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Cahiers de Math�ematiques de la D�ecision, MDno 9124 November 1991CEREMADE Centre de Recherche de Math�ematiques de la D�ecision.Finite Element Methods for Active ContourModels and Balloons for 2D and 3D Images 12Laurent D. COHEN and Isaac COHENCEREMADE, U.R.A. CNRS 749, Universit�e Paris IX - DauphinePlace du Marechal de Lattre de Tassigny 75775 Paris CEDEX 16, France.INRIA, Domaine de Voluceau,Rocquencourt B.P. 105, 78153 Le Chesnay CEDEX, France.Email: cohen@bora.inria.fr and isaac@bora.inria.frNovember 5, 1991AbstractThe use of energy-minimizing curves, known as \snakes" to extract features of interest inimages has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model wasintroduced in [12] as a way to generalize and solve some of the problems encounteredwith the original method.We present a 3D generalization of the balloon model as a 3D deformable surface,which evolves in 3D images. It is deformed under the action of internal and external forcesattracting the surface toward detected edgels by means of an attraction potential. We alsoshow properties of energy-minimizing surfaces concerning their relationship with 3D edgepoints. To solve the minimization problem for a surface, two simpli�ed approaches areshown �rst, de�ning a 3D surface as a series of 2D planar curves. Then, after comparingFinite Element Method and Finite Di�erence Method in the 2D problem, we solve the 3Dmodel using the Finite Element Method yielding greater stability and faster convergence.We have applied this model for segmenting magnetic resonance images.1This work was partially supported by Digital Equipment Corporation.2We would like to thank Nicholas AYACHE and Robert HUMMEL for all their help with this paper.
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L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 11 IntroductionWe study segmentation of medical 2D and 3D images by making use of \deformablemodels" [29, 32]. In order to achieve robust segmentation, we introduce a number ofenhancements and modi�cations to the formulation of deformable models. In particular,we de�ne new forces to control the evolution of the deformable model, we formulate themodels for true 3D data, and we develop a �nite element implementation.The class of \deformable models" originates with the method of \snakes" introducedby Kass et al. [23], which are used to locate smooth curves in 2D imagery. Since then,deformable models have been used for many applications in 212 -D and 3D by Terzopoulos,Witkin and Kass [31, 32] where the deformable surface is constrained to encourage axialsymmetry and is evolving under the forces determined from a 2D image or a pair of 2Dimages. We also make use of deformable surfaces, but the data providing informationabout the force comes from true 3D data sets. We further extend enhancements of themodel introduced in [12] for curves to the surface model applications given here.In [12], we introduced a modi�cation, using \balloons," in order to apply the methodof deformable models to stacks of images comprising a 3D data set for an application insegmentation. Our use of deformable models in [12] was limited to the extraction of 2Dcurves, which were then used to build up a 3D structure. In this paper, we further re�neand present the \balloon model," formulating and applying it to true 3D data. For thispurpose, we study the use of �nite element methods for implementing the solution of thepartial di�erential equations satis�ed by the deformable surface. Our application is forthe segmentation of 3D magnetic resonance images of crania and heart regions.We compare di�erent schemes using �nite di�erence and �nite element methods togeneralize the balloon model introduced in [12] to a 3D cylindrical surface or rectangularpatch. In general, these methods are used to reliably extract surfaces in 3D images.Three dimensional imagery is often represented as a set of intensity voxels (volumeelements). A 3D edge detector, after a local image analysis [36, 24], provides a set of3D edgels (edge elements). However, the edgels do not constitute a segmentation. Oneapproach to 3D segmentation involves the integration of 2D segmentation results alongslices of the 3D imagery. In this paper, however, we wish to combine information froma 3D edge detector with the method of deformable models applied directly to the soliddata.We are confronted simultaneously with a segmentation problem and a surface recon-struction problem:(1) We wish to locate edgels belonging to the surface of a single object; this is the



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 2segmentation problem; and(2) We must represent the surface, together with its di�erential structure, for subsequentinterpretation [1].Deformable models o�er a reasonable approach to solving these problems, due to theirstability, controllability, and their property of regularizing data gathered over regionsof the image. Regularization techniques, or penalized optimization, are used for manyapplications in vision (see for example [21, 28, 27, 30] and references there).In our application, we recover surfaces in 3D medical data, locating surface bound-aries of organs and structures, and providing an approximating di�erentiable description(see Section 6). The di�erential description may be used for measurements, recognition,visualization, and other purposes [2, 10, 13].There are two basic approaches to segmentation and image labeling (see Fig. 1). Inthe classical approach, features are extracted from the image, and a sparse collection oflocations and data are obtained; then reconstruction methods are used to interpolate thesparse data to form a representation (and possible segmentation) of the original data. Inmore recent approaches, such as the method of snakes [23], an initial estimate (such asa curve or surface) is provided, and optimization methods are used to re�ne the initialestimate based on image data restricted to the region of the evolving estimate. Thesecond approach has the advantage that the feature extraction and representation phasesare integrated into a single process, whereas the �rst approach may make use of prior�nely-tuned feature extraction procedures.In our work, we modify the second approach by incorporating aspects of the �rst,namely, the evolution of the initial estimate depends not only on local data, but alsopotentially on the data provided by a distributed sparse collection of feature points suchas edgels from a surface edge extractor. Our method, which can make use of a \in
ation"or \weight" force, is particularly well suited to noisy data with missing parts such asmagnetic resonance images in both two and three dimensions.Classic:! sparse feature extraction ! interpolative reconstruction !Snakes:! optimization in image domain !Our model:! edge extraction ! optimization !Figure 1: Comparison of reconstruction approaches. Constraints are explicit in the �rst model,implicit in the others.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 3Our method is derived from the original formulation of deformable models [23, 29],but incorporates a number of signi�cant modi�cations and new features.In particular, the contributions of our work are the following:1. We incorporate the use of edge points extracted by a local edge detector. Thisallows us to combine the qualities of a good local edge detector, e.g. a Canny-Deriche edge extractor [7, 17, 24], with a global active model. This is accomplishedby means of an attraction potential generated by convolving a binary edge imagewith a Gaussian impulse response. The attraction potential can also be de�nedthrough the use of a Chamfer distance to edge points.2. We introduce an internal pressure force by regarding our curve or surface as a bal-loon which is in
ated. We add to the previous internal and external forces a pres-sure force pushing out the boundary as if we were introducing air inside. Separately,we make use of a \weight" force which simulates gravity. This allows us to be lessdemanding of the initialization and to give a simpler initial curve or surface.3. We replace the �nite di�erence method of [12, 23, 30] by a �nite element method(FEM). With �nite di�erences, we only have knowledge of the functions at discretepoints of a subdivision, and have no information between these points. Thereforethe distance between successive points must be made very small to achieve su�cientprecision so as not to miss too much information, since the external forces are ap-plied at the grid of points. This typically yields large systems of linear equations.Conversely, with the FEM, we work with continuous functions whatever the size ofthe grid. Therefore, the function under consideration is known everywhere in theimage, independently of the chosen discretization. This yields a lower algorithmiccomplexity and better numerical stability, in our application.4. We deal with true 3D medical data and use deformable surfaces to extract the surfaceboundary of organs. We �rst give a fast approach to solve the 3D problem based onthe simultaneous evolution of 2D curves and then give the 3D formulation using theFEM.We regard the application of deformable-contour models as a method to extract smoothshapes in a given region of the image. The philosophy of the approach is to introduce anelastic curve (or surface) in the image, and let it evolve from an initial position under theaction of both internal forces (smoothness constraints, and pressure forces) and externalforces (attraction towards local edgels and weight forces).



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 4The paper is organized as follows. After recalling the basic principles of \snakes"(Section 2.1) and \balloons," we present enhancements and details about the use of edgedata to generate an attraction potential (Section 2.2). We also brie
y survey the literature.We then de�ne 3D deformable models (Section 2.3) and give a relationship with 3D edgepoints (Section 2.4). We show two simpli�ed 3D approaches (Section 3) and then �nallysolve this minimization problem in both 2D and 3D by a �nite element method (Section4). We illustrate our technique in the application of the automatic segmentation of medicalimages. The power of the approach to segment 3D images is demonstrated by a set ofexperimental results on various complex medical 3D images (Section 5).2 Energy Minimizing Curves and SurfacesWe �rst recall some de�nitions and formulate the mathematical problem. In the following,we will call the active contour model or energy-minimizing curve \the 2D problem" andthe active surface model or energy-minimizing surface \the 3D problem."2.1 2D Active Contour Model2.1.1 De�nitionSnakes are a special case of deformable models as presented in [29]. The deformablecontour model is a mapping: 
 = [0; 1]! IR2s 7! v(s) = (x(s); y(s))We de�ne a deformable model as a space of admissible deformations A and a functionalE. This functional represents the energy of the model which will be minimized and hasthe following form: E : A ! IRv 7! E(v) = Z
w1kv0(s)k2 + w2kv00(s)k2 + P (v(s))dswhere v0 and v00 denote derivatives of v and where P is the potential associated to theexternal forces. The potential is computed as a function of the image data accordingto the desired goal. If we want the snake to be attracted to edge points, the potentialshould depend on the gradient of the image. In the following, the space of admissible



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 5deformations A is restricted by the boundary conditions v(0),v0(0),v(1) and v0(1) beinggiven. We can also use periodic curves or other types of boundary conditions.The mechanical properties of the model are controlled by the functions wj. Theirchoice determines the elasticity and rigidity of the model.If v is a local minimum for E, it satis�es the associated Euler-Lagrange equation:8<: �(w1v0)0 + (w2v00)00 +rP (v) = 0v(0); v0(0); v(1) and v0(1) given. (1)In this formulation each term appears as a force applied to the curve. A solution can beviewed either as realizing the equilibrium of the forces in the equation or reaching theminimum of the energy.Thus the curve is under control of two types of forces:� The internal forces (the �rst two terms) which impose the regularity of the curve.The constants w1 and w2 impose the elasticity and rigidity of the curve.� The image force (the potential term) pushes the curve to the signi�cant lines whichcorrespond to the desired attributes. It is de�ned by a potential of the formZ 10 P (v(s))ds where P (v) = �krI(v)k2:Here, I denotes the image. The curve is then attracted by the local minima of thepotential, which means the local maxima of the gradient, i.e. edges (see [19] for amore complete discussion of the relationship between minimizing the energy andlocating contours).Other forces can be added to impose constraints de�ned by the user. We will makeuse of additional forces.2.1.2 Finite Di�erence SolutionWe �rst formulate the discretization of the equation by �nite di�erences following [23] ina more succinct fashion. Setting F (v) = (F1(v); F2(v)) = �rP (v) + Fother, the sum ofimage and other external forces, the equation� (w1v0)0 + (w2v00)00 = F (v); (2)becomes a linear system after applying �nite di�erences in space:AV = F:



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 6Here A is pentadiagonal and V and F denote the vectors of positions vi = v(ih) andforces at these points F (vi) respectively.Since the energy is not convex, there may be many local minima of E.Finding the global minimumof the energy does not necessarily have a meaning. Indeed,if vm is a point of the plane where P has a global minimum, then the constant curvev(s) = vm is a global minimum for the energy with periodic boundary conditions.But we are interested in �nding a good contour in a given area. We suppose in factthat we have a rough estimate of the curve. We impose the condition to be \close" tothis initial data by solving the associated evolution equation8>>>>>>><>>>>>>>: @v@t � (w1v0)0 + (w2v00)00 = F (v);v(0; s) = v0(s);v(t; 0) = v0(0); v(t; 1) = v0(1);v0(t; 0) = v00(0); v0(t; 1) = v00(1): (3)where v0 denotes di�erentiation with respect to s. A solution to the static problem (2)is achieved when the solution v(t) stabilizes. This is because the term @v@t tends to 0(generally) and the dynamic system (3) reduces to (2) at in�nity.After formulating the evolution problem using �nite di�erences with time step � andspace step h we obtain a system of the form(I + �A)vt = (vt�1 + �F (vt�1)); (4)where I denotes the identity matrix. Thus, we obtain a linear system and we have tosolve a pentadiagonal banded symmetric positive system. We compute the solution usinga LU decomposition of (I + �A). The decomposition needs be computed only once ifthe wi remain constant through time. We stop iterating when the di�erence between twosuccessive iterations is su�ciently small. After each iteration we test kvt � vt�1k and stopif it is lower than a given threshold. Of course, the lower the threshold, the better we canbe sure it is a real equilibrium.Moreover, the linear system above is such that each row of the matrix (I + �A) isobtained by circularly shifting the previous one. The product of a matrix of this formand a vector can be viewed as the convolution of a row of the matrix with the vector.Since derivatives are at most of the fourth order, this corresponds to a convolution of thediscretized curve vi by a kernel of length �ve. This smoothing can in fact be viewed as a1D low-pass �lter on the curve.Note that in Eqn. (4), vt has two components xt and yt, and we can write separatelythe two equations satis�ed by the vectors xt and yt. These equations are independent



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 7except for the term (F1(v); F2(v)) where x and y cannot be separated. However, as wewill see later, in all the iterative schemes we use in this paper, the term F (v) is explicit.This means that at each iteration it may be considered as a constant vector and the twoequations satis�ed by x and y can be computed separately. Accordingly, we sometimesconsider the equation for the unknown v as a scalar function, instead of a two- or three-component vector equation.The �nite di�erence formulation of the problem makes the curve behave like a set ofmasses linked by springs of zero length (when fully contracted). Consequently, if thereis no image force (F = 0), then either the curve shrinks and vanishes to a point, or itstraightens out to become a line depending on the boundary conditions.If the spatial discretization step h along the curve is more than 2 pixels, the curve caneither jump across edges or fail to be attracted to edges. This means that the number ofnodes must be of the order of the length of the curve.The coe�cients of elasticity and rigidity have a great e�ect on the behavior of theevolution of the curve along time iterations. If w1 and w2 are close to unity, the internalenergy Eint has a major in
uence and the image forces have small e�ect. In this casethe initial curve is merely smoothed due to the regularization action. We are currentlystudying the e�ect of these coe�cients in simple cases to evaluate the ability of the modelto detect corners.A correct choice for parameters is guided by numerical analysis considerations. Wewant the coe�cients within the rigidity matrix A to have similar orders of magnitude.We obtain good results when the parameters are of the order of h2 for w1 and h4 for w2,where h is the space discretization step.2.2 Improving the Model. The Balloon ModelThe potential P is such that the force F (v) = �rP (v) generates the attraction of thecurve or surface to the image regions that we seek to extract. Our main goal is theextraction of \good" edge points (i.e., to be able to remove spurious edge points, whileinsuring connected contours).The formulation described in the previous section leads to certain di�culties, for whichone of us proposed a variation (in [12]) by de�ning new forces and a potential function.In the following sections, we will extend in a natural way these revised forces for usewith the Finite Element Method for both 2D curves and 3D surfaces. In the subsectionimmediately following, we summarize the main points developed in 2D in [12], elaboratingon certain important details. All these points are identical for a surface evolving in a 3D



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 8image.2.2.1 Normalization of the ForceThe external forces based on image data applied to the curve to push it to the highgradient regions are modi�ed to give more stable results. Indeed, it is not possible tochoose a uniform time step � suitable for all points of the contour. If � is too large, somepoints on the curve may move too quickly, and jump across the desired minimum andnever come back. If � is too small, very few high gradient points will attract the curve.So instead of modifying the time step, we modify the force by normalizing it, takingF = �k rPkrPk. This simulates a local time step which makes the curve evolve at thesame speed everywhere.2.2.2 The Balloon Model. The Weight ForceTo make the snake �nd its way, an initial guess of the contour has to be provided manually.This has many consequences on the evolution of the curve (or surface).� If the curve is not close enough to an edge, it is not attracted to it.� If the curve is not subjected to any counterbalancing forces, it tends to shrink onitself.Accordingly, we introduce an internal pressure by considering our curve as a balloonwhich is in
ated. The pressure force is added to the internal and external forces to pushthe curve outward, as if we were introducing air inside. The curve both expands and isattracted to edges as before. But if the edge is too small or too weak with respect to thepressure force, the curve passes over the edge, growing outward.The internal pressure force prevents the curve from being \trapped" by spurious iso-lated edge points, and makes the �nal result much less sensitive to the initial conditions.The force F now becomes F = k1~n(s)� k rPkrPk(v(s)) (5)where ~n(s) is the unit vector normal to the curve at point v(s) and k1 is the amplitudeof this force. The coe�cients k1 and k are chosen such that they are of the same order,which is smaller than a pixel size (the length unit), with k slightly larger than k1, so anedge point can stop the in
ation force.Remark that this force can also be interpreted as the gradient of an extra energy term.This would be a surface term Earea = �k1 Z dA , measuring the area inside the region



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 9delimited by the curve. Minimizing this energy corresponds to have the inside region aslarge as possible, which is obtained by a force pushing in the direction of the externalnormal.Note that F depends on not only the position v(s), but also of the normal at thisposition. In the iterative methods presented in this paper, we solve problems formulatedunder the assumption that F depends on the position v, but not on derivatives. Thisassumption is made possible by using as an approximation to vt at step t the previouslycomputed value vt�1.Suppose we have an image of a black rectangle on a white background, and a curveis placed inside the rectangle. Without the in
ation force, even if we have perfect edgedetection, the curve will shrink and vanish. Starting from the same small curve, but usingthe in
ation force, we obtain the entire rectangle (see Fig. 4). When the balloon reachesequilibrium, the points that are attracted to image edges are slightly outside of the realcontour. We thus reduce the in
ation force to localize the �nal position of the curve.As another example, we apply the technique to a slice from a 3D image of the regionof the heart obtained with Magnetic Resonance Imaging (MRI). We wish to extract theleft ventricle. We use here the 3D edge detector [24] obtained by generalization of the 2DCanny-Deriche �lter. In Fig. 7 we show the result of the application of balloons to detectthe ventricle. The initial curve was neither close in shape nor in position to the actualventricle.One aspect of the increased complexity of the method is a large variation of the lengthof the curve between the initial data and the �nal limit curve. As we remarked above,the number of nodes along the curve should be approximately equal to the length ofthe curve. Thus we must change the discretization during the iteration process. To dothis, we periodically reparametrize the curve, and resample node points. This means thatwe construct a new parametrization using the existing curve by sampling at a one pixeldistance between nodes. This also prevents nodes from clustering at high gradient pointsand from separating, creating a large space between some nodes.Since the length changes, we must change the matrix A during the iteration process.Accordingly, our algorithm incorporating internal pressure takes more time to converge,since we must compute matrix inverses at each reparametrization and also since we beginwith a curve very far from the solution. The added computation time is a price we mustpay for the simplicity of specifying a coarse initial curve.In the same spirit as the balloon model, we will also incorporate a \weight force"into the 3D reconstruction models. The weight force allows us to take a very simple initialsurface placed on the border of the image. The surface then \falls" under the in
uence



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 10of the \gravity," to catch an object which might be far from the border. If we insteadattempt to locate a surface by surrounding the outside of the object by the deformablemodel and then use a \de
ation" force (identical to the in
ation force, but with a negativek1), instability can result since the surface may then self-intersect after a few iterations.The \weight force" is uniform on the surface in direction and intensity: F = k1 ~Z.The initial surface is typically a plane on one side of the 3D image, and ~Z is de�ned tobe normal to this plane. As with the in
ation force, if the weight force is not turned o�at the end of the process, equilibrium is reached with the surface slightly shifted fromthe desired solution. In the weight force case, however, we eliminate the force locally ata point when an area of large variation of the gradient is reached instead of once globalconvergence is obtained for the pressure force. This modi�cation improves the progressionto the solution. As a result, we may use larger values of k1 and thus move faster withoutmissing the solution. As with the balloon model (see [12]), the surface is not stopped byisolated spurious points. The e�ect of the weight force will be demonstrated in Figs. 19, 20and 21.2.2.3 Accounting for Prior Local Edge Detection: Attraction PotentialWe make use of edge points extracted prior to the use of the deformable model by a localedge detector. In 2D, edge points tend to lie along curves, and in 3D they are located onsurfaces. Accordingly, we are able to combine the qualities of a good local edge detector,such as the Canny-Deriche edge extractor [7, 17, 24], with a global active model. Wemust de�ne the attraction forces through the use of a potential function. The potentialmay be de�ned by convolving the binary edge image with a Gaussian impulse response.An example is shown in Fig. 5, plotting the potential surface generated by the rectangleimage of the previous section (Fig. 4).We also used in [13] a Chamfer distance that approximates the Euclidian distance tothe nearest edgels [5], or a Euclidean distance image (as de�ned in [15]). Fig. 6 showsa potential based on the latter distance map for the same rectangle image as before.These approximate distance metrics are of interest because they can be obtained by afast algorithm, requiring only two-passes through the binary image.We denote by d(v) the distance between a point v and the nearest edge. In general,a large class of potentials may be formulated as P (v) = g(d(v)), i.e., as a function of thedistance to the closest contour. For instance,P (v) = �e�d(v)2produces a potential that is similar to the Gaussian convolution method discussed above,



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 11except that only the closest edge point has an e�ect at a position v. The potentialP (v) = �1d(v) , (P � �1 if d(v(s; r)) < 1);where the unit distance is the pixel size, produces a faster convergence since this potentialdecays more slowly, producing larger forces at points distant from the edges.Remark that if the potential is de�ned by P (v) = g(d(v)), the force becomes F (v) =�rP (v) = �g0(d(v))rd(v). When this force is normalized as suggested in subsection2.2.1 above, we have F = �k rdkrdk. The formula does not depend on function g but thenumerical result may be di�erent because of machine accuracy. So, when we normalizethe force, we could take any function g easy to compute, for example g(d) = d, but thedistance function is not di�erentiable everywhere. This is why g usually behaves like d2for small d to avoid problems at points where d = 0. In general, g is also used to regularizethe distance function d.However, in the case of a potential de�ned from a distance function, it may be betterwhen the force is not normalized and the norm of F depends on g0(d) and krd(v)k. Usingthe triangular inequality, we can see that krd(v)k � 1. So, a good choice of g permits tocontrol the norm of the attraction force when d is small or large. This will be discussedin the following.The attraction forces derived from the potential may be used either as the only imageforces, or may be combined with an intensity-gradient image to enhance the detectededges. The latter approach is useful when the detected edges are broken into smalldisconnected segments.The methods of convolving edges with a Gaussian and de�ning a function of d(v) wereused by us in [11, 12] and [13]. However, the attraction potential de�ned by Weiss [34],and the weak-continuity method of Blake and Zisserman [4], are closely related. Theattraction potential and weak-continuity methods are applied to sparse isolated points,our set of edge points are extracted by a local edge detector, and thus may contain fullcurves (or surfaces in 3D). Moreover, in these methods, the model tries to match the wholedata, while we are doing segmentation at the same time. Our deformable model has to�nd out which parts of the data to stick to. Also, the goals are di�erent. The property ofthe varying mesh model is to de�ne automatically an optimal mesh to deal better withcorner reconstruction, using an extra potential term. In our model, the in
ation force isa powerful tool to make the model converge to the solution being less demanding of theinitialization. These two tools could be associated together to obtain both properties.In the next section we survey more closely the de�nition of attraction potential in thereconstruction literature.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 122.2.4 A Survey of Attraction Potential used in Reconstruction MethodsThe general formulation of the problem as presented in [34] uses Tikhonov regulariza-tion [33] to approximate data g by a smooth function f , in order to reconstruct a curveor a surface. We use a second order regularization scheme to insure a C1 continuity of thesolution. Two terms are minimized:� A criteria of the faithfulness to the data; and� A regularizing term containing derivatives of the function.The energy functional can be written in the form:E(f; g) = Z V (f(s); g(s))ds+ Z S(f(s))ds (6)where V is a measure of the distance between the function f and the data g, and S(f)measures the smoothness of the reconstruction f . Similar to our potential P , the attrac-tion force is obtained from the gradient of V , FV = �rV .Let us consider the case of a curve f(s) = (x(s); y(s)) and discuss the di�erent ap-proaches to reconstruction. We also give an interpretation of the forces by means ofzero-length spring attraction forces. All of our discussion generalizes naturally to surfacesin 3D data.Least-squares. Explicit constraints. The most classic problem is least-square �ttinggiven the position of the curve at a collection of points fi = f(si) = (xi; yi) at knownvalues of the parameter si. We use as an attraction potentialV (f) =Xi kf(si)� fik2;(see, for example, [28, 25] and their references). The case of a cartesian curve isespecially simple since xi = si = x(si); x(s) = s and V (f) =Xi (y(si)� yi)2; this isthe case treated in [25].The attraction force obtained by di�erentiation of the potential is proportional tothe distance between a data point fi and the value of f at si. We can interpret thisforce physically as a spring (which contracts to zero length) connecting a point ofthe curve (or surface) f(si) and the given point fi = (xi; yi). Each node of the curveis connected by a spring to one explicit data point. Thus each data point (xi; yi)in
uences the force at only one point of the curve. The curve is constrained to best�t to all the data. Moreover, the data points must be sorted in a natural order. Thisis the case for a cartesian curve (or surface), where values si correspond to positions



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 13along an axis (two axes for a surface). For a general curve, given a collection of(xi; yi) data, the natural order of the points may not be so apparent.Position-independent. Implicit constraints. When the si are not given and the curvehas to best �t the set of points fi, a simple extension of the previous idea wouldde�ne an attraction potential simulating a zero-length spring for each data point ofthe plane which has e�ect for any point of the curve. At a point h of the plane, thepotential is the sum of the contributions of all the fi: V (h) =Xi kh� fik2. Thepotential V thus may be viewed as a convolution of the sum of Dirac masses �fi atthe data points fi with the function khk2:V (h) = Z Xi �fi(u)kh� uk2du =Xi kh � fik2:This potential has the advantage of being convex, but does not work out well sincea point of the curve will be attracted with the strongest force by the most remotedata point. Indeed the only minimum is a curve reduced to a point located at themean value of the fi's.Our approach convolves a binary image of edge points with a function of the form�e�khk2, while Weiss in [34] convolves a set of sparse data points with a similarfunction of the form �ae�khk2=b21 + ckhk . We chose a negative Gaussian function since itbehaves like C + khk2 for small h (where C is a constant) and has a zero limit atin�nity. Thus, the attraction force behaves like a zero-length spring when h is small,and when h becomes large the force decreases to zero. So the curve is most attractedby the points close to it, and distant points have no attraction force.Blake and Zisserman's functions g�;� and g��;� of [4] (Fig. 7.1) are likewise similar instructure. However, their forces are used to de�ne the internal attraction betweentwo successive points in a discretized curve. The idea of the weak continuity is thatif the variation is too large at some point of the curve, then it is better to breakthe reconstruction curve there and introduce a discontinuity. The weak continuitymakes springs de�ning the internal attraction force (see subsection 2.1.2) break ifthey get too long. The attraction force based on the image data that we use here isthus similar to the internal attraction force in the weak continuity model of [4].Note that the attraction force for the convolution-based potential allows the curve(or surface) to choose among the data points the ones to �t. Each point of the curveis attracted by all the data points close enough to it.When we de�ne the potential by P (v) = �e�d(v)2 using the Chamfer distance [13],each point is attracted only by the closest edge point. The curve behaves as though



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 14each point is linked by a weak spring (which breaks if too long) to the closest datapoint. The constraints in this part are not known explicitly like in the \classic"reconstruction but de�ned implicitly by the relative position of a node to the data.\Snakes." In some cases, the data is not known explicitly. For example, the potentialintroduced with the snakes in [23] is based on the property of edge points to havea large image-gradient value. The potential de�ned as a function of the image-gradient results in the curve being attracted to the high gradient points withoutexplicit knowledge of these points. The constraints are also implicit in this case.In the snake approach, the data points are located directly by the curve through theminimization of the potential (see Section 2.1). Moreover, all the points of the curveare in
uenced by the attraction forces from the image.Mixed version. Recently a combination of the previous approaches was proposed in [16].Two potentials are de�ned. A \data energy" term is used to represent an attractionof the surface to the closest data point, which yields a force that is linear whenclose to the data and decreases to zero when far from the point. The data energyis the same as our potential using the Chamfer distance. A \feature energy" termrepresents an attraction to feature points. Though the function of convolution isslightly di�erent in form, it has similar properties to the \weak spring" model dis-cussed above. The main di�erence is that this \feature potential" is modi�ed withiterations. The threshold at which the spring breaks decreases from a reference dis-tance when t = 0 to zero when t = T0. Therefore, the in
uence of features decreasesduring the evolution.In this section, we presented the enhancements of our model, normalizing the forceto get more stability, adding an in
ation or weight force to push the model more quicklyto the solution, and de�ning an attraction potential making use of edge points extractedprior to the application of the model. For this last point, we gave a survey of the relatedattraction potential found in the literature.We will make use, in this paper, of all the features presented so far for 2D curves aswell as 3D surfaces.2.3 3D Active Surface ModelThe 3D model is obtained by generalizing the formulations given in the previous sections.A surface S is de�ned by a mapping v:v : 
 = [0; 1]� [0; 1]! IR3



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 15(s; r) 7! v(s; r) = (v1(s; r); v2(s; r); v3(s; r))and the associated energy E is de�ned on an admissible class A of mappings v, and hasform: E : A ! IRv 7! E(v) = Z
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2 + P (v(s; r))ds dr (7)where P (v(s; r)) = �krI(v(s; r))k2 is the potential associated with the external forces.The internal forces acting on the shape of the surface depend on the coe�cients wij suchthat the elasticity is determined by (w10,w01), the rigidity by (w20,w02), and the resistanceto twist by (w11). That is, the coe�cients determine the mechanical properties of thesurface. We can also constrain the surface structure by adjusting boundary conditions(for instance, to create a cylinder or a torus). This model, restricted to its �rst-orderderivative terms, may be interpreted physically as a membrane, and with inclusion ofsecond-order derivative terms may be interpreted as a thin plate.A local minimum v of E satis�es the associated Euler-Lagrange equation:8>><>>: � @@s �w10@v@s�� @@r �w01@v@r�+ 2 @2@s@r �w11 @2v@s@r�+ @2@s2 �w20@2v@s2�+ @2@r2 �w02@2v@r2� = F (v) (8)subject to boundary conditions. The Euler-Lagrange equation is a necessary condition fora minimum. As with Eqn. 5, F denotes the sum of forces: F = Fimage+Fballoon, Fimage isthe force obtained after normalization from the gradient of the attraction potential, andFballoon is either the in
ation or weight force. Since the energy function is not convex,there may be many local minima of E. The Euler-Lagrange equation (Eqn. 8) is satis�edat any such local minimum. But as we are interested in �nding a 3D contour in a givenarea, we assume in fact that we have a rough prior estimation of the surface. This estimateis used as initial data for the associated evolution equation, in which we add a temporalparameter t: 8>>>>><>>>>>: @v@t � @@s �w10@v@s�� @@r �w01@v@r�+ 2 @2@s@r �w11 @2v@s@r�+ @2@s2 �w20@2v@s2�+ @2@r2 �w02@2v@r2� = F (v);v(0; s; r) = v0(s; r) (initial estimate), (9)and where boundary conditions may have to be imposed (additionally). A solution tothe static problem is found when the solution v(t; s; r) converges as t tends to in�nity.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 16Assuming su�cient uniform convergence is achieved, the term @v@t vanishes, thus providinga solution of the static problem.With this formulation, and with the potential as given above, the resulting surfacewill accurately locate the 3D edge points.Before describing the numerical solutions of the 3D reconstruction we give in the nextsection a mathematical result showing how the surface locates on the Canny's 3D edgesurfaces.2.4 Minimizing Surfaces and 3D Image Edge PointsWe comment on the relationship between the surface minimizing the energy of externalforces Eimage and 3D edge points. A similar formulation for planar curves is given by Fuaand Leclerc [19]. Recall that the external energy is given byEimage = Z Z P (v(s; r))dsdr:We use the following de�nition of the 3D edges, as proposed by Canny [7]:De�nition 1 A 3D edge is a surface S whose points have a minimal potential in thedirection normal to the surface. All points along the surface S satisfy:DN(v(s;r))P (v(s; r)) = 0 (10)where N(v(s; r)) is the normal to the surface S parametrized by v(s; r), DN is the direc-tional derivative in the direction N , and P is the potential to be minimized.When the potential is de�ned in terms of the image gradient rI (where typically, Iis replaced with a Gaussian-convolved version of the image), the former de�nition is thesame as Canny's edge points:De�nition 2 A 3D Canny edge is a surface S whose points have a maximal gradientmagnitude in the direction normal to the surface. All points along the surface S (calledCanny's edge points) satisfy: DN(v(s;r)) krI(v(s; r))k = 0 (11)where rI is the gradient magnitude.To explore the relation between the energy minimizing surfaces and this de�nition, letus de�ne the energy associated to the external forces asEP (S) = 1jSj Z Z P (v(s; r))dA; (12)



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 17where jSj = Z Z kvs ^ vrk dsdr is the surface area and dA = pEG � F 2dsdr is the stan-dard surface area measure.In [14] we show that a surface S is a local minimum of EP , with respect to in�nitesimaldeformation, if:DN(v(s;r))P (v(s; r)) = eG� 2fF + gEEG � F 2  P (v(s; r))� 1jSj Z P (v(s; r))dA! ; (13)where E(s; r), G(s; r), F (s; r), e(s; r), f(s; r) and g(s; r) are the coe�cients of the�rst and second fundamental forms in the basis fxs; xr; Ng (using the same notation asin [18]). A remarkable result is that the quotient 12 eG� 2fF + gEEG � F 2 is simply the meancurvature of the surface S.Eqn. 13 shows that there exists two interesting special cases:(1) If a minimizer of EP is a minimal surface (i.e., a surface with a mean-curvaturewhich is everywhere zero), then it is automatically a 3D edge;(2) If the minimizing surface is composed of edgels with constant Potential, then theterm within parentheses in Eqn. 13 vanishes, and the surface is again a 3D edge.In general, these are interesting but exceptional academic situations, and the de-formable model simply converges to a solution which is a balance between the appliedexternal forces (corresponding to the energy EP ) and the internal forces, parametrizedby the elasticity coe�cients wij. The directional derivative will satisfy Eqn. 13, but notin general be zero. But in practical implementation, this is approximately the case whenthe surface is smooth or when the potential has small variation along the surface.3 Simpli�ed 3D ModelThe main di�culty in passing from modeling curves in 2D to modeling surfaces in 3Dis the very signi�cant growth of the computation time due to the size of the system tosolve. In this section, we describe a much-simpli�ed 3D surface model, with the aim ofminimizing the computational requirements.A 3D image is viewed as a sequence of 2D images which we call slices or cross sections.In this section, we �rst present a 3D reconstruction method based on successive solutions of2D problems, then show how the 3D deformablemodel may be simpli�ed to a simultaneoussolution of 2D problems interacting to yield a fast algorithm.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 183.1 3D Reconstruction from a Sequence of 2D Contour ModelsIn [12], we reported initial experiments with 3D reconstruction using a method thatdirectly extends the 2D method. In this work, we extracted the contour slice by slice.For each slice, a 2D model is applied. In order to improve the speed of the algorithm,the result of the previous slice is used for solving the successive slices. Assuming thatthe variations are small from one slice to the next, this works well, in the same way thatsnakes are used for temporal tracking in [22, 23].In order to reconstruct the entire 3D surface, we initialize the process using a curveobtained from the balloon model in an intermediate cross section, and then propagate theresult to neighboring cross-sections. In [1] a related approach was taken, but successivecurves were extracted by hand from each slice, using an edge image from each slice. Notethat the in
ation force is necessary only for the �rst slice, to have a good solution on thatslice, beginning with a bad initial data. But in the following slices, the in
ation forceis not used since the solution of the previous slice is already close to the solution of thecurrent slice.Fig. 8 and 9 shows a reconstruction of the left and right ventricles using data from a3D magnetic resonance image of the heart region. This reconstruction is nearly automatic,although when the contour undergoes a large change from one slice to the next, the initialcurve in that slice may have to be rede�ned in order to obtain a good contour. Thisproblem can be ameliorated by adding interpolation slices when necessary. We note thatthe problem never occurs in practice when the image resolution is the same in the threeaxes.The entire 3D surface represented as a sequence of contours of the slices. We use theNUAGES software package (see [1]) to display the results, which also has the capabilityto de�ne a 3D surface from planar curves.The main issues of that approach are that �rst, there is no interaction between slicesand second, the surface has to be cylindrical. The �rst point is solved in next sectionwhile the second will need the general model of Section 43.2 Fast Solution of the 3D Constrained ProblemWe next describe a fast approach to solve the 3D problem based on the simultaneousevolution of 2D curves.The 3D deformable model is obtained by minimizing the energy term Eqn. 7 de�ned inSection 2.3 which uses parametrized surfaces v(x) = v(s; r) = (v1(s; r); v2(s; r); v3(s; r)).In order to keep the model simple, we limit degrees of freedom of the deformation to two



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 19components instead of three by constraining the third component v3, which correspondsto the slice level, to depend only on r. In this case, the third component of the externalforce is zero.Thus the surface that we seek is represented as a sequence of planar curves, with thesecond parameter r being the index of the slice. We have v(s; r) = (v1(s; r); v2(s; r); r) sothat for each �xed value of the parameter r, there corresponds a closed curve parametrizedby s lying in a slice of the 3D image.The consequences of constraining the surface as a sequence of plane curves entails twoadvantageous simpli�cations:� First, the curves of the representation are necessarily separated, and undesirabledeformations which would require a new parametrization of the surface are avoided.Although this imposes a restriction on the surfaces that we can reconstruct, therepresentation involves distinct curves, one per slice. As a result, if a contour ismissing in a slice, the surface nonetheless bridges the neighboring contours, creatinga smooth surface.� Second, the extraction of information within a slice is simpli�ed, both during theiterative construction as well as for the �nal result, since the surface is represented byslices. In the more general case, where nodes can move between slices, it is nontrivialto compute the contours resulting from the intersection of the surface and a slice.In the approach we present at the end of the paper for the general 3D model, we infact make use of such a computation for visualization of information on slices.The main di�erence between the slice-by-slice approach of the previous section andthe constrained 3D approach of this section is �rst, that an interaction is permittedbetween neighboring slices and also their simultaneous evolution. If edges are missingin a particular slice, then the previous method will fail, whereas using v(s; r) opens thepossibility that edges missing from a sequence of slices will be �lled in. We can see inFigs. 10 and 11 how such missing edges are retrieved. This is illustrated by the bottommiddle slice in Fig. 11 where a 2D deformable model would not reconstruct the missingedges. It would only smooth the data and give a small rectangle corresponding to theavailable edges. With the simpli�ed 3D model, the curve on one slice is also attracted bythe edge data of the neighboring slices, and this helps to reconstruct the whole curve (asquare in the example).We recall that the solution is obtained by minimizing the energy of (7). A minimumv of the energy satis�es the Euler equation 8, and a solution to the static problem isfound when the solution v(t) of 9 stabilizes. In fact, since v3(s; r) = r, only the �rst two



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 20components of Eqns. 8 and 9 are nonzero. Solving this equation with �nite di�erences,we obtain a 2D linear system of the form:V t � V t�1� +AV t = F (V t); (14)where V t is the vector whose components are the values of (v1(s; r); v2(s; r)) at thenodes of the discretization at iteration t. The �rst unknown vector V 0 is given by theinitial data. Assuming V t�1 calculated, we solve Eqn. 14 with respect to V t.The unknown V t appears in the three terms of Eqn. 14. We say that the scheme istotally implicit. It is di�cult to solve since the force F has a complicated form. We canapproximate V t by V t�1 in the term F (V t), like in the 2D case (Eqn. 4). We then saythat we solve a semi-implicit scheme, i.e., one that is explicit in the force term (F ) andimplicit for the matrix term A. This will also be the case for the �nite element method,discussed in the following sections. Inversion of the 3D scheme of this section is obtainedby solving the system V t = (I + �A)�1(V t�1 + �F (V t�1)):It is easier, and thus faster, to solve the totally explicit scheme where the term AV t isalso approached by the known value AV t�1. The unknown V t is then directly calculatedwithout matrix inversion by the formula:V t = (I � �A)V t�1 + �F (V t�1):Note that this explicit scheme is a �rst order development of (I + �A)�1 as (I � �A). Inpractice, both (I+ �A)�1 and (I � �A) perform a smoothing operation on the data V t�1.So, in our implementation, we �rst add the forces at each iteration, and then smoothv to remove singularities. This does not change the global behavior and gives, at eachiteration, a better estimation for visualization of the intermediate results.There is a certain anisotropy introduced by the restriction on the third axis direction,but there is some justi�cation for the choice, since the data itself possesses this structure.Although we solve a 3D problem, the discretized surface can be represented by the setof two two-dimensional arrays v1(si; rj) and v2(si; rj)). Since our scheme is explicit in theterm F (v), we can consider separately the two components v1 and v2 at each iteration asnoted in Section 2.1.2. We now present the steps of the algorithm:1. Addition of the expansion force. Each boundary node along the curve at each sliceis moved along vector k1�!n (s; r) where �!n (s; r) is the external normal to the planarcurve of the slice at level r.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 212. Addition of the edge force. At each node, we add �k rPkrPk, where the third com-ponent of the gradient is arbitrarily set to zero to constrain the force to lie withinthe slice plane. The potential P is obtained from the gradient computation krIk ofthe 3D image data.3. Smoothing. We apply a smoothing operation by means of the matrix (I � �A) tothe data V t, separately to its components vt1 and vt2. It can be veri�ed that thismatrix is banded and that the circular shifting property of the matrix in the 2Dproblem (see Section 2.1.2) is extended to our 3D problem. The product of a matrixof this form and the discretized surface can be viewed as the convolution of a twodimensional array with the arrays v1(si; rj) and v2(si; rj). Since derivatives are atmost of the 4th order, this corresponds to a convolution of the discretized surfacev(ih; jk) by a 5�5 kernel. This smoothing can in fact be viewed as a low-pass �lter.The strength of the �lter is determined by the coe�cients of matrix A and the timestep � .The third step can be made faster by decomposing the convolution of the surfacenodes by the 5 � 5 kernel into a product of two 1D low-pass �lters of length 5, one ineach direction, approximating the convolution kernel by a separable kernel. Although thekernel (I � �A) is not precisely a separable kernel, due to the term w11(x) 
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2, thefollowing procedure provides an acceptable approximation:� Smoothing in a cross section. Recall that in v1(s; r) and v2(s; r), the r variable givesthe slice level and s gives a spatial location along the curve. For each slice separately,the smoothing operation restricted to this slice is performed. That is, for a givenslice r, the terms of the matrix (I � �A) involving data on slice r are performed.This is a �rst order approximation of the smoothing in the 2D problem.� Smoothing between cross sections. Smoothing in the direction orthogonal to the sliceplanes.Figs. 10 and 11 show example applications using a simple shape. For 20 slices of a 3Dimage, a white square on a black background is placed in the center of the image, to forma frustum: from slice to slice, the size of the square decreases and then increases again.The 3D edge image is used to de�ne a potential P as described in Section 2.2.3. Theinitial curves needed to start the process in the successive cross sections form a cylinderwith a square cross-section centered on each slice whose size is smaller than that of thedesired objects.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 22However, for the examples just described, the stack of 2D models would work just aswell to �nd the solution. Therefore we delete from the edge image large parts of the edgesin many of the cross sections (see Fig. 10). If a 2D model were applied slice-by-slice inthis case, the method would close the contours, but inaccurately track the shape. Herethe 3D smoothing step restores the missing parts in each slice in a coherent way from theedges in the neighboring slices, as shown in Fig. 11.This method especially fast if the initial approximating surface is a thin tube insidethe region of interest.4 Numerical Solution by Finite Element Method (FEM)The main problem with the 3D model is the very large number of variables, and theconcomitant computation time. In the previous section, we described a simpli�ed model,which gives satisfactory results in some cases, but generally requires further re�nement.The simpli�ed approach is only useful for tubular shapes about a single axis. To search formore general surfaces, we must solve a more complete problem, without shape constraints,except for a topological constraint de�ned by the boundary conditions.As a remedy to the computational costs, we use the �nite element method (FEM),which is able to e�ectively lower the number of discretization nodes. Initial experimentscomparing a FEM and FDM in the 2D problem suggests that the FEM has a lowercomplexity, which becomes more important in 3D since a greater number of discretizationnodes are required as compared to the 2D problem (see Section 4.3). Thus, in this section,we �rst present the FEM formulation of the problem in 2D, then its generalization to 3D,and then details can be found in [14].4.1 Mathematical FormulationWe consider the evolution equation of Eqn. 3:8>>>><>>>>: @v@t � @@s �w1@v@s�+ @2@s2 �w2@2v@s2� = F (v)v(s; 0) = v0(s) initial curve+ Boundary conditions. (15)



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 23In 3D, the equation becomes:8>>>>>>>><>>>>>>>>: @v@t � @@s �w10@v@s�� @@r �w01@v@r�+ 2 @2@s@r �w11 @2v@s@r�+ @2@s2 �w20@2v@s2�+ @2@r2 �w02@2v@r2� = F (v)v(0; s; r) = v0(s; r) initial estimation+ Boundary conditions. (16)In this case, v = (v1; v2; v3), and is a function of one time variable and of two spatialvariables. To simplify the notation, we will consider Eqns. 15 and 16 only with zero-boundary conditions. More general cases can be handled by a simple change of variables.Moreover, as we noted in Section 2.1.2, each component of v will satisfy the same equationand may be computed separately. We thus limit in the following to the resolution of theFEM for a scalar-valued function.In the following subsections we describe the di�erent steps which lead to the numericalsolution of the partial di�erential equation characterizing the deformable models.4.1.1 Variational ProblemAn approach for solving the above equations is to de�ne the associated variational prob-lem. The main idea can be understood by saying that the terms of Eqn. 16 are equal insome functional space if their scalar product against any vector of the space are equal.This variational problem characterizes the solution of the partial di�erential equationsby de�ning the space of admissible solutions and its norm using a bilinear form a(:; :)(characterizing the space norm) and a linear form L(:) (characterizing the input).In [14] we show how to de�ne properly the bilinear form a(:; :) and the linear form L(:)such that solving Eqn. (1) or more generally Eqn. (8) is equivalent to solve the variationalproblem:Variational Problem 1 Find v 2 H20 (
) such that:a(v; u) = L(u) 8u 2 H20 (
): (17)where the space H20 (
) is the Sobolev space of functions v such that Z jDmvj2 < +1 form = 0; 1; 2 where Dmv is the mth order di�erential of function v.The existence and uniqueness of a solution to this variational problem (17) are eas-ily established [8], since the bilinear form a(:; :) is symmetric and coercive providingwkl(s; r) > 0.Here, L is assumed to be independent of v. In fact, L does depend on v in ourapplication, but in the iterative scheme, we will �x L to be constant in any given iteration(see [20] for a mathematical justi�cation).



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 24We give expressions for a(:; :) and L(:) for the 2D problem. For the 3D problem, detailsare provided in [14]. The bilinear form a(:; :) is given bya(u; v) = Z 10 w1(s)u0(s)v0(s)ds+ Z 10 w2(s)u00(s)v00(s)dsand L = Lv is Lv(u) = Z 10 F (v(s; t))u(s)ds;for the 2D case.4.1.2 Discrete Variational ProblemA well-known approach for solving such a problem is Galerkin's method, which consists inde�ning a similar discrete problem, over a �nite-dimensional subspace Vh of the Sobolevspace H20 (
). The associated discrete problem for (17) is:Variational Problem 2 Find vh 2 Vh such thata(vh; uh) = L(uh) 8 uh 2 Vh: (18)A solution vh of this discrete problem is an approximation of the solution v of thecontinuous variational problem.This discrete problem leads to a �nite linear system de�ned over the �nite-dimensionalspace Vh.The FEM provides an e�cient tool for de�ning the space Vh.4.1.3 The Finite Element MethodThe �nite element method is characterized by three aspects in the construction of thespace Vh:(FEM1) A tessellation is established over the parametrization set 
 = [0; 1] ([0; 1]� [0; 1] in3D);(FEM2) The functions vh 2 Vh are typically piecewise polynomial; and(FEM3) The basis of functions for the space Vh are chosen such that they have small support.Hence, the FEM provides a �nite dimensional space Vh and a discrete representation ofthe solution vh approximating the solution v of the variational problem (17).We use a conform �nite element method which insures that the space Vh is a subspaceof H20 (
) and that the basis functions are C1 continuous. In the following we describe thechoice of the subspace Vh in the 2D and 3D case.
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Figure 2: Plots of the two basis functions � and 	 for the 2D FEM.4.1.4 The 2D Curve CaseWe consider a uniform subdivision of 
 = [0; 1] = SNi=1[ih; (i + 1)h], where N is thenumber of discretization points and h = 1N + 1.Since the variational problem 17 uses the space of admissible functions H20 ([0; 1]), thespace Vh must satis�es Vh � C1 \H20 ([0; 1]) (for details see [8]). A choice for the subspaceVh is de�ned by:Vh = nv 2 C1 ([0; 1]) ; vj[xi;xi+1 ] 2 P3([xi; xi+1]) 0 � i � Nowhere Pk(I) is the vector space of polynomials of degree k or less, restricted to the intervalI � R. We use the notation vjI to mean the restriction of the function v to the subsetI. The space P3 has been chosen since a polynomial p 2 P3 is uniquely determined by itsvalues and the values of its �rst derivative at two distincts points. The basis functions ofVh are �i and 	i, 1 � i � N de�ned by:�i(xj) = �ij; �0i(xj) = 0 1 � j � N (19)	i(xj) = 0; 	0i(xj) = �ij 1 � j � N (20)where: �ij = 8<: 1 if i = j0 otherwise.Analytic expressions for the �i and 	i are given in [14]; Fig. 2 shows plots of the functions.A function vh 2 Vh is completely de�ned by the values of vh and v0h at each of thenodes xi, and we have the identity:vh = NXi=1 vh(xi)�i + NXi=1 v0h(xi)	i; (21)yielding an expression for vh in terms of a �nite collection of unknowns.Using the FEM and the above choices for the implementation in order to compute thesolution to the 2D balloon model, we obtain the results presented in Figs. 14 and 15.
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Figure 3: Surface plots of the four basis functions ',  , � and � for the 3D FEM4.1.5 The 3D Surface CaseA tessellation of the domain 
 in 3D and the construction of the subspace Vh using theBogner-Fox-Schmit (BFS) elements are given in [14] In this space, a function is completelydetermined by four values at each nodal point aij = (ihs; jhr), speci�cally, the values forvh; @vh@s ; @vh@r and @2vh@s@r . The corresponding basis functions are shown in Fig. 3. Thesebasis functions can also be obtained through a tensorial product of the functions � and	 (19-20).The tesselation of the domain 
 could be done with triangular patches providing anadaptive mesh and requiring a bigger computational complexity (see [8] for a completedescription of the di�erent basis functions). The choice of the BFS elements is due totheir ability to tesselate easily rectangular domains and mainly to the reduced number of



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 27neighboring nodes and degrees of freedom (four at each nodal point).Expressing vh 2 Vh in the BFS basis leads to the identity:vh = Ns�1;Nr�1Xi;j=0 vh(aij)'ij + @vh@s (aij) ij + @vh@r (aij)�ij + @2vh@s@r(aij)�ij ; (22)which provides a C1 function de�ned over the set 
 depending on a �nite collection ofparameters.4.2 Discretization of the ProblemOnce the space is discretized and the function v is represented as an element in a �nitedimensional subspace, a linear system results:A � V = L; (23)where the matrix A is symmetric, positive de�nite and heptadiagonal (tridiagonal perbloc in the 3D case) and V is the vector of coordinates of vh in the chosen basis. Thesecoordinates are in fact the values of vh and its derivatives @vh@s ; @vh@r ; and @2vh@s@r at thenodes of the tessellation.Having discretized the problem 15 in space, we next have to discretize its variationalformulation:given v0 2 L2(
) and F 2 L2(0; T; L2(
)),�nd a function v 2 L2(0; T;H20 (
)) \ C1(0; T; L2(
)) satisfying:8>>><>>>: ddt (v(t);  ) + a(v(t);  ) = Lv( ) 8 2 H20 (
)v(0) = v0w1(s); w2(s) 2 L1(
); w1(s) and w2(s) � � > 0 (24)We then use �nite di�erences in time. Finite di�erences in time may be viewed as as away to formulate the following iterative method. We are only interested in the �nal resultand so do not need an accurate solution in time. The result is simply:8<: V t � V t�1� +A � V t = LV t�1V 0 = v0 initial estimation: (25)where � is the time step. Eqn. 25 can be written in a form similar to the �nite di�erencesformulation (4), yielding (I + �A) � V t = V t�1 + �LV t�1; (26)which is the discrete version of Eqn. 16. To solve the linear system M � V = N at eachtime step, for which the matrixM = (I+�A) is banded, symmetric and positive de�nite,



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 28we �rst note that M does not depend on t, and so its inverse may be precomputed usinga Cholesky factorization.Note that we assume here that the coe�cient functions wij remain constant in time.If the coe�cients do change in time, or even if they do not, an alternative method to solvethis linear system is by means of a Conjugate Gradient method, in which the solution V t�1is taken as an initial guess at time t. This approach appears to have a faster convergencethan the Cholesky factorization method.Remark that when using the FEM, the solution is less sensitive than with FDM todeformations of the mesh. It permits apparition of larger distances between neighboringnodes which happen, for example, when using the balloon model. However, like with theFDM, we periodically reparametrize the curve or surface, but without adding new nodepoints. For a curve in 2D, we construct a new parametrization using the existing curveby sampling at a regular distance between nodes, with a given number of nodes. For asurface in 3D, we do the same as in 2D in both directions of the parametrization, onedirection after the other.4.3 Performance and Complexity AnalysisThe better complexity of the FEM was studied in 2D and guided us to use it for the 3Dgeneralization of the model.The FEM has a better complexity because, as compared to the FDM, the step sizeof the spatial discretization can be larger with the FEM, resulting in linear systems ofsmaller size. In general, we observe with the 2D FDM model with our application that:� If the step size is more than 2 pixels, then the curves passes over the edges or failsto be attracted to edges;� For the balloon model, a dynamic reparametrization is often required since the lengthof the curve increases signi�cantly during the time steps; and� The size of the linear system is of the order of the length of the curve, due to thereparametrization.While for the FDM, we follow the evolution of a set of points, with �nite elementsfor the 2D model, the curve which is between two points of the grid can deform, so thatthe image forces between two points are also considered. The computation of vectorL (see section 4.5) is made by numerical integration, interpolating along the interval[(i� 1)h; (i + 1)h] for each node si = ih of the subdivision. The numerical integration ismade at the pixel size so that no information is lost.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 29If we compare results of FEM with those obtained using a �nite di�erence method(FDM) (as in [12]), we �nd out that, as expected, the �nite element method requiresfewer points for the curve discretization and gives more stable results. This FEM givesalso a faster convergence to an equilibrium.Since the methods lead to the linear systems (25) for FEM or (4) for FDM, thealgorithmic complexity can be deduced by examining the associated linear systems.Let N be the number of the discretization points along the interval [0; 1]. For the FEM,the matrix A is a 2N � 2N heptadiagonal array, while it is only N � N pentadiagonalfor the FDM. In the FDM approach, the number of points N must be at least equal tothe length l, in pixels, of the initial guess, and may have to increase in size. On the otherhand, for the �nite element method, the number of points N is typically of the order ofl=6. Thus the matrix size for the FEM case is 2l6 by 2l6 , which is 9 times smaller thanwith the FDM.Moreover, with the FEM, the same number of nodes in the system is held �xed forall iterations. An initial computation of the inverse of the matrix A is su�cient for thewhole process.4.4 Elasticity and Rigidity Coe�cientsThe elasticity and rigidity coe�cients wkl play an important role in the convergenceprocess of the surface toward the image edges. These coe�cients must be chosen in acorrect way such that the internal forces generated by terms of the energy E comprising thecoe�cients wkl have the same magnitude as the external forces generated by the potentialP (v). Since a minimum of the energy E will involve a trade-o� between the internal andexternal energy, the solution surface should �t the edge points while being smooth andregular. If the internal energy is preponderant, then the surface will tend to collapse onitself without detecting image edges, whereas if the external energy predominates, thenthe surface will converge along the image edge without any degree of smoothing.To insure that both internal and external energy have the same order of magnitude, wehave found it su�cient to choose the coe�cients wkl such that the linear system of Eqn. 16is well-conditioned. For example, the following assignments result in a well-conditionedsystem: w10 = w01 = h2sh2r and w20 = w11 = w02 = h3sh3r;where hs and hr are the discretization step of 
. Setting w10 = w01 and w20 = w11 = w02presupposes that the 3D image data is isotropic, and thus that all directions have equalweight.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 30In [9], we propose a general approach for determining the regularizing parameters wijgiven an error margin on the accuracy of the reconstructed surface. This method allowsalso surface reconstruction preserving discontinuities.4.5 The Computation of the Vector LThe computation of L = (L(e1); : : : ; L(eN)))T (where ep is the chosen basis of Vh) dependsupon P = �krI(x; y)k2 which is known only at pixel (or voxel in 3D) locations. Theintegrals L(el) = Z
 F �vt�1(s; r)� el(s; r) dsdr represents the contribution of the externalforces which cause the surface to be attracted toward the edges, and contribute to thelinear system that we must solve at each iteration. Thus, the more we weight the potentialP = �krIk2, the more closely the result tracks the edges and the faster is the convergence(at the expense of smoothness).Since the potential P is known only at pixel locations, we must compute the L(el) witha numerical integration. Consequently we compute rP at interpolated points (x; y; z) 2IR3 by a trilinear interpolation of the eight neighbors.To take into account all the contributions of the external forces, we modi�ed thenumerical integration formula such that every image point in the set v([(i�1)hs; (i+1)hs]�[(j�1)hr; (j+1)hr]) is involved in the computation of each termL(ep). This method allowsus to do an \adaptive subdivision" of the rectangle Kij = [ihs; (i+1)hs]� [jhr; (j+1)hr]without adding nodal points and, consequently, without increasing the size of the linearsystem to be solved. This method signi�cantly reduces the algorithmic complexity whileincreasing the accuracy and the convergence speed.5 3D ResultsUsing a real 3D deformable model to segment a 3D image provides better results than theiterated application of a 2D deformable model to successive 2D cross-sections. In e�ect,the 3D model easily bridges edge gaps in 3D, i.e., not only within a cross section, but alsobetween cross-sections, insuring that the result is globally a smooth surface.Compared to the simpli�ed approaches of Section 3, the use of the full 3D model tosegment 3D data signi�cantly improves the robustness of the segmentation; for instanceit is even possible to remove all the edges of a single cross section (assuming that theedges are correctly detected in other slices) without seriously degrading the �nal result.Fig. 16 shows the 3D reconstruction obtained by using the 3D balloon model of section 3applied to the data of Fig. 10. The �nal surface is more accurate and smoother than thatobtained with the simpli�ed approach shown in Fig. 11. On a Sun Sparc station, the



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 31result shown in Fig. 16 takes however about ten times more computation time than thatrequired for the simpli�ed approach.Figs. 17 and 18 demonstrate another example of the 3D model applied to arti�cialdata. In this case, the initial surface is a cylinder (Fig. 17), where we have removed someedges in three successives cross sections, for comparison purposes. The deformable surfacerestores the missing edges and obtains a perfect reconstruction of the cylinder (Fig. 18),whereas a 2D model fails due to the missing edges, even if we use the same attractionforce as for the 3D model.Fig. 18 and also Figs. 22 and 23 show cross sections of the original 3D image overlaidwith the reconstructed surface on the same plane.For our �nal example, we use real data: image data of a part of a human head obtainedwith Magnetic Resonance Imaging (MRI). We make use of the \weight force" describedin Section 2.2.2, which allows us to begin with a much simpler initial surface than in [10];In this case, the initial surface is a plane placed on one side of the 3D image. The weightforce makes the surface fall through the image until it is caught progressively by the shapeof the face. The evolution of the surface is shown in Figs. 19, 20 and 21. The �nal resultis obtained after about 100 iterations. We show the �nal result overlaid on the originalimage data in vertical (Fig. 22) and horizontal (Fig. 23) cross sections. Here, by verticaland horizontal slices, we mean with respect to the representation of Fig. 21. We remarkthe accurate localization by the surface of the 3D edges.6 ConclusionOne of the goals of the regularization process in surface reconstruction is to obtain good es-timates of partial derivatives of the surface in order to compute di�erential characteristics.Since the result of the deformable model reconstruction described here is an analyticaldescription of class C1 almost everywhere (except along the borders of the �nite elements,where the representation is only of class C1), we may compute, for example the �rst andsecond fundamental forms of the surface [18]. We could then extract a curvature-basedprimal sketch of the surface [6, 26], including intrinsic features such as parabolic lines,extrema of curvatures, and umbilic points, which can be used as landmarks for 3D imageinterpretation [2]. We are conducting such a program [10], and will present results in asubsequent paper.Another goal of this representation is the elastic matching of extracted features to anatlas, which is also the problem discussed in [3]. For this purpose, we would deform acurve or surface to best match the pattern using some measure of the distortion, suchas the area between the two curves. This was also studied in [35] with simple geometric



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 32shapes as templates which are deformed to match the image.In order to achieve a representation on a deformable model, we have presented a 3Dgeneralization of the balloon model introduced in [12] which solves some of the problemsencountered with the \snake" model of [23, 32]. We began with a survey of the use of anattraction potential generated by available edge data to reconstruct a curve or surface.We demonstrated some properties of deformable surfaces and their interaction with 3Dedge points. Our approach here extends an earlier approach, reported in [12], where weuse a series of 2D contours in successive cross sections to make a 3D reconstruction of thesurface of the ventricles. The simpli�ed approach given here was implemented by de�ninga 3D surface as a series of 2D planar curves making a simultaneous and interdependentevolution, using the Eqn. 9. The solution method used a �nite di�erence approach andan explicit scheme, which produced a fast computational algorithm.We then implemented a Finite Element Method solution strategy, to solve the full 3Dproblem. The reason for choosing a FEM approach as opposed to a Finite Di�erenceMethod was that:1. The FEM approach requires fewer discretization points and consequently produces asmaller linear system to solve, thus reducing signi�cantly the algorithmic complexity;2. The FEM approach produces more accurate results, since the external forces can becomputed more accurately;3. The FEM approach provides an analytical representation of the surface.To solve the full 3D model of surface, we used a Bogner-Fox-Schmit �nite rectangularelement.This method has been tested for several applications in medical image analysis. Weshowed promising results of our model on MR (magnetic resonance) images, to extractfeatures like the contour of a face.References[1] N. Ayache, J.D. Boissonnat, E. Brunet, L. Cohen, J.P. Chi�eze, B. Geiger, O. Monga, J.M.Rocchisani, and P. Sander. Building highly structured volume representations in 3D medicalimages. In Computer Aided Radiology, Juin 1989. Berlin, West-Germany.[2] N. Ayache, J.D. Boissonnat, L. Cohen, B. Geiger, O. Monga, J. Levy-Vehel, and P. Sander.Steps toward the automatic interpretation of 3D images. NATO ASI Series on 3D Imagingin Medicine, F 60:107{120, 1990.[3] Ruzena Bajcsy and Stane Kovacic. Multiresolution elastic matching. Computer Vision,Graphics, and Image Processing, 46:1{21, 1989.
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Figure 4: Advantage of the balloon model: the initial curve (in black, on the left) neithercollapses nor gets trapped by spurious isolated edges points. It robustly converges towardthe desired rectangle shape (on the right). The background image is the attraction potentialgenerated by hand-drawn contours (see next �gure).
Figure 5: Attraction potential surface generated by convolution of a Gaussian and the edgecontours de�ned by hand shown in Fig. 4. The surface is shown upside down for sake of clarity.The curve is attracted to minima of the potential, which are maxima as seen in the �gure. Thepotential around isolated points shows the shape of the Gaussian used. The attraction force issmall outside a neighborhood of an edge point.
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Figure 6: Surface of distances to the nearest edge point. The negative of this surface, as theprevious one, may be used as a potential.

Figure 7: An MRI image. Evolution of the balloon curve to detect the left ventricle. Here wegive illustration of the robustness of the balloon model: the �nal result can be achieved fromalmost any initial curve given within the interior of the ventricle (see also Figs. 14 and 15).
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Figure 8: 3D reconstruction from a sequence of 2D contour models: two views of the recon-structed inside cavity of the left ventricle.

Figure 9: 3D reconstruction from a sequence of 2D contour models: two views of the recon-structed inside cavity of the right ventricle.
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Figure 10: Edge image of the frustum after erasing some parts. The cross sections with a \?"were modi�ed. The sequence of cross sections is ordered from top to bottom and from left toright. The square shrinks to an intermediate size, and then increases back to the original size.
Figure 11: The simpli�ed 3D model: results for the frustum on six slices. They are orderedfrom left to right and from top to bottom. The two cross sections on the far right correspondto complete contours, the other ones had some parts erased.
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Figure 12: Contours of the bended tube after erasing some parts. The sequence of cross sectionsis ordered from top to bottom and from left to right. The square, always of the same size,rotates with a constant angle from a slice to the next.
Figure 13: The simpli�ed 3D model: results for the bended tube on six slices. They are orderedfrom left to right and from top to bottom. The cross sections with a \?" had some parts erased.The second follows the �rst, the three bottom slices are also successive.
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Figure 14: Using the FEM. Evolution (from left to right) of the balloon curve to detect the leftventricle (see also next �gure).

Figure 15: Using the FEM on echographic images.
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Figure 16: Representation of the 3D reconstructed surface using the data of Fig. 10.

Figure 17: Successive cross sections of the deteriorated edges and initial surface (in grey) givenby the user.
Figure 18: Here we show how the deformable surface (in grey) can reconstruct deteriorated edgesby maintaining 3D homogeneity. In this example, a 2D model cannot reconstruct the missingedges even if we use a 3D potential.
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Figure 19: Evolution of the 3D surface \falling" on a 3D MRI image of a head. The initialsurface is a plane on the border of the image.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 43

Figure 20: Evolution of the 3D surface continued.
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Figure 21: Final result of the face.
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Figure 22: Overlays of some vertical cross sections of the �nal surface obtained by the algorithmwith the original data.
Figure 23: Overlays of some horizontal cross sections of the �nal surface with the original data.



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 46AppendicesA Surfaces and 3D Edge PointsIn this �rst appendix we give a necessary and su�cient condition for a surface to produce a localextremum of the energy: EP (S) = 1jSj Z P (v(s; r))dAwhere jSj = Z Z jxs ^ xrjdsdr and dA = pEG� F 2dsdr is the area element. A necessaryand su�cient condition for the surface S to produce a local extremum of EP with respect toin�nitesimal deformations is:DN(v(s;r))P (v(s; r)) = eG� 2fF + gEEG� F 2 �P (v(s; r))� 1jSj Z Z P (v(s; r))dsdr� ; (27)and P (v(L; r)) = P (v(0; r)) = 1jSj Z PdA 8r 2 [0;M ] (28)P (v(s;M)) = P (v(s; 0)) = 1jSj Z PdA 8s 2 [0; L] (29)where E(s; r), F (s; r), G(s; r), e(s; r), f(s; r) and g(s; r) are the coe�cients of the �rst andsecond fundamental form in the basis fxs; xrg (see [18] for details about the notations),
 =[0; L]� [0;M ].Let us consider S� a small deformation of the surface S such that the parametrization of S�is: x� = x+ �(�xs + �xr + 
N) (30)where �(s; r), �(s; r) and 
(s; r) are arbitrary continuous and di�erentiable functions andfxs; xr; Ng are the derivatives of x and the normal to the surface.S is a local extremum of EP if and only ifdEP (S�)d� �����=0 = 0 (31)for all �, � and 
.We are going to show that (31) holds if and only if (27, 28, 29) are satis�ed.By de�nition EP (S�) = R P (x�(s; r))dAR dA = R R P (x�(s; r))pEG� F 2dsdrR R pEG� F 2dsdr (32)where E, F , and G are the coe�cients of the �rst fundamental form of S�.To compute the derivative dEP (S�)d� �����=0, we need to compute the derivatives of the vectorsxs, xr and N . For this purpose we use the following equations (x 4.3 p. 231 in [18]):xss = �111xs + �211xr + eNxsr = xrs = �112xs + �212xr + fNxrr = �122xs + �222xr + gNwhere the coe�cients �kij are the Christo�el symbols of S in the parametrization x and e, f , gare the coe�cients of the second fundamental form of S. In the following the Christo�el symbols



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 47�kij have been replaced in terms of the coe�cients of the �rst fundamental form E; F;G and theirderivatives.Thus computing dEP (S�)d� and evaluating it at � = 0 leads to:jSj dEP (S�)d� �����=0 = 0 = Z Z pEG� F 2� �jSj dPdxs + (jSjP � Pm) ��111 + �212�� dsdr+ Z Z �spEG� F 2 (jSjP � Pm)dsdr+ Z Z pEG� F 2� �jSj dPdxr + (jSjP � Pm) ��112 + �222��dsdr+ Z Z �rpEG� F 2 (jSjP � Pm) dsdr+ Z Z 
 �pEG� F 2 jSj dPdN � (jSjP � Pm) eG� 2fF + gEpEG� F 2 � dsdrwhere Pm = Z PdA.Integrating by parts the integral (except the last one) yields (27) as a necessary and su�cientcondition for (31) to be satis�ed for all �, � and 
. And evaluating these integrals at theboundaries yields the two additional equations (28) and (29).B Details of the Numerical SolutionB.1 Variational FormulationLet ' 2 H20([0; 1]) be a smooth function. If v is a solution of Eqn. (15), the associated variationalformulation is: Z 10 @v(s; t)@t '(s)ds� Z 10 @@s �w1(s)@v(s; t)@s �'(s)ds+Z 10 @2@s2 �w2(s)@2v(s; t)@s2 �'(s)ds = Z 10 F (v(s; t))'(s)dsWe remark that the variables s and t are independents, we can separate them (for more detailssee [8]). We obtain, using the Green's formula:ddt Z 10 v(s; t)'(s)ds+ Z 10 w1(s)@v(s; t)@s '0(s)ds+ Z 10 w2(s)@2v(s; t)@s2 '00(s)ds= Z 10 F (v(s; t))'(s)dsLet us set: a(';  ) = Z 10 w1(s)'0(s) 0(s)ds+ Z 10 w2(s)'00(s) 00(s)dsand Lv( ) = Z 10 F (v(s; t)) (s)dsThis leads us to a new formulation of the problem: given v0 2 L2(
) and F 2 L2(0; T; L2(
)),�nd a function v 2 L2(0; T;H20(
))\ C1(0; T; L2(
)) satisfying:8>>><>>>: ddt (v(t);  )+ a(v(t);  ) = Lv( ) 8 2 H20(
)v(0) = v0w1(s); w2(s) 2 L1(
); w1(s) and w2(s) � � > 0 (33)



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 48We solve the evolution equation but we are in fact interested in the limit when t is large whichgives a solution of the static equation:Find v 2 H20(
) such that a(v; ') = Lv(') 8' 2 H20(
) (34)when L does not depend on v, there exists a unique solution to this equation, since the bilinearform a(';  ) is symmetric and positive de�nite as soon as w1(s) and w2(s) > 0).So we solve the evolution equation (33) using an iterative scheme where at each step, Ldepends only on the estimate of v at the previous step.In 3D we have to solve the same problem with:a(u; v) = Z
w10@u@s @v@s + w01@u@r @v@r + w20@2u@s2 @2v@s2 + 2w11 @2u@s@r @2v@s@r + w02@2u@r2 @2v@r2 dsdrand Lv(u) = Z
 F (v) u dsdrB.2 Vh Basis Functions in 2DUsing relations (19) and (20) we obtain:�j(x) = 8>>><>>>: � 2h3x3 � 3h2 (1� 2j)x2 + 6jh (1� j)x+ 1 + j2(2j � 3) if x 2 [xj�1; xj]2h3x3 � 3h2 (1 + 2j)x2+ 6jh (1 + j)x+ 1� j2(2j + 3) if x 2 [xj; xj+1]0 elsewhere. (35)and 	j(x) = 8>>><>>>: 1h2x3 + 1h(2� 3j)x2 + (3j2 � 4j + 1)x� j(j � 1)2 if x 2 [xj�1; xj]1h2x3 � 1h(2 + 3j)x2 + (3j2 + 4j + 1)x� j(j + 1)2 if x 2 [xj; xj+1]0 elsewhere. (36)Thus 8vh 2 Vh we have the identity:vh = NXi=1 vh(xi)�i + NXi=1 v0h(xi)	i (37)B.3 Discrete Problem and Linear System in 2DRewriting the discrete problem (17) with the basis functions �i and 	i, give us the equations:8j = 1; : : : ; N 8<: a(vh; �j) = L(�j)a(vh;	j) = L(	j) (38)and using the identity (21), we have:8j = 1; : : : ; N 8<: PNi=1 vh(xi)a(�i; �j) +PNi=1 v0h(xi)a(	i; �j) = L(�j)PNi=1 vh(xi)a(�i;	j) +PNi=1 v0h(xi)a(	i;	j) = L(	j) (39)The equation (39) is a linear system, where the unknowns are vh(xi) and v0h(xi) for i = 1; : : : ; N .



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 49Finally the solution of the discrete problem (18) is equivalent to a solution of the linearsystem: A � V = Lwhere:- A is a tridiagonal blocs array A = (Aij)i;j=1;:::;N with:Aij = 0@ a(�i; �j) a(	i; �j)a(�i;	j) a(	i;	j) 1Athe Aij array elements depend on the elasticity and rigidity coe�cients.- V = �vh(x1); v0h(x1); : : : ; vh(xN); v0h(xN)�T- and L = (L(�1); L(	1); : : : ; L(�N); L(	N))T .B.4 Tessellation of 
 and the Basis Functions in 3DGiven the numbers of discretization points in the two axes of parametrization Ns; Nr > 1 , weset hs = 1Ns � 1 ; hr = 1Nr � 1 and consider a uniform subdivision of 
 of step size hs and hr,composed of the nodes ai;j = (si; rj) = (ihs; jhr) 0 � i � Ns � 1; 0 � j � Nr � 1. Thus
 = [0; 1]� [0; 1] = Ns�1;Nr�1[i;j=0 Ki;j = Ns�1;Nr�1[i;j=0 [ihs; (i+ 1)hs]� [jhr; (j + 1)hr]Since the higher derivatives order appearing in the equation (8) are of the fourth order, the�nite element space Vh must satisfy Vh � C1 \H20 (
) (see for details [8]). For this purpose thespace H20 (
) is approximated with the Bogner - Fox - Schmit elements [8] de�ned by:� The rectangles Kij, de�ned by the vertices ck 1 � k � 4.� The set PKijof polynomials containing the basis functions:PKij = Q3(Kij) = 8<:p; p(s; r) = X0�k;l�3
klskrl 9=;� The set �Kij = �p(ck); @p(ck)@s ; @p(ck)@r ; @2p(ck)@s@r 1 � k � 4� which allows to de�ne in aunique way the basis functions over each rectangles KijThe subspace Vh is then de�ned by:Vh = �v 2 C1(
); vjKij 2 Q3(Kij)	where Qk(I) is the vector space of the restrictions to an interval I � R2 of the polynomialswhose degree is less than k for each variable, and vjI is the restriction of the function v to thesubset I . The basis functions of the �nite element subspace Vh are 'ij,  ij, �ij and �ij de�nedin a unique way over each rectangle Kij by:8>>>>>>><>>>>>>>: 'ij(akl) = �ij;kl; @'ij@s (akl) = @'ij@r (akl) = @2'ij@s@r (akl) = 0@ ij@s (akl) = �ij;kl;  ij(akl) = @ ij@r (akl) = @2 ij@s@r (akl) = 0@�ij@r (akl) = �ij;kl; �ij(akl) = @�ij@s (akl) = @2�ij@s@r (akl) = 0@2�ij@s@r (akl) = �ij;kl; �ij(akl) = @�ij@s (akl) = @�ij@r (akl) = 0 (40)



L. Cohen and I. Cohen. Ceremade TR 9124. November 1991 50where: �ij;kl = 8<: 1 if i = k and j = l0 otherwiseThus 8vh 2 Vh we have the identity:vh = Ns�1;Nr�1Xi;j=0 vh(aij)'ij + @vh@s (aij) ij + @vh@r (aij)�ij + @2vh@s@r(aij)�ijproviding a continuous representation of the solution over the space 
.Equations (40) gives the expressions of the basis functions 'ij,  ij, �ij and �ij representedin Fig. 3. These basis functions can be obtained in a simpler way by a tensorial product of the2D basis functions � and 	 (35-36):8>>>>>><>>>>>>: 'ij(s; r) = �i(s)�j(r); ij(s; r) = 	i(s)�j(r);�ij(s; r) = �i(s)	j(r);�ij(s; r) = 	i(s)	j(r):B.5 Discrete Problem and Linear System in 3DRewriting the discrete problem associated to Eqn. (34) with the basis functions, gives us thefour equations: 8i; j = 0; : : : ; Ns� 1; Nr � 18>>>>>><>>>>>>: a(vh; 'ij) = L('ij)a(vh;  ij) = L( ij)a(vh; �ij) = L(�ij)a(vh; �ij) = L(�ij) (41)and, using the identity (22): 8i; j = 0; : : : ; Ns � 1; Nr � 18>>>>>><>>>>>>: P vh(akl)a('kl; 'ij) + @vh@s (akl)a('kl;  ij) + @vh@r (akl)a('kl; �ij) + @2vh@s@r(akl)a('kl; �ij) = L('ij)P vh(akl)a( kl; 'ij) + @vh@s (akl)a( kl;  ij) + @vh@r (akl)a( kl; �ij) + @2vh@s@r (akl)a( kl; �ij) = L( ij)P vh(akl)a(�kl; 'ij) + @vh@s (akl)a(�kl;  ij) + @vh@r (akl)a(�kl; �ij) + @2vh@s@r (akl)a(�kl; �ij) = L(�ij)P vh(akl)a(�kl; 'ij) + @vh@s (akl)a(�kl;  ij) + @vh@r (akl)a(�kl; �ij) + @2vh@s@r (akl)a(�kl; �ij) = L(�ij)(42)where all sums are Ns�1;Nr�1Xk;l=0 . Equation (42) is a linear system where the unknowns arevh(akl); @vh@r (akl); @vh@s (akl) and @2vh@s@r (akl).Finally the solution of the discrete problem associated to (34) leads to a solution of a linearsystem: A � V = L, where: A = ( ~Aij)ij=0;:::;Ns�1;Nr�1 is a tridiagonal blocs array:~Aij = 0BBBBBB@ a('ij; 'kl) a('ij;  kl) a('ij; �kl) a('ij; �kl)a( ij; 'kl) a( ij;  kl) a( ij; �kl) a( ij; �kl)a(�ij; 'kl) a(�ij;  kl) a(�ij; �kl) a(�ij; �kl)a(�ij; 'kl) a(�ij;  kl) a(�ij; �kl) a(�ij; �kl) 1CCCCCCAthe ~Aij array elements depend on the elasticity and rigidity coe�cients.


