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Introduction 
Recently rapid imaging methods that exploit the spatial sparsity of images using 
under-sampled randomly perturbed spirals and non-linear reconstruction have 
been proposed [1,2]. These methods were inspired by theoretical results in sparse 
signal recovery [1-5] showing that sparse or compressible signals can be 
recovered from randomly under-sampled frequency data. We propose a method 
for high frame-rate dynamic imaging based on similar ideas, now exploiting both 
spatial and temporal sparsity of dynamic MRI image sequences (dynamic scene). 
We randomly under-sample k-t space by random ordering of the phase encodes 
in time (Fig. 1). We reconstruct by minimizing the L1 norm of a transformed 
dynamic scene subject to data fidelity constraints. Unlike previously suggested 
linear methods [7, 8], our method does not require a known spatio-temporal 
structure nor a training set, only that the dynamic scene has a sparse 
representation. We demonstrate a 7-fold frame-rate acceleration both in 
simulated data and in vivo non-gated Cartesian balanced-SSFP cardiac MRI .  
Theory 
Dynamic MR images are highly redundant in space and time. By using linear 
transformations (such as wavelets, Fourier etc.), we can represent a dynamic 
scene using only a few sparse transform coefficients. Inadequate sampling of the 
spatial-frequency -- temporal space (k-t space) results in aliasing in the spatial -- 
temporal-frequency space (x-f space). The aliasing artifacts due to random 
under-sampling are incoherent as opposed to coherent artifacts in equispaced 
under sampling. More importantly the artifacts are incoherent in the sparse 
transform domain. By using the non-linear reconstruction scheme in [1-5] we 
can recover the sparse transform coefficients and as a consequence, recover the 
dynamic scene. We exploit sparsity by constraining our reconstruction to have a 
sparse representation and be consistent with the measured data by solving the 
constrained optimization problem: minimize  ||Ψm||1  subject to: ||Fm – y||2 < ε. 
Here m is the dynamic scene, Ψ transforms the scene into a sparse 
representation, F is randomized phase encode ordering Fourier matrix, y is the 
measured k-space data and ε controls fidelity of the reconstruction to the 
measured data. ε  is usually set to the noise level.  
Methods 
For dynamic heart imaging, we propose using the wavelet transform in the 
spatial dimension and the Fourier transform in the temporal. Wavelets sparsify 
medical images [1] whereas the Fourier transform sparsifies smooth or periodic 
temporal behavior. Moreover, with random k-t sampling, aliasing is extremely 
incoherent in this particular transform domain. To validate our approach we 
considered a simulated dynamic scene with periodic heart-like motion. A random 
phase-encode ordered Cartesian acquisition (See Fig. 2) was simulated with a 
TR=4ms, 64 pixels, acquiring a total of 1024 phase encodes (4.096 sec). The data 
was reconstructed at a frame rate of 15FPS (a 4-fold acceleration factor) using the 
L1 reconstruction scheme implemented with non-linear conjugate gradients. The 
result was compared to a sliding window reconstruction (64 phase encodes in 
length). To further validate our method we considered a Cartesian balanced-SSFP 
dynamic heart scan (TR=4.4, TE=2.2, α=60°, res=2.5mm, slice=9mm). 1152 
randomly ordered phase encodes (5sec) where collected and reconstructed using the L1 scheme at a 7-fold 
acceleration (25FPS). Result was compared to a sliding window (64 phase encodes) reconstruction. The 
experiment was performed on a 1.5T GE Signa scanner using a 5inch surface coil. 
Results and discussion 
Figs. 2 and 3 illustrate the simulated phantom and actual dynaic heart scan reconstructions. Note, that even 
at 4 to 7-fold acceleration, the proposed method is able to recover the motion, preserving the spatial 
frequencies and suppressing aliasing artifacts. This method can be easily extended to arbitrary trajectories 
and can also be easily integrated with other acceleration methods such as phase constrained partial k-space 
and SENSE [1]. In the current, MatlabTM implementation we are able to reconstruct a 64x64x64 scene in 
an hour. This can be improved by using newly proposed reconstruction techniques [5,6]. Previously 
proposed linear methods [7,8] exploit known or measured spatio-temporal structure. The advantage of the 
proposed method is that the signal need not have a known structure, only sparsity, which is a very realistic 
assumption in dynamic medical images [1,7,8]. Therefore, a training set is not required.  
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Figure 2: Simulated 
dynamic data. (a) The 
transform domain of the 
cross section is truly sparse. 
(b) Ground truth cross-
section. (c) L1 reconstruction 
from random phase encode 
ordering, 4-fold acceleration 
(d) Sliding window (64) 
reconstruction from random 
phase encode ordering..  

Figure 1: (a) Sequential phase encode ordering. (b) Random Phase 
encode ordering. The k-t space is randomly sampled, which enables 
recovery of sparse spatio-temporal dynamic scenes using the L1 

reconstruction. 

Figure 3:Dynamic SSFP 
heart imaging with 
randomized ordering. 7 -
fold acceleration (25FPS). 
The images show two 
frames of the heart phase 
and a cross section 
evolution in time (a) Sliding 
window (64) recon. (b) L1

recon. The signal is 
recovered in both time and 
space using the L1 method. 
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