

(7)

It follows that:
PF <

1
η1

=
α

β

Likewise, using Equation 4 and given that 1 − PD <
(1− PD)/(1− PF ), we can bound 1− PD:

1− PD < η0 =
1− β

1− α
(8)

While η1 may result in a false positive rate above our
desired bound by a factor of 1

β , this difference is negli-
gible given our use of β values in the range of 0.99 and
above. Similarly, while our miss rate, 1−PD may be off
by as much as a factor of 1

1−α , this too will have negli-
gible effect given our requirements for very small values
of α.

2.2 Detecting Infection Events

In our earlier work, it was assumed that each remote host
was either a scanner or benign for the duration of the
observed period. When a host was determined to be be-
nign it would no longer be observed. In contrast, in this
paper we are concerned with detecting infection events,
in which a local host transitions from a benign state to
an infected state. Should a host become infected while
a hypothesis test is already running, the set of outcomes
observed by the sequential hypothesis test may include

those from both the benign and infected states, as shown
in Figure 4. Even if we continue to observe the host and
start a new hypothesis test each time a benign conclu-
sion is reached, the test may take longer than necessary
to conclude that an infection has occurred.

Yi Yi+1 Yi+4 Yi+5 Yi+6 Yi+7Yi+3Yi+2Yi−1i−2Y

0η
1
η1

0 00
infection 1

11 1 1 1 1

Figure 4: A log scale graph tracing the value of Λ as
it is updated for a series of observations that includes
first-contact connection requests before (Yi−1 and Yi−2)
and after (Yi and beyond) the host was infected.

The solution to this problem is to run a new sequential
hypothesis test as each connection outcome is observed,
evaluating these outcomes in reverse chronological order,
as illustrated in Figure 5. To detect a host that was
infected before it issued first-contact connection i (event
Yi), but after it had issued first-contact connection i−1,
a reverse sequential hypothesis test (abbreviated

←−−
HT )

would require the same number of observations to detect
the infection as would a forward sequential hypothesis
that had started observing the sequence at observation
i. Because the most recent observations are processed
first, the reverse test will terminate before reaching the
observations that were collected before infection.

Yi−1i−2Y Yi+5Yi+4Yi+3Yi+2Yi+1Yi

η1

1
0η

infection 10 0 1 1
1 01

Figure 5: A log scale graph tracing the value of
Λ(Yi+5, Yi+4, . . .), in which the observations in Y are
processed in reverse sequential order. The most recent,
or rightmost, observation is the first one processed.

When we used sequential hypothesis testing in our
prior work to detect scanning of a local network by re-
mote hosts, the intrusion detection system could know a
priori whether a connection would fail given its knowl-
edge of the network topology and services [8]. Thus, the
outcome of a connection request from host i could im-
mediately be classified as a success or failure observation
(Yi) and Λ(Yn) could be evaluated without delay.
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When a local host initiates first-contact connections
request to remote hosts, such as those shown in Fig-
ure 6, the worm detection system cannot immediately
determine if the connection will succeed or fail. While
some connection failures will result in a TCP RST packet
or an ICMP packet [1, 3], indicating that the connection
has failed, empirical evidence has shown that most do
not [2]. The remaining connection attempts can be clas-
sified as failures only after a timeout expires.

r2src:

Y1 = 1

Y5 = 1

Y4 = 1
Y3 = 1

Y2 = 0

r5

r4dst:
r3dst:
r2dst:
r1dst:

time time

tim
eout

WDSlocal host

dst:

Figure 6: The success of a local host’s first-contact con-
nection requests to remote hosts cannot be established
by the Worm Detection System (WDS) until a response
is observed or a timeout expires.

While a sequential hypothesis test waits for unsuc-
cessful connections to time out, a worm may send thou-
sands of additional connection requests with which to
infect other systems. To limit the number of outgoing
first-contact connections, a sequential hypothesis testing
approach can be paired with a credit-based connection
rate limiter as described in Section 3.

2.3 Algorithmic Implementation

A naive implementation of repeated reverse sequential
hypothesis testing requires that we store an arbitrarily
large sequence of first-contact connection observations.
A naive implementation must also step through a por-
tion of this sequence each time a new observation is re-
ceived in order to run a new test starting at that obser-
vation.

Fortunately, there exists an iterative function:

Λ̄(Yn) = max
(
1, Λ̄(Yn−1)φ(Yn)

)

with state variable Λ̄(Yn), that can be calculated in the
sequence in which events are observed, and that has the
property that its value will exceed η1 if and only if a
reverse sequential hypothesis test would conclude from
this sequence that the host was infected. This is proved
in Appendix A.

Updating Λ̄ for each observation requires only a single
multiplication and two comparison operations.2 Also,
because Λ̄ is updated in sequence, observations can be
discarded immediately after they are used to update the
value of Λ̄.

When running this algorithm in a worm detection sys-
tem, we must maintain separate state information for
each host being monitored. Thus, a state variable Λ̄l is
maintained for each local host l.

It is also necessary to track which hosts have been
previously contacted by l. We track the set of Previously
Contacted Hosts, or PCH set, for each local host.

enum status {PENDING, SUCCESS, FAILURE};

struct FCC_Queue_Entry {
ip4_addr DestAddr;
time WhenInitiated;
status Status;

}

Figure 7: The structure of entries in the First-Contact
Connection (FCC) queue.

Finally, each local host l has an associated queue of
the first-contact connection attempts that l has issued
but that have not yet been processed as observations.
The structure of the records that are pushed on this FCC
queue are shown in Figure 7. The choice of a queue for
this data structure ensures that first-contact connection
attempts are processed in the order in which they are
issued, not in the order in which their status is deter-
mined.

The algorithm itself is quite simple and is triggered
upon one of three events.

1. When the worm detection system observes a packet
sent by local host l, it checks to see if the destination
address d is in l’s previously contacted host (PCH)
set. If it isn’t, it adds d to the PCH set and adds a
new entry to the end of the FCC queue with d as the
destination address and status PENDING.

2. When an incoming packet arrives addressed to local
host l and the source address is also the destination
address (DestAddr) of a record in l’s FCC queue,
the packet is interpreted as a response to the first-
contact connection request and the status of the FCC
record is updated. The status of the FCC record is
set to SUCCESS unless the packet is a TCP RST
packet, which indicates a rejected connection.

2In fact, addition and subtraction operations are adequate as
the iterative function is equivalent to

Θ(Yn) = max (0, Θ(Yn−1) + ln φ(Yn))

where Θ(Yn) ≡ ln Λ̄(Yn).
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3. Whenever the entry on the front of the FCC queue
has status PENDING and has been in the queue longer
than the connection timeout period, a timeout oc-
curs and the entry is assigned the status of FAILURE.

When any of the above events causes the entry at
the front of the FCC queue to have status other than
PENDING, it is dequeued and Λ̄l is updated and com-
pared to η1. If Λ̄l ≥ η1, we halt testing for host l and
immediately conclude that l is infected. Dequeuing con-
tinues so long as Λ̄l < η1, the front entry of the FCC
queue has status other than PENDING, and the queue is
not empty.

3 Slowing Worm Propagation by
using Credit-Based Connection
Rate Limiting

It is necessary to limit the rate at which first-contact con-
nections can be initiated in order to ensure that worms
cannot propagate rapidly between the moment scanning
begins and the time at which the scan’s first-contact
connections have timed out and been observed by our
reverse sequential hypothesis test (

←−−
HT ).

Twycross and Williamson [28, 24] use a technique they
call a virus throttle to limit outgoing first-contact con-
nections. When observing a given host, their algorithm
maintains a working set of up to five hosts previously
contacted by the host they are observing. For the pur-
pose of their work, a first-contact connection is a con-
nection to a host not in this working set. First-contact
connections issued when the working set is full are not
sent out, but instead added to a queue. Once per sec-
ond the least recently used entry in the working set is
removed and, if the pending queue of first-contact con-
nection requests is not empty, a request is pulled off the
queue, delivered, and its destination address is added to
the working set. All requests in the queue with the same
destination address are also removed from the queue and
delivered.

Virus throttling is likely to interfere with HTTP con-
nection requests for inlined images, as many web pages
contain ten or more inlined images each of which is lo-
cated on a distinct peering server. While a slow but
bursty stream of requests from a web browser will even-
tually be released by the throttle, mail servers, web
crawlers, and other legitimate services that issue first-
contact connections at a rate greater than once per sec-
ond will overflow the queue. In this case, the virus throt-
tling algorithm quarantines the host and allows no fur-
ther first-contact connections.

To achieve rate limiting with a better false positive
rate we once again present a solution that relies on
the observation that benign first-contact connections are

likely to succeed whereas those issued by scanners are
likely to fail. This credit-based approach, however, is
unlike

←−−
HT in that it need not wait for a connection

to fail to take action. In fact, it need not even ob-
serve connection failure events. It can thus react very
quickly to increase the allowed first-contact connection
rate when these requests are benign. As importantly, it
will halt first-contact connections when behavior is sus-
picious, buying time for

←−−
HT to make a more informed

decision as to whether the host is infected.
Credit-based connection rate limiting, as summarized

in Figure 8 works by allocating to each local host, l,
a starting balance of ten credits (Cl ← 10) which can
be used for issuing first-contact connection requests.
Whenever a first-contact connection request is observed,
a credit is subtracted from the sending host’s balance
(Cl ← Cl − 1). If the successful acknowledgment of
a first-contact connection is observed, the host that
initiated the request is issued two additional credits
(Cl ← Cl + 2). No action is taken when connections
fail, as the cost of issuing a first-contact connection has
already been deducted from the issuing host’s balance.
Finally, first-contact connections are blocked if the host
does not have any credit available (Cl = 0).3

Event Change to Cl

Starting balance Cl ← 10
FCC issued by l Cl ← Cl − 1
FCC succeeds Cl ← Cl + 2
Every second Cl ← max(10, 2

3Cl) if Cl > 10
Allowance Cl ← 1 if Cl = 0 for 4 seconds

Figure 8: The underlying equations behind credit-based
connection rate limiting. Changes to a host’s balance
are triggered by the first-contact connections (FCCs) it
initiates and by the passing of time.

If a first-contact connection succeeds with probabil-
ity θ, its expected payoff from issuing that connection
is its expected success credit minus its cost, or 2θ − 1.
This payoff is positive for θ > 1

2 and negative otherwise.
Hosts that scan with a low rate of successful connections
will quickly consume their credits whereas benign hosts
that issue first-contact connections with high rates of
success will nearly double their credits each time they
invest them.

As described so far, the algorithm could result in two
undesirable states. First, a host could acquire a large
number of credits while performing a benign activity
(e.g. web crawling) which could be used later by a scan-
ning worm. Second, a network outage could cause a

3An alternative design that would be equally effective for TCP
connections is to continue to allow requests to be sent out, but
to block acknowledgments of these requests until deficits are paid.
This alternative solution offers reduced latency in return for more
queuing resources.
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benign host to use all of its credits after which it would
starve for a lack of first-contact connection successes.

These problems are addressed by providing each host
with a small allowance and by putting in place a high
rate of inflation. If a host has been without credits for
four seconds, we issue the host a single credit (Cl ← 1
if Cl ≤ 0). This not only ensures that the host does
not starve, but enables us to collect another observa-
tion to feed into our hypothesis test (

←−−
HT ). Because←−−

HT , as configured in Section 4, observes all first-contact
connection requests as successes or failures within three
seconds, providing a starving process with a credit al-
lowance only after more than three seconds have passed
ensures that

←−−
HT will have been executed on all previ-

ously issued first-contact connection requests. If
←−−
HT has

already concluded that the host is a worm, it is expected
that the system will be quarantined and so no requests
will reach their destination regardless of the credit bal-
ance.

For each second that passes, those hosts that have
acquired more than 10 credits will be forced to surrender
up to a third of them, but not so many as to take its
balance below 10 (Cl ← max(10, 2

3Cl) if Cl > 10). A
host that is subject to the maximum inflation rate, with
a first-contact connection rate r, success rate θ > 0, and
credit balance Cl,t at time t, will see this balance reach
an equilibrium state Ĉ when Ĉ = Cl,t = Cl,t+1.

Cl,t+1 =
2
3
(Cl,t + r · (2θ − 1))

Ĉ =
2
3
(Ĉ + r · (2θ − 1))

Ĉ =
2
3
Ĉ +

2
3
· r · (2θ − 1)

1
3
Ĉ =

2
3
· r · (2θ − 1)

Ĉ = 2 · r · (2θ − 1)

One can now see that we chose the inflation constant 2
3

to ensure that, in the upcoming second, a host that has a
perfect first-contact connection success rate (θ = 1) will
have twice as many credits as it could have needed in the
previous second. Also note that the maximum inflation
rate, which seems quite steep, is only fully applied when
Ĉ ≥ 15, which in turn occurs only when the first-contact
connection rate r is greater than 7.5 requests per second.
Twycross and Williamson’s virus throttle, on the other
hand, can only assume that any host with a first-contact
connection rate consistently greater than one request per
second is a worm.

The constant of 10 was chosen for the starting credit
balance (and for the equilibrium minimum credit bal-
ance for benign hosts with first-contact connection rates
below 5 requests/second) in order to match the require-

ments of our sequential hypothesis test (
←−−
HT ) as cur-

rently configured (see parameters in Section 4), which
itself requires a minimum of 10 observations in order to
conclude that a host is engaged in scanning. Slowing the
rate at which the first 10 observations can be obtained
will only delay the time required by

←−−
HT to conclude

that a host is engaged in scanning. Should the param-
eters of

←−−
HT be reconfigured and the minimum number

of observations required to conclude a host is a scanner
change, the starting credit balance for rate-limiting can
be changed to match it.

4 Experimental Setup

We evaluated our algorithms using two traces collected
at the peering link of a medium sized ISP; one collected
in April 2003 (isp-03) containing 404 active hosts and
the other in January 2004 (isp-04) containing 451 ac-
tive hosts. These traces, summarized in Table 1, were
collected using tcpdump.

Obtaining usable traces was quite difficult. Due to
privacy concerns, network administrators are particu-
larly loathe to share traces, let alone those that contain
payload data in addition to headers. Yet, this payload
data was required in order to manually determine which,
if any, worm was present on a host that was flagged as
infected.

isp-03 isp-04
Date 2003/04/10 2004/01/28

Duration 627 minutes 66 minutes
Total outbound 1,402,178 178,518connection attempts

Total active local host 404 451

Table 1: Summary of network traces

To best simulate use of our algorithm in a worm de-
tection system used to quarantine hosts, we only tested
local hosts for infection. Remote hosts were not tested.

In configuring our reverse sequential hypothesis test
(
←−−
HT ), first-contact connection requests were interpreted

as failures if they were not acknowledged within a three
second grace period. First-contact connection requests
for which TCP RST packets were received in response
were immediately reported as failure observations. Con-
nection success probabilities estimates were chosen to
be:

θ0 = 0.7 θ1 = 0.1

Confidence requirements were set to:

α = 0.00005 β = 0.99
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Note that these confidence requirements are for each
reverse sequential hypothesis test, and that a test is per-
formed for each first-contact connection that is observed.
Therefore, the false positive rate is chosen to be particu-
larly low as testing will occur many times for each host.

For each local host we maintained a Previously Con-
tacted Host (PCH) set of only the last 64 destination
addresses that each local host had communicated with
(LRU replacement). For the sake of the experiment,
a first-contact connection request was any TCP SYN
packet or UDP packet addressed to a host that was not
in the local host’s PCH set. While using a fixed sized PCH
set demonstrates the efficacy of our test under the mem-
ory constraints that are likely to occur when observing
large (e.g. class B) networks, this fixed memory usage
comes at a cost. As described in Section 6, it is possible
for a worm to exploit limitations in the working set size
in order to avoid having its scans detected.

For sake of comparison, we also implemented
Twycross and Williamson’s ‘virus throttle’ as described
in [24]. Since our traces contain only those packets seen
at the peering point, our results may differ from a virus
throttle implemented at each local host as Twycross and
Williamson recommend. However, because observing
connections farther from the host results in a reduction
in the number of connections observed, it should only
act to reduce the reported number of false positives in
which benign behavior is throttled.

All algorithms were implemented in Perl, and used
traces that had been pre-processed by the Bro Network
Intrusion Detection System [15, 14].

We did not observe FTP-DATA, finger, and IDENT con-
nections as these connections are the result of local hosts
responding to remote hosts, and are not likely to be ac-
cepted by a host that has not issued a request for such
a connection. These connections are thus unlikely to be
useful for worm propagation.

5 Results

Our reverse sequential hypothesis test detected two
hosts infected with CodeRed II [22, 5] from the April,
2003 trace (isp-03). Our test detected one host in-
fected with Blaster/Lovsan [6], three hosts infected
with MyDoom/Novarg [13, 23], and one host infected with
Minmail.j [7] from the January, 2004 trace (isp-04).
The worms were conclusively identified by painstakingly
comparing the logged traffic with the cited worm de-
scriptions at various online virus/worm information li-
braries. Our test also identified four additional hosts
that we classify as HTTP scanners because each sent
SYN packets to port 80 of at least 290 addresses within
a single class B network. These results are summarized
in Table 2.

isp-03 isp-04
Worms/Scanners detected

CodeRed II 2 0
Blaster 0 1
MyDoom 0 3

Minmail.j 0 1
HTTP (other) 3 1

Total 5 6
False alarms

HTTP 0 3
SMTP 0 3
Total 0 6

P2P detected 6 11
Total identified 11 23

Table 2: Alarms reported by reverse sequential hypoth-
esis testing combined with credit-based rate limiting.
The cause of each alarm was later identified manually
by comparing observed traffic to signature behaviors de-
scribed at online virus libraries.

isp-03 isp-04
Worms/Scanners detected

CodeRed II 2 0
MyDoom 0 1

HTTP (other) 1 1
Total 3 2

False alarms 0 0
P2P detected 2 3
Total identified 5 5

Table 3: Alarms reported by virus throttling

While peer-to-peer applications are not necessarily
malicious, many network administrators would be loathe
to classify them as benign. Peer-to-peer file sharing
applications also exhibit ambiguous network behavior,
as they attempt to contact a large number of transient
peers that are often unwilling or unavailable to respond
to connection requests. While peer-to-peer clients are
deemed undesirable on most corporate networks our ap-
proach might be enlisted to protect, it would be unfair
to classify these hosts as infected. For this reason we
place hosts that we detect running peer-to-peer appli-
cations into their own category. Even if detections of
these hosts are classified as false alarms, they number of
alarms is manageable.

Three additional false alarms were reported for three
of the 60 (isp-04) total hosts transmitting SMTP traf-
fic. We suspect the false alarms are the result of bulk
retransmission of those emails that have previously failed
when the recipients’ mail servers were unreachable. We
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Alarms Detection Efficiency Effectiveness←−−
HT 34 11 0.324 0.917
virus-throttling 10 5 0.500 0.417

Table 4: Composite results for both traces. A total of 7 HTTP scanning worms and 5 email worms were present.

CBCRL Virus Throttling
isp-03 isp-04 isp-03 isp-04

Worms/Scanners 5 1 3 4
P2P 4 8 3 7

Unnecessary rate limiting 0 0 84 59

Table 5: Comparison of rate limiting by Credit-Based Connection Rate Limiting (CBCRL) vs. a virus throttle.
Unnecessary rate limiting means that CBCRL dropped at least one packet from a host. For virus throttling, we
only classify a host as rate limited if the delay queue reaches a length greater than five.

suggest that organizations may want to white-list their
SMTP servers, or significantly increase the thresholds
required for detection.

The remaining three false alarms are specific to the
isp-04 trace, and resulted from HTTP traffic. It ap-
pears that these false alarms were raised because of a
temporary outage at a destination network at which
multiple remote hosts became unresponsive. These may
have included servers used to serve inlined images.

Upon discovering these failures, we came to realize
that it would be possible for an adversary to create web
sites that served pages with large numbers of inlined im-
age tags linked to non-responsive addresses. This would
enable a denial-of-service attack in which hosts that vis-
ited this web site would appear to be engaged in HTTP
scanning. It is therefore necessary for systems that quar-
antine hosts that appear to be scanning HTTP addresses
to provide a way for this quarantine to be deactivated.
We propose that HTTP requests from such hosts be redi-
rected to a site that uses a CAPTCHA (Completely Au-
tomated Public Turing Test to Tell Computers and Hu-
mans Apart [25]), to confirm that a user is present and
was using a web browser at the time of quarantine. In
this case, the host may be removed from the quarantine
state.

Results for our implementation of Twycross and
Williamson’s virus throttle [24] are summarized in Ta-
ble 3. Their algorithm blocked both instances of
CodeRed II, but failed to detect Blaster, three in-
stances of MyDoom (which is admittedly an email worm
and not an IP scanning worm), and two low rate HTTP
scanners. It did, however, detect one host infected with
MyDoom that

←−−
HT failed to detect. The virus throttle

also detected fewer hosts running peer-to-peer applica-
tions, which for fairness we classify as a reduction in
false alarms in virus throttling’s favor in our composite
results summarized in Table 4.

These composite results for both traces report the
number of hosts that resulted in alarms and the number
of those alarms that were detections of the 12 worms
located in our traces. We also include the efficiency,
which is the number of detections over the total number
of alarms, and the effectiveness, which is the total num-
ber of detections over the total number of infected hosts
we have found in these traces. While

←−−
HT is somewhat

less efficient than virus throttling, the more than two-
fold increase in effectiveness is well worth the trade-off.
In addition, corporate networks that forbid peer-to-peer
file sharing applications will see a two-fold increase in
efficiency.

Table 5 shows the number of hosts that had connec-
tion requests blocked by our credit-based algorithm and
the number of hosts that were rate limited by Twycross
and Williamson’s algorithm. For credit-based connec-
tion rate limiting, we say that a machine has been rate
limited if a single packet is dropped. For the virus throt-
tle, we say that a machine has been rate limited if the
outgoing delay queue length is greater than five, giving
Twycross and Williamson the benefit of the doubt that
users won’t notice unless connections are severely throt-
tled. Our credit-based algorithm only limited the rates
of hosts that our reverse sequential hypothesis test re-
ported as infected. In contrast, even given our generous
definition more than 10% of the hosts in both traces were
rate limited by Twycross and Williamson’s algorithm.

Table 6 reports the number of first-contact connec-
tions permitted by the two approaches for those scan-
ners that both detected. CodeRed II is a fast scanner,
and so virus throttling excels in blocking it after 6 to 7
connection requests. This speed is expected to come at
the price of detecting any service that issues high-rate
first-contact connections.

Reverse Sequential Hypothesis Testing with Credit-
Based Connection Rate Limiting detects worms after a
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←−−
HT with CBCRL Virus Throttling

CodeRed II 10,10 6,7
Other HTTP scanners 10,10 102,526

Table 6: The number of first-contact connections permitted before hosts were reported as infected. The value pairs
represent individual results for two different CodeRed II infections and two different HTTP scanners.

somewhat higher number of first-contact connections are
permitted (10), but does so regardless of the scanning
rate. Whereas our approach detects a slow HTTP scan-
ner after 10 first-contact connection requests, the virus
throttle requires as many as 526.

6 Limitations

Credit-Based Connection Rate Limiting is resilient to
network uplink outages as hosts starved for credits will
receive an allowance credit seconds after the network
is repaired. Unfortunately, this will be of little con-
solation as Reverse Sequential Hypothesis Testing(

←−−
HT )

may have already concluded that all hosts are scanners.
This may not be a problem if network administrators
are given the power to invalidate observations made dur-
ing the outage period, and to automatically reverse any
quarantining decisions that would not have been taken
without these invalid observations.

Of greater concern is that both Reverse Sequential
Hypothesis Testing and Credit-Based Connection Rate
Limiting rely exclusively on the observation that hosts
engaged in scanning will have lower first-contact connec-
tion success rates than benign hosts. New hypotheses
and tests are required to detect worms for which this
statistical relationship does not hold.

In particular, our approach is not likely to detect a
topological worm, which scans for new victim hosts by
generating a list of addresses that the infected host has
already contacted. Nor is our approach likely to detect
flash worms, which contain hit-lists of susceptible host
addresses identified by earlier scans.

Also problematic is that two instances of a worm on
different networks could collaborate to ensure that none
of their first-contact connections will appear to fail. For
example, if worm A does not receive a response to a
first-contact connection request after half the timeout
period, it could send a message to worm B asking it to
forge a connection response. This forged response attack
prevents our system from detecting connection failures.
To thwart this attack for TCP connections, a worm de-
tection system implemented on a router can modify the
TCP sequence numbers of traffic as it enters and leaves
the network. For example, the result of a hash function
h(IPlocal, IPremote, salt) may be added to all sequence
numbers on outgoing traffic and subtracted from all in-

coming sequence numbers. The use of the secret salt
prevents the infected hosts from calculating the sequence
number used to respond to a connection request which
they have sent, but not received. By storing the correct
sequence number in the FCC queue, responses can then
be validated by the worm detection system.

Another concern is the possibility that a worm could
arrive at its target already in possession of a list of known
repliers – hosts that are known to reply to connection re-
quests at a given port. This known-replier attack could
employ lists that are programmed into the worm at cre-
ation, or accumulated by the worm as it spreads through
the network. First-contact connections to these known-
repliers will be very likely to succeed and can be inter-
leaved with scans to raise the first-contact connection
success rate. A one to one interleaving is likely to en-
sure that more than half of all connections succeed. This
success rate would enable the scanner to bypass Credit-
Based Connection Rate Limiting, and delay detection by
Reverse Sequential Hypothesis Testing until the scanner
had contacted all of its known-repliers. What’s worse,
a worm could avoid detection altogether if the detection
system defines a first-contact connection with respect to
a fixed sized previously contact host (PCH) set. If the PCH
set tracks only the n previously visited hosts, the scanner
can cycle through (n/2) + 1 known-repliers, interleaved
with as many new addresses, and never be detected.4

A worm might also avoid detection by interleaving
scanning with other apparently benign behavior, such
as web crawling. A subset of these benign interleaving
attacks can be prevented by detecting scanners based
on the destination port they target in addition to the
source IP of the local host. While it is still fairly easy
to create benign looking traffic for ports such as HTTP,
for which one connection can lead to information about
other active hosts receptive to new connections, this is
not the case for ports such as those used by SSH.

Finally, if an infected host can impersonate other
hosts, the host could escape quarantine and cause other
(benign) hosts to be quarantined. To address these ad-
dress impersonation attacks, it is important that a com-
plete system for network quarantining include strong
methods for preventing IP masquerading by its local
hosts, such as switch level egress filtering. Host quar-

4For detecting such a worm, a random replacement policy will
be superior to an LRU replacement policy, but will still not be
effective enough for long known-replier lists.
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antining should also be enforced as close to the host as
is possible without relying on the host to quarantine it-
self. If these boundaries cannot be enforced between
each host, one must assume that when one machine is
infected, all of the machines within the same boundary
will also be infected.

7 Related Work

Like the sequential hypothesis test approach used here
and in our prior work, the TRAFEN [3, 2] worm de-
tection system also tries to detect worms by observing
failed connections. This distributed system identifies
failed connections by monitoring large networks for the
presence of ICMP messages. One problem with acting
on information at this level is that an attacker could
spoof source IP addresses used in connection requests,
exploiting the quarantining mechanism to deny service
to the hosts of its choice.

Our use of rate limiting in order to buy time to ob-
serve worm behavior was inspired by the virus throttle
presented by Twycross and Williamson [24], which we
described in detail in Section 3. Their algorithm re-
lies exclusively on the assumption that scanners initi-
ate first-contact connections at rates higher than benign
hosts. This is in contrast to our assumption that the
first-contact connections initiated by scanners are less
likely to succeed than those initiated by benign hosts.

While virus throttling has been shown to quickly de-
tect fast scanning worms, these worms are the simplest
to detect. Twycross and Williamson do not report the
rate of false positives that result in unnecessary throt-
tling (decreased performance) or blocking (quarantine),
as we have here. As is apparent from Section 5, throt-
tling is likely to delay HTTP clients, which commonly
initiate more than five connections at once to retrieve
inlined images stored at peering hosts, such as Akamai.
What’s more, their approach will not detect slow scan-
ners that issue first-contact connection requests at a rate
of once per second or less.

Williamson and Laeveillae [29] argue for the utility of
virus throttles by modelling the spread of viruses and
worms using an extension of Kephardt and White’s [9]
model. They then model throttling’s effect at slowing
the rate at which viruses propagate, but use the perilous
assumption that a machine that is throttled will spread
no infections.

We were also motivated by the work of Moore et
al. [12], who model attempts at containing worms us-
ing quarantining. They perform theoretical simula-
tions, many of which use parameters principally from
the CodeRed II [5, 22] outbreak. They argue that it
is impossible to prevent systems from being vulnerable
to worms and that treatment cannot be performed fast

enough to prevent worms from spreading, leaving con-
tainment (quarantining) as the most viable way to pre-
vent worm outbreaks from becoming epidemics.

Early work on containment includes Staniford et al.’s
work on the GrIDS Intrusion Detection System [21],
which advocates the detection of worms and viruses by
tracing their paths through the departments of an or-
ganization. More recently, Staniford [18] has worked
to generalize these concepts by extending models for
the spread of infinite-speed, random scanning worms
through homogenous networks divided up into ‘cells’.
Simulating networks with 217 hosts (two class B net-
works), Staniford limits the number of first-contact con-
nections that a local host initiates to a given destination
port to a threshold, T . While he claims that for most
ports, a threshold of T = 10 is achievable in practice,
HTTP and Kazaa are exceptions. In comparison, re-
verse sequential hypothesis detection reliably identifies
HTTP scanning in as few as 10 observations.

Also of interest is an approach by Zou et al. [30] that
advocates using a quarantine algorithm with a high false-
positive rate, but cycles hosts out of quarantine every
ten seconds to prevent starvation. Model-based simula-
tions are constructed using parameters generated from
the study of the Slammer [4] worm.

For a history and recent trends in worm evolution, we
recommend the work of Kienzle and Elder [10]. For a
taxonomy of worms and a review of worm terminology,
see Weaver et al. [27].

8 Future Work

The most obvious extension of our work is to apply our
algorithms to detect scanning at the resolution of the
local host (source address) and targeted service (des-
tination port), rather than looking at the source host
alone. Maintaing state tables indexed on both host and
target service requires more memory, but enables us to
overcome some of the limitations discussed in Section 6.

In addition, we would like to employ additional in-
dicators of infection to further reduce the number of
first-contact connection observations required to detect
a worm. For example, it is reasonable to conclude that,
when a host is deemed to be infected, those hosts with
which it has most recently initiated successful connec-
tions are themselves more likely to be infected (as was
the premise behind GrIDS [21]). We propose that this
be accomplished by integrating potential-infection event
observations into our existing hypothesis test.

9 Conclusion

When combined, credit-based connection rate limiting
and reverse sequential hypothesis testing ensure that

11
Latest draft: http://www.eecs.harvard.edu/~stuart/papers/scanworm.pdf

http://www.eecs.harvard.edu/~stuart/papers/scanworm.pdf�


DRAFT COPY — DO NOT DISTRIBUTE Submitted to RAID 2004

worms are quickly identified with an attractively low
false alarm rate. While no system can detect all pos-
sible worms, our new approach is a significant improve-
ment over prior methods, which detect a smaller range of
scanners and unnecessarily delay network traffic. What’s
more, the techniques introduced in this paper lend them-
selves to efficient implementation, as they need only be
activated to observe a small subset of network events
and require little calculation for the common case that
traffic is benign.
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A Optimizing the Computation
of Repeated Reverse Sequen-
tial Hypothesis tests

It is unnecessarily expensive to repeatedly recompute Λ
in reverse sequence each time a new first-contact con-
nection is observed. A significant optimization requires
that we maintain single state variable Λ̄, calculated it-
eratively in the order in which events are observed.

Λ̄(Yn) = max
(
1, Λ̄(Yn−1)φ(Yn)

)
Λ̄(Y0) ≡ 1.

We will prove that Λ̄(Yn) > η1 if and only if a re-
verse sequential hypothesis test starting backward from
observation n would lead to infection conclusion.

We first prove the following lemma stating that if a
reverse sequential hypothesis test reports an infection,
our optimized algorithm will also report an infection.

Lemma 1. For η1 > 1 and for mutually independent
random variables Yi,

∀m ∈ [1, n] : Λ(Yn, Yn−1, . . . , Ym) ≥ η1 ⇒ Λ̄(Yn) ≥ η1

Proof. We begin by replacing the Λ term with its equiv-
alent expression in terms of φ:

η1 ≤ Λ(Yn, Yn−1, . . . , Ym) (1)

≤
n∏

i=m

φ(Yi) (2)

We can place a lower bound on the value of Λ̄(Yn)
by exploiting the fact that, in any iteration, Λ̄ cannot
return a value less than 1.

Λ̄(Yn) = Λ̄(Y1, Y2, . . . , Yn)
≥ 1 · Λ̄(Ym, Ym+1, . . . , Yn)

≥
n∏

i=m

φ(Yi) ≥ η1

where the last inequality follows the steps taken in Equa-
tions (1) and (2).

Thus, Λ(Yn, Yn−1, . . . , Ym) ≥ η1 ⇒ Λ̄(Yn) ≥ η1.

We must also prove that our optimized algorithm will
only report an infection when a reverse sequential hy-
pothesis test would also report an infection. Recall that
a reverse sequential hypothesis test will only report an
infection if Λ exceeds η1 before falling below η0.

Lemma 2. For thresholds η0 < 1 < η1 and for mutually
independent random variables Yi, if Λ̄(Yi) ≥ η1 for some
i = n, but Λ̄(Yi) < η1 for all i ∈ [1, n − 1], then there
exists a subsequence of observations starting at observa-
tion n and moving backward to observation m ∈ [1, n]
for which Λ(Yn, Yn−1, . . . , Ym) ≥ η1 and such that there
exists no k in [m,n] such that Λ(Yn, Yn−1, . . . , Yk) ≤ η0

Proof. Choose m as the largest observation index for
which it held that:

Λ̄(Ym−2)φ(Ym−1) < 1

We know that m < n because Λ̄(Yn−1)φ(Yn) is
greater than η1 which is in turn greater than 1. Let
m = 1 if the above relation does not hold for any ob-
servation with index greater than 1. It follows that
Λ̄(Ym−1) = 1 and thus:

Λ̄(Ym) = φ(Ym)

Because we chose m such that Λ̄(Yj−2)φ(Yj−1) ≥ 1 for
all j > m:

Λ̄(Yn) =
n∏

j=m

φ(Yj)

= Λ(Yn, Yn−1, . . . , Ym)

Thus, Λ̄(Yn) ≥ η1 ⇒ Λ(Yn, Yn−1, . . . , Ym) ≥ η1.
To prove that there exists no k in [m, n] such that

Λ(Yn, Yn−1, . . . , Yk) ≤ η0, suppose that such a k exists.
It follows that:

n∏

j=k

φ(Yj) ≤ η0 < 1 (3)

Recall that we chose m to ensure that:

η1 ≤
n∏

j=m

φ(Yj)

The product on the right hand side can be separated
into factors from before and after observation k.

η1 ≤
k−1∏

j=m

φ(Yj) ·
n∏

j=k

φ(Yj)·

We then use Equation (3) to substitute an upper bound
of 1 on the latter product.

η1 ≤
k−1∏

j=m

φ(Yj)

η1 ≤ Λ̄(Yk−1)

This contradicts the hypothesis that Λ̄(Yi) < η1 for
all i ∈ [1, n− 1].

If we were concerned with being notified when the
test came to the ‘benign’ conclusion we could create an
analogous function Λ:

Λ(Yn) = min (1, Λ(Yn−1)φ(Yn))

The lemmas required to show equivalence and proof
are also analogous.
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