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Abstract. Internet routing dynamics have been extensively studied in the past 
few years. However, dynamics such as interdomain Border Gateway Protocol 
(BGP) behavior are still poorly understood. Anomalous BGP events including 
misconfigurations, attacks and large-scale power failures often affect the global 
routing infrastructure. Since anomalous BGP events often cause major 
disruptions in the Internet, the ability to detect and categorize such events is 
extremely useful. In this article we present a novel anomaly detection technique 
for interdomain routing exchanges that distinguishes between different 
anomalies in BGP traffic. This technique is termed Higher Order Path Analysis 
(HOPA) and focuses on the discovery and analysis of patterns in higher order 
paths in supervised learning datasets. Our results indicate that not only worm 
events but also different types of worms as well as blackout events may be 
separable. This novel approach to supervised learning has potential applications 
in cybersecurity, cyberforensics, and text/data mining in general. 
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1   Introduction 

Within the last few years, internet routing dynamics have been extensively studied 
[1], [2], [3], [4]. However, inter-domain routing dynamics such as Border Gateway 
Protocol (BGP) activities are still poorly understood. Abnormal BGP events including 
misconfigurations [5], attacks [6], and large-scale power failures [7] often affect 
global routing infrastructure. For example, in January 2003, the Slammer worm 
caused a surge of BGP updates [8]. In August 2003, the East Coast electricity 
blackout affected 3175 networks and many BGP routers were shut down [9]. Since 
BGP anomaly events often cause major disruptions in Internet, the ability to detect 
and categorize BGP events is extremely useful. BGP is also very vulnerable to 
malicious attacks. On May 7th, 2005, an AS falsely claimed to originate Google’s 
prefix [32] and parts of the Internet could not reach Google’s search engine for 
roughly an hour as traffic was misdirected to the attacking AS. Thus, techniques that 
can detect and mitigate against such attacks will ensure continuous access to Internet.  

In this article we propose a novel data mining approach termed Higher Order Path 
Analysis (HOPA) that distinguishes different anomalous events in BGP traffic. HOPA 
focuses on discovering higher-order link patterns in data based on co-occurrence 
relationships between entities. In this context, a higher-order link can be represented 
as a chain of co-occurrences of entities in different records as seen in figure 1. We 



also refer to such a link as a higher-order path. Given a supervised learning dataset 
(i.e., labeled training data), we attempt to discover patterns in sets of higher-order 
links that distinguish between the classes in the labeled data. 

e1 e2R1

e2 e3R2

e3 e4R3  

Figure 1: Higher-order path as a chain of co-occurrences 

The work in [10] has some similarity with ours. Both employ co-occurrence as the 
relationship between entities and concentrate on the higher order co-occurrence 
relations or paths. The order of the relation (i.e., the length of the path) ranges from 
second order (e.g., as in [11]) on up. The approach in [10], however, is focused on 
discovering significant paths between entities such as a link between two terrorism 
suspects. In contrast, our approach focuses on discovering patterns in sets of the 
higher-order links themselves. In other words, we study the characteristics of sets of 
higher-order paths with the overall goal of performing classification of labeled 
instances based on the characteristics of these higher-order path sets. The effort 
discussed in [12] employs a supervised machine learning algorithm and labeled 
training data. Our work is similar in that we also employ labeled training data. The 
goal in [12] however is to learn higher-order link rules; i.e., rules that are themselves 
higher-order links between sets of entities. In contrast, as noted our goal is to discover 
the characteristics of sets of higher-order paths with the goal of leveraging these 
characteristics in classification. Naturally, such a technique would have wide 
application in supervised machine learning, including the link analysis research field.  

Our results are based on a set of BGP data extracted from the RouteViews archive 
[13]. Our target is to characterize and distinguish different anomalous BGP events 
such as worm attacks (e.g., slammer, witty) and power failures. 

The rest of the article is organized as follows: in Section 2 we briefly review 
related work. In Section 3, we present our approach followed by results in Section 4 
and discussion in Section 5. Section 6 outlines some interesting research issues that 
we wish to explore in future work, and our conclusions are drawn in Section 7. 

2   Related Work 

Anomaly Detection In [15] the authors use attributes derived from BGP traffic to 
detect internet routing anomalies. They use data mining techniques, in particular a 
decision tree machine learning algorithm, to train a model using labeled data. The 
authors extract abnormal events from the RouteViews [13] archive and process it to 
reflect the counts of different types of BGP messages using one minute bins. This 
model consists of rules learned, and is used to detect occurrences of abnormal events. 
Basically their system can distinguish between two classes – worm and normal – but 
cannot differentiate between different types of worms. Several other efforts have been 
undertaken in [28], [29], [30] and [31] of a similar nature. [30] proposes two 
approaches, signature based and statistics-based detection. [31] employs wavelets and 
k-means clustering to build an instance-learning framework that identifies anomalies 
for a given prefix as well as across prefixes. Most of these efforts follow the same 



basic steps: first the system is trained using non-event data, then the system examines 
test data and flags anomalies. Our approach differs in the sense that we characterize 
anomalous events and use models of these anomalous events to classify test data. 
Since our goal was to distinguish between different types of worm attacks, we 
focused on the data set used in [15]. 

Higher Order Co-Occurrence Higher order co-occurrence is closely related to 
our HOPA technique. In our previous work in [17], we proved mathematically that 
Latent Semantic Indexing (LSI), a well-known approach to information retrieval, 
implicitly depends on higher-order co-occurrences. We also demonstrated empirically 
that higher-order co-occurrences play a key role in the effectiveness of systems based 
on LSI. LSI can reveal hidden or latent relationships among terms, as terms 
semantically similar lie closer to each other in the LSI vector space. This can be 
demonstrated using the LSI term-term co-occurrence matrix. Let’s assume a simple 
document collection where D1 is {human, interface} and D2 is {interface, user}. 
Clearly the terms “human” and “user” do not co-occur in the co-occurrence matrix of 
this simple two-document collection. After applying LSI, however, the reduced 
representation co-occurrence matrix may have a non-zero entry for “human” and 
“user” thus implying a similarity between the two terms. This is an example of 
second-order co-occurrence; in other words, there is a second-order path between 
“human” and “user” through “interface.” In a related effort in [18], Edmonds uses 
higher order co-occurrence to solve a component of the problem of lexical choice, 
which identifies synonyms in a given context. In another effort, Zhang et al. [19] use 
second-order co-occurrence to improve the runtime performance of LSI. Second- and 
higher-order co-occurrence has also been used in a number of other applications 
including word sense disambiguation [20] and in a stemming algorithm [21]. 

Algorithms in Higher Order Path Analysis One of the challenges facing us in 
this work is the complexity of enumerating the various higher-order paths. In this area 
too, fortunately, there has been prior work on which we can build. In [22] Galil 
surveys techniques used for designing efficient algorithms for finding a maximum 
cardinality or weighted matching in (general or bipartite) graphs. For a bipartite graph 
G = (V, E), perfect matchings are defined as matchings such that all vertices are 
incident to some matching edge. On the other hand, maximum matchings are defined 
as matchings whose cardinalities are maximum among all matchings, and maximal 
matchings are matchings which are contained in no other matching. In [23], Uno 
propose efficient algorithms for enumerating chordless s-t paths and cycles of a given 
graph G = (V, E). An algorithm taking O( |E| ) time for each chordless cycle is 
proposed. The performance of the algorithm is evaluated by computational 
experiments for random graphs, and showed that the computation time is constant per 
chordless cycle for not so dense random graphs. For the s-t paths this algorithm takes 
O( |V| |E| ) time for each path. Additionally, in his other work, Uno [24] presents 
enumerating algorithms for perfect, maximum and maximal matchings in a bipartite 
graphs G = (V1 U V2, E). An algorithm that has a time complexity of O( | V1 U V2| ) 
per matching is proposed for maximum matchings in bipartite graphs. 

3   Approach 

We focus on discovering higher-order link patterns in BGP traffic based on higher-
order associations between elements of data termed entities. In this context, entities 



can be aggregate counts of announce or withdraw BGP updates, and a higher-order 
link is represented as a chain of co-occurrences of such entities in different snapshots 
of BGP traffic taken over time. As noted we also refer to such a link as a higher-order 
path. Given a supervised learning dataset (i.e., labeled training data), we attempt to 
discover patterns in sets of higher-order links that distinguish between the classes in 
the labeled data. As such, our approach is a supervised learning technique. 

Our definition of a higher-order path is similar to that found in graph theory, which 
states that given a non-empty graph G = (V, E) of the form V = {x0, x1, … , xk }, E = 
{ x0x1, x1x2, …, xk-1xk } with nodes xi distinct, two vertices xi and xk are linked by a 
path P where the number of edges in P is its length. Such a path is often referred to by 
the natural sequence of its vertices x0x1…xk [25]. Our definition of a higher-order 
path differs from this in a couple of respects. First, vertices V = {e0, e1, …, ek} 
represent entities, and edges E = {r0, r1, …, rm} represents records, documents or 
instances. Several edges may exist between given entities. Finally and most 
importantly, in a higher-order path both vertices and edges must be distinct. Figure 2 
gives an example of several higher-order paths such as e1-r1-e2, e2-r2-e3-r3-e4, e2-r1-e4, 
etc. We are interested in enumerating all such paths.  

 
Figure 2: An example of higher-order paths with multiple edges between vertices 

It is not straightforward, however, to represent higher-order paths in conventional 
graph structures. In order to use conventional graph structures and algorithms, we 
have divided the above representation into two graph structures. First, we form a co-
occurrence graph Gc = (V, E) in which the vertices are the entities and there is an edge 
between two entities if they co-occur in one or more records. A path (length ≥ 2) 
extracted from Gc satisfies the first requirement of our higher-order path definition 
since the vertices in this path are distinct. The second requirement entails that records 
on a path must be distinct, and another data structure that contains lists of records for 
each edge is needed. We term this structure a path group. 

Figure 3: Process of getting a higher-order path from a co-occurrence graph via path group 
structure and a maximum matching of the bipartite graph representation of it. 

 
Using the path group representation it is possible to satisfy the second requirement 

of our higher-order path definition. In effect, we need to identify the system of 
distinct representatives (SDR) for the path group. Each distinct representative in the 
path group corresponds to a higher order path. In order to enumerate all the distinct 



representatives in a given path group, a bipartite graph Gb = (V1 U V2, E) is formed 
such that V1 is the sets of records (S1, S2,…) in a given path group and V2 is the 
records themselves. A maximum matching with cardinality |V1| in this bipartite graph 
yields the SDR for the higher order path. This process is summarized in figure 3 
where we can see an example 2nd order path group that is extracted from the co-
occurrence graph Gc. This particular 2nd order path group includes two sets of records: 
S1={1,2,5} and S2={1,2,3,4}. S1 corresponds to the records in which e1 and e2 co-
occur, and S2 is the set of records in which e2 and e3 co-occur. As noted, path group 
may be composed of several higher-order paths. In the third diagram in figure 3, a 
bipartite graph Gb = (V1 U V2, E) is formed where V1 is the two sets of records and V2 
is the all records in these sets. Enumerating all maximum matchings in this graph 
yields all higher-order paths in the path group. The fourth diagram in figure 3 shows 
one of the many paths in this path group. Edge labels R1 and R3 are records in S1 and 
S2, and the path corresponds to a maximum matching in the bipartite graph. 

Our goal is to characterize the set of higher-order paths – in other words, we are 
seeking patterns in the higher-level path data itself. As a result, we need to enumerate 
the paths in a given dataset. This required the development of special data structures, 
and we based our implementation on the Text Mining Infrastructure (TMI) developed 
in our Parallel and Distributed Text Mining Lab [26]. The TMI is an open-source 
framework designed for high-end, scalable text mining, and aims to provide a robust 
software core for research and development of text mining applications. The TMI has 
an inverted index class that provides an easy and efficient way to extract co-
occurrence relations between entities. Algorithms 1 through 3 below summarize our 
approach to enumerating higher order paths. 

Algorithm 1. (ENUMERATING HIGHER-ORDER PATHS) 
EnumHOPaths ( dataset, order ) 

1. G � co-occurrence graph of dataset 
2.  EnumPathGroups ( G ) 
3. for i = 1 to order do 
4.   read paths groups of given order from file 
5.   for j = 1 to numPathGroups do 
6.     form bipartite graph of pathGroup[j] 
7.     enumerate and output all maximum matchings in this bipartite graph  

Algorithm 2. (ENUMERATING ALL PATH GROUPS IN G) 
EnumPathGroups ( G ) 

1. for i = 1 to numNodes do 
2.   for j = i to numNodes do 
3.     vi � ith node of G 
4.     vj � jth node of G 
5.     Enumerate and FormPathGroup( path ) all paths between vi and vj  

Algorithm 3. (FORMING A PATH GROUP GIVEN A PATH FROM G) 
FormPathGroup ( path ) 

1. for a = 2 to pathLength do 
2.   form set of records in which va-1 and va co-occur 
3.   output path group to file 

For performance reasons, we implemented our own method to discover frequent 
itemsets in the higher-order paths. However, our definition of frequent itemsets is a 



bit different from the standard definition used in association rule mining. Itemsets in 
our framework are ordered, and must appear in order in a given supporting path. 
Additionally, the items (entities) in an itemset must be adjacent in the higher-order 
path. During computational enumeration of the paths, statistics are gathered. 
Specifically, in order to characterize a given set of records/instances, we compute 
frequencies of the various second- and higher-order itemsets in the set of all higher-
order paths generated from the set of instances. When dealing with labeled training 
data used in supervised machine learning, we divide the instances by class and then 
characterize the resulting sets by higher-order itemset frequencies. The end result is a 
distribution of itemset frequencies for a given class. Actually we compute two 
distributions. The first is the frequencies of higher-order itemsets for particular order 
paths (e.g., 3-itemsets from 4th order paths). These frequencies are similar to the 
support metric in Apriori, a well-known ARM algorithm [33]. However, instead of 
counting the number of records containing a given k-itemset, we count the number of 
higher order paths containing a given higher-order k-itemset. The second distribution 
is the counts of same-frequency itemsets. Either of these distributions can be 
compared for different classes using simple statistical measures such as the t-test. If 
two distributions are statistically significantly different, we conclude that the higher-
order path patterns (i.e., itemset frequencies) separate the classes. 

4   Results 

As noted previously, the implementation of our algorithm is based on the TMI [26] 
and thus implemented in C++. We performed the experiments to discover the higher-
order path statistics on the National Center for Supercomputing Applications (NCSA) 
Tungsten Supercluster (Xeon Linux). The choice to employ the TMI also opens the 
way to explore patterns in higher order paths in textual data sources in the future. 

In our prior work [27], we analyzed a machine learning dataset from the UCI 
repository and concluded that the classes of instances in labeled training data may be 
separable using the characteristics of higher-order paths. (For more detail please refer 
to [27].) Based on this promising prior work, we performed experiments to discover 
the higher order path statistics in sets of BGP data extracted from the RouteViews 
archive [13]. As noted our goal was to distinguish different anomalous BGP events 
such as worm attacks and power failures. The anomalous events we experimented 
with were a slammer worm attack, a witty worm attack and a blackout (i.e., power 
failure). Data from a period of six hours prior to a given event and six hours following 
the start of the event was collected and divided into one-minute bins. Each bin 
became one instance in our training data and was labeled with the appropriate event 
class (slammer, witty or blackout). We employed the first six attributes used in [15] 
since they were easy to extract and appeared to represent BGP dynamics well. In 
preliminary experiments we used the entire 12 hour period for each event type and 
applied our higher order path analysis technique to discover both 3-itemset frequency 
and same-frequency 3-itemset counts from 4th order paths for each class. We 
compared higher-order itemset distributions for the various classes of data, and results 
showed that higher order path patterns distinguished between the different event 
classes. Next, we compared itemset frequency distributions before and after events, 
again using the full 12 hours of data for each event. Our results indicated that higher-
order path patterns differentiate the slammer worm period from the non-event period, 



but initially we could not reliably distinguish the before and after event periods for the 
witty and blackout classes. 

Recall that previously we were able to distinguish two different classes in a 
machine learning dataset (a nominal dataset). But BGP data is integer valued – 
attributes are basically counts of different types of BGP messages and have a large 
variance, which in turn affects the number of co-occurrences in higher order path 
analysis. As a result, the BGP co-occurrence graph was very sparse compared to the 
graph for the nominal dataset used in our prior work. This implied that there were 
many fewer co-occurrences in the BGP datasets, with the result that the number of 
higher order paths was also small. In order to address this issue we applied a common 
approach employed in machine learning, and normalized the BGP datasets by 
combining all before and after event datasets and dividing each attribute value by the 
maximum value for the attribute. This resulted in decimal numbers between zero and 
one. The dataset was now amenable to discretization, another useful preprocessing 
technique employed in machine learning. In this case, discretization was especially 
needful since it increased the density of the co-occurrence graph, resulting in a greater 
number of higher-order paths. In addition to improving classification performance, 
this approach enabled us to use smaller datasets to distinguish worm attacks and other 
events, thereby increasing both the scalability and precision of our HOPA-based 
detection system. This approach also enabled us to explore the use of several different 
time periods including two through five hour periods. After several experiments we 
found that HOPA distinguished between two-hour non-event periods and the 
respective two-hour event periods with extremely high confidence. This is depicted in 
the two-tailed t-test probabilities in table 1. For comparison purposes, we also show 
the performance of decision tree induction using the same dataset. Although accuracy 
is not directly comparable with confidence, clearly the HOPA technique distinguishes 
events with very high confidence (over 99% in all three cases). In contrast, the 
decision tree performance is poor for witty and only acceptable for slammer. 

These results were obtained using the counts of same-frequency itemsets. Our 
observation is that HOPA is less sensitive when using counts of same-frequency 
itemsets. We speculate that due to the numeric nature of the BGP data, itemset 
frequency was too sensitive. Same-frequency itemset counts, on the other hand, 
captured the anomalous event patterns better. The decision to use either frequency of 
itemsets or counts of same-frequency itemsets is a parameter of the HOPA technique 
and may differ for particular domains or datasets. As can be seen from table 2, when 
we compared successive two hour periods within a given six hour event, we see no 
significant (≥ 95% confidence) differences. This confirms that we have successfully 
modeled each type of event with just two hours of data because the model is 
consistent across all six hours of a given event. This is important since it enables us to 
distinguish anomalous events from normal traffic using these models. 

Table 1. Prior vs. during event period comparisons with HOPA and Decision Tree 
Class 1 
(prior) 

Class 2 
(during) 

t-test results 
 

J48 
Accuracy 

Slammer 1.26101E-05 96.3% 
Witty 0.005349763 78.3% 

Blackout 2.63894E-08 87.5% 



Table 2.  Event-event comparisons. f2h: first two hrs. / n2h: next two hrs. / t2h: third two hrs. 
Class 1 
(during) 

Class 2 
(during) 

t-test results 
 

Slammer-f2h Slammer-n2h 0.543716704 
Witty-f2h Witty-n2h 0.244647853 

Blackout-f2h Blackout-n2h 0.105197985 
Slammer-n2h Slammer-t2h 0.426097536 

Witty-n2h Witty-t2h 0.566716456 
Blackout-n2h Blackout-t2h 0.191959955 

The final evaluation we performed involved cross-event comparison. This is 
necessary in order to distinguish between event types. As portrayed in table 3, the 
HOPA technique successfully distinguished between worm types, something that no 
previous anomaly detection technique has successfully accomplished. In the case of 
Witty vs. Blackout, we used three-hour models. 

Table 3.  Event vs. Event comparison 

Class 1 Class 2 t-test results 

Witty Slammer 0.00843118 
Witty Blackout 0.010703014 
Blackout Slammer 0.016590733 

 
These results demonstrate that we are able to distinguish between different 

anomalous BGP events including the slammer worm attack, the witty worm attack 
and the 2003 USA East Coast blackout. These patterns can be used in a detection 
system to detect similar anomalous events. 

5   Discussion 

 Why do patterns in higher-order paths seem to correlate with the class? In a sense 
it hearkens back to our prior work with Latent Semantic Indexing (LSI) [17] – in that 
work, as noted, we determined that the ‘Latent’ aspects of term similarity that LSI 
reveals are dependent on the higher-order paths between terms. Likewise, in real-
world supervised machine learning datasets, the goal is to learn the relation between 
the attributes and the class. It is noteworthy that attributes are certainly not equally 
important. In addition, neither attributes nor instances are independent of one another, 
given the class. As we found with LSI, it is our contention that the ‘latent semantics’, 
if you will, of attribute-attribute relations also depend on the higher-order paths 
linking attribute-value pairs. By taking attribute-value pairs as our base unit of 
‘semantics’ and linking them via higher-order co-occurrence relations, we reveal 
these latent semantics, or patterns, that distinguish instances of different classes. 
These results are extremely interesting given that we have uncovered evidence of 
separability based on the higher order path patterns alone. We consider this 
achievement significant, and something that can be exploited in many different 
applications using a variety of datasets as long as there is a meaningful context of 
entities that allows us to leverage co-occurrence relations. 
 Using our approach we captured patterns for several different anomalous BGP 
events. These patterns can be used as models in an anomalous event detection system 
for BGP routing. To do so, however, we need to employ a sliding window so that 



events can be recognized in real time. If a given sliding window model matches a 
BGP data stream, we have detected the event corresponding to the model. Because we 
have efficient algorithms for the enumeration of higher-order paths and the HOPA 
algorithms are readily parallelizable, it is feasible to implement an incremental 
approach to higher order path analysis. This incremental HOPA algorithm will update 
path group structures and higher-order path counts in real time using incoming new 
data. We discuss this further in the following section.  

6   Future Work 

In future work we plan to explore the development of an incremental HOPA 
algorithm for use in BGP anomaly detection as well as other similar applications. In 
our algorithm the main data structure is the path group which consists of entities and 
sets of records. There are several path groups formed from the dataset. In the 
incremental algorithm, as we move the sliding window forward in time, new records 
will be added and old records deleted. This will result in changes in some of the path 
groups. Specifically for the BGP dataset, since it is numeric and the co-occurrence 
graph is less dense than a nominal dataset, it is likely that only a small fraction of 
these path groups will need to be updated. There are two update operations. First we 
check to see if any new entities are introduced by new records or existing entities are 
no longer referenced after deletion. If so, we need to first update the co-occurrence 
graph and the corresponding path groups impacted by the change. Recall from the 
approach that extracting path groups is quite fast. For deleted records we need only 
modify the path groups which include deleted records by deleting those records from 
the record sets and re-enumerating these path groups. Second, after modifying only 
those path groups necessary, we apply steps 6 and 7 of Algorithm 1 to enumerate the 
distinct representatives in the bipartite graph formed from each such path group. Once 
this step is complete, either the itemset counts or the counts of same-frequency 
itemsets can be updated and a statistical test performed to ascertain significance. 

A second area of future work involves path formation. Specific to BGP routing 
data, we observed that the data differs from traditional machine learning datasets 
because each instance represents a particular snapshot in time. Changes in values 
across time may encapsulate important information for characterization of events such 
as different worm attacks, blackouts, broken links between routers, etc. In order to 
exploit this information, we propose to explore a different relation between items: 
time adjacency. In this case we employ a directed graph, but the graph can be based 
on more than one relation. Higher-order paths extracted from this graph may 
encapsulate changes of attributes across time and thereby capture patterns in the time 
dimension. This approach falls somewhere between sequence mining and traditional 
association rule mining (in which instances are assumed independent). An example 
dataset, a directed graph created using this new context definition and a higher-order 
path are shown in figure 4.  

7   Conclusion 

 Several efforts employ machine learning approaches to link analysis, but few 
consider mining meta-level patterns in higher-order links. In our previous work [27] 
we focused on the discovery of such patterns in higher-order paths generated from 
supervised machine learning data, and developed both theoretical and algorithmic 



approaches to enumerating and characterizing higher-order paths between attribute-
value pairs. Based on statistical comparisons of distributions of higher-order path 
itemset frequencies, we discovered evidence that classes of instances in labeled 
training data may be separable based on the characteristics of higher-order paths. 

 

 
Figure 4:  Incorporating the time adjacency relationship in higher order path analysis 

Based on these results, in this work we analyzed higher-order path patterns in data 
generated during interdomain routing. We represent the data as a machine learning 
dataset composed of instances that correspond to one minute samples of Border 
Gateway Protocol (BGP) traffic. We successfully classified anomalous BGP events 
caused by power failures and particular worm attacks. Specific to BGP routing data, 
we observe that the data differs from traditional machine learning datasets because 
each instance represents a particular snapshot in time. This implies that a partial order 
may be imposed on the co-occurrence graph formed from the BGP data, potentially 
leading to better precision in the detection of anomalous events. 

Our higher-order path analysis technique has applications in text mining as well. 
For instance, by considering a document or paragraph as an instance, we may 
determine higher order path characteristics that aid in classifying text. In fact this 
approach has important applications in security, counterterrorism and law 
enforcement. 
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