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ABSTRACT 

In this paper, Neural Network (NN) models for the real-time 
simulation of gas turbines are studied and developed. The 
analyses carried out are aimed at the selection of the most 
appropriate NN structure for gas turbine simulation, in terms of 
both computational time of the NN training phase and accuracy 
and robustness with respect to measurement uncertainty. In 
particular, feed-forward NNs, with a single hidden layer and 
different numbers of neurons, trained by using a back-
propagation learning algorithm are considered and tested. 
Finally, a general procedure for the validation of computational 
codes is adapted and applied to the validation of the developed 
NN models. 

 
NOMENCLATURE 
AIGV Inlet Guide Vane angular position 
e = t – y     error 
LHV fuel lower heating value 
MSE mean square error 
M mass flow rate 
m number of inputs 
nHLN number of neurons in the hidden layer 
nN number of neurons 
no number of outputs 
npatt number of patterns 
N rotational speed 
Nep number of epochs 
p pressure 
P power 
Q quantity 
rand random number 
RH relative humidity 
RMSE root mean square error 
: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of
SR success rate 
t expected target output 
T temperature 
u individual experimental uncertainty 
U combined uncertainty 
UyMA simulation modeling uncertainty arising from 

modeling assumptions 
UyN simulation numerical solution uncertainty 
UyPED simulation modeling uncertainty arising from the use 

of previous experimental data 
w weight associated to the neuron x input 
x neuron input 
y computed output 
∆ variation 
η efficiency health index, learning rate 
ϑi = ∂t/∂xi     sensitivity coefficient 
µ corrected mass flow health index 
 
Subscripts and Superscripts 
amb ambient 
cool cooling flow 
C compressor 
ED exhaust duct 
f fuel 
GT gas turbine 
i inlet section 
ID inlet duct 
l lower limit 
max maximum 
min minimum 
norm normalized value 
o outlet section 
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PH post heating  
T turbine 
u upper limit 
 
INTRODUCTION 

Thermodynamic-based programs have been widely used 
over many years in order to perform thermodynamic and 
thermoeconomic analyses and optimizations of energy 
conversion systems [1-5]. Due to the non-linearity of equations 
to be solved, these programs usually present computational 
times which are excessive for real-time calculations, especially 
when: 

• the system to simulate is complex - i.e. it consists of a 
high number of sub-systems (units) - and, so, the number of 
equations to be solved is very high; 

• optimizations are performed, which usually require 
iterative calculations to solve objective functions; 

• the time available for the real-time calculations is very 
short, compared with computational time. This happens, for 
instance, when an almost instantaneous optimized re-allocation 
of the loads among the units of a power generation system is 
required following a variation in the electric and/or thermal 
energy demand [6,7]. 

An alternative to physical models is given by black box 
models, such as autoregressive models, Neural Networks, etc., 
which present some advantages: (i) they do not require 
knowledge of the physics of the problem under investigation, 
(ii) capability of learning different typologies of information,  
(iii) high robustness in the presence of poor and incorrect input 
data and, above all, (iv) high computational speed, which 
allows real-time calculations [8-11]. On the other hand, the 
main limit of black box models is high prediction error when 
they operate outside the field in which they were trained, i.e. 
they are not able to extrapolate. Among the various black box 
models, Neural Networks (NNs) have proved to be flexible and 
robust in simulating and diagnosing the behavior of energy 
systems, since they are able to simulate non-linear systems both 
in steady-state [8-15] and in transient [16,17] conditions. 

In the paper, NN models for the real-time simulation of gas 
turbines are studied and developed. In particular, the data used 
for both training and testing the NNs were obtained by means 
of a thermodynamic-based program (cycle program), 
previously calibrated on a FIAT Avio 701F single shaft gas 
turbine working in the ENEL combined cycle power plant of 
La Spezia (Italy) [18]. The cycle program, which can reproduce 
machine behavior for different ambient, load and health state 
conditions, allows the calculation of the expected value of all 
the measurable variables which might be taken on the machine 
and of non-measurable quantities (such as the inlet turbine 
temperature, air and exhaust mass flow rates, turbine cooling 
flow rates, compressor and turbine efficiency, etc.). A NN 
model able to simulate a gas turbine in different boundary, load 
and health state conditions can be very important. As an 
example, to follow variations of the electric and/or thermal 
energy demand, a power generation system manager can 
perform, by means of this tool, an optimized re-allocation of 
the loads among the units by taking into account the actual 
health state of each unit (which varies due to aging, 
deterioration and faults) [6,7]. 

In order to develop the NN model, the first step was the 
selection of the input and output variables and of the range of 
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variation for the inputs. Then, a database containing the 
patterns for NN training and testing was obtained by running 
the cycle program with random values of the inputs, each value 
being within its respective range of variation. Some of the 
patterns were used for the NN training phase, while the rest 
were used for NN testing.  

The analyses carried out are orientated to the selection of 
the most appropriate NN structure for gas turbine simulation, in 
terms of both computational time of the NN training phase and 
accuracy and robustness towards measurement uncertainty 
during simulations. In particular, feed-forward NNs with a 
single hidden layer with different numbers of neurons and 
trained using a back-propagation learning algorithm were 
considered and tested. 

Finally, a procedure for the validation of computational 
codes originally proposed by Coleman and Stern [19], was 
adapted and applied to the developed NN models. 

 
DATA FOR NN TRAINING AND TESTING 

Gas turbine under consideration. The gas turbine 
considered in the paper is a 255 MW FIAT Avio 701F single 
shaft gas turbine with variable Inlet Guide Vane, whose main 
features at ISO conditions are reported in Tab. 1. This gas 
turbine has a 17-stage axial flow compressor and a 4-stage 
turbine, cooled by means of air flows extracted from four 
different bleed ports on the compressor. In particular, the 
portion of the cooling flow extracted at the compressor outlet 
used for the cooling of the first turbine nozzle is externally 
cooled in a heat exchanger used for steam production. 

 
Table 1 – Fiat Avio 701F gas turbine: main thermodynamic and 
performance data (ISO conditions, natural gas fuel, no intake and 

discharge pressure drops) 

Power output  255 MW 
Overall efficiency 36.0 % 
Exhaust gas temperature 889 K 
Exhaust mass flow rate 574 kg/s 
Fuel mass flow rate 13.2 kg/s 
Compressor discharge temperature 655 K 
Pressure ratio 13.9 

 
For this machine, a program for the thermodynamic cycle 

calculation (cycle program), previously calibrated on a FIAT 
Avio 701F gas turbine working in the ENEL combined cycle 
power plant of La Spezia (Italy) [18], was available. The 
calibration process permitted a satisfactory reproduction of all 
the thermodynamic and performance data provided by the gas 
turbine manufacturer. 

In Fig. 1, the sketch of the gas turbine model under 
consideration is shown. 

 
Data generation. The data used for both training and 

testing the NNs were generated by means of the above 
described cycle program in different working points at different 
boundary, load and health state conditions.  

In particular, in order to take into account different gas 
turbine health states, characteristic parameters of the gas 
turbine, which are indices of the machine actual operating state 
(health indices), were considered as input variables. These 
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Figure 1 – FIAT Avio 701F gas turbine model 

 
parameters do not depend on the gas turbine operating point but 
are only sensitive to the gas turbine health state [14,20-22]. The 
characteristic parameters considered are the health indices 
related to compressor and turbine efficiencies and corrected 
mass flow rates (ηC, ηT, µC and µT).  

In Tab. 2 the input variables with their range of variations 
and the output variables are reported. Regarding the health 
indices, variations within typical ranges related to the most 
common deteriorations and faults to which the gas turbine can 
be subjected were considered. 

 
Table 2 – NN inputs and outputs 

  Unit Variation Range 

INPUT 

pamb Ambient pressure kPa [98; 103] 

Tamb Ambient temperature K [278.15; 308.15] 

RH Relative humidity % [20; 100] 

∆pID Pressure drop at the compressor inlet kPa [0; 2.5] 

∆pED Pressure drop at the turbine outlet kPa [0; 4.0] 

N Rotational speed rpm [2 990; 3 010] 

Tcool Cooling flow temp. after the exchanger K [453.15; 493.15] 

TfPH Temperature of the fuel after heating K [288.15; 383.15] 

LHV Fuel lower heating value kJ/kg [40 000; 50 000]

AIGV IGV angular position ° [-4; 25] 

TiT Turbine inlet temperature K [1 150; 1 750] 

ηC Compressor efficiency health index - [0.93; 1.00] 

µC Comp. corrected mass flow health index - [0.90; 1.10] 

ηT Turbine efficiency health index - [0.93; 1.05] 

µT Turb. corrected mass flow health index - [0.90; 1.10] 

OUTPUT 

poC Compressor outlet pressure kPa  

ToC Compressor outlet temperature K  

Mf Fuel mass flow rate kg/s  

ToT Turbine outlet temperature K  

MoT Exhaust gas mass flow rate  kg/s  
PGT Gas turbine power kW  
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Subsequently, a database containing the patterns for NN 
training and testing was obtained by running the cycle program 
with random values of inputs, each one lying within its 
respective range of variation. In particular, the input quantities 
were generated as follows: 

( ) ( ) ( )[ ]lul        iiii QQrandQQ −+= ,   rand ∈ [0, 1] 

where (Qi)u and (Qi)l are the upper and lower limits of the 
variation range, respectively. The generated data were then 
normalized to be comparable with each other. The 
normalization was performed with respect to the maximum and 
minimum value of the data set generated for each variable, i.e.: 

( ) ( )
( ) ( )minmax

min
norm

ii

ii
i QQ

QQ
Q

−

−
= ,   (Qi)norm ∈ [0, 1] 

Some of the patterns were used for the NN training phase, 
while the rest were used for NN testing.  

 
Measurement errors. To take into account the presence of 

measurement error, the generated data were corrupted with a 
random value included in the measurement uncertainty 
intervals reported in Tab. 3. Three different instrumentation 
categories, characterized by different measurement 
uncertainties, were considered: laboratory, standard and 
industrial. This was done in order to consider different 
situations which can be found in practice, and to perform a 
sensitivity analysis with respect to the influence of the 
measurement error magnitude on NN performances. 

 
Table 3 – Measurement uncertainty values 

Quantity Instrumentation categories and 
measurement uncertainty a 

 laboratory standard Industrial 

INPUT 

pamb [kPa] 0.525  0.630 1.050 

Tamb [K] 0.2  0.3 0.5 

RH [%] 1.0 2.0 3.0 

∆pIC [kPa] 0.08  0.10  0.12  

∆pED [kPa] 0.08  0.10  0.12  

N [rpm] 15.0  30.0  40.0  

Tcool [K] 0.5 1.0 2.0  

TfPH [K] 0.5  1.0 2.0 

LHV [%] b 1.0  3.0  5.0  

AIGV [°] 0.5 1.0 2.0 

TiT [K] 4.0 10.0 20.0 

OUTPUT 

poC [kPa] 10 20 30  

ToC [K] 0.6 1.5 2.5 

Mf [%] b 0.5  1.5  2.5  

ToT [K] 4.0 8.0 12.0 

MoT [%] b 0.5 1.5 2.5 
PGT [%] b 1.0 2.0 3.0 

a All values reported have to be considered as preceded by “±”. 
b Percentage of the reading. 
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As regards measurement uncertainty values reported in  
Tab. 3, it should be noted that:  

• Relative humidity uncertainty values are absolute 
values. Thus, since RH measurements are expressed in 
percentages, the uncertainties uRH are also expressed in 
percentages. 

• The LHV uncertainty (expressed as a percentage of the 
reading) has to be considered as an overall uncertainty on LHV 
value, rather than a “strictly-speaking” measurement 
uncertainty. For instance, in the case of “industrial”-type 
instrumentation, the 5 % error, which might seem huge, takes 
into account that the on-line LHV measurement is rarely 
performed in practice but, rather, the LHV value is obtained 
either from previous data or from averaged values furnished by 
the fuel gas supplier. 

• The uncertainty in turbine inlet temperature TiT, which is 
a non-measurable quantity, was estimated numerically with the 
cycle program, by imposing variations to the turbine outlet 
temperature ToT equal to its measurement uncertainty, and by 
calculating the relative variation of the TiT. In particular, the 
variations in TiT which correspond to variations of ± 4.0 K,  
± 8.0 K and ± 12.0 K on ToT were calculated. The results 
obtained are in agreement with the ones presented in [23]. 

 
ARTIFICIAL NEURAL NETWORKS 

Artificial NNs are mathematical structures that distribute 
input data into several interconnected simple units (the artificial 
neurons) in which data are processed in parallel. Due to their 
high connectivity and parallelism, artificial NNs are able to 
link, in a non-linear way, a multi-dimensional input space with 
a multi-dimensional output space, allowing very high 
computational speed [24]. 

The NN architecture used in this paper for gas turbine 
simulation is the typical feed-forward multilayer perceptron, in 
which the artificial neurons are arranged in layers, and the 
neurons of a layer are linked to all the neurons of the following 
layer, while, there are no links among neurons of the same 
layer. This type of NN consists of a set of input nodes (also 
called input layer, where no data processing occurs) equal to 
the number of NN inputs, one or more hidden layers and an 
output layer with a number of neurons equal to the number of 
NN outputs. All the calculations are carried out in hidden and 
output layers. In particular, if xij is the ith input of the jth 
neuron and wij is the weight of xij, the neuron output yj is 
determined by means of an activation function f applied to the 
weighted sum of the inputs 














= ∑

=

jm

i
ijijj xwfy

1
   ,   j = 1,…,nN [1]

In particular, NNs with one hidden layer and a continuous 
sigmoid activation function were used, since it has been shown 
that this type of NN architecture is able to represent any type of 
multidimensional non-linear function, if a suitable number of 
neurons of the hidden layer is chosen [12,15,25]. Moreover, a 
preliminary analysis carried out to evaluate the influence of the 
number of hidden layers, showed that the use of multiple 
hidden layers requires a great computational effort, while it 
only allows a small improvement of NN performance. 

For the NN training, which is the process for weight 
calculation, the back-propagation (BP) algorithm was used 
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[26]. This is a supervised learning process, in which, for each 
set of inputs, the computed outputs, obtained by propagating 
the information forward from input to output, are compared 
with the target ones. The errors between computed and target 
outputs are then transmitted backward through the network. 
During this phase, the weights, which were randomly 
initialized, are progressively updated using a generalized delta 
rule expressed as  

ijjij xew ⋅⋅=∆ η    ,   j = 1,…,nN [2]

where η is the learning rate and ej is the error relative to the 
output of the jth neuron. In particular, η determines the 
computational time required for the NN training phase: by 
increasing η the rate of error reduction during the learning 
process increases, but, in the final learning phase, high η values 
may cause error oscillations, so that the convergence of the 
learning process may not be achieved. 

In the MATLAB Neural Network toolbox, a number of 
different BP algorithms are present. After a preliminary 
analysis, the TRAINSCG algorithm was used since it appears to 
be very effective and requires a reduced computational effort. 
This algorithm is based on a Conjugate Gradient scheme in 
which the learning rate is varied at each iteration. The adopted 
stopping criterion for the NN training phase is the minimization 
of a performance function which was chosen to be the Mean 
Square Error (MSE) on the whole training set between the 
target outputs and the corresponding NN computed outputs: 
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where no is the number of NN outputs, npatt is the number of 
patterns used for the NN training, tij are the target outputs and 
yij the NN computed outputs. Two additional stopping criteria 
were used: 

• attainment of an imposed maximum number of epochs 
(i.e. number of times that all the patterns are presented to the 
NN) for the NN training phase; this number was imposed as 
equal to 10 6; 

• early stopping method, i.e. the training process is 
stopped when the MSE on a validation set of data increases or 
remains the same for an imposed number of epochs; this 
number was imposed as equal to 100. 

 
INFLUENCE ANALYSIS OF NN CONFIGURATION 
PARAMETERS 

In order to identify the most appropriate NN structure for 
gas turbine simulation, in terms of both computational time of 
the NN training phase and accuracy and robustness against 
measurement uncertainty, an influence analysis was carried out 
with respect to the main NN configuration parameters. 

As explained in the previous paragraph, the NNs considered 
are feed-forward multilayer perceptrons with one hidden layer 
using a continuous sigmoid activation function. Moreover, the 
TRAINSCG BP algorithm of the MATLAB Neural Network 
toolbox was selected for the NN training. Therefore, the NN 
configuration parameters whose influence was analyzed in the 
paper are: 

• number of neurons in the hidden layer (nHLN); 
• optimal training set dimension, i.e. optimal number of 

patterns that have to be used for the NN training process. 
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The influence of these parameters was also analyzed in 
relation to NN accuracy and robustness against measurement 
uncertainty. 

The parameter used for the comparison of the NNs is the 
Root Mean Square Error RMSE made by the NN on the whole 
set of test data in the calculation of each j-th output (poC, ToC, 
Mf, ToT, MoT, PGT): 
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 −
= ∑

=

2

1patt

patt1    ,   j = 1,…,no [4]

where ti are the target outputs, yi the computed outputs, npatt is 
the number of patterns used for the NN test and no is the 
number of NN outputs. 

An overall RMSE was also calculated as the Root Mean 
Square Error made by the NN on the whole set of test data on 
all outputs: 

( )∑
=

=
o

1

2

o

1 n

j
jOverall RMSE

n
RMSE  [5]

 
Number of neurons in the hidden layer. The influence of 

the number of neurons in the hidden layer on the NN simulation 
error was evaluated by comparing the response of different 
NNs with different numbers of neurons in the hidden layer. 
Each NN was trained by using 10 000 patterns, while the RMSE 
was evaluated by running the NN in order to reproduce 20 000 
patterns (not including the patterns used for training). Figure 2 
shows the RMSE on each output and the overall RMSE for 
different numbers of neurons in the NN hidden layer. It can be 
noticed that the RMSEOverall presents a minimum for a number 
of neurons in the hidden layer near to 60. In the analyses 
carried out in the rest of the paper, NNs with 60 neurons in the 
hidden layer were used. Nevertheless, even a 30-neuron hidden 
layer could be considered an acceptable compromise between 
NN accuracy and computational time required for the NN 
training. In fact, as shown in Fig. 3, in which the number of 
epochs required for the NN training phase are reported, the 
computational time required to train the NN dramatically 
increases with the number of neurons in the hidden layer. 

 
Number of training patterns. The influence of the number 

of patterns used to train the NN on the simulation error was 
evaluated by comparing the response of different NNs, all 
characterized by 60 neurons in the hidden layer, which were 
trained by using different training sets with a number of 
patterns from 100 to 10 000. The RMSE of each NN was 
evaluated by running the NN in order to reproduce 20 000 
patterns (not including the patterns used for training). It has 
been observed that, for a number of patterns lower than 500, 
errors are very high, due to the phenomenon called overfitting. 
In fact, in such cases (i.e. a low number of training patterns) the 
NN learns the training data so well, that it loses the ability to 
generalize and tends to reproduce the training data even when 
different inputs are supplied to the NN [24]. In any case, 
although the early stopping method is used, errors remain 
unacceptably high when less than 500 training patterns are 
used. In Fig. 4 RMSE on each output for training sets with the 
number of patterns for 500 to 10 000 is reported. It can be 
observed that, when at least 1 000 training patterns are used,  
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Figure 3 – Number of epochs required for NN training vs. number of 
neurons in the hidden layer 
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RMSE is quite small and, thus, it is not convenient to use a 
higher number of training patterns due to the increase in the 
training phase computational time. 

 
Measurement uncertainty. In order to assess the influence 

of measurement uncertainty on NN accuracy and robustness, a 
NN characterized by a number of neurons in the hidden layer 
equal to 60 was considered. For training purposes, the NN was 
trained by using 2 000 training patterns not affected by 
measurement errors (the reason why 2 000 patterns were 
adopted for NN training is explained below). In the test phase, 
the RMSE was evaluated by running the NN in order to 
reproduce 20 000 patterns (as usual, they do not include the 
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patterns used for training) which were instead corrupted by 
means of random measurement errors included in the 
uncertainty ranges reported in Table 3.  

The results are reported in Fig. 5a, where it can be noticed 
that, as expected, RMSE increases as measurement error 
increases. In particular, when data are not affected by 
measurement error, RMSE is considerably smaller (less than  
0.5 %) as previously observed (Fig. 4), while, considering 
measurement errors, RMSE rises to about 5 % in the worst 
cases (i.e. for fuel mass flow rate Mf and power output PGT 
which prove to be the most sensitive quantities). 

In order to reduce RMSE values, a higher number of 
neurons in the hidden layer could be adopted, as evidenced in 
Fig. 2. However, an analysis of the influence of the number of 
neurons in the hidden layer in the case of data corrupted by 
measurement errors showed that the benefit of increasing the 
number of neurons in the hidden layer reduces for high values 
of measurement error, so that it becomes negligible in case of 
“industrial”-type measurement uncertainty [27]. 

A further analysis was performed by training the NN (60 
neurons in the hidden layer) by means of 2 000 patterns 
corrupted by errors within the “standard”-type measurement 
uncertainty. The results are reported in Fig. 5b and comparison 
with the results presented in Fig. 5a shows that, for all NN 
outputs, RMSE is lower if a NN trained on corrupted data is 
used instead of a NN trained with uncorrupted data, only for 
test data affected by errors equal or higher than those used for 
training. This result is in accordance with the results presented 
in [13] and is thoroughly outlined in the next section. 

Finally, an analysis was performed in order to establish the 
influence of the number of training patterns when data affected 
by “standard”-type measurement errors are used for both 
training and testing. The results, reported in Fig. 6, if compared 
to those presented in Fig. 4, show that: 

● RMSE is higher when the presence of measurement 
uncertainty is taken into account, as expected; 

● an “asymptotic” RMSE value for all quantities is reached 
when at least 2 000 training patterns are used. 
 
VALIDATION OF THE NN MODEL 

The validation of a prediction model is performed by 
comparing the values computed by the model with reference 
values, which can be experimental data, or data obtained by a 
reference simulation model. A procedure for the validation of 
prediction codes using experimental data was proposed by 
Coleman and Stern [19]. This procedure is here adapted and 
applied for the validation of the developed NN models. 

The comparison error e, difference between the expected 
reference value t and the computed value y, is the result of all 
the errors associated with t and y determination. If it is 
considered that (i) the expected reference value t is, in the most 
general case, a function of m independent variables  
x = [x1,…,xm] and (ii) t, x and y share no common error sources, 
the combined uncertainty Ue can be expressed as: 

22
yte UUU +=  [6]

In the case in which the expected reference values t are 
experimental data, Coleman and Stern [19] propose that: 

( )ix
m

itt uuU 2

1

222 ∑+= ϑ  [7]
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Figure 5 – Influence of measurement uncertainty on RMSE: NN 

trained using data not affected by measurement uncertainty (a) and 
corrupted by a “standard”-type measurement uncertainty (b) 
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Figure 6 – Influence of number of training patterns when data affected 

by “standard”-type measurement errors are used  
for both training and testing 

 
where Ut is the combined uncertainty in the expected reference 
value t, ut is the experimental uncertainty in t, (ux)i are the 
experimental uncertainties associated with xi, and ϑi are the 
sensitivity coefficients defined as ϑi = ∂t/∂xi. 

For the combined uncertainty Uy in the computed value y, 
Coleman and Stern [19] propose that: 

2222
yMAyPEDyNy UUUU ++=  [8]

where UyN is the simulation numerical solution uncertainty, 
UyPED the simulation modeling uncertainty arising from the use 
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of previous experimental data and UyMA the simulation 
modeling uncertainty arising from modeling assumptions. 

In the case presented in this paper, the expected reference 
values tj (j = 1,…, no) are not experimental data but are data 
obtained by means of the cycle program, corrupted with 
random errors contained within the ranges of uncertainty 
typical of each measured variable (Tab. 3). The predicted 
values yj are those computed by the NN models. Therefore, in 
the calculation of the combined uncertainties (Ut)j, the 
“experimental uncertainties” (ut)j and (ux)i (i = 1,…, m) were 
assumed equal to the corresponding uncertainties reported in 
Tab. 3 (which were used to corrupt the data generated by the 
cycle program), while ϑij = ∂tj /∂xi were evaluated numerically 
by using the cycle program. 

Moreover, the combined uncertainties (Uy)j were considered 
equal to the corresponding RMSE made by a NN, trained with 
data without measurement error, in the simulation of data 
without measurement error, when the number of patterns tends 
to infinity. In fact, for a infinite set of patterns, RMSE accounts 
for all the errors made in the calculation of predicted values yj, 
which are the simulation numerical solution uncertainty UyN, 
the simulation modeling uncertainty arising from the use of 
previous experimental data (which, in this case, are the training 
data) UyPED and the simulation modeling uncertainty arising 
from modeling assumptions (such as, NN structure, number of 
hidden layers and of neurons of each hidden layer, training 
algorithm, etc.) UyMA. 

In particular, for the estimation of the combined 
uncertainties (Uy)j associated with each output computed by the 
NN, the corresponding RMSE was calculated, using test sets 
with a number of patterns ranging from 1 000 to 30 000. In  
Fig. 7 the RMSE value versus the number of test patterns is 
reported in the case of compressor outlet pressure poC. It can be 
observed that the trend is asymptotic: such an asymptotic trend 
against the number of test patterns can be observed for all the 
NN outputs. Therefore, the asymptotic values of RMSE were 
assumed as an estimation of (Uy)j. 

In Tab. 4 the estimated values of (Uy)j and the computed 
values of (Ue)j for the three considered instrumentation 
categories considered (laboratory, standard and industrial) are 
reported. It can be noted that (Uy)j values are usually about one 
order of magnitude lower than the corresponding (Ue)j, which 
means that (Ue)j values are of the same order of magnitude as 
the corresponding (Ut)j. 
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Figure 7 – RMSE for compressor outlet pressure poC versus the 

number of training patterns 
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Table 4 - Estimated (Uy)j values and (Ue)j computed values for the 
three considered instrumentation categories 

Quantity Uy   22
yte UUU +=  

  Laboratory Standard Industrial 
     

poC   [kPa] 3.9 29.2 42.3 64.0 

ToC  [K] 1.2 5.8 7.9 12.1 

Mf   [%] 0.3 1.7 4.1 6.8 

ToT  [K] 1.0 11.7 17.5 27.2 

MoT [%] 0.3 1.3 2.3 3.7 

PGT [%] 0.4 3.5 5.1 7.8 
     

 
For the NN model validation it is considered that a success 

in the simulation of a computed output yj is achieved when it 
results that: 

( ) ( ) o
22  1   ,   n,...,jUUUyte jytjejjy =+=≤−=  [9]

The success rate (SR) for each NN output, defined as the 
percentage ratio between the number of successes and the 
number of test patterns npatt, is reported in Fig. 8. In particular, 
Fig. 8a reports the SR for a NN trained with data not affected 
by measurement uncertainty, while Fig. 8b reports the SR for a 
NN trained with data corrupted by a “standard”-type 
measurement uncertainty. 
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Figure 8 – SR for each NN output in the case of NN trained on data 
not affected by uncertainty (a) and corrupted by a “standard”-type 

measurement uncertainty (b) 
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From Fig. 8a, it can be observed that the SR for all 
quantities is usually higher than 80%, except for MoT in the case 
of data corrupted with a “laboratory”-type measurement 
uncertainty. Moreover, it can be noted how SR increases when 
the measurement uncertainty increases, since in Eq. (9) (Ue)j 
increases with measurement uncertainty. In particular, in the 
case of data without measurement uncertainty, the SR is usually 
lower than in the other case since, here, in Eq. (9) (Ut)j = 0 and, 
therefore, (Ue)j = (Uy)j. From Fig. 8b, it can be observed that the 
use of corrupted training data allows one to obtain a higher SR 
than in the case in which training data without uncertainty are 
used. This only applies for test data with an uncertainty equal 
or higher than that used for training. 

An overall success rate (OSR) was also calculated. In this 
case, a simulation is considered a success when all the NN 
computed outputs verify Eq. (9). The results are reported in 
Tab. 5 and confirm the result reported in Fig. 8 (a) and (b), i.e. 
the use of corrupted training data allows one to obtain a higher 
SR than in the case in which training data without uncertainty 
are used. However, it should be remembered that this is only 
true for test data with an uncertainty equal or higher than that 
used for training. 

 
Table 5 – Overall Success Rate for a NN trained with data (a) without 

uncertainty and (b) corrupted by a “standard”-type measurement 
uncertainty in the simulation of data corrupted by random errors 

 OSR [%] 
 Laboratory Standard Industrial 
    

Training data without 
uncertainty  46 52 58 

Training data with 
“standard” meas. unc 34 62 71 

    

 
 
CONCLUSIONS 

In the paper, NN models for the simulation of gas turbines 
have been studied and developed. The analyses performed have 
been focused on the determination of the most appropriate NN 
structure, in terms of both computational time of the NN 
training phase and accuracy and robustness against 
measurement uncertainty. The NNs were used for the 
simulation of a 255 MW single shaft gas turbine at different 
boundary, load and health state conditions. For the considered 
15 inputs/6 outputs system, the most appropriate NN structure 
proved to be a feed-forward multilayer perceptron with a single 
60-neuron hidden layer and trained with at least 2 000 training 
patterns. In particular, the developed NN can be an effective 
tool for the real-time simulation of gas turbines when 
information on the behavior of the machine at different 
boundary, load and health state conditions is required. 
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