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Abstract. We initiate the study of 1-torsion of finite modules over two-sided
noetherian semiperfect rings. In particular, we give a criterion for determining

when the 1-torsion submodule contains minimal generators of the module. We
also provide an explicit construction for a projective cover of the submodule
generated by the torsion elements in the top of the module. Some of the
obtained results hold without the noetherian assumption. We also give several

applications to local algebra.

1. Introduction

The goal of this paper is to study the kernel of the canonical map from a finite
module over a semiperfect ring to its double dual. Such kernels will be referred to as
1-torsion. In particular, we want to understand under what conditions the 1-torsion
contains minimal generators of the ambient module. The original motivation for
this problem came from a question raised by Reiffen and Vetter [11] in their work on
Pfaffian forms on complex spaces. An algebraic reformulation of it, due to G. Scheja,
is discussed in detail in E. Platte’s paper [10]. We quickly recall the basic facts.
Let k be a valued field of characteristic zero and A a reduced equidimensional local
analytic k-algebra with (universally finite) module of Kähler differentials Dk(A).
The torsion problem can be stated as follows: (if k = C) is it possible for Dk(A) to
have common minimal generators with its torsion submodule?

After mentioning several cases with a negative answer in [10], Platte constructs
a class of examples showing that indeed the module of differentials can have torsion
elements among its minimal generators. At the end of the paper, he mentions
another question, raised by Scheja, whether the torsion submodule of the module
of differentials can be a direct summand. He then quotes a result of Scheja that for
hypersurface rings the new problem is equivalent to the original problem, elevates
the question to a conjecture (i.e., the torsion submodule is never a direct summand)
and remarks that, if true, it would provide a quick proof of Grothendieck’s version
of the purity of the branch locus for complete intersections [6]. Platte concludes
his paper with a remark that “[u]nfortunately, a proof of the weakened torsion
conjecture seems to be [methodologically] remote”.

In the present paper, we shall show how methods of stable module theory can be
used to provide new insights and perspectives on the problems of Reiffen - Vetter
and Platte - Scheja. One may begin, for example, by asking a natural question:
given the module of differentials of an algebra, how does one determine whether
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or not this specific module has torsion elements among its minimal generators? In
fact, properties of the torsion submodule of any finitely presented module is a topic
of interest in its own right and the same question can be posed for any finitely
generated module over a commutative noetherian local ring. Moreover, there is no
reason not to pose this question in the utmost generality, for any finitely generated
module over a two-sided noetherian semiperfect ring. In that setup, the torsion
submodule should be replaced by the more general concept of 1-torsion.

The main result of this paper (Th. 5) provides a verifiable module-theoretic
criterion for an arbitrary finitely generated module over an arbitrary noetherian
semiperfect ring to have 1-torsion elements among its minimal generators. More
precisely, this happens exactly when the first syzygy module of the Auslander trans-
pose of the module has a projective summand. This has immediate applications in
commutative algebra. First, we have an interesting consequence for finite modules
over artinian commutative rings: the 1-torsion submodule can never contain mini-
mal generators of the module. Secondly, the non-existence of projective summands
in the syzygy modules can be deduced from the vanishing of the ξ-invariants of
the module (see below for details). Roughly speaking, those invariants measure the
difference between the cohomology and the Tate - Vogel cohomology of the mod-
ule. The latter is an example of an abstract stable homotopy theory, based on the
Eckmann - Hilton homotopy groups of modules.

We also remark that, in equationally defined situations, the obtained criterion
allows explicit calculations with a minimum of computing power: to determine
whether or not the first syzygy module of the transpose has a free summand, one
needs a presentation matrix for the syzygy module and a procedure to check whether
or not one of the rows of the matrix is a linear combination of the remaining rows.1

In section 6 we give a criterion for the 1-torsion submodule to be a direct sum-
mand. This is done in a greater generality: the ring is two-sided noetherian but not
necessarily semiperfect. Our methods do not impose any significant restrictions on
the rings in question: there is no assumption on the characteristic, the ring does
not have to be commutative or a domain, nilpotent elements are allowed, etc. For
that reason, it is to be hoped that a proof of the Platte - Scheja conjecture, if at
all possible, can be obtained by some sort of a dimension-reduction procedure. As
we mentioned above, in dimension zero the 1-torsion submodule cannot be a direct
summand!

The author is grateful to the referee, whose comments strengthened the original
version of Prop. 12 and also led to Prop. 8 (and some of its consequences).

2. Notation and preliminaries

Throughout this paper all rings will be assumed to be associative with identity
and all modules to be unital. In this section we recall some basic facts from module
theory. Most of this material, in one form or another, can be found in [1], [2], and
[3]. Let Λ be a ring and M a (left) Λ-module with a finite projective presentation

P1
∂ // P0

p // M // 0.

If finite Λ-modules admit projective covers (i.e., Λ is semiperfect), we shall auto-
matically assume that the presentation above is minimal. The first syzygy module

1A careful reader may add that one needs a presentation matrix of the original module to begin
with.



1-TORSION OF FINITE MODULES OVER SEMIPERFECT RINGS 3

ΩM of M is defined as the kernel of the map P0 →M . The transpose TrM of M
is defined by the exact sequence

0 // M∗ p∗ // P ∗
0

∂∗
// P ∗

1
ω // TrM // 0,

where (−)∗ stands for the functor HomΛ(−,Λ). The finiteness assumption on the
projective presentation of M implies that the beginning of the above sequence is a
finite projective presentation of TrM . If finite Λ-modules admit projective covers,
then both ΩM and TrM are defined uniquely up to isomorphism because of our
convention that projective presentations be minimal. In general, however, both
ΩM and TrM are only defined up to projective equivalence.

The following operation on Λ-modules will be of fundamental importance to us.

Definition 1. λM := ΩTrM .

In the above notation, λM = Ker ω = Im ∂∗ ≃ Coker p∗, which shows that
while λM is still defined up to projective equivalence, its isomorphism class does
not depend on the choice of P1.

Lemma 2. Let Λ be a semiperfect ring and N a submodule of a finitely generated
projective Λ-module P . Then N is superfluous in P if and only if N and P have
no common nonzero projective summands.

The following consequence of this result is of main interest to us.

Proposition 3. Let Λ be a semiperfect ring, M a finitely presented Λ-module with
minimal projective presentation P1

∂→ P0 →M → 0, and

0 // M∗ // P ∗
0

∂∗
// P ∗

1
ω // TrM // 0

the corresponding (augmented on the left) finite presentation for TrM . Then:

a) The map ω : P ∗
1 → TrM is a projective cover.

b) M is stable if and only if the above presentation of TrM is minimal.
c) M is stable if and only if P ∗

0 → λM is a projective cover.
d) If Q is a maximal projective direct summand of M , then Q∗ is a maximal

common direct summand of M∗ and P ∗
0 .

e) TrM is stable.
f) TrM is zero if and only if M is projective.

The proof consists of standard arguments and is left to the reader.

For any Λ-module M , the kernel t(M) of the canonical map eM : M → M∗∗

will be called the 1-torsion submodule of M . The image of eM can be computed as
follows.

Lemma 4. Let Λ be a semiperfect ring and M a finitely presented Λ-module such
that M∗ is finitely generated. If M is stable, then the image of the canonical map
eM : M → M∗∗ is isomorphic to λ2M . If M ≃ M

⨿
Q, where M is stable and Q

is projective, then the image of eM is isomorphic to λ2M
⨿
Q ≃ λ2M

⨿
Q.

Proof. The second part of the lemma immediately follows from the first. To prove
the first part, we start with a minimal presentation P1 → P0

φ→ M → 0. Since
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double dual is a natural transformation, we have Im(eM ) = Im(φ∗∗). Applying
Hom(−,Λ) to the minimal presentation above, we have an exact sequence

(A) 0 // M∗ φ∗
// P ∗

0
π // λM // 0 .

Let ψ : Q→M∗ be a projective cover (it exists since M∗ is, by assumption, finitely
generated) and α := φ∗ψ. Assuming that M is stable, we have, by Prop. 3, a
minimal presentation Q

α→ P ∗
0

π→ λM → 0. Applying to it the functor Hom(−,Λ)
we have a commutative diagram with an exact top row:

(B) 0 // (λM)∗ π∗
// P ∗∗

0
α∗

//

φ∗∗

""EEEEEEEE
Q∗ // Tr (λM) // 0

M∗∗
<<

ψ∗
<<zzzzzzzz

By the left-exactness of the Hom-functor, ψ∗ is a monomorphism and therefore
Im(α∗) ≃ Im(φ∗∗). By Prop. 3, a), the map Q∗ → Tr (λM) is a projective cover
and thus Im(α∗) ≃ Ω(Tr (λM)) = λ2M . This finishes the proof of the lemma. �

3. The main theorem and first applications

Our goal in this section is to give a necessary and sufficient condition for the
1-torsion submodule to contain a minimal generator of the ambient module. The
ring Λ will be semiperfect and two-sided noetherian.

Theorem 5. Let Λ be a two-sided noetherian semiperfect ring and M a finitely gen-
erated Λ-module. Then the 1-torsion submodule t(M) contains a minimal generator
of M if and only if λM has a nonzero projective summand.

Proof. The constructions (and notation) used above are collected in the following
commutative diagram:

(C) P ∗∗
1

∂∗∗
//

##GG
GG

GG
GG

G
P ∗∗

0
α∗

//

## ##

φ∗∗

))SSSSSSSSSSSSSSSSSS Q∗ // // Tr (λM)

(λM)∗
;;

π∗
;;

Im eM // // M∗∗
OO
ψ∗

OO

P1
∂ //

eP1∼=

OO

P0

eP0∼=

OO

φ // // M

cccc
eM

OO

t(M)
;;

ι

;;

where the complexes consisting of dotted arrows are exact (assuming that the epi-
morphisms are followed by maps to the zero module and the monomorphisms are
preceded by maps from the zero module). The two shorter complexes of such type
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give rise to the following commutative diagram with exact rows and columns:

(D) 0

��

0

��
ΩM

��

ΩM

��
0 // (λM)∗ π∗

//

��

P ∗∗
0

//

φe−1
P0

��

Im eM // 0

0 // t(M)

��

ι // M

��

// Im eM //// 0

0 0

The map φe−1
P0

, being the composition of an isomorphism and a projective cover,
is an isomorphism modulo the Jacobson radical J of Λ. By Nakayama’s lemma,
t(M) contains a minimal generator of M if and only if t(M) is not contained in
JM . Reducing the south-west square modulo J , we see that this happens precisely
when(λM)∗ is not contained in JP ∗∗

0 . In view of Prop. 3, a), this is equivalent to
saying that the map α∗ in diagram (C) is not a minimal presentation of Tr (λM).
By Prop. 3, c), (with λM in place of M) this is equivalent to saying that λM has
a nonzero projective summand. �

Corollary 6. Under the assumptions of Th. 5, the 1-torsion submodule t(M)
contains a minimal generator of M if and only if (λM)∗ and P ∗∗

0 have a common
nonzero projective summand under the map π∗.

Proof. This is just a reformulation of the theorem. In view of Lemma 2, the “only
if” part was already shown at the end of the proof of the theorem. Suppose now
that there is a common nonzero projective summand. Then sequence (B) is not a
minimal presentation of Tr (λM) and we are done by Prop. 3, b). �

The short exact sequence 0 → ΩM → (λM)∗ → t(M) → 0 yields the following.

Corollary 7. Under the assumptions of Th. 5, if t(M) = 0, then ΩM and (λM)∗

are isomorphic. If Λ is artinian, then the converse is true.

Proof. The first assertion is immediate. The second follows from the fact than an
injective endomorphism of a module of finite length is an isomorphism. �

Our next goal is to find classes of rings over which the 1-torsion submodule of an
arbitrary finitely generated module cannot reach the top. We begin by establishing
a simple criterion. Let Λ be a (not necessarily noetherian) ring with Jacobson
radical J . We shall say that Λ has low 1-torsion if the 1-torsion submodule t(M) of
an arbitrary (not necessarily finitely generated) Λ-module M is contained in JM .

Proposition 8. A semilocal ring has low 1-torsion if and only if every simple
module is 1-torsion free.
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Proof. The “only if” part is immediate. Assume now that every simple is 1-torsion
free. For an arbitrary module M we have an exact sequence

0 → JM →M →M/JM → 0

If m ∈ t(M), then any linear functional M → Λ vanishes on m. Therefore any
linear functional on M/JM vanishes on the image of m in M/JM . Since M/JM is
semisimple, our assumption implies that the image of m is zero, i.e., m ∈ JM . �
Proposition 9. Suppose Λ is a local (not necessarily noetherian) ring with a
nonzero socle. Then Λ has low 1-torsion. If, in addition, Λ is semiperfect, then the
1-torsion submodule of any finitely generated Λ-module does not contain minimal
generators of the module.

Proof. Let S be the unique simple module Λ/J . For the first claim it suffices to
show that S is 1-torsion free. Suppose this is not true. Then t(S) = S and λS
must have a projective summand: in our case λS ≃ X

⨿
Λ. Let Λn → Λ → S → 0

be a minimal projective presentation of S. Dualizing into Λ, we have a short exact
sequence 0 → Hom(S,Λ) → ΛΛ → X

⨿
ΛΛ → 0, which yields, via the composition

with the projection to the second summand, a surjective endomorphism of ΛΛ.
Since Λ is local, it has IBN. As a consequence, that endomorphism must be an
isomorphism. This implies that Hom(S,Λ) = 0. But, by assumption, the socle of Λ
is nonzero and therefore S embeds in Λ, a contradiction. Thus S is indeed 1-torsion
free and Λ has low 1-torsion. The second claim now follows immediately. �
Corollary 10. Any local artin algebra has low 1-torsion.

Corollary 11. Any commutative local ring of depth zero has low 1-torsion

Recall that a commutative ring is semiperfect if and only if it is a finite direct
product of commutative local rings. Therefore, by the Krull – Akizuki theorem,
commutative artinian rings are semiperfect. The next result provides examples of
low 1-torsion for nonlocal rings.

Proposition 12. Let A be a commutative artinian ring. Then the 1-torsion sub-
module of a finitely generated A-module does not contain minimal generators of the
module.

Proof. By Th. 5, it suffices to show that the first syzygy module ΩM of any finitely
generated A-module M has no nonzero projective summands. Suppose that this is
not the case. We then have a short exact sequence 0 → ΩM

⨿
P1 → P0 →M → 0,

where P1 is a nonzero projective and P0 → M is a projective cover. Since P1

is superfluous in P0, the short exact sequence 0 → P1 → P0 → X → 0 is not
split, i.e., Ext1(X,P1) ̸= 0. Therefore, there is a maximal ideal m of A such that
Ext1A(X,P1)m = Ext1Am

(Xm, P1m) ̸= 0. But then proj.dim. Xm = 1, contrary to
the Auslander – Buchsbaum formula. �

As a consequence of the proof of Th. 5, we can now quantify the extent to which
the 1-torsion submodule t(M) “penetrates” the top of M (i.e., M/JM).

Definition 13. Let T(M) be the submodule of M generated by the elements of
t(M) not contained in JM .

Proposition 14. Suppose λM ≃ λM
⨿
S, where λM is stable and S is projective.

Then, in the notation of Th. 5, φe−1
P0

|S∗ : S∗ → T(M) is a projective cover.
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Proof. Prop. 3, d) shows that S∗ is a maximal common projective summand of
(λM)∗ and P ∗∗

0 . Reducing modulo J the south-west commutative square in dia-
gram (D), we see that the statement of this corollary correctly identifies T(M) as
the image of the restriction map in question. That this map is a projective cover
follows from the fact that it is an isomorphism modulo the radical. �

Suppose Λ is a local ring. Then the top of any finitely generated projective
Λ-module becomes a vector space over the residue skew field Λ/JΛ and we have

Proposition 15. If Λ is a two-sided noetherian local ring, then the dimension of
the vector subspace of the top of M generated by the image of T(M) (equivalently,
by the image of t(M)) equals the rank of a maximal projective summand of λM .

Remarks. a) The last proposition can be quickly proved by an argument which
does not appeal to Th. 5. Let f-rankM denote the rank of a maximal projective
(i.e., free) summand of M and b(M) the minimal number of generators of M . Using
the definition of the operator λ and Prop. 3, d), we have

b(λM) = b(M) − f-rankM.

Applying this formula twice, we have

b(λ2M) = b(M) − f-rankλM − f-rankM.

Lemma 4 gives rise to a short exact sequence

0 // t(M) // M // λ2M
⨿

Λf-rankM // 0,

which shows that b(T(M)) = b(M) − b(λ2M) − f-rankM . In view of the previous
formula, this equals f-rankλM .

b) For any ring Λ and any superfluous epimorphism f : M → N of finite Λ-
modules we have a commutative diagram with exact rows

0 // t(M)
iM //

��

M
eM //

f

��

M∗∗

f∗∗

��
0 // t(N)

iN // N
eN // N∗∗

Let J be the radical of Λ and suppose that iM ⊗ Λ/J ̸= 0. Since f ⊗ Λ/J is an
isomorphism, we have that iN ⊗ Λ/J ̸= 0.

4. Applications to local algebra

We can now offer another perspective on the results of Reiffen-Vetter and Scheja
on hypersurface algebras.

Proposition 16. Let R be a commutative noetherian local ring, a1, . . . , an, where
n ≥ 1, elements of R generating a nonzero proper ideal a ( R, and M an R-module
with presentation

R
[a1a2...an]T // Rn // M // 0.

Then T(M) is nonzero if and only if a is a principal ideal generated by a nonzero-
divisor. In that case, the 1-torsion submodule t(M) is a direct summand of M .2

2Under an additional assumption that the ideal a contains a nonzerodivisor, this result was
also proved in [12], Hilfsatz (9.10).
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Proof. If a is a principal ideal generated by a ∈ R, then for i = 1, . . . , n there are
elements bi ∈ R and ci ∈ R such that ai = bia and a =

∑n
i=1 ciai. Therefore

(1 −
∑n
i=1 cibi)a = 0. Since R is local and (a) = a ̸= 0, one of the bi (and the

corresponding ci) must be a unit. Thus one of the ai generates a and M has a
presentation

R
[a 0...0]T // Rn // M // 0.

This shows that M ≃ R/(a)
⨿
Rn−1. By assumption, a is neither the zero element

nor a unit. Therefore the obtained presentation is minimal and λM ≃ a = (a).
When a is a nonzerodivisor, this module is isomorphic to R, showing that T(M) ̸=
(0). In that case (R/(a))∗ ≃ Ann a = (0) and thus t(M) = R/(a) = T(M).

To prove the other implication, we may assume that a is minimally generated
by a1, . . . , an, thus making the defining presentation of M minimal. By Th. 5,
λM ≃ a has a nonzero projective summand, say, a ≃ a1 ⊕ a2 with a2 isomorphic
to R. Since R is commutative, a1a2 is contained in both a1 and a2 and is therefore
zero. Since a nonzero element cannot annihilate the identity of R, we must have
a1 = (0) and therefore a ≃ R. This shows that a is principal and generated by a
nonzerodivisor. �

Example. LetR := k[|x, y|]/(x6−x2y3−y5), where k is a field of characteristic 0.
The extension of the Jacobian ideal (6x5−2xy3,−3x2y2−5y4) of this curve to R is
nonprincipal, and therefore there are no torsion elements among minimal generators
of the module of differentials, i.e., T(Dk(R)) = 0. Assume now that char k = 2.
Then the extension of the Jacobian ideal (x2y2+y4) is generated by a nonzerodivisor
and, therefore, the torsion submodule of the module of differentials reaches the top
of the module. In this case, λDk(R) is free of rank one, since it is isomorphic to
the ideal generated by the image of the nonzero partial derivative. Consequently,
T(Dk(R)) is a nontrivial cyclic module.

Assume once again that R is a commutative noetherian local ring. As another
application of Th. 5, we shall show that if the transpose of the module M is of large
enough depth, then T(M) = 0. First we recall an auxiliary result ([4], Lemma 4.7;
see also [9], Prop. 3 for a proof inspired by the present paper.)

Lemma 17. Let N be a finitely generated R-module. Then ΩiN has no nonzero
free summands for i > max(depthR− depthM, 0)

Combining this with Th. 5 and recalling that λM = ΩTrM , we have

Proposition 18. Let M be a finitely generated R-module such that depthTrM ≥
depthR. Then the 1-torsion submodule of M contains no minimal generators of M .

5. Further applications to local algebra: 1-torsion and Tate-Vogel
cohomology

For finite modules over a commutative local ring, the absence of free summands
can be detected by the vanishing of the ξ-invariant, introduced by the author in [7].
This nonnegative integer is the dimension of the kernel of the natural transformation
from the cohomology of the module with coefficients in the residue field to the Tate-
Vogel cohomology of the same pair. The details of the construction can be found
in the above reference. Since in this paper we are only interested in applications,
we provide a very simple equivalent definition of the ξ-invariant.
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Definition 19. Let R be a commutative noetherian local ring and M a finite
R-module. Let V (M,k) denote the vector subspace of HomR(M,k) consisting of
bounded maps, i.e., the maps that admit a lifting with only finitely many nonzero
components to some projective resolutions of M and k. We set ξ(M) := dimV (M,k)
and ξn(M) := dimV (ΩnM,k). We also set ξ0(M) := ξ(M).

Immediately from the definition we deduce that ξ is additive on direct sums
and, for a module of finite projective dimension, coincides with the zeroth betti
number. In particular, ξ(Rn) = n. Consequently, if ξ(M) = 0, then M cannot have
a nonzero projective summand. Taking account of Th. 5, we have

Proposition 20. Let R be a commutative noetherian local ring and M a finite
R-module. If ξ(λM) = 0, then the 1-torsion submodule t(M) does not contain
minimal generators of M .

In order to make this useful we need to be able to compute the ξ-invariant.
In general this is difficult. But in some situations ([7, 8]) this invariant has been
computed. A case of interest to us is provided by the following result (Th. 3.1, [7]).

Theorem 21. Let (S,m, k) be a commutative noetherian local ring, x ∈ m an S-
regular element, R := S/(x), and M a finite R-module. If x ∈ mAnnSM , then
ξi(M) = 0 for all i.

Remark. If x ∈ mAnnSM , then, clearly, the same condition holds if M is
replaced by any of its quotient modules.

Proposition 22. Let (S,m, k) be a commutative noetherian local ring, x ∈ m an
S-regular element, R := S/(x), and M a finite R-module. If x ∈ mAnnS(λRM),
then the 1-torsion submodule t(M) does not contain minimal generators of M .

6. 1-torsion as a direct summand

In this section we shall give a necessary and sufficient condition for a finitely
generated module to have its 1-torsion submodule as a direct summand. This will
be done in a more general context than we have been working in so far: the ring
will be two-sided noetherian but not necessarily semiperfect.

As a motivating example, we consider first the “hypersurface” module of Prop. 16.
Let R be a commutative domain, a := (a1, . . . , an) a nonzero ideal of R, and M a
module with presentation

0 // R
[a1...an]T // Rn

φ // M // 0

Problem 1. Describe the torsion submodule t(M) of M .

Solution. Suppose x ∈M is torsion: there is µ ̸= 0 in R such that µx = 0. Choose
x1, . . . , xn ∈ R such that φ((x1 . . . xn)T ) = x; then µxi = λai, i = 1, . . . , n for some
λ ∈ R. In other words, xi = (λ/µ)ai, i = 1, . . . , n in the field of quotients K of R.
Since each xi is in R, we must have (λ/µ) ∈ (R : a). As a result, (x1 . . . xn)T is in
the image of the R-linear map

f : (R : a) → Rn : λ/µ 7→ (λ/µ)(a1 . . . an)T

Conversely, it is immediate that any element in the image of f gives rise, after
applying φ, to a torsion element of M . The canonical inclusions R → (R : a) and
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ι : t(M) → M now become parts of a commutative diagram with exact rows and
columns:

0

��

0

��
0 // R // (R : a)

f

��

//___ t(M)

ι

��

// 0

0 // R
[a1...an]T// Rn

φ // M // 0

This diagram describes both the torsion submodule t(M) and its embedding in M .

Corollary 23. M is torsion-free if and only if (R : a) = R.

Completing the columns of the above diagram we also have the following de-
scription of Im eM ≃ Coker ι:

Corollary 24. The sequence

0 // (R : a)
f // Rn

eMφ // Im eM // 0

is exact.

The next problem appears as an exercise in ([5], Ch. VII, §1, Ex. 32).

Problem 2. Under the above assumptions, show that t(M) is a direct summand
of M if and only if

a(R : a) + (R : (R : a)) = R.

Lemma 25. (R : (R : a)) ⊆ R.

Proof. Since (R : a) ⊇ R, we have (R : (R : a)) ⊆ (R : R) = R. �

The lemma shows that the left-hand side of the desired equality is contained
in R. Thus we have to show that the torsion is a direct summand if and only if the
identity of R belongs to the left-hand side.

First, assume that the embedding ι : t(M) → M admits a splitting p : M →
t(M). Using the lifting property of the projective resolution of M , we obtain a
commutative diagram of R-linear maps with exact rows:

0 // R // (R : a)

f

��

// t(M)

ι

��

// 0

0 // R
[a1...an]T//

σ

���
�
� Rn

g

���
�
�

φ // M

p

��

// 0

0 // R // (R : a) // t(M) // 0

We now examine the maps g and σ. Let g(ei) := bi ∈ (R : a), i = 1, . . . , n, where
ei is the ith standard basis vector. The commutativity of the south-west square
implies then that σ =

∑
aibi ∈ a(R : a). Since Idt(M) − pι is the zero map, there

exists an R-linear map h : (R : a) → R such that (1 − σ) · r = h(r) for any
r ∈ R. The map h can be computed explicitly. Indeed, if λ/µ ∈ (R : a), then
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µ · h(λ/µ) = h(λ) = (1 − σ) · λ and, therefore, h(λ/µ) = (1 − σ) · λ/µ. Since the
image of h is in R, we must have (1 − σ) ∈ (R : (R : a)) thus obtaining the desired
decomposition of the identity: 1 = σ + (1 − σ).

Conversely, suppose 1 = σ+(1−σ), where σ ∈ a(R : a) and 1−σ ∈ (R : (R : a)).
Writing σ as

∑
aibi with all bi ∈ (R : a), and setting g(ei) := bi for each i, we recover

the above diagram. By construction, Id(R:a) − gf is multiplication by 1 − σ, the
latter being an element of (R : (R : a)). Therefore, Id(R:a) − gf factors through R,
showing that Idt(M) − pι = 0. This solves Problem 2.

Remark. Using Cor. 24 we can provide an alternative solution to Problem 2. The
1-torsion submodule of M is a direct summand if and only if the canonical map
eM : M → Im eM is a split epimorphism. Suppose there is a map i : Im eM → M
such that eM i = IdIm eM

. Lifting i by maps k and l, we have a commutative
diagram:

0 // (R : a)
f //

l

��

Rn
eMφ //

k

��

Im eM //

i

��

0

0 // R
[a1...an]T//

��

j

��

Rn
φ // M

eM

��

// 0

0 // (R : a)
f // Rn

eMφ // Im eM // 0

Here j is the canonical inclusion. As IdIm eM
= eM i, there is a map h : Rn → (R : a)

such that fh = IdRn − k. This is equivalent to saying that hf = Id(R:a) − jl. Let
h(ei) := bi ∈ (R : a), where ei is the ith standard basis vector. Then hf is just
multiplication by σ :=

∑
aibi ∈ a(R : a) and therefore Id(R:a)−hf is multiplication

by 1−σ. On the other hand, since the latter factors throughR as the composition jl,
the image of this map must be in R. Consequently, 1 − σ ∈ (R : (R : a)).

Conversely, suppose there is σ ∈ a(R : a) such that 1 − σ ∈ (R : (R : a)). Our
immediate goal is to recover the triple-decker diagram above. Let σ =

∑n
1 aibi, with

each bi in (R : a). We first define a map h : Rn → (R : a) by setting h(ei) := bi for
each i. This allows to define a map k : Rn → Rn by setting k := IdRn − fh, and a
map c : (R : a) → (R : a) by setting c := Id(R:a) − hf . Since hf = σ, the last map
is just multiplication by 1−σ ∈ (R : (R : a)), and therefore its image must be in R.
In other words, c factors through R, i.e., c = jl, where j is the canonical inclusion
R → (R : a) and l is a map (R : a) → R. It is now straightforward to check that
the pair l, k gives rise to a map i : Im eM →M and that eM i = IdIm eM

.

We now switch to a general context: Λ is a two-sided noetherian ring and M
a finitely generated (left) Λ-module. Diagram (D) of Sec. 3 provides the following
lifting of the canonical inclusion ι : t(M) →M :

0 // ΩM // (λM)∗
��
e−1

P0
π∗

��

// t(M)
��
ι

��

// 0

0 // ΩM // P0
φ // M // 0
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Suppose now that ι admits a splitting p : M → t(M). Lifting p, we have a
commutative diagram with exact rows:

0 // ΩM // (λM)∗
��
e−1

P0
π∗

��

// t(M)
��
ι

��

// 0

0 // ΩM

σ

��

// P0

g

��

φ // M

p

��

// 0

0 // ΩM // (λM)∗ // t(M) // 0

Since Idt(M) − pι is the zero map, there exists a Λ-linear map h : (λM)∗ → ΩM
such that Id(λM)∗ − ge−1

P0
π∗ factors through h.

Conversely, given Λ-linear maps g : P0 → (λM)∗ and h : (λM)∗ → ΩM such
that Id(λM)∗ − ge−1

P0
π∗ factors through h, define σ : ΩM → ΩM by setting σ :=

IdΩM − h |ΩM . It is then clear that g and σ are part of a commutative square as
above, and therefore they give rise to a map p : M → t(M). It is also clear that
pι = Idt(M). Thus we have

Proposition 26. Let Λ be a two-sided noetherian ring and M a finitely generated
(left) Λ-module. Then the 1-torsion submodule t(M) is a direct summand of M if
and only if there is a Λ-linear map g : P0 → (λM)∗ such that Id(λM)∗ − geP−1

0
π∗

admits a lifting h : (λM)∗ → ΩM .

Similar to the remark on p. 11, we can give an alternative criterion for 1-torsion
being a direct summand. Suppose the canonical mapM → Im eM admits a splitting
i : Im eM →M . Augmenting the notation of Th. 5, we have a commutative diagram
with exact rows

0 // (λM)∗
e−1

P0
π∗

//

l

��

P0
eMφ//

k

��

Im eM //

i

��

0

0 // ΩM
ν //

��

j

��

P0
φ // M

eM

��

// 0

0 // (λM)∗
e−1

P0
π∗

// P0
eMφ// Im eM // 0

where the maps l and k are some liftings of the map i. (Once again, for the sake of
simplicity, we have slightly abused the notation for the maps going into the south-
east corner.) Since IdIm eM − eM i = 0, there is a Λ-linear map h : P0 → (λM)∗

such that IdP0 − k = e−1
P0
π∗h. This implies that Id(λM)∗ − jl = he−1

P0
π∗.

Conversely, suppose there are Λ-linear maps l : (λM)∗ → ΩM and h : P0 →
(λM)∗ such that Id(λM)∗ − jl = he−1

P0
π∗. Define k := IdP0 − e−1

P0
π∗h. It is then

clear that k and l are part of a commutative square as above and therefore they
give rise to a map i : Im eM → M . It is also clear that eM i = IdIm eM

. Thus we
have proved

Proposition 27. Let Λ be a two-sided noetherian ring and M a finitely generated
(left) Λ-module. Then the 1-torsion submodule t(M) is a direct summand of M if
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and only if there is a Λ-linear map l : (λM)∗ → ΩM such that Id(λM)∗ − jl admits
an extension h : P0 → (λM)∗.
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