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Abstract

Ubiquitous computing promotes the proliferation of var-
ious stationary, embedded and mobile devices intercon-
nected by heterogeneous networks. It leads to a highly
dynamic distributed system with many devices and ser-
vices coming and going frequently. Many emerging dis-
tributed multimedia applications are being deployed in such
a computing environment. In order to make the experi-
ence for a user truly seamless and to provide soft perfor-
mance guarantees, we must meet the following challenges:
(1) users should be able to perform tasks continuously, de-
spite changes of resources, devices and locations; (2) users
should be able to efficiently utilize all accessible resources
within runtime environments to receive the best possible
Quality-of-Service (QoS). In this paper, we propose an in-
tegrated QoS-aware service configuration model to address
the above problems. The configuration model includes two
tiers: (1) service composition tier, which is responsible for
choosing and composing current available service compo-
nents appropriately and coordinating arbitrary interactions
between them to achieve the user’s objectives; and (2) ser-
vice distribution tier, which is responsible for dividing an
application into several partitions and distributing them to
different available devices appropriately. Our initial ex-
perimental results based on both prototype and simulations
show the soundness of our model and algorithms.
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NASA NAG 2-1406, NSF grant under contract number 9870736, 9970139,
and EIA 99-72884EQ. Any opinions expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF, NASA
or U.S. Government.

1. Introduction

Ubiquitous computing [15] has extended the computer
system to the whole physical space and leaded to a more
dynamicdistributed system than ever before, with many de-
vices and services coming and going frequently. Moreover,
nowadays a single user often possesses multiple heteroge-
neous devices ranging from desktop, laptop, to PDA. The
user may use any of those devices as the portal, with the
help of other personal devices and/or proxy hosts, to per-
form tasks. Many quality sensitive distributed multimedia
applications, such asvideo-on-demandandvisual tracking,
are being deployed in such a ubiquitous computing envi-
ronment. Thus, a big challenging problem is toprovide a
dynamic service configuration model to enable seamless de-
livery of distributed multimedia applications, in the ubiqui-
tous computing environment, with best possible Quality-of-
Service (QoS) guarantees.

The problem of service configuration has been addressed
in different research work [8, 12, 17]. However, most of the
proposed approaches do not meet the expectations of the
user community and fall short of the potential for ubiquitous
computing. We identify two key problems as follows:

• The first problem is brought by the inflexible way ser-
vice components are composed to form a distributed
application delivery. Dynamic insertion of mediat-
ing services [12] provides certain adaptability, but also
unnecessary overhead when the server or client ser-
vice itself can be dynamically changed. Specifying
a polymorphic distributed application [17] using mul-
tiple service paths provides a more flexible solution.
However, those service paths are often predefined and
fixed. They lacks the adaptability to accommodate
changes that are unknown at design time. Moreover,
all of the above approaches can only handle linear ser-
vice compositions which have serious limitations to
support complex distributed multimedia applications.



• Second, although ubiquitous computing environments
provide more abundant resources than ever before,
most of them are under-utilized. Putting all mediat-
ing services in a single host makes them easy to main-
tain, but also vulnerable to malicious attacks. It is
highly desirable that those services can dynamically
bind available resources in the runtime environment.
On the other hand, a single user often possesses mul-
tiple heterogeneous devices and many proxy hosts are
also available to users everywhere (e.g. office, confer-
ence room, hotel). Aggregating those resources effi-
ciently can definitely help to overcome resource lim-
itations of mobile devices and provide better QoS for
users. However, dividing a distributed application de-
livery appropriately and binding services to suitable
available devices is a challenging problem and has not
been systematically addressed yet. [4]

In this paper, we address the above challenges by propos-
ing an integrated model to support dynamic QoS-aware ser-
vice configuration. The service configuration model in-
cludes two tiers: (1)service composition, and (2)service
distribution tiers. The former is responsible for choosing
a set of suitable services, discovered in the current envi-
ronment, to compose a customized application delivery to
any client device. We also provide QoS consistency check
to discover and correct inconsistencies of QoS parameters
between any two interacting service components. The lat-
ter is responsible for dividing a distributed application into
several partitions and dispatching them to different devices
according to the current distributed resource availability.

We have implemented a prototype of our service con-
figuration model as part of the Gaia OS [1], an enabling
infrastructure for the smart spaces. Due to the scalability
requirement, we structure the smart spaces hierarchically
by grouping devices into different domains. Each domain
contains one domain server, which provides the key infras-
tructure services for the entire domain space, in the same
way as today’s operating systems do for a single desktop.
Theservice configuration modelis implemented as part of
the domain server. It cooperates with other domain ser-
vices, such as theevent service, to dynamically configure
distributed applications for the user.

The rest of the paper is organized as follows. Sec-
tion 2 introduces our application service model. Section
3 presents the dynamic QoS-aware service configuration
model. Section 4 presents the experimental results based on
both prototype and simulation. Section 5 discusses related
works. Section 6 concludes this paper.

2 Application Service Model

We consider a generic component-based model to char-
acterize the structure of distributed (multimedia) applica-

tions which are expected to run in the ubiquitous computing
environment. All application components are constructed
asautonomous services, which perform independent opera-
tions, such as transformation, synchronization, filtering, on
the data stream passing through them. Services can be con-
nected into a directed acyclic graph (DAG), which is called
aservice graph.

For supporting QoS, we assume that each component ac-
cepts input data with a QoS levelQin and generates out-
put with a QoS levelQout, both of which are vectors of
application-level QoS parameter values, such as data format
(e.g., MPEG, JPEG), resolution (1600*1200 pixels), and
others. In order to process input and generate output, a spe-
cific amount of resourcesR is required, which is a vector of
different end-systemresource requirements (e.g., memory,
cpu). The network bandwidth requirements are associated
with edges between two communicating components. For-
mally, we define the vectorsQin, Qout, andR as follows:
Qin = [qin

1 , qin
2 , ..., qin

n ], Qout = [qout
1 , qout

2 , ..., qout
n ], R =

[r1, r2, ..., rm].
Intuitively, if a component A is connected to a compo-

nent B, the output QoS of A (Qout
A ) must “match” the input

QoS requirements of component B (Qin
B ). In order to for-

mally describe thisQoS consistencyrequirements, we de-
fine an inter-component relation “¹”, called ”satisfy”, as
follows: Qout

A ¹ Qin
B if and only if

∀i, 1 ≤ i ≤ Dim(Qin
B ), ∃j, 1 ≤ j ≤ Dim(Qout

A ),
qout
Aj = qin

Bi, if qin
Bi is a single value;

qout
Aj ⊆ qin

Bi, if qin
Bi is a range value. (1)

The ”Dim(QA)” represents the dimension of the vector
”QA”. The single valueQoS parameters include media for-
mat, resolution, and others. Therange valueQoS parame-
ters can be frame rate ([10fps,30fps]).

3 Dynamic QoS-aware Service Configura-
tion Model

In this section, we present the dynamic service configu-
ration model, based on the above application service model.
The configuration model includes: (1)service composition
and (2)service distributiontiers, to address the two prob-
lems identified in Section 1, respectively. We first state a
number of key assumptions made by the service configu-
ration model and prove that those assumptions are valid in
practice. We then present the design and algorithms for the
two tiers in detail.

3.1 Assumptions

First, we assume that service components, that a ubiq-
uitous application needs in order to run, are not explicitly



named, but rather specified in an abstract manner. The de-
veloper should specify the application service at a high level
of abstraction in order to accommodate unexpected run-
time variations [4]. Several programming environments and
specification languages have been proposed to allow devel-
opers to provide such abstract descriptions [5, 10]. Second,
we assume that a service discovery service is available to
find the service instances that are closest to the abstract ser-
vice descriptions. Such a discovery service has been pro-
vided by different research work as well [6, 16].

In order to support dynamic partition of applications and
relocation of service components in theservice distribution
tier, we further make the following assumptions. First, we
assume that system services are available for saving and
restoring application checkpoints and for migrating com-
ponents with their data between nodes. Several research
work [14, 9] has addressed and provided sound solutions
for application checkpointing and migration. Second, we
assume that profiling or monitoring services are available
to automatically measure the resource requirements for all
application services. Such online profiling techniques are
investigated and provided in [2, 13].

3.2 Service Composition Tier

We now present the design and algorithms for theser-
vice compositiontier, represented by theservice composer.
The major protocol steps, carried out by theservice com-
poserto generate a QoS consistentservice graph, include
the following:

• Acquire the abstract service graph. As we men-
tioned above, the developer should provide high level
descriptions for ubiquitous applications. We call
this high level application descriptionabstract service
graph. It is structured in the same way as theser-
vice graphand includes abstract specifications about
each service component the application needs in order
to run, and also the interactions/dependencies between
these components. The developer can also abstractly
specifyoptionalservices that, if present at runtime, en-
hance the application.

• Discover service instances in the current environ-
ment. Once the abstract service graph is acquired,
the discovery service is invoked to find suitable ser-
vice instances in the current environment, according to
the abstract descriptions. It also takes into account the
user’s QoS requirements and properties of the client
device (e.g., screen size, computing capability). The
returned component should be the one closest to the
service’s abstract descriptions. It is possible that no
discovered component is returned for a particular ser-
vice.

• Check QoS consistencies and coordinate ad-hoc in-
teractions. The service instances, returned by the
second step, are concrete service components dis-
covered in the current environment. They include
more detailed and specific information than their ab-
stract descriptions (e.g., resource/platform require-
ments). Moreover, the discovered components’ speci-
fications may not be exactly the same as their abstract
descriptions. For example, the discovery service can
only find a JPEG player in the current environment al-
though an MPEG player is requested. Thus, theservice
composerneeds to check the QoS consistencies be-
tween discovered service instances and automatically
correct the inconsistent interactions, if possible.

• Generate the QoS consistent service graph and de-
liver it to the service distributiontier. After the third
step, a QoS consistent service graph is generated and
is then delivered to theservice distributiontier.

Among the above four steps, the third one forms the key
part of theservice composer. It tackles the following ma-
jor problems brought by the dynamic service composition
in ubiquitous computing environments: (1) failed discov-
ery of a service instance; (2) fast and efficient QoS con-
sistency check among discovered service instances; and (3)
automatic correction of inconsistent interactions. We will
explain in detail how these problems are addressed by the
service composerin the next paragraphs.

For the first problem, if the service that cannot be dis-
covered is optional, then theservice composermay simply
neglect it. Otherwise, the service composer can either re-
cursively apply the service composition algorithms to the
missing service or send a notification to the user. In the for-
mer approach, the service composer tries to find the service
graph that can perform the same task as the missing service
does1. In the latter approach, the user can either down-
load and install an instance for the missing service into the
current environment, or simply quit the application.

For the second and third problem,we propose anOrdered
Coordination(OC) algorithm to perform QoS consistency
check and automatic correction on theservice graph. It in-
cludes the following major operations, illustrated in Figure
1: (1) topologically sort the instantiatedservice graph; (2)
check the QoS consistency, in the reverse order of topolog-
ically sorting, between each node and its predecessors, ac-
cording to the inter-component relation ”satisfy” defined by
equation (2) in Section 2; (3) If any inconsistency is found,
possible automatic corrections are performed. In the gen-
eral case, developers should decide how to correct QoS in-
consistencies. However, if components’ output QoS param-

1In order to avoid infinite recursive service compositions for the miss-
ing service, we limit the depth of recursion to 2 in the practical implemen-
tation.
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Figure 1. Major operations in the ordered co-
ordination algorithm.

eters can be dynamically configured, we can adjust the out-
put QoS of the current node’s predecessor to make it ”sat-
isfy” the input QoS requirements of the current node. Then
the input QoS requirements of the predecessor need to be
adjusted accordingly and so on. Hence, theOC algorithm
not only preserves the QoS consistency but also best sup-
ports the user’s QoS requirements because the output QoS
parameters of the first examined nodes2, which often cor-
respond to the user’s QoS requirements, are preserved. We
may also insert transcoders in the middle to solve the type
mismatches or insert buffer component to alleviate perfor-
mance mismatches. The computational complexity ofOC
algorithm isO(V+E), whereV and E are the numbers of
service components and edges in the finalservice graph,
respectively.

The service composeris activated whenever some sig-
nificant changes are detected during runtime. For example,
when the user moves to a new location, the previous service
components may no longer be available. Or when the user
switches to a different device (e.g., from PC to PDA), the
previous service graph can no longer be supported. Under
these circumstances, theservice composerwill generate a
newservice graphon-the-fly. Thus the user can continue to
perform tasks, after the state handoff from the old service
graph to the new one.

3.3 Service Distribution Tier

This section presents the design and algorithms for the
service distributiontier, represented by theservice dis-
tributor. After the service composergenerates a consis-
tent service graph, the service distributoris responsible
for properly distributing service components so that the
service graphcan ”fit into” the current available devices.

2The first examined nodes are the last ones in the topological sorting
order and thus usually correspond to client services.
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Figure 2. Illustration of service distribution
problems.

As we mentioned in Section 2, each component is associ-
ated with an end-systemresource requirementvectorR =
[r1, r2, ...rm], with ri ( 1 ≤ i ≤ m) as the required amount
of the ith resource type. Each edgee = (u,v) in the graph is
assigned an integer weight “c(u,v)”, representing the com-
munication throughput from nodeu to nodev. In addition,
we use a vectorRA to representresource availabilityon
each device. We assume thatR andRA represent the same
set of resources and obey the same order. We usebi,j to
represent the end-to-end available network bandwidth from
theith to thejth device. Figure 2 illustrates the above con-
cepts. The graph nodes in Figure 2 represent the minimum
partitionable service components. Before we present the al-
gorithm for theservice distributor, we first introduce the
following definitions.

DEFINITION 3.1 The addition of two resource vectors
for service component A and B,RA = (rA

1 , rA
2 , ..., rA

m) and
RB = (rB

1 , rB
2 , ..., rB

m), is defined as the following:

RA + RB = [rA
1 + rB

1 , rA
2 + rB

2 , ..., rA
m + rB

m] (2)

DEFINITION 3.2 Given resource requirement vector
R = [r1, r2, ...rm] and resource availability vectorRA =
[ra1, ra2, ...ram], R ≤ RA if and only if

∀i, 1 ≤ i ≤ m, ri ≤ rai, (3)

DEFINITION 3.3 Let G = (V,E) be a directed graph.
A k-cut in G is a partitioning of V into nonempty subsets
V1,..., Vk. An edgee belongs to thek-cut if its endpoints
belong to different subsets of the partitionV1,...,Vk.

For instance, Figure 2 shows a 3-cut of the service graph.
The edges belonging to the cut are{ e1,2, e1,8, e5,2, e5,8,
e5,7, e9,8, e2,7, e8,7, e8,6}.

DEFINITION 3.4 Given theservice graphG = (V, E)
and K (2 ≤ K ≤ V ) available devices, we define that G can
”fit into” those k devices, if and only if there exits ak-cut
(V1,...,Vk) of the graph, such that

- ∀j, 1 ≤ j ≤ k,
∑

vi∈Vj

Ri ≤ RAj , whereRi represents

the resource requirement vector of componentvi, RAj rep-
resents the resource availability on the jth device;



- ∀i, j, 1 ≤ i, j ≤ (k−1), ∀e = (u, v) ∈ E, u ∈ Vi, v ∈
Vj ,

∑
e∈E,u∈Vi,v∈Vj

c(u, v) ≤ bi,j , wherec(u, v) represents

the communication throughput on the edge e that belongs
to thek-cut, bi,j represents the available bandwidth between
the ith and jth devices.

Usually, there exist multiple k-cut schemes that can fit
the service graph into k devices. Thus, theservice distribu-
tor needs to find the one with theMinimum Cost Aggrega-
tion. The concept ofCost Aggregationis defined as follows:

DEFINITION 3.5 Given a k-cutΦ = (V1,...,Vk) for the
service graph G = (V,E), itsCost Aggregation (CA)can be
calculated in the following way:

CA(Φ) =
k∑

j=1

m∑

i=1

wi · ri

raj
i

+
i6=j∑

1≤i,j≤k

wm+1 · Ti,j

bi,j
(4)

whereTi,j =
∑

u∈Vi,v∈Vj

c(u, v) andwi (1 ≤ i ≤ (m+1))

are nonnegative values so that
m+1∑
i=1

wi = 1.

For any end-system resource typeri (e.g., memory, cpu),
wi · ri

rai
is a normalized value between 0 and 1, wherewi

represents the significance of this resource type. Generally,
we assign higher weights for more critical resources. For

the network resource type,wm+1 ·
P

u∈Vi,v∈Vj

c(u,v)

bi,j
is a nor-

malized value between 0 and 1, wherewm+1 represents the
significance of network resource. In both cases, the nor-
malized value represents the cost the user pays for using a
specific type of resource to perform his or her tasks. Intu-
itively, the more important (higher weight) and more scarce
(smaller resource availability) the resource is, the larger cost
(larger normalized value) it takes the user to use it. Mini-
mizing thecost aggregationcan help improve the total re-
source utilization and reduce the contention on critical re-
sources. As a result, the user’s QoS requirements can be
better preserved and more applications can be supported si-
multaneously given the union of all resources. Thus, the
goal of theservice distributoris to find ak-cutfor the given
service graph, which can make the graphfit into the current
k available devices and also minimizes thecost aggregation
for the user.

However, we neglect several important practical issues
in the above analysis. First, we assume that every ser-
vice component can be instantiated on any device. But
the assumption does not hold in reality and some services
must run on certain device. For example, the display ser-
vice in the video-on-demand application must run on the
client device. Second, the model described so far is not
heterogeneity-aware. In other words, the k available devices
are assumed to be the same. To solve the first problem, we
can first ”pin” those special components on proper devices

by inserting them into the corresponding subsets (Vi, Defi-
nition 3.3) of partitions. For the second problem, we need
to normalize both theresource requirementand resource
availability values on heterogeneous machines to those on
a benchmark machine. For example, if we use a laptop
as the benchmark machine and assume the resource avail-
abilities of a PDA and a PC areRAPDA = [32MB (mem-
ory), 100% (CPU)] andRAPC =[256MB,100%], then the
two normalized resource availability vector values on the
benchmark machine (laptop) may becomeN(RAPDA) =
[32MB, 40%],N(RAPC) = [256MB, 500%]. We assume
that the memory availability values are not affected by de-
vice heterogeneity. However, the normalized CPU avail-
ability should be changed according to the speed difference
between the heterogeneous device and the benchmark ma-
chine. Similarly, theresource requirementvalues also need
to be normalized to those on a benchmark machines. In the
general case, the above normalization functions can be de-
rived through experimental measurements. For simplicity,
we assume that the values in Definitions 3.1 to 3.5 are all
normalized values. Thus, we can apply those definitions to
the ubiquitous computing environment. We now show that
the general problem of finding the optimal service distribu-
tion (k-cut) that makes the service graphfit into k devices
and also minimizes thecost aggregationis NP-hard.

Theorem 1 Finding the optimal service distribu-
tion(OSD) that makes the service graph fit into k devices
and also minimizes the cost aggregation is NP-hard.

Proof: We prove this by showing that theminimum di-
rected multi-way cutproblem which is known to be NP-hard
[7] maps directly to a special case of our service distribu-
tion problem. The minimum directed multi-way cut prob-
lem is as follows: Let G = (V, E) be a directed graph and let
c(u,v) be a non-negative capacity function associated with
the edge e = (u,v).

Minimize

i 6=j∑

1≤i,j≤k

∑

u∈Vi,v∈Vj

c(u, v) (5)

whereV1, V2,...,Vk are k non-empty subsets of V and form
a k-cut of graph G.

The above problem is identical to the following special
case of our problem. Suppose each of the k available de-
vices has infinite end-system resource availability. Thus,
any k-cut of service graph G can satisfy the ”fit into” con-
straints. We also assume that every service component can
be assigned to any of the k available devices. In addition,
we let (1)wi (1 ≤ i ≤ m) be 0 andwm+1 be 1; (2) every
available bandwidthbi,j be 1 (Gbps). An identity transfor-
mation makes the minimum directed multi-way cut problem
a special case of ourOSDproblem, shown by equation (4).
Thus, theOSDproblem is also NP-hard.¤
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Figure 3. End-to-end QoS of different service
configurations.

Since the number of service components can be large
given fine service granularity and complex applications, we
provide a polynomial heuristic algorithm for theOSDprob-
lem. It primarily involves the following steps: (1) insert
those service components, that cannot be instantiated ar-
bitrarily, into their proper devices; (2) repeat sorting the k
available devices in decreasing order of their resource avail-
abilities and insert the next chosen service components to
the current head of the sorted device list, namely the device
that currently has the largest resource availability. If the
head device contains a service component A, then the next
chosen component is A’s neighbor, which has the largest
resource requirements3. We then insert the chosen compo-
nent into the head device and merge it with A. If the head
device is empty, then the next chosen service component is
the one which has the largest resource requirements among
all remaining service components. Repeat the above proce-
dure until every service component has been inserted into a
proper device.

Theservice distributoris invoked whenever somesignif-
icant resource fluctuations or device changes happen during
runtime. For example, if one of old devices crashes, theser-
vice distributorneeds to calculate new service distributions
for the changed resource availability. Thus, the user can
continue his or her tasks with minimum QoS degradations.

4 Experimental Results

We have implemented a prototype of the service con-
figuration model as part of the Gaia OS [1], an enabling
infrastructure for smart spaces, and performed several ex-
periments based on both the prototype and simulations.

Our first set of experiments is performed based on the
prototype, using two distributed multimedia applications,

3Both resource availability and resource requirement are measured us-
ing the weighted sum of different resources. Due to the page limit, the
detailed equations are not shown.
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Figure 4. Overhead of each dynamic service
configuration actions illustrated in Figure 3.

mobile audio-on-demandand video conferencingimple-
mented in our lab. The servers/gateways in our testbed are
either Sun Ultra-60 workstations or Pentium III 900 PCs.
The client devices are either PCs, laptops (IBM Thinkpad),
or PDAs (HP Jornadas). we demonstrate that the service
configuration model is able to provide soft QoS guaran-
tees to the user in the ubiquitous computing environment.
Figure 3 shows experimental results for both applications.
The results from themobile audio-on-demandapplication
show that our dynamic service configuration can flexibly
accommodate common runtime changes, such as user mo-
bility and handoff between heterogenous devices. The ex-
periment with thevideo conferencingapplication demon-
strates the ability of our framework to handle on-demand
service configuration fornon-linearservice graph. Figure 4
shows the dynamic service configuration overhead, during
the above experiments. For themobile audio-on-demand
application, we assume that the required service compo-
nents are already installed on the target devices in advance.
Thus there is no dynamic downloading overhead involved.
However, in thevideo conferencingapplication, we assume
that all required service components need to be downloaded
on demand from the component repository. The state hand-
off time includes the handoff protocol overhead and also the
buffering time for the first frame at the interruption point.
Since the PDA is connected with the wireless network while
the PC is connected with the ethernet, the state handoff time
from PC to PDA is longer than that from PDA to PC. Over-
all, the results show that the overhead of the dynamic ser-
vice configuration is relatively small compared to the entire
execution time of the application. Moreover, the dynamic
downloading overhead, which occupies the largest propor-
tion of the total overhead, can often be avoided if the re-
quired components are already on the target devices.

To demonstrate the efficiency of the proposed heuris-
tic service distribution algorithm, we conducted two sets
of experiments based on simulations. First, we compare
the relative performances of different heuristic algorithms



(random and ours) with the optimal algorithm. The opti-
mal algorithm uses exhaustive search for the optimal ser-
vice distribution solution. Since the problem is NP-hard,
we limit ourselves to the special case of two-way cut. We
assume two heterogeneous devices (PC, PDA) are used,
with initial normalized resource availability vectorsRA1 =
[ 256MB, 300%],RA2 = [ 32MB, 100%], respectively. We
consider service graphs with 10 to 20 service components.
Each component has, on average, 3 to 6 outbound edges.
Other parameters including resource requirement vectors,
communication throughput on each edge and weight values
are uniformly distributed. Table 1 summarizes the compari-
son results for 150 randomly generated service graphs. The
first column in Table 1 is the average performance of each
heuristic, measured by the ratio of cost aggregation between
the optimal solution and the solution found by the heuristic,
averaged over all 150 graphs. The second column is the per-
centage of 150 graphs for which our heuristic or the random
algorithm was able to find the exact optimal solution.

Algorithms Average Optimal
Random 25% 0%

Our Heuristic 91% 60%
Optimal 100% 100%

Table 1. Comparisons among different service distri-
bution algorithms.

Second, we compare the overallsuccess rateachieved by
our heuristic algorithm withrandomandfixedalgorithms.
A service configuration request is said to be successful if the
service graph canfit into the current available devices. The
success rateis calculated by the ratio of the number of suc-
cessful service configuration requests to the number of to-
tal configuration attempts. We assume three heterogeneous
devices (desktop, laptop, and PDA) are used, with initial
normalized resource availability vectorsRA1 = [ 256MB,
300%],RA2 = [ 128MB, 100%], andRA3 = [ 32MB, 50%]
respectively. The available bandwidthsb1,2, b1,3, andb2,3

are initialized to be 50Mbps, 5Mbps, and 5Mbps respec-
tively. We randomly create 5000 application requests over
1000 hours period. Each request randomly selects a ser-
vice graph from 5 predefined ones. Each graph has 50 to
100 nodes with on average 5 to 10 outbound edges. The
length of each application is exponentially distributed from
5 minutes to 1 hours. Other parameters, including resource
requirement vectors, communication throughput on each
edge and weight values, are uniformly distributed. When a
new application starts or an old application stops, both our
heuristic andrandomalgorithms make the re-distribution
decisions, but thefixedalgorithm does not. The success rate
is calculated every 50 hours. Figure 5 shows the compari-
son results among thefixed, randomand our heuristic algo-
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Figure 5. Success rate comparisons among
the fixed, random and our heuristic algo-
rithms.

rithms.Fixedalgorithm has the lowest success rate because
it lacks dynamic service distribution considerations.Ran-
domalgorithm provides better success rate since it benefits
from the flexibility of dynamic service distribution. Finally,
our heuristic algorithm consistently maintains the highest
success rate because it considers both resource availability
and resource requirements during dynamic service distribu-
tions.

5 Related Work

The problem of dynamic service configuration has been
addressed in different research works. In [12], the authors
propose the concept of “path” to compose services on de-
mand in heterogeneous environments. Although the con-
cept of “path” can solve the type mismatches for ubiqui-
tous multimedia streaming applications, it lacks the general
QoS support and is limited to linear service graphs. In [17],
the authors use a set of different compositions to represent
the same application with different QoS levels so that the
general QoS support is explicitly included into the service
composition solutions. However, the service composition
list for a particular application is predefined and thus can-
not accommodate unexpected runtime changes which are
a common case in the ubiquitous computing environment.
Moreover, all of the above approaches only addressoneas-
pect of the service configuration problem, namely the ser-
vice composition problem.

The idea of automatically partitioning and distributing
applications is not new as well. In [3], the authors propose
a hierarchical application partitioning approach to provide
both potential for scalability and support for system hetero-
geneity. In the Coign [11] project, a system to automatically
partition and distribute binary applications is proposed to
ease the development of distributed applications. However,
our work is different from the above similar works in the



following primary respects. First, the goal of the service
distribution in our work is not only to improve application
performance but also to overcome the resource limitations
of mobile devices. Second, we consider multiple resource
types in finding the optimal service distribution for dis-
tributed multimedia applications. Moreover, the resources
are differentiated so that the consumption of the most criti-
cal resource is minimized.

In conclusion, compared with the above similar works,
the novelty of our work is to propose anintegratedandQoS-
awaremodel to addressbothaspects of the dynamic service
configuration problem in the ubiquitous computing environ-
ment.

6 Conclusion

Ubiquitous computing brings new challenges to the dy-
namic service configuration research for the soft real time
applications such as multimedia. In this paper, we present
an integrated QoS-aware service configuration model to ad-
dress the challenges. The major contributions of the paper
are: (1) identifying two key problems,service composition
andservice distributionto support dynamic service configu-
ration in ubiquitous computing environments; (2) introduc-
ing a two-tier integrated model to solve the above problems
in a unified framework; (3) providing the design and poly-
nomial algorithms for theservice compositiontier which in-
cludes automatic QoS consistency check and correction to
support arbitrary interactions between service components;
and (4) defining theoptimal service distributionproblem
which is shown to be NP-hard and then providing a polyno-
mial approximation algorithm for the problem.
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