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Abstract. Internet routing dynamics have been extensivalgiet in the past
few years. However, dynamics such as interdomaird@oGateway Protocol
(BGP) behavior are still poorly understood. AnonalGP events including
misconfigurations, attacks and large-scale powiturés often affect the global
routing infrastructure. Since anomalous BGP eveofen cause major
disruptions in the Internet, the ability to detectd categorize such events is
extremely useful. In this article we present a havemaly detection technique
for interdomain routing exchanges that distingusshieetween different
anomalies in BGP traffic. This technique is ternrgher Order Path Analysis
(HOPA) and focuses on the discovery and analysigatterns in higher order
paths in supervised learning datasets. Our resuisate that not only worm
events but also different types of worms as welbkskout events may be
separable. This novel approach to supervised legutmis potential applications
in cybersecurity, cyberforensics, and text/dataimgiin general.
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1 Introduction

Within the last few years, internet routing dynasnitave been extensively studied
[1], [2], [3], [4]. However, inter-domain routingydamics such as Border Gateway
Protocol (BGP) activities are still poorly understio Abnormal BGP events including
misconfigurations [5], attacks [6], and large-scalewer failures [7] often affect
global routing infrastructure. For example, in Jayu2003, the Slammer worm
caused a surge of BGP updates [8]. In August 2008, East Coast electricity
blackout affected 3175 networks and many BGP reutegre shut down [9]. Since
BGP anomaly events often cause major disruptionsiternet, the ability to detect
and categorize BGP events is extremely useful. B&RIso very vulnerable to
malicious attacks. On May 7th, 2005, an AS falsdbimed to originate Google's
prefix [32] and parts of the Internet could notaleaGoogle’s search engine for
roughly an hour as traffic was misdirected to tltacking AS. Thus, techniques that
can detect and mitigate against such attacks nglliee continuous access to Internet.

In this article we propose a novel data mining apph termed Higher Order Path
Analysis (HOPA) that distinguishes different anoous events in BGP traffic. HOPA
focuses on discovering higher-order link pattennsdata based on co-occurrence
relationships between entities. In this contextigher-order link can be represented
as a chain of co-occurrences of entities in diffemecords as seen in figure 1. We



also refer to such a link as a higher-order pailvea supervised learning dataset
(i.e., labeled training data), we attempt to digopatterns in sets of higher-order
links that distinguish between the classes inabeled data.
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Figure 1: Higher-order path as a chain of co-occurrences

The work in [10] has some similarity with ours. Bamploy co-occurrence as the
relationship between entities and concentrate @ hiyher order co-occurrence
relations or paths. The order of the relation (itlee length of the path) ranges from
second order (e.g., as in [11]) on up. The appraadi0], however, is focused on
discovering significant paths between entities sasha link between two terrorism
suspects. In contrast, our approach focuses orowdisiog patterns in sets of the
higher-order links themselves. In other words, welg the characteristics of sets of
higher-order paths with the overall goal of perforg classification of labeled
instances based on the characteristics of thedeehmyder path sets. The effort
discussed in [12] employs a supervised machinenilegralgorithm and labeled
training data. Our work is similar in that we alsmploy labeled training data. The
goal in [12] however is to learn higher-order linkes; i.e., rules that are themselves
higher-order links between sets of entities. Intast, as noted our goal is to discover
the characteristics of sets of higher-order patlth whe goal of leveraging these
characteristics in classification. Naturally, suehtechnique would have wide
application in supervised machine learning, inahgdihe link analysis research field.

Our results are based on a set of BGP data extré@e the RouteViews archive
[13]. Our target is to characterize and distinguilifierent anomalous BGP events
such as worm attacks (e.g., slammer, witty) andgpdailures.

The rest of the article is organized as follows:Section 2 we briefly review
related work. In Section 3, we present our apprdaltbwed by results in Section 4
and discussion in Section 5. Section 6 outlinesesorteresting research issues that
we wish to explore in future work, and our conalursi are drawn in Section 7.

2 Redated Work

Anomaly Detection In [15] the authors use attributes derived fromPBeEaffic to
detect internet routing anomalies. They use datsngitechniques, in particular a
decision tree machine learning algorithm, to traimodel using labeled data. The
authors extract abnormal events from the RouteVig8$ archive and process it to
reflect the counts of different types of BGP messagsing one minute bins. This
model consists of rules learned, and is used tectleccurrences of abnormal events.
Basically their system can distinguish between tlasses — worm and normal — but
cannot differentiate between different types of mer Several other efforts have been
undertaken in [28], [29], [30] and [31] of a similmature. [30] proposes two
approaches, signature based and statistics-basertide. [31] employs wavelets and
k-means clustering to build an instance-learnirgniwork that identifies anomalies
for a given prefix as well as across prefixes. Mafsthese efforts follow the same



basic steps: first the system is trained using ement data, then the system examines
test data and flags anomalies. Our approach diffetie sense that we characterize
anomalous events and use models of these anomel@ugs to classify test data.
Since our goal was to distinguish between differgqtes of worm attacks, we
focused on the data set used in [15].

Higher Order Co-Occurrence Higher order co-occurrence is closely related to
our HOPA technique. In our previous work in [17]e ywroved mathematically that
Latent Semantic Indexing (LSI), a well-known appmioao information retrieval,
implicitly depends on higher-order co-occurrendd's. also demonstrated empirically
that higher-order co-occurrences play a key rolthéeffectiveness of systems based
on LSI. LSI can reveal hidden or latent relatiopshiamong terms, as terms
semantically similar lie closer to each other ie thSI vector space. This can be
demonstrated using the LSI term-term co-occurrenagix. Let's assume a simple
document collection where D1 is {human, interfage}d D2 is {interface, user}.
Clearly the terms “human” and “user” do not co-ackuthe co-occurrence matrix of
this simple two-document collection. After applyingl, however, the reduced
representation co-occurrence matrix may have azeoo-entry for “human” and
“user” thus implying a similarity between the twerms. This is an example of
second-order co-occurrence; in other words, thera second-order path between
“human” and “user” through “interface.” In a reldteffort in [18], Edmonds uses
higher order co-occurrence to solve a componerth@fproblem of lexical choice,
which identifies synonyms in a given context. Iroter effort, Zhang et al. [19] use
second-order co-occurrence to improve the runtiedéopmance of LSI. Second- and
higher-order co-occurrence has also been used nanaber of other applications
including word sense disambiguation [20] and itegrsning algorithm [21].

Algorithms in Higher Order Path Analysis One of the challenges facing us in
this work is the complexity of enumerating the was higher-order paths. In this area
too, fortunately, there has been prior work on Whwe can build. In [22] Galil
surveys techniques used for designing efficienbrtigms for finding a maximum
cardinality or weighted matching in (general orasifie) graphs. For a bipartite graph
G = (V, E), perfect matchings are defined as maghisuch that all vertices are
incident to some matching edge. On the other hareimum matchings are defined
as matchings whose cardinalities are maximum anadinmatchings, and maximal
matchings are matchings which are contained in theromatching. In [23], Uno
propose efficient algorithms for enumerating chesdls-t paths and cycles of a given
graph G = (V, E). An algorithm taking O( |E| ) tinfer each chordless cycle is
proposed. The performance of the algorithm is eteli by computational
experiments for random graphs, and showed thatdh®putation time is constant per
chordless cycle for not so dense random graphsthios-t paths this algorithm takes
O( |V| |E| ) time for each path. Additionally, ifstother work, Uno [24] presents
enumerating algorithms for perfect, maximum and imak matchings in a bipartite
graphs G = (YU V,, E). An algorithm that has a time complexity of |O{; U V| )
per matching is proposed for maximum matchingspatiite graphs.

3 Approach

We focus on discovering higher-order link pattamBGP traffic based on higher-
order associations between elements of data teangties. In this context, entities



can be aggregate counts of announce or withdraw B@Rtes, and a higher-order
link is represented as a chain of co-occurrencesudii entities in different snapshots
of BGP traffic taken over time. As noted we alsfereo such a link as a higher-order
path. Given a supervised learning dataset (i.beléal training data), we attempt to
discover patterns in sets of higher-order linkg thiatinguish between the classes in
the labeled data. As such, our approach is a sigeelrlearning technique.

Our definition of a higher-order path is similarttat found in graph theory, which
states that given a non-empty graph G = (V, Ehefform V = {¢, X, ... , %}, E=
{ XoX1, X1X2, ..., X1Xk } With nodes xdistinct, two vertices pand x are linked by a
path P where the number of edges in P is its lerjibh a path is often referred to by
the natural sequence of its verticegix.x, [25]. Our definition of a higher-order
path differs from this in a couple of respects.skiwvertices V = {g e, ..., &}
represent entities, and edges E g, {i, ..., Im} represents records, documents or
instances. Several edges may exist between givéiieen Finally and most
importantly, in a higher-order path both verticesl @dges must be distinct. Figure 2
gives an example of several higher-order paths agoftri-e;, €-r>-€5-r3-€4, €-r1-€y,
etc. We are interested in enumerating all suchspath
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Figure 2: An example of higher-order paths with multiple eslgpetween vertices

It is not straightforward, however, to represergher-order paths in conventional
graph structures. In order to use conventional lgrsipuctures and algorithms, we
have divided the above representation into two lyistpuctures. First, we form a co-
occurrence graph &G (V, E) in which the vertices are the entitiesl &imere is an edge
between two entities if they co-occur in one or enoecords. A path (length 2)
extracted from Gsatisfies the first requirement of our higher-orgath definition
since the vertices in this path are distinct. Téeoad requirement entails that records
on a path must be distinct, and another data sirei¢that contains lists of records for
each edge is needed. We term this structyatagroup.

Figure 3: Process of getting a higher-order path from a@mioence graph via path group
structure and a maximum matching of the bipartiteg representation of it.

Using the path group representation it is posdiblgatisfy the second requirement
of our higher-order path definition. In effect, weeed to identify the system of
distinct representatives (SDR) for the path grdegch distinct representative in the
path group corresponds to a higher order pathrdierato enumerate all the distinct



representatives in a given path group, a bipagtisgph G = (V1 U V,, E) is formed
such that Y is the sets of records (SS,...) in a given path group and,\s the
records themselves. A maximum matching with catdinp/1| in this bipartite graph
yields the SDR for the higher order path. This pescis summarized in figure 3
where we can see an exampl¥ @rder path group that is extracted from the co-
occurrence graph GThis particular % order path group includes two sets of records:
S;={1,2,5} and $={1,2,3,4}. S corresponds to the records in whichaad ¢ co-
occur, and Sis the set of records in which and g co-occur. As noted, path group
may be composed of several higher-order pathshénthird diagram in figure 3, a
bipartite graph = (V1 U V,, E) is formed where Ms the two sets of records and V
is the all records in these sets. Enumerating alkimum matchings in this graph
yields all higher-order paths in the path groupe Tturth diagram in figure 3 shows
one of the many paths in this path group. Edgel$aReand R are records inSand

S,, and the path corresponds to a maximum matchitigeifipartite graph.

Our goal is to characterize the set of higher-opghs — in other words, we are
seeking patterns in the higher-level path datdfitds a result, we need to enumerate
the paths in a given dataset. This required theldpment of special data structures,
and we based our implementation on the Text Mimirfgastructure (TMI) developed
in our Parallel and Distributed Text Mining Lab [28he TMI is an open-source
framework designed for high-end, scalable text ngnand aims to provide a robust
software core for research and development ofrteming applications. The TMI has
an inverted index class that provides an easy dfidieat way to extract co-
occurrence relations between entities. Algorithmirbugh 3 below summarize our
approach to enumerating higher order paths.

Algorithm 1. (ENUMERATING HIGHER-ORDER PATHS)
EnumHOPaths ( dataset, order )
G € co-occurrence graph of dataset
EnumPathGroups ( G)
for i = 1 to orderdo
read paths groups of given order from file
for j = 1 to numPathGroupso
form bipartite graph of pathGroup[j]
enumerate and output all maximum matchings intilpartite graph

Algorithm 2. (ENUMERATING ALL PATH GROUPS IN G)
EnumPathGroups (G)

1. for i=1to numNodeslo

2. forj=ito numNodeslo

3. v; € i node of G

4. v€j"node of G

5. Enumerate and FormPathGroup( path ) all pathsden yvand y

Algorithm 3. (FORMING A PATH GROUP GIVEN A PATH FR® G)
FormPathGroup ( path )

1. for a =2 to pathLengtto

2.  form set of records in which.yand vy co-occur

3. output path group to file

NogkrwppE

For performance reasons, we implemented our owradeto discover frequent
itemsets in the higher-order paths. However, otinilien of frequent itemsets is a



bit different from the standard definition usedaissociation rule mining. Itemsets in
our framework are ordered, and must appear in ordexr given supporting path.
Additionally, the items (entities) in an itemset shibe adjacent in the higher-order
path. During computational enumeration of the patbstistics are gathered.
Specifically, in order to characterize a given eetrecords/instances, we compute
frequencies of the various second- and higher-dtdersets in the set of all higher-
order paths generated from the set of instancegnVdealing with labeled training
data used in supervised machine learning, we dithideinstances by class and then
characterize the resulting sets by higher-ordenset frequencies. The end result is a
distribution of itemset frequencies for a givenseslaActually we compute two
distributions. The first is the frequencies of teéglorder itemsets for particular order
paths (e.g., 3-itemsets fron!" 4rder paths). These frequencies are similar to the
support metric in Apriori, a well-known ARM algdnitn [33]. However, instead of
counting the number of records containing a givéteset, we count the number of
higher order paths containing a given higher-ofdgemset. The second distribution
is the counts of same-frequency itemsets. Eitherthafse distributions can be
compared for different classes using simple stesistneasures such as the t-test. If
two distributions are statistically significantlyfferent, we conclude that the higher-
order path patterns (i.e., itemset frequenciesarse@ the classes.

4 Results

As noted previously, the implementation of our ailidpon is based on the TMI [26]
and thus implemented in C++. We performed the @npts to discover the higher-
order path statistics on the National Center fque8computing Applications (NCSA)
Tungsten Supercluster (Xeon Linux). The choicempley the TMI also opens the
way to explore patterns in higher order pathsxua data sources in the future.

In our prior work [27], we analyzed a machine léagndataset from the UCI
repository and concluded that the classes of ios&in labeled training data may be
separable using the characteristics of higher-opdéns. (For more detail please refer
to [27].) Based on this promising prior work, werfpemed experiments to discover
the higher order path statistics in sets of BGR @adtracted from the RouteViews
archive [13]. As noted our goal was to distinguifierent anomalous BGP events
such as worm attacks and power failures. The armmatvents we experimented
with were a slammer worm attack, a witty worm dttand a blackout (i.e., power
failure). Data from a period of six hours priord@iven event and six hours following
the start of the event was collected and divided ione-minute bins. Each bin
became one instance in our training data and waeddd with the appropriate event
class (slammer, witty or blackout). We employed fin&t six attributes used in [15]
since they were easy to extract and appeared tesept BGP dynamics well. In
preliminary experiments we used the entire 12 hpmriod for each event type and
applied our higher order path analysis techniqueitoover both 3-itemset frequency
and same-frequency 3-itemset counts froth atder paths for each class. We
compared higher-order itemset distributions forthgous classes of data, and results
showed that higher order path patterns distingdisbetween the different event
classes. Next, we compared itemset frequency lligioins before and after events,
again using the full 12 hours of data for each &v@nr results indicated that higher-
order path patterns differentiate the slammer wpemod from the non-event period,



but initially we could not reliably distinguish theefore and after event periods for the
witty and blackout classes.

Recall that previously we were able to distingutslo different classes in a
machine learning dataset (a nominal dataset). BBP Blata is integer valued —
attributes are basically counts of different typéBGP messages and have a large
variance, which in turn affects the number of cowcences in higher order path
analysis. As a result, the BGP co-occurrence gregd very sparse compared to the
graph for the nominal dataset used in our priorkwdihis implied that there were
many fewer co-occurrences in the BGP datasets, théhresult that the number of
higher order paths was also small. In order to eskithis issue we applied a common
approach employed in machine learning, and noredlithe BGP datasets by
combining all before and after event datasets @vididg each attribute value by the
maximum value for the attribute. This resulted @cidhal numbers between zero and
one. The dataset was now amenable to discretizatioother useful preprocessing
technigue employed in machine learning. In thisecaliscretization was especially
needful since it increased the density of the coioence graph, resulting in a greater
number of higher-order paths. In addition to impngvclassification performance,
this approach enabled us to use smaller datasetstioguish worm attacks and other
events, thereby increasing both the scalability precision of our HOPA-based
detection system. This approach also enabled egiore the use of several different
time periods including two through five hour peisodifter several experiments we
found that HOPA distinguished between two-hour pwent periods and the
respective two-hour event periods with extremebhtgonfidence. This is depicted in
the two-tailed t-test probabilities in table 1. Fmmparison purposes, we also show
the performance of decision tree induction usirggdame dataset. Although accuracy
is not directly comparable with confidence, cleaHg HOPA technique distinguishes
events with very high confidence (over 99% in &llee cases). In contrast, the
decision tree performance is poor for witty andyadceptable for slammer.

These results were obtained using the counts ofedesquency itemsets. Our
observation is that HOPA is less sensitive whemgisiounts of same-frequency
itemsets. We speculate that due to the numericrematti the BGP data, itemset
frequency was too sensitive. Same-frequency iteroseints, on the other hand,
captured the anomalous event patterns better. &bisidn to use either frequency of
itemsets or counts of same-frequency itemsetgp@rameter of the HOPA technique
and may differ for particular domains or datasAss.can be seen from table 2, when
we compared successive two hour periods withinvargsix hour event, we see no
significant & 95% confidence) differences. This confirms thatlveere successfully
modeled each type of event with just two hours aefadbecause the model is
consistent across all six hours of a given evehis & important since it enables us to
distinguish anomalous events from normal traffingghese models.

Table 1. Prior vs. during event period comparisons with BCG#d Decision Tree

Class 1 Class 2 t-test results J48
(prior) (during) Accuracy
Slammer 1.26101E-05 96.3%
Witty 0.005349763 78.3%
Blackout 2.63894E-08 87.5%




Table 2. Event-event comparisons. f2h: first two hrs. Wn@ext two hrs. / t2h: third two hrs.

Class 1 Class 2 t-test results
(during) (during)
Slammer-f2h Slammer-n2h 0.543716704
Witty-f2h Witty-n2h 0.244647853
Blackout-f2h Blackout-n2h 0.105197985
Slammer-n2h Slammer-t2h 0.426097536
Witty-n2h Witty-t2h 0.566716456
Blackout-n2h Blackout-t2h 0.191959955

The final evaluation we performed involved crosemyv comparison. This is
necessary in order to distinguish between evergstyps portrayed in table 3, the
HOPA technique successfully distinguished betweemwtypes, something that no
previous anomaly detection technique has succégsfotomplished. In the case of
Witty vs. Blackout, we used three-hour models.

Table 3. Event vs. Event comparison

Class1 Class 2 t-test results
Witty Slammer 0.00843118
Witty Blackout 0.010703014
Blackout Slammer 0.016590733

These results demonstrate that we are able tongissh between different
anomalous BGP events including the slammer worechttthe witty worm attack
and the 2003 USA East Coast blackout. These patean be used in a detection
system to detect similar anomalous events.

5 Discussion

Why do patterns in higher-order paths seem toetate with the class? In a sense
it hearkens back to our prior work with Latent Seti@lndexing (LSI) [17] — in that
work, as noted, we determined that the ‘Latent’eatp of term similarity that LSI
reveals are dependent on the higher-order pathgebatterms. Likewise, in real-
world supervised machine learning datasets, théigda learn the relation between
the attributes and the class. It is noteworthy #t&ibutes are certainly not equally
important. In addition, neither attributes nor arstes are independent of one another,
given the class. As we found with LSI, it is ountention that the ‘latent semantics’,
if you will, of attribute-attribute relations alsdepend on the higher-order paths
linking attribute-value pairs. By taking attribwelue pairs as our base unit of
‘semantics’ and linking them via higher-order c@wgence relations, we reveal
these latent semantics, or patterns, that distafgimstances of different classes.
These results are extremely interesting given Wathave uncovered evidence of
separability based on the higher order path pattealone. We consider this
achievement significant, and something that canekgloited in many different
applications using a variety of datasets as longhese is a meaningful context of
entities that allows us to leverage co-occurreetaions.

Using our approach we captured patterns for sedffarent anomalous BGP
events. These patterns can be used as modelsaimoamalous event detection system
for BGP routing. To do so, however, we need to ey sliding window so that



events can be recognized in real time. If a giviiding window model matches a
BGP data stream, we have detected the event corréisyg to the model. Because we
have efficient algorithms for the enumeration ofh@r-order paths and the HOPA
algorithms are readily parallelizable, it is fedsiio implement an incremental
approach to higher order path analysis. This iner@al HOPA algorithm will update

path group structures and higher-order path countsal time using incoming new

data. We discuss this further in the following s@tt

6 FutureWork

In future work we plan to explore the developmefitan incremental HOPA
algorithm for use in BGP anomaly detection as wasllother similar applications. In
our algorithm the main data structure is the pathug which consists of entities and
sets of records. There are several path groupsefbrirom the dataset. In the
incremental algorithm, as we move the sliding wiwdorward in time, new records
will be added and old records deleted. This wilulein changes in some of the path
groups. Specifically for the BGP dataset, since ihumeric and the co-occurrence
graph is less dense than a nominal dataset, ikabyIthat only a small fraction of
these path groups will need to be updated. Therevew update operations. First we
check to see if any new entities are introducedidy records or existing entities are
no longer referenced after deletion. If so, we neefirst update the co-occurrence
graph and the corresponding path groups impactethdychange. Recall from the
approach that extracting path groups is quite fast.deleted records we need only
modify the path groups which include deleted resdry deleting those records from
the record sets and re-enumerating these path gr@geond, after modifying only
those path groups necessary, we apply steps 6 ahdlgorithm 1 to enumerate the
distinct representatives in the bipartite grapmied from each such path group. Once
this step is complete, either the itemset countgher counts of same-frequency
itemsets can be updated and a statistical testrpeefl to ascertain significance.

A second area of future work involves path formati@pecific to BGP routing
data, we observed that the data differs from tiaubt machine learning datasets
because each instance represents a particularhsnaipstime. Changes in values
across time may encapsulate important informatiorciiaracterization of events such
as different worm attacks, blackouts, broken libkdween routers, etc. In order to
exploit this information, we propose to explore iffedent relation between items:
time adjacency. In this case we employ a directagly but the graph can be based
on more than one relation. Higher-order paths etérh from this graph may
encapsulate changes of attributes across timetemdlty capture patterns in the time
dimension. This approach falls somewhere betwegoesee mining and traditional
association rule mining (in which instances areuasl independent). An example
dataset, a directed graph created using this nexexbodefinition and a higher-order
path are shown in figure 4.

7 Conclusion

Several efforts employ machine learning approadbeknk analysis, but few
consider mining meta-level patterns in higher-oiitgts. In our previous work [27]
we focused on the discovery of such patterns imdrigrder paths generated from
supervised machine learning data, and developeld thatoretical and algorithmic



approaches to enumerating and characterizing higitkar paths between attribute-
value pairs. Based on statistical comparisons sfridutions of higher-order path
itemset frequencies, we discovered evidence thagsek of instances in labeled
training data may be separable based on the ckarticts of higher-order paths.

instance# | atfributel | atribute2

1| al/l a2/1

v
v

al/2 az2/2

- -

An sxample 4 order path (diracted)

01/3| az2/3
M a2/3

-

2
3
4 | al/2
5

t::i."4+ a2/1 v

An example of time adjacent co-cccurrence graph

Figure 4: Incorporating the time adjacency relationshipigher order path analysis

Based on these results, in this work we analyzgbdniorder path patterns in data
generated during interdomain routing. We repregleatdata as a machine learning
dataset composed of instances that correspond eominute samples of Border
Gateway Protocol (BGP) traffic. We successfullyssiied anomalous BGP events
caused by power failures and particular worm agta8pecific to BGP routing data,
we observe that the data differs from traditionachine learning datasets because
each instance represents a particular snapshiotén This implies that a partial order
may be imposed on the co-occurrence graph fornmd the BGP data, potentially
leading to better precision in the detection ofraalmus events.

Our higher-order path analysis technique has agpbics in text mining as well.
For instance, by considering a document or pardigrap an instance, we may
determine higher order path characteristics thdtimiclassifying text. In fact this
approach has important applications in securityunterterrorism and law
enforcement.
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