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Abstract— Current and next-generation wireless networks rely
on multi-user diversity and scheduling techniques (such as the
commonly used Proportional Fair (PF) algorithm) to achieve
greater system throughput and higher efficiencies for wireless
data applications over a time-varying wireless channel. In this
paper, we show that the variability of the inter-scheduling
intervals, as introduced by the PF scheduling algorithm, can have
adverse effects on TCP and its congestion control mechanism and
lead to spurious timeouts and unnecessarily low throughput. We
propose an enhanced scheduling algorithm that is explicitly tuned
towards throughput performance at the TCP layer. However this
algorithm does not use any explicit information from the TCP
layer and solely relies on information readily available at the link
layer at which the scheduler resides. The performance of this
improved algorithm is assessed through extensive simulations to
show an average TCP throughput improvement of 12% compared
to PF. In addition, the TCP-level fairness across all users is
increased as is the individual user throughput.

I. INTRODUCTION

Current wireless networks rely on multi-user diversity and
scheduling techniques to achieve greater system throughputs
for wireless data applications. One particularly attractive strat-
egy is to schedule data transmissions based on the relative
channel quality of the different users, while aiming for an
acceptable balance between system performance and fairness
among users. A well-known algorithm that achieves precisely
this objective is Proportional Fair (PF) which is, for example,
used in CDMA 1X EV-DO systems [1], [2]. The theoretical
performance of the PF algorithm is analyzed in [3], [4], [5],
[6] and references therein.

To our knowledge, most of the research work in the litera-
ture has focused on the multi-access-layer performance of the
PF algorithm in particular or scheduling algorithms in general.
However the impact of the scheduling algorithms on the end-
to-end performance (measured at the network and transport
layers) as experienced by the users’ applications is not well-
studied. The Transmission Control Protocol (TCP) [7] remains
the most widely used transport control protocol in the Internet
today, but the interaction between TCP and its congestion
control mechanism and the scheduling algorithm has not yet
been investigated. Our research shows that the scheduling
algorithm can induce significant inter-scheduling intervals and
highly varying packet transmission times. In fact the variability
of the packet transmission time is shown to be large enough to
cause spurious TCP timeouts, which unnecessarily trigger the
TCP congestion control mechanism and reduce its throughput.
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In this paper, we concentrate on the effect of PF on spurious
timeouts, but note that an additional consequence of a larger
packet delay variability is buffer overflow, which may lead to
further throughput degradations. We propose a new scheduling
algorithm that aims at controlling the variability of the inter-
scheduling interval. Besides avoiding TCP timeouts, a second
objective is to ensure that the TCP throughput as experienced
by each user is proportionally fair to the average channel
quality, thereby justifying the name of our proposed scheduling
algorithm as TCP Proportional Fair. We emphasize that we
do not allow for any information of the TCP layer to be
transmitted to the multi-access (MAC) layer (at which the
scheduling algorithm resides), but only rely on information
that is readily available at the MAC layer and from which
some of the relevant TCP parameters can be inferred. Of
course further improvements may be achieved if additional
cross-layer information were available. The new algorithm
is motivated by analytical calculations of a queuing model
with vacations [8], [9] that captures the essential effects
of scheduling algorithms. Extensive simulations confirm the
merits of our enhanced scheduling algorithm.

The remainder of the paper is organized as follows. In
Section II we provide further motivation for our enhanced
algorithm after investigating the impact of PF at the TCP
layer. Section III presents our enhanced scheduling algorithm.
Numerical results and some discussions are presented in
Section IV. Conclusions follow in Section V.

II. SPURIOUS TIMEOUTS WITH PROPORTIONAL FAIR

In this section, we investigate the PF algorithm in greater
detail by specifically concentrating on the resulting variability
of the inter-scheduling intervals experienced by the users.
Before we proceed, we briefly summarize the operations
performed by the traditional PF algorithm [6]. The system
is time-slotted and in time slot n, each user i reports the
maximum value of the feasible transmission rate Ri[n] (in
bits/sec). The scheduler then determines the user with the
largest scheduling metric calculated as:

M
(MAC−PF )
i [n] =

Ri[n]
Ai[n − 1]

, (1)

where Ai[n] is the smoothed average throughput (in bits/sec)
of user i up to time slot n and is calculated as:

Ai[n] = ω δi[n]Ri[n] + (1 − ω)Ai[n − 1], (2)

where ω is a tunable parameter and is typically taken as ω =
1

1000 [2] and δi[n] = 1 if user i is scheduled in slot n and
δi[n] = 0 otherwise.

As an example to motivate our work, we consider a single
base station serving 21 users randomly located in a cell of
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Fig. 1. Evolution of TCP congestion window under Proportional Fair.

radius 2 km and a slot duration of 5 msec. Fig. 1 shows the
evolution of the TCP congestion window and the packet and
acknowledgement indices over time when users are scheduled
according to the PF algorithm. We also included the scheduling
instants and an indication of when a frame error is recorded
(for example at time 7 sec). This plot clearly exhibits that a
scheduling gap on the order of 2 seconds is experienced which
is significant enough to cause TCP to timeout. Since no frame
errors are recorded at that time, and since we consider infinite
buffers to avoid buffer overflow, the observed effects are solely
due to the scheduling jitter.

TCP at the server recognizes the MAC scheduling delay
spike as an instance of network congestion where all out-
standing packets i.e. packets numbered from 176 to 270,
are lost. Unaware that these packets are waiting at the base
station MAC buffer, TCP times out (at time 4.6), reduces its
congestion window to 1 and retransmits packets 176 to 270.
Since the base station and the MAC layer do not have any ca-
pability to distinguish duplicate TCP packets, this unnecessary
retransmission further degrades the throughput performance.
TCP at the sender receives duplicate acknowledgments during
time 9.4 and 14.8 due to duplicate packets, interprets them
as a sign of packet loss and triggers the congestion control
procedures to recover the packets presumed lost. This yields
additional duplicate packets and leads to another TCP timeout
at time 11.2. In summary, for a relatively long time after the
initial delay spike, TCP continues to experience congestion
and timeouts due to duplicate packet transmissions.

These results motivate the search for more efficient schedul-
ing algorithms that control the variability of the inter-
scheduling intervals. The spurious timeouts lead to TCP
throughput degradation through unnecessary packet retrans-
missions. Hence the TCP layer throughput is no longer
proportional to the MAC layer throughput and hence is not
proportional to the user’s channel condition, as desired by the
PF algorithm. A second objective of our enhanced scheduling
algorithm therefore is to achieve proportional fairness between
the users at the TCP layer in a similar way that PF achieves
proportional fairness at the MAC layer at which the scheduler
operates.

III. SCHEDULING ALGORITHM FOR TCP PERFORMANCE

In this section, we describe the details of our new scheduling
algorithm, called TCP Proportional Fair (TCP-PF) algorithm.
We calculate the average packet delay using a queuing-
theoretic model for a system with batch arrivals and server
vacations. We show how the derived expression for the average
packet delay is used to determine the new scheduling metric
for TCP-PF. Finally we provide the details of how TCP-PF
can be implemented in recursive fashion in a practical system.

A. Theoretical Foundation of TCP-PF Algorithm

If the objective of PF is to make the MAC layer throughput
proportional to the average user channel condition, our ob-
jective for the enhanced scheduler can be viewed as ensuring
that the TCP layer throughput is proportionally fair. Thus, by
analogy with the metric in (1), the user to be scheduled in any
given time slot should be chosen as the user that maximizes
the scheduling metric:

M
(TCP−PF )
i [n] =

Ri[n]
Γi[n − 1]

, (3)

where Γi[n] is the smoothed average TCP throughput of user
i at time slot n. In general it is very difficult to get an
accurate expression for the TCP throughput as it depends
on the dynamics of the congestion control mechanism, the
round trip time (RTT) and its interaction with the lower layer
protocols. However, for long-lived TCP flows, the through-
put may be quite closely approximated as the ratio of the
congestion window size to the average RTT. The congestion
window is taken to be proportional to the MAC layer through-
put Ai. This approximation is justified since a larger MAC
throughput translates into a larger number of packets sent
and acknowledgements received by the sender and therefore
results in a greater increase in the TCP congestion window.
The proportionality factor is assumed to be the same for all the
users and therefore does not influence the scheduling metric.
On the other hand, the RTT experienced by a TCP packet is the
sum of several components, including the waiting, scheduling
and transmission time of the packet over the air interface,
processing and buffering delays in the backhaul network and
at the TCP sender as well as delays in the wired network. The
latter components are not easily estimated, but can be assumed
to be relatively small compared to the delays incurred in the
wireless part of the network. This is especially true since the
air interface continues to be the bottleneck link in the network.
Hence we identify the average RTT Tp experienced by a packet
with the waiting and scheduling time in the transmission queue
and the transmission time over the air.

In order to calculate the total packet system time, we
consider an expanded M/G/1 queuing model [8], [9]. Specif-
ically, the main idea is to consider that, when the scheduler
allocates its resources to other users, the server takes a
vacation for user i. Packets arrive according to a Poisson
process of rate λp packets/sec. Each packet actually contains a
batch of a random number of K segments, with mean K and
second moment K2 (modelling the fragmentation of a TCP
packet by the lower layers). The service time of a segment
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is assumed to have a general distribution of mean X and
second moment X2. However in addition, we assume that,
after serving a segment, the server takes a vacation, with mean
V and second moment V 2. We assume that all service times
and vacations are independent and identically distributed. The
total system time Tp(i) of the i-th packet is then given by:

Tp(i) = S(i) +
N(i)+K(i)−1∑

j=1

[X(j) + V (j)] + X(i), (4)

where S(i) is the residual service time required by the server
to finish the service of the segment currently being served
or an associated vacation. N(i) is the number of segments
waiting in queue when segment i arrives. K(i) is the number
of segments in the batch (i.e. in packet) i. X(j) and V (j) are,
respectively the service time of segment j and the vacation
taken by the server after service to segment j. Upon taking
expectations in (4) and using the independence of the number
of packets in the queue and the service times, the average
packet system time in steady state is given by:

Tp = S + Ns

(
X + V

)
+

(
K − 1

) (
X + V

)
+ X. (5)

Returning to the derivation of the scheduling metric, we now
have that the our enhanced scheduling metric chooses the user
with the largest value of:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

Ti[n], (6)

where Ti[n] is the average system time of a packet of user i
as estimated at time n. The remaining difficulty is to compute
the packet waiting time in (5) using only information that
is available at the MAC layer without explicit information
transfer between the MAC and the TCP layers. The average
residual time S may be calculated using similar arguments to
the ones in [8]:

S =
1
2

ρ
(X + V )2

X + V
+

1
2

(1 − ρ)
V 2

V
, (7)

where the utilization factor ρ is calculated as ρ =
λp K

(
X + V

)
. If all users are assumed to be statistically

identical and always have traffic to send, it can be expected that
all users receive equal service time from the server (asymp-
totically this result has been shown for the PF scheduling
algorithm [5]) and therefore we approximate a vacation as
a sum of M − 1 service times. Thus it is easily seen that
V = (M − 1)X . Similarly, a few steps of algebra show that:

(X + V )2 =
M

M − 1

[
V 2 +

1
M − 1

V
2
]

. (8)

Upon substitution into (7), we obtain that:

S =
1
2

ρ
V 2 + 1

M−1 V
2

V
+

1
2

(1 − ρ)
V 2

V
, (9)

� 1
2

V 2
i

Vi

, (10)

where the last approximation is valid when the number of
users M in the system is large. We have also made the
dependency on user i more explicit. The term Ns

(
X + V

)

in (5) represents the total average time required to transmit
all the segments in the buffer and may be approximated by
the ratio of the average queue size Qi (in bits) at the MAC
layer to the average achieved MAC throughput Ai (in bits/sec).
In other words we approximate Ns

(
X + V

)
by Qi

Ai
. Note

that both quantities are available to the scheduler. The term(
K − 1

) (
X + V

)
may be ignored, especially if the average

number of segments in the buffer is larger than the number
of segments per TCP packet, as is typically the case in a
reasonably loaded system. Finally the average transmission
time of a segment X can be neglected compared to the average
vacation time (again in the limit of a large number of users in
the system). Thus the scheduling metric in (6) becomes:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

[
1
2

V 2
i

Vi

+
Qi

Ai

]
. (11)

We emphasize that the above scheduling metric can be
viewed as an extension of the PF scheduling metric with a
correction term related to the first and second moments of
the inter-scheduling intervals and the expected transmission
time to transmit all the data in the queue. Another physical
interpretation is that the additional factor gives priority to
users whose packets have experienced long waiting times, as
a means to avoid TCP timeouts.

B. Implementation of TCP-PF Scheduling Algorithm

We now show how the different quantities in (11) are
computed in a recursive and on-line fashion, solely based on
readily available information at the MAC layer. The smoothed
average throughput is calculated in (2). The average queue size
(in bits) of user i is similarly calculated:

Qi[n] = ω qi[n] + (1 − ω)Qi[n − 1], (12)

where qi[n] is the value of the queue of user i in time slot
n. The exponential weighting factor ω is the same as for the
tracking of the average MAC throughput as we would like to
compute both quantities using the same time scales. Let nj

i

be the time (or equivalently the slot index) in which the j-th
transmission for user i was scheduled and define the inter-
scheduling interval as:

φj
i = nj+1

i − nj
i . (13)

Whenever user i is scheduled for transmission, the smoothed
values of the mean Φi and the second moment Σi of the inter-
scheduling intervals are updated as follows:

Φj
i = α φj

i + (1 − α)Φj−1
i , (14)

Σj
i = β

(
φj

i

)2

+ (1 − β)Σj−1
i , (15)

where α and β are tunable parameters (between 0 and 1) to
control the time scales over which the respective quantities
are averaged. Our numerical experience reveals that, α should
be chosen relatively small to capture the long term effects
of the average inter-scheduling times. Typically α = 0.1. On
the other hand, the preferred value of β is larger (typically
taken as β = 0.5) to better capture the system dynamics
and reflect the instantaneous changes of large inter-scheduling
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intervals. The above calculations are only performed in a slot
n in which user i is scheduled, and are updated after the
scheduling decision has been made. In addition in every slot,
the following calculations are performed before making the
scheduling decision. We calculate the elapsed time since each
user was last scheduled, which would correspond to the inter-
scheduling interval if the user were scheduled in the current
slot. Let ni,last be the last slot in which user i was scheduled:

φ̂i[n] = n − ni,last. (16)

We now update the first and second moments of the inter-
scheduling intervals for each user, as if that user were sched-
uled in the current slot. Specifically:

Φ̂i[n] = α φ̂i[n] + (1 − α)Φj
i , (17)

Σ̂i[n] = β
(
φ̂i[n]

)2

+ (1 − β)Σj
i , (18)

where Φj
i and Σj

i are the current smoothed first and second
moments of the inter-scheduling intervals for user i and j is the
index indicating how many times user i has been scheduled.
Using the expressions in (12), (17) and (18) to track Qi, Vi

and V 2
i , respectively, and approximating Ai by Ai[n− 1], the

new scheduling metric in (11) becomes:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

[
1
2

Σ̂i[n]
Φ̂i[n]

+
Qi[n]

Ai[n − 1]

]
. (19)

The scheduling metric in (19) differs from the original PF
metric only by the extra factor in brackets, which is used to
approximate the average RTT for the TCP performance.

IV. NUMERICAL RESULTS

In this section, we compare the performance of our im-
proved algorithm to that of PF using the Opnet network
simulation tool [10] to simulate a network consisting of a
radio network controller, a base station and mobile terminals.
Packet flows between the application server and the base
station experience a fixed one-way delay of D = 20 msec. For
simplicity we assume that the uplink channel operates at 64
kbps and 0% frame error rate. The simulated system consists
of 21 users uniformly and randomly placed in a cell of radius
2 km and we simulate a typical driving speed of 30 km/h.
The channel encounters frequency-flat fading and the channel
estimation noise is modelled as additive white Gaussian noise
with zero mean and 0.5 dB variance. Jakes model with Doppler
spread corresponding to the chosen speed at a 2 GHz carrier
frequency was used to simulate the Rayleigh fading. The
transmission rate set consists of the following rates: 320 kbps,
480 kbps, 640 kbps, 1.28 Mbps, 1.92 Mbps and 2.56 Mbps.
The rate Ri[n] for user i in time slot n is selected based
on SINR feedback in slot n and 1% FER requirement. Each
user runs FTP over TCP/IP, requesting a file of 700 kbytes
and the simulation time is 25 seconds for each chosen set of
user locations. The version of TCP used is TCP Reno and
the TCP packet length is fixed at 536 bytes. The granularity
of the retransmission timer is chosen to be 200 msec with a
minimum value of 250 msec. Finally the maximum window
size is set to 64 kbytes in all of our simulations.
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Fig. 2. Evolution of TCP congestion window under TCP-PF.

In Fig. 2, we show the evolution of the congestion window
under TCP-PF for the same user in the same time interval
as shown in Fig. 1 for PF. We note that TCP-PF does
indeed eliminate the timeout occurrence and provides a steady
transmission of TCP packets. The evolution of the congestion
window is much smoother and the congestion avoidance is
not unnecessarily triggered. In addition to the PF, the Round
Robin (RR) and the enhanced TCP-PF algorithm, we have
also considered two other algorithms. The first such algorithm,
called TCP-MAX is based on the scheduling metric:

M
(TCP−MAX)
i [n] = Ri[n]

[
1
2

Σ̂i[n]
Φ̂i[n]

+
Qi[n]
Ai[n]

]
. (20)

This algorithm attempts to maximize the total system
throughput as measured at the TCP layer. A second scheduler
based only on the instantaneous transmission rate Ri[n] at-
tempts to maximize the MAC layer throughput, and is denoted
by MAX in the remainder of the paper. In Fig. 3, we show
the cumulative distribution function (cdf) for the total system
throughput achieved by the different algorithms (for different
simulation runs). As expected, TCP-MAX achieves a larger
TCP throughput than TCP-PF, although the performance dif-
ference is not that significant. However the important result is
that the throughput achieved by TCP-PF is significantly larger
than that of PF (by an average of about 12%). The plot also
shows that the TCP throughput achieved by MAX is severly
degraded, although this algorithm achieves the largest MAC-
layer throughput. The reason for this performance degradation
is that the algorithm tends to only schedule users with good
average channel conditions. Users in relatively poor conditions
are only scheduled when they experience large channel fluctua-
tions due to fast fading effects. However these fluctuations may
not last long enough to allow a user to complete a successful
packet transmission. The consequence is that the number of
TCP timeouts is greatly increased, hence leading to very low
TCP throughput. Finally we point out that TCP-PF largely
outperforms RR, which leads us to conclude that TCP-PF does
not blindly reduce the inter-scheduling intervals, but remains
aware of the relative strengths of the users’ channel conditions
and finds a good compromise between multi-user diversity and
variability of inter-scheduling intervals.

Nevertheless Fig. 3 only gives a partial analysis of the
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performance of the algorithms. In Fig. 4, we show the cdf
of the TCP throughput achieved by the individual users. We
conclude that TCP-PF improves the throughput performance
of the ”high-end” users, while not degrading that of the ”low-
end” users. This is in stark contrast to the MAX and TCP-
MAX algorithms that attempt to maximize the total system
throughput at the expense of the users in relatively poor
channel conditions.
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Fig. 3. CDF of TCP system throughput for different scheduling algorithms
over 50 simulation runs.
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We now provide evidence that TCP-PF does in fact achieve
proportional fairness at the TCP layer, as set forth as an
objective for our proposed algorithm. It is well-known [6]
that PF is the algorithm that maximizes the objective function∑M

i=1 log {Ai}, where Ai denotes the MAC-level throughput
of user i. Thus we may consider the following metric to
evaluate the TCP-level fairness of our algorithms:

Fsys =
1
M

M∑
i=1

log {Γi} (21)

where Γi (in kbytes/sec) denotes the achieved TCP throughput
of user i. The larger the metric, the closer the corresponding
algorithm is deemed to achieve proportional fairness. In Fig.
5, we show the cdf of the fairness metric in (21), where the
cdf is again taken over different simulation runs. We confirm
that TCP-PF achieves the largest fairness metric among all
algorithms.
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Fig. 5. CDF of the system fairness metric for different scheduling algorithms
over 50 simulation runs.

In summary, TCP-PF greatly increases the system through-
put compared to PF as well as the system fairness. However
it is especially noteworthy that the increased system fairness
in Fig. 5 is not achieved at the expense of the overall system
throughput (as is evidenced by the fact that TCP-PF performs
very closely to TCP-MAX in Fig. 3).

V. CONCLUSIONS

We have investigated the impact of the Proportional Fair
scheduling algorithm on the performance of TCP. In particular
it is demonstrated that the scheduling algorithm can lead to
significant inter-scheduling intervals which may cause spuri-
ous TCP timeouts and falsely trigger the congestion control
mechanism. An enhanced scheduling algorithm is proposed
that alleviates these problems, avoids unnecessary TCP time-
outs and consequently achieves greater TCP throughput. In
addition, the enhanced algorithm provides a greater degree
of fairness at the TCP layer. Finally, due to the recursive ex-
pressions, the algorithm is easily implemented without explicit
information from the TCP layer, but only relies on information
readily available at the multi-access layer.
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