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We  propose  a  graph  drawing  algorithm  that  is  both  efficient  and  high
quality.  This  algorithm  combines  a  multilevel  approach,  which  effectively
overcomes local minimums, with the Barnes and Hut [1] octree technique,
which approximates short- and long-range force efficiently.  Our numerical
results  show  that  the  algorithm  is  comparable  in  speed  to  Walshaw’s  [2]
highly efficient multilevel graph drawing algorithm, yet gives better results
on some of the difficult problems.  In addition, an adaptive cooling scheme
for  the  force-directed  algorithms  and  a  general  repulsive  force  model  are
proposed. The proposed graph drawing algorithm and others are included
with Mathematica 5.1 and later versions in the package DiscreteMath‘GraphÑ
Plot.

‡ 1. Introduction
Graphs  are  often  used  to  encapsulate  the  relationship  between  objects.  Graph
drawing  enables  visualization  of  these  relationships.  The  usefulness  of  the
representation is dependent on the aesthetics of the drawing. While there are no
strict  criteria  for  aesthetics,  it  is  generally  agreed  that  minimal  edge  crossing,
evenly distributed vertices, and depiction of graph symmetry is desirable. 

This  problem  has  been  studied  extensively  in  the  literature  [3]  and  many
approaches  have  been  proposed.  In  this  article  we  concentrate  on  drawing
undirected graphs with straight-line  edges using force-directed  methods [4, 5, 6,
7].  Force-directed  methods,  however,  are  one  of  many  classes  of  methods  pro-
posed for straight-edge drawing.  Other methods include the spectral  method [8]
and the high-dimensional embedding method [9]. 

A force-directed  algorithm models  the  graph drawing problem through a physi-
cal  system  of  bodies  with  forces  acting  between  them.  The  algorithm  finds  a
good placement of the bodies by minimizing the energy of the system. There are
many variations of force-directed algorithms. The algorithm of Fruchterman and
Reigold  [4],  which  is  based  on  the  work  of  [5,  6],  models  the  graph  drawing
problem  with  a  system  of  springs  between  neighboring  vertices  of  the  graph,
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pulling  them  together.  At  the  same  time,  repulsive  electrical  forces  that  exist
push all vertices away from each other. The algorithm of Kamada and Kawai [7],
on the other hand, associates springs between all vertices, with the ideal length of
a  spring  proportional  to  the  graph  distance  of  the  vertices.  In  a  force-directed
algorithm,  the energy of  the system is typically  minimized  iteratively by moving
the vertices  along the direction of the force.  This amount  may be large initially,
but reduces gradually based on a “cooling schedule.” 

There  are  two  limiting  factors  in  drawing  large  graphs  for  standard
force-directed algorithms. The first is that the physical model typically has many
local  minimums,  particularly  so  for  a  large  graph.  Starting  from  a  random
configuration,  the  system  is  likely  to  settle  in  a  local  minimum.  This  may  be
improved, to a limited extent, by using a slow cooling schedule at the expense of
more  iterations.  Nevertheless,  it  is  practically  impossible  to  use  the  standard
force-directed algorithms to find a good layout of very large graphs. 

The  second  limiting  factor  is  the  computational  complexity  of  the  standard
force-directed  algorithms.  In the algorithm of Fruchterman and Reigold [4], for
any  given  vertex,  repulsive  force  from  all  other  vertices  needs  to  be  calculated.
This makes the per iteration cost of the algorithm OH » V »2 L, with » V » the num-
ber of vertices in the graph. The algorithm of Kamada and Kawai [7] requires the
calculation of the graph distance among all vertices with the force based on that.
Thus  the  algorithm  not  only  has  a  computational  complexity  of  OH » V » » E »L,
with  » E »  the  number  of  edges  in  the  graph  but  also  a  memory  complexity  of
OH » V »2 L, although the latter can be circumvented at the cost of repeated calcula-
tions of the graph distances on the fly, instead of storing them in memory. 

To overcome  the first  limiting factor,  a multilevel  approach was proposed.  This
idea  has  been successfully  used  in many fields,  including  graph  partitioning  [10,
11,  12]  and  was  found  to  be  able  to  overcome  the  localized  nature  of  the
Kernighan–Lin  algorithm.  Fruchterman  and  Reigold  [4,  1148]  alluded  to  that
type of solution when, in the context of overcoming local minimums, they stated
“we suspect that if we apply a multi-grid technique that allows whole portions of
the  graph  to  be  moved,  it  might  be  of  some  help…”.  Harel  and  Koren  [13],
extending  the  earlier  work  of  Hadany  and  Harel  [14],  proposed  the  so-called
multiscale  approach.  In  that  approach,  a  sequence  of coarser  and coarser graphs
are formed by finding the k-centers and the distance matrix associated with them.
They used the Kamada and Kawai spring model [7], thus incurring high computa-
tional  complexity  for  distance  calculation  and  memory.  Although,  for  the  force
calculation  the  algorithm  has  a  computational  complexity  of  OH » V » logH » V »LL,
achieved  by  restricting  force  calculation  to  a  neighborhood,  thus  ignoring
long-range  force.  Gajer  et  al.  [15]  built  up  the  multilevel  of  graphs  by  using
maximal  independent  vertex  sets,  with  the  ith  level  consisting  of  a  maximal
independent  vertex  set  such  that  the  vertices  are  of  distance  ¥ 2i-1 + 1,
i = 1, 0, … apart.  They avoided the high computational  and memory complexity
by calculating  the  graph distances  on the  fly  and only  for  a restricted  neighbor-
hood, thus also ignoring the long-range force. Walshaw [2] proposed a multilevel
algorithm and demonstrated  that it was able to draw graphs as large as a quarter
of a million vertices in a few minutes. Based on the author’s earlier work in graph
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partitioning,  the  coarser  graphs  are  formed  by  finding  a  maximal  independent
edge set and collapsing these edges. The forces between vertices are based on the
Fruchterman  and Reigold  spring-electrical  model [4]. Long-range  force  is  again
ignored by restricting  the force calculation to a neighborhood with a radius  that
decreases  as  one  moves  from  coarser  to  finer  graphs  and  coincides  with  the
radius used in the original graph. 

Reducing  the  computational  cost  by  restricting  force  calculation  to  a  neighbor-
hood has been an often used practice,  dating at least  as  far back as  Fruchterman
and  Reigold  [4].  Such  a  practice,  however,  comes  at  a  cost.  Because  long-range
forces  are ignored,  there is  no force to evenly  distribute faraway vertices.  When
used  within  the multilevel  approach,  Walshaw [2]  argued  that  global  untangling
has  been  achieved  on coarser  graphs,  thus  for  the  final  large  graphs,  restricting
force  calculation  to  a  small  neighborhood  does  not  penalize  the  quality  of  the
placement. While this is to a large extent true, for some graphs we found that the
lack of long-range force did hurt at least one, if not more, of the drawings in [2]. 

It  is  possible  to  take  account  of  long-range  forces  in  an  efficient  way  in  the
spring-electrical  model.  In  this  model  the  attractive  force  (the  spring  force)  is
only  between  neighboring  vertices,  while  the  repulsive  force  is  global  and  is
proportional  to  the  inverse  of  the  (physical)  distance  between  vertices.  The
repulsive  force  calculation  resembles  the  n-body  problem  in  physics,  which  has
been well studied. One of the widely used techniques for calculating the repulsive
forces  in  OHn logHnLL  time  with  good  accuracy,  but  without  ignoring  long-range
force,  is  to  treat  groups  of  faraway  vertices  as  a  supernode  using  a  suitable  data
structure, as in the Barnes and Hut algorithm [1]. This idea was implemented for
graph drawing by both Tunkelang [16] and Quigley and Eades [17, 18]. Tunke-
lang combined the Barnes and Hut algorithm with a conjugate gradient method,
thus  per  iteration  computational  is  only  OH » V » logH » V »LL,  even  though  long-
range forces are approximated to the required accuracy.  However, the algorithm
is not suitable for large graphs because the conjugate gradient is a local optimiza-
tion  algorithm  and  the  number  of  conjugate  gradient  iterations  increases  as  the
size of the graph increases.  Quigley and Eades [17, 18] also used the Barnes and
Hut  algorithm  for  efficient  and  accurate  force  calculation.  In  addition,  they
employed  a  multilevel  scheme  that  they called  hierarchical  clustering.  However,
they  used  that  scheme  for  the  visual  abstraction  of  graphs,  rather  than  for  the
placement of vertices. Therefore, the algorithm was not suitable for large graphs. 

In this  article  we propose  an algorithm that  is  both efficient  and of high quality
for  large  graphs.  The  algorithm  is  included  with  Mathematica  5.1  and  later
versions  in  the  package  DiscreteMath‘GraphPlot.  We  combine  a  multilevel
approach, which effectively overcomes local minimums, with the Barnes and Hut
octree algorithm,  which approximates  short- and long-range  forces  satisfactorily
and efficiently.  In addition, we propose an adaptive cooling scheme for the basic
force-directed  algorithms  and  a  scheme  for  selecting  the  optimal  depth  of  the
octree/quadtree  in  the  Barnes  and  Hut  algorithm.  Our  numerical  results  show
that  the  algorithm  is  competitive  with  Walshaw’s  [2]  highly  efficient  graph
drawing algorithm, yet gives better results on some of the difficult problems. We
also  analyze  the  distortion  effect  of  the  standard  Fruchterman–Reigold
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spring-electrical model and propose a general repulsive force model to overcome
this side effect. 

In Section 2, we give definitions and notations. In Section 3, we present the basic
force-directed algorithms, as well as an adaptive cooling scheme. In Section 4, we
briefly  introduce  the  Barnes–Hut  force  calculation  algorithm.  In  Section 5,  we
describe the multilevel scheme used. In Section 6, we compare the efficiency and
drawings  of  our  algorithm  with  that  of  Walshaw  [2].  In  Section  7,  we conclude
by suggesting some future works. 

‡ 2. Definitions and Notations
We use G = 8V , E< to denote an undirected graph, with V  the set of vertices and
E the set of edges. We assume the graph is connected.  Disconnected graphs can
be drawn by laying out each of the components separately. 

If two vertices i and j form an edge, we denote that as i ¨ j. The coordinates of
node  i  are  denoted  as  xi ,  and  we  use  ˛ xi  -x j ˛  to  denote  the  2-norm  distance
between  vertices  i  and  j.  We  use  dHi, jL  to  denote  the  graph  distance  between
vertices i and j, and we use diamHGL to denote the diameter of the graph. 

The graph layout problem is one of finding a set of coordinates,  x = 8xi » i œ V <,
with xi  œ R2  or  xi  œ R3 ,  for  2D or  3D layout,  respectively,  such  that  when  the
graph G is drawn with vertices placed at these coordinates, the drawing is visually
appealing. 

‡ 3. Force-Directed Algorithms
In  this  section  we  present  the  basic  force-directed  algorithms  and  analyze  the
characteristics  of  the  layout  given  by  the  spring-electrical  model.  We  will  pro-
pose a general repulsive force model, as well as an adaptive step control scheme. 

· 3.1. Spring and Spring-Electrical Models
Force-directed  algorithms  model  the  graph  layout  problem  by  assigning  attrac-
tive  and  repulsive  forces  between  vertices  and  finding  the  optimal  layout  by
minimizing the energy of the system. 

The  model  of  Fruchterman  and  Reigold  [4],  which  we  refer  to  as  the
spring-electrical  model,  has  two forces.  The repulsive  force,  fr ,  exists  between  any
two vertices  i  and j  and is  inversely  proportional  to the distance  between  them.
The  attractive  force,  fa ,  on  the  other  hand,  exists  only  between  neighboring
vertices and is proportional to the square of the distance 

(1)
fr  Hi, jL = -C  K2 ê ˛ xi  -x j ˛,  i ∫ j,  i, j œ V

fa  Hi, jL = ˛ xi  -x j ˛2 êK ,  i ¨ j.
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The combined force on a vertex i is

(2)f  Hi, x, K , CL = „
i∫ j

-C K 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi  -x j ˛2
 Hx j  -xi L + ‚

i¨ j

˛ xi  -x j ˛
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

K
 Hx j  -xi L.

In these formulas, K  is a parameter known as the optimal distance [4], or natural
spring  length  [2].  The  parameter  C  regulates  the  relative  strength  of  the  repul-
sive  and  attractive  forces  and  was  introduced  in  [2].  It  is  easy  to  see  that  for  a
graph  of  two  vertices  linked  by  an  edge,  the  force  on  each  vertex  diminishes
when  the  distance  between  them  is  equal  to  K HCL1ê3 .  The  total  energy  of  the
system can be considered as 

Energyse Hx, K , CL = ‚
iœV

f 2 Hi, x, K , CL,
where x is the vector of coordinates, x = 8xi » i œ V <. 
From a mathematical  point  of view,  changing the parameters  K  and C  does  not
actually  change  the  minimal  energy  layout  of  the  graph  but  merely  scales  the
layout, as the following theorem shows. 

Theorem  1.  Let  x* = 8xi
* » i œ V <  minimizes  the  energy  of  the  spring-electrical

model  Energyse Hx, K , CL,  then  sx*  minimizes  Energyse Hx, K £ , C£ L,  where
s = HK £  êKL HC£  êCL1ê3 . Here K , C, K £  and C£  are all positive real numbers. 

Proof: This follows simply by the relationship 

f  Hi, x, K , CL = „
i∫ j

-C K 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi  -x j ˛2
 Hx j  -xi L + ‚

i¨ j

˛ xi  -x j ˛
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

K
 Hx j  -xi L

=
i
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 Hs x j - s xi L

+ ‚
i¨ j

˛ s xi - s x j ˛
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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 Hs x j - s xi L
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 f  Hi, s x, K £ , C£ L,
where s = HK £  êK L HC£  êCL1ê3 . Thus, 

Energyse Hx, K , CL =
i
kjjj

C
ÅÅÅÅÅÅÅÅÅÅ
C£

y
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4ê3
 
i
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K
ÅÅÅÅÅÅÅÅÅÅ
K £

y
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2

 Energyse Hs x, K £ , C£ L.
Even  though  the  parameters  K  and  C  do  not  have  any  bearing  on  the  optimal
layout  from a  mathematical  point  of  view,  from an algorithmic  point  of  view,  if
an  iterative  algorithm  (see  Algorithm 1)  is  applied  to minimize  the  energy  from
an  initial  layout,  choosing  a  suitable  K  or  C  to  reflect  the  range  of  the  initial
position will help the convergence to the optimal layout. Throughout this article,
unless otherwise specified, we fix C = 0.2 as in [2], but vary K  for this purpose. 
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One  intrinsic  feature  of  graph  drawings  by  the  spring-electrical  model  is  that
vertices in the periphery tend to be closer to each other than those in the center,
even for a uniform mesh. We call this the peripheral  effect. For example,  Figure 1
shows  a  mesh  of  100  vertices  laid  out  using  the  spring-electrical  model,  with
vertices  near  the  outside  boundary  clearly  closer  to  each  other  than  those  near
the center. 

Figure 1.  A 10ä10 regular mesh  laid out  using the spring-electrical  model. This  graph
and the others  in  this  article  were  drawn with  the  Mathematica  GraphPlot  command,
which is discussed in Section 6.

This  peripheral  effect  is  more  profound  for  graphs  with  large  diameter.  We
studied this effect for a line graph, with 100 vertices linked in a line. The vertices
are numbered 1 to 100, with vertex 50 and 51 in the middle of the line. We find
an  accurate  layout  under  the  spring-electrical  model  by  finding  the  root  of  a
system  of  equations  f Hi, x, K , CL = 0  (see  equation  (2))  using  Mathematica’s
FindRoot  function,  instead  of  the  usual  force-directed  iterative  algorithm,
because  the  latter  is  far  less  accurate.  We  set  the  parameters  K = 1  and  C = 1.
Theorem 1  shows  that  the  exact  values  of  these  two parameters  are  not  impor-
tant. 

Figure 2 shows the distribution of edge lengths. As can be seen, the edge lengths
of the 99 edges vary from 4.143 at the middle to 1.523 at the sides, with the ratio
of the longest length to the shortest 4.143 ê 1.523 = 2.72. 
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Figure  2.  Distribution  of  edge lengths  for  a line graph  of 100  vertices  and 99 edges,
laid out using the spring-electrical model.

The  reason  for  this  distortion  effect  at  the  periphery  is  the  strong  long-range
force  that  decays  slowly  as  the  distance  increases.  While  typically  this  strong
long-range  force  does  not  interfere  with  the  aesthetics  of  the  layout,  some
applications, such as tree graphs, tend to suffer more. For these classes of graphs,
the following general repulsive force model can be used. 

(3)fr  Hi, jL = -C  K1+ p ê ˛ xi  -x j ˛p ,  i ∫ j,  i, j œ V ,   p > 0.

The larger the parameter p, the weaker the long-range repulsive force. However,
too  large  a  value  of  p,  thus  too  weak  a  long-range  force,  could  cause  the  graph
that  should  be  spread  out  to  crease  instead.  We  found  that  p = 2  works  well.
Figure 3  shows  the  peripheral  effect  against  the  size  of  the  line  graph,  for  both
the  general  model  (4)  with  p = 2  and  p = 3,  and  the  Fruchterman  and  Reigold
force  model  (1),  which  corresponds  to  the  general  model  with  p = 1.  As  can  be
seen, the general model with p > 1 reduces the peripheral effect significantly. 
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3 Fruchterman and Reigold spring-electrical model
Alternative repulsive force model Hp=2L
Alternative repulsive force model Hp=3L

Figure  3.  A  plot  of  the  ratio  between  the  largest  and  smallest  edge  lengths  for  line
graphs of size 3 to 100 vertices.

In the force model of Kamada and Kawai [7], which we will refer to as the spring
model,  springs  are  attached  between  any  two  pairs  of  vertices,  with  the  ideal
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length of a spring proportional  to the graph distance between these two vertices.
Thus both the repulsive and attractive forces are expressed as 

(4)fr  Hi, jL = fa  Hi, jL = ˛ xi  -x j ˛ -d Hi, jL,  i ∫ j,  i, j œ V

and the spring energy is 

(5)Energys  HxL = ‚
i∫ j ,i, jœV

H ˛ xi  -x j ˛ -d Hi, jLL2 .

The  spring  model  does  not  suffer  from  the  peripheral  effect  of  the
spring-electrical  model.  It can, however,  suffer from its relatively  weak repulsive
forces  (see  Section 6.3).  Furthermore,  as  discussed  later,  in  the  spring-electrical
model,  the  long-range  force  between  all  vertices  can  be  well  approximated  by
grouping  vertices  together  using  the  octree/quadtree  technique.  This  is,  how-
ever, not possible in the spring model. 

· 3.2. An Adaptive Cooling Scheme
The energy of both the spring-electrical and the spring models can be minimized
iteratively  by moving  the vertices  along the direction of  forces  exerted on them.
The following force-directed  algorithm  iteratively minimizes  the system energy,
with  fa  and  fr  as  defined  in  (1)  or  (5).  The  algorithm  starts  with  a  random,  or
user-supplied, initial layout. 

Ë ForceDirectedAlgorithm(G, x, tol) 8 
– converged = FALSE; 
– step = initial step length; 
– Energy = Infinity 
– while (converged equals FALSE) 8 

* x0  = x; 
* Energy0 = Energy; Energy = 0; 
* for i œ V  8 

· f = 0;

· for ( j ¨ i) f : = f + fa Hi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» x j  -xi  »»  Hx j  -xi L; 
· for ( j ∫ i, j œ V ) f : = f + fr Hi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» x j  -xi  »»  Hx j  -xi L; 
· xi: = xi + step * H f ê ˛ f ˛L; 
· Energy := Energy + ˛ f ˛2 ; 

* < 
* step := update_steplength Hstep, Energy, Energy0 L;
* if ( » » x - x0  » » < K tol) converged = TRUE; 

– <
– return x; 

Ë < 
Algorithm 1. An iterative force-directed algorithm.
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In the algorithm, tol > 0 is a termination tolerance. The algorithm stops when a
change in the layout between subsequent iterations is less than K to l. 

As in [2], we update the layout of a vertex i  as soon as the force for this vertex is
calculated,  instead  of  waiting  until  forces  for  all  vertices  have  been  calculated.
This improves the convergence of the iterative procedure, much like the fact that
among  stationary  iterative  linear  system  solvers,  the  Gauss–Seidel  algorithm  is
often faster than the Jacobi algorithm. 

In  Algorithm  1,  it  is  necessary  to  update  the  step  length  step.  The  “cooling
schedule” used in most expositions (e.g., [19]) of force-directed algorithms allows
large  movements  (large  step  length)  at  the  beginning  of  the  iterations,  but  the
step  length  reduces  as  the  algorithm  progresses.  Walshaw  [2]  used  a  simple
scheme, 

(6)step := t step,

with  t = 0.9.  We found  this  to  be  adequate  in  the  refinement  phase  of  a  multi-
level  force-directed  algorithm.  However,  for  an  application  of  a  force-directed
algorithm from a random initial layout, an adaptive step length update scheme is
more  successful  in  escaping  from  local  minimums.  This  adaptive  scheme  is
motivated by the trust region algorithm for optimization [20], where step length
can  increase  as  well  as  reduce,  depending  on the  progress  made.  Here  we mea-
sure progress by the decrease in system energy. 

Ë function update_steplength Hstep, Energy, Energy0 L 
Ë if (Energy < Energy0 ) 8 

– progress = progress +1;
– if (progress > = 5) 8 

* progress = 0;
* step := step ê t; 

– < 
Ë < else 8 

– progress = 0; 
– step := t step; 

Ë < 
In the preceding algorithm, progress is a  static variable  that  is initialized to zero
and  parameter  t = 0.9.  The idea  of  this  algorithm is  that  the  step length  is  kept
unchanged  if  energy  is  being  reduced  and  increased  to  step ê t  if  the  energy  is
reduced more than five times in a row. We only reduce the step length if energy
increases. 

Compared with the simple step length update scheme (6), the adaptive scheme is
much  better  in  escaping  from  local  minimums.  Figure 4  shows  the  result  of
applying  70  iterations  of  Algorithm 1  to  the  jagmesh1  graph  with  936  vertices
from  MatrixMarket  (math.nist.gov/MatrixMarket).  The  adaptive  scheme  is
clearly  much  better  and  is  able  to  untangle  the  graph  a  lot  further  than  the
simple scheme. 
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Figure  4.  Comparing  adaptive  and  simple  step  length  update  schemes  on  jagmesh1
after  70  iterations:  simple  scheme  (left);  adaptive  scheme  (middle);  what  the  layout
should look like (right).

‡ 4. Barnes–Hut Force Calculation
Each  iteration  of  Algorithm 1  involves  two  loops.  The  outer  loop  iterates  over
each  i œ V .  Of  the  two  inner  loops  that  calculate  the  attractive  and  repulsive
forces, the latter is the most expensive and loops over each j ∫ i, j œ V . Thus the
overall complexity is OH » V »2 L. 
The repulsive  force calculation  resembles  the n-body problem in physics,  which
is  well  studied.  One  of  the  widely  used  techniques  to  calculate  the  repulsive
forces  in  OHn log nL  time  with  good  accuracy,  but  without  ignoring  long-range
forces,  is  to  treat  groups  of  faraway vertices  as  supernodes,  using  a  suitable  data
structure  [1].  This  idea  was  adopted  by  Tunkelang  [16]  and  Quigley  [18].  Both
used  an  octree  (3D)  or  quadtree  (2D)  data  structure.  In  principal,  other  space
decomposition  methods  can  also  be  used.  For  example,  Pulo  [21]  investigated
recursive Voronoi diagrams. 

For  simplicity,  hereafter  we  use  the  term  octree  exclusively,  which  should  be
understood  as  quadtree  in the  context  of  2D layout.  An  octree  data  structure  is
constructed  by  first  forming  a  square  (or  cube  in  3D)  that  encloses  all  vertices.
This  is  the  level  0  square.  This  square  is  subdivided  into  four  squares  (or  eight
cubes)  if  it  contains  more  than  one  vertex  and  forms  the  level  1  squares.  This
process  is  repeated  until  level  L,  where  each  square  contains  no more  than  one
vertex. Figure 5 (left) shows an octree on the jagmesh1 graph. 

The octree  forms  a  recursive  grouping of vertices  and can be used to  efficiently
approximate the repulsive force in the spring-electrical model. The idea is that in
calculating  the  repulsive  force  on  a  vertex  i,  if  a  cluster  of  vertices,  S,  lies  in  a
square  that  is  “far”  from i,  the  whole  group  can be treated  as  a  supernode.  The
supernode  is  assumed  to  situate  at  the  center  of  gravity  of  the  cluster,
xS = I⁄ jœS x j M ë » S ». The repulsive force on vertex i from this supernode is 

fr Hi, SL = - » S » C  K2 ê ˛ xi  -xS ˛ .
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However,  we need to define what “far” means. Following [16, 18], we define the
supernode S  to be faraway from vertex i,  if the width of the square that contains
the  cluster  is  small,  compared  with  the  distance  between  the  cluster  and  the
vertex i, 

(7)
dS

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi  -xS ˛ § q.

Here dS  is the width of the square that the cluster lies in, and q ¥ 0 is a parame-
ter.  The  smaller  the  value  of  q,  the  more  accurate  the  approximation  to  the
repulsive  force  and  the  more  computationally  expensive  it  is.  We  found  that
q = 1.2 is a good compromise and will use this value throughout the article. This
inequality (7) is called the Barnes–Hut opening criterion [1]. 

The octree data structure allows efficient identification of all the supernodes that
satisfy (7). The process starts from the level 0 square. Each square is checked and
recursively  opened  until  the  inequality  (7)  is  satisfied.  Figure 5  (right)  shows  all
the  supernodes  (the  squares)  and  the  vertices  these  supernodes  consist  of,  with
reference to vertex i  located at the top-middle part  of the graph. In this  case we
have 32 supernodes. 

Figure 5. An illustration of the octree data structure: the overall octree (left); supernodes
with reference to a vertex at the top-middle part of the graph, with q = 1 (right).

Under  reasonable  assumption  [1,  22]  of  the  distribution  of  vertices,  it  can  be
proved  that  building  the  octree  takes  a  time  complexity  of  OH » V » logH » V »LL.
Finding all the supernodes with reference to a vertex i can also be done in a time
complexity  OHlogH » V »LL.  Overall,  by  using  an  octree  structure  to  approximate
the  repulsive  force,  the  complexity  for  each  iteration  of  Algorithm 1  under  the
spring-electrical model is reduced from OH » V »2 L to OH » V » logH » V »LL. 
We  only  build  the  octree  structure  once  every  outer  loop.  Note  that  the  posi-
tions of the vertices are actually updated continuously within the loop; therefore,
as  they  move  about,  some  vertices  may  not  be  in  the  squares  where  they  are
supposed to lie.  However,  we found that  this  does  not cause  a problem in prac-
tice. Consequently, we observed that construction of the tree structure only takes
a fraction of the total time, and the majority of the time in Algorithm 1 is  spent
in finding the supernodes, as well as in the force calculations. 
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For very  large  graphs,  it  may happen that  some  of the vertices  are  very close  to
each  other.  Therefore,  if  we  keep  subdividing  the  squares  without  a  limit,  we
may end up with a tree structure with one or more very deep branches. This will
make  the  algorithm  less  efficient.  In  particular,  a  disproportionately  large
amount of time will be spent in searching through the tree to find supernodes. It
is therefore necessary to limit the number of levels in the octree. We denote this
limit  max_tree _level.  Even  if  a  square  at  level  max_tree _level  still  has  multiple
vertices,  it  is  not  subdivided  further.  We  call  such  a  square  a  dense  leaf  (of  the
octree). 

However,  it  is  difficult  to decide  a priori  how many levels  should  be allowed.  If
we  set  the  max_tree _level  too  small,  we  will  have  many  vertices  in  the  same
square  as  at  the  last  level.  This  increases  the  average  number  of  supernodes,
because  when  identifying  supernodes  needed  to  approximate  the repulsive  force
on a vertex i, if a dense leaf happens to be close to i, each vertex on the dense leaf
has to be treated individually as a supernode since no subgrouping is available. In
the  extreme  case  when  max_tree _level = 0,  every  vertex  belongs  to  one  dense
leaf, and there are » V » -1 supernodes that correspond to every vertex i. On the
other  hand,  although  a  large  value  for  max_tree _level  reduces  the  average
number  of  supernodes,  it  increases  the  number  of  squares  that  need  to  be  tra-
versed due to the deep branches. 

We  use  an  adaptive  scheme  to  automatically  find  the  optimal  max_tree _level.
This  is  essentially  a  one-dimensional  optimization  problem  with  the  variable
being  max_tree _level  and  the  objective  function  the  CPU  time  of  each  outer
iteration  of  Algorithm 1,  which  consists  largely  of  the  time  to  transverse  the
octree  and  the  time  in  the  repulsive  force  calculation.  So  one  way  to  find  the
optimal  max_tree _level  is  to  measure  the  CPU  time  of  the  outer  loop  and
increase/decrease max_tree _level by one each time until the bottom of a valley is
located. However, CPU time measurement can fluctuate and such a scheme may
cause  a  different  max_tree _level  from  run to  run.  This  in  turn gives  a  different
layout between runs, which is undesirable. Instead, we use 

(8)h Hmax_tree _levelL = counts + a ns

as the  objective  function,  where  counts is  the total  number  of squares traversed,
ns is the total number of supernodes found during one outer iteration, and a is a
parameter  chosen so that  (8)  gives the best  estimate of the CPU time.  Through
numerical experiments, we found that a in the range of 1.5 to 2.0 gives very good
correlation  to  CPU  time  measurement.  Thus  we  used  a = 1.7.  The  adaptive
scheme  starts  with  max_tree _level = 8.  After  one  outer  iteration,  we  set
max_tree _level = 9.  Then,  depending  on  whether  the  estimated  CPU  time
increases  or  decreases,  we  try  a  smaller  or  larger  depth.  If  we  ever  hit  a  depth
already  tried,  we  end  the  procedure  and  use  the  depth  corresponding  to  the
smallest  estimated CPU time.  Typically,  we found that the procedure converges
within  3-4  outer  iterations,  and  the  max_tree _level  located  is  very  near  the
optimal  value.  For  smaller  graphs  of  a  few  thousand  vertices,  typically
max_tree _level  settles  down  at  around  8,  while  for  very  large  graphs,
max_tree _level can go as high as 11. 
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‡ 5. The Multilevel Algorithm
While  approximation  of  long-range  force  using  octree  data  structure  greatly
reduces  the  complexity  of  Algorithm 1,  it  does  not  change  the  fact  that  the
algorithm repositions one vertex at a time, instead of laying out a whole region as
a  unit.  Large  graphs  typically  have  many  local  minimal  energy  configurations,
and  such  an  algorithm  is  likely  to  settle  to  one  of  the  local  minimums.  The
adaptive step length control scheme we introduce goes some way toward a better
layout, but as Figure 4 shows, is still insufficient toward a global minimum. 

The  multilevel  approach  has  been  used  in  many  large-scale  combinatorial
optimization  problems,  such  as  graph  partitioning  [11,  12,  23],  matrix  ordering
[24],  the  traveling  salesman  problem  [25],  and  has  proven  to  be  a  very  useful
meta-heuristic tool [26]. The multilevel approach was also used in graph drawing
[2,  13,  14].  In  particular,  Walshaw  [2]  was  able  to  lay  out  graphs  with  up  to
225,000 vertices in a few minutes, and largely of good quality. 

The multilevel  approach  has  three  distinctive  phases:  coarsening,  coarsest  graph
layout,  and  prolongation  and  refinement.  In  the  coarsening  phase,  a  series  of
coarser  and  coarser  graphs,  G0  , G1 , … , Gl ,  are  generated.  The  aim is  for  each
coarser graph Gk+1  to encapsulate  the information needed to lay out its “parent”
Gk  while  containing  fewer  vertices  and  edges.  The  coarsening  continues  until  a
graph with only a small number of vertices is reached. The optimal layout for the
coarsest  graph  can  be  found  cheaply.  The  layouts  on  the  coarser  graphs  are
recursively  prolonged  to  the  finer  graphs,  with  further  refinement  at  each level.
Hereafter, we use a superscript to denote the level. For example, xk  is the coordi-
nates of vertices in the level k graph Gk , k = 0, … , l. 

· 5.1. Graph Coarsening
There are a number of ways to coarsen an undirected graph. One frequently used
method is based on edge collapsing (EC) [11, 12, 23], in which pairs of adjacent
vertices  are  selected and each pair  is  coalesced  into one  new vertex.  Each vertex
of  the  resulting  coarser  graph  has  an  associated  weight,  equal  to  the  number  of
original  vertices  it  represents.  Each  edge  of  the  coarser  graph  also  has  a  weight
associated with it. Initially, all edge weights are set to 1. During coarsening, edge
weights  are  unchanged  unless  both  merged  vertices  are  adjacent  to  the  same
neighbor.  In  this  case,  the  new  edge  is  given  a  weight  equal  to  the  sum  of  the
weights  of  the  edges  it  replaces.  The  edges  to  be  collapsed  are  usually  selected
using  maximal  matching.  This  is  a  maximal  set  of  edges,  no  two  of  which  are
incident  to  the  same  vertex.  For  undirected  graph  partitioning,  heavy-edge
matching has been found to work well. Here, the idea is to preferentially collapse
heavier  edges.  When  looking  through  a  neighbor  list  for  an  unmatched  vertex,
an  edge  with  the  largest  weight  is  selected.  In  the  context  of  graph  drawing,
Walshaw  [2]  chose  to  keep  vertex  weights  in  the  coarser  graphs  as  uniform  as
possible  by  matching  a  vertex  with  a  neighbor  with  the  smallest  vertex  weight.
We found that both heavy-edge matching and matching with a vertex of smallest
weight  give  graph  layouts  of  similar  quality  and  used  the  former  in  this  article.
Figure 6 illustrates a graph (left) and the result (middle) of coarsening using EC. 

Efficient, High-Quality Force-Directed Graph Drawing 49

The Mathematica  Journal 10:1 © 2006 Wolfram Media, Inc.



Other  coarsening  methods  have been proposed.  In  [27],  a  maximal  independent
vertex  set (MIVS)  of  a  graph is  chosen as  the vertices  for the  coarser  graph.  An
independent set of vertices is a subset of the vertices such that no two vertices in
the subset are connected by an edge in the graph. An independent set is maximal
if the addition of an extra vertex always destroys the independence.  Edges of the
coarser  graph  are  formed  by  linking  two  vertices  in  MIVS  by  an  edge  if  their
distance  apart  is  no  greater  than  3.  Figure 6  illustrates  a  graph  (left)  and  the
result (right) of coarsening using MIVS. 

Figure 6.  An illustration of graph coarsening:  original  graph with  788 vertices (left); a
coarser  graph  with  403  vertices  resulted  from EC  (center);  a  coarser  graph  with  332
vertices resulted from MIVS (right).

We  have  implemented  both  EC  and  MIVS  coarsening  schemes  for  our  multi-
level graph drawing algorithm. Notice that with EC, the coarse graph always has
more  than  50%  of  the  vertices  of  the  original  graph.  For  graphs  with  a  high
average degree,  it  may happen that  the number  of  vertices  in the coarser graph,
Gi+1 , may be very close to the number of vertices in the original graph, Gi . This
can significantly  increase  the complexity  of the multilevel  algorithm.  Therefore,
we will stop coarsening if there are only two vertices in the graph or 

(9)
» V i+1 »

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» V i » > r.

We used r = 0.75. Here V i  is the vertices in Gi . 

On the other hand, for a connected graph, the MIVS coarsening usually, though
not  necessarily,  results  in  a  coarser  graph  with  less  than  50% of  the  number  of
vertices  of  the  original  graph.  In  our  experience,  for  graph  layout,  EC tends  to
give  slightly  better  results  than MIVS,  probably  because  it  coarsens  less  aggres-
sively.  However,  MIVS  is  usually  faster,  due  to  the  lower  complexity.  To  over-
come  the  complexity  issue  of  EC,  we  propose  a  third  scheme,  HYBRID.  This
scheme uses EC whenever possible, however, if the threshold (9) is breached, we
use MIVS coarsening instead. 
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· 5.2. Initial Layout on the Coarsest Graph
On the coarsest level, we lay out the graph using Algorithm 1 combined with the
adaptive  step  length  control  scheme.  For  MIVS  and  HYBRID  coarsening
schemes,  the  coarsest  graph  has  only  two  vertices,  thus  a  random  placement  of
the two vertices would be sufficient. 

· 5.3. The Refinement Step
The layouts  on the coarser graphs are recursively prolonged  to the finer  graphs,
with further refinement at each level. 

If  graph  Gi+1 = 8V i+1  , Ei+1 <  was  derived  using  EC  from  Gi = 8V i  , Ei <,  the
position  of  a  vertex  u œ V i+1  is  given  to  the  two vertices  v, w œ V i  that  collapse
into  u.  If  Gi+1  was  derived  using  MIVS  from  Gi ,  then  a  vertex  v œ V i  either
inherits  the position if it is in the MIVS, or v  must have one or more neighbors
in MIVS, in which case the position  of v  is  the average of the positions of these
neighbors. 

Once the prolongation is carried out to give an initial layout for Gi , this layout is
refined using Algorithm 1. As in [2], if in the initial layout two vertices happen to
be  at  the  same position,  as  could  be  the  case  with  EC-based  coarsening,  a  ran-
dom perturbation  is  done to  separate  them. Because  the initial  layout  is  derived
from  the  layout  of  a  coarser  graph,  this  layout  is  typically  already  well  placed
globally and what is  required is just  some local adjustment. Therefore,  we found
that it is preferable to use a conservative step length update scheme. The simple
scheme (6) works well. 

Although the initial layout in graph Gi  prolongated from the coarser graph Gi+1

is  usually  globally  well  positioned,  a  naive  application  of  Algorithm 1  would
cause large movement of vertices, thus potentially destroying the useful informa-
tion  inherited.  For  example,  in  the  context  of  the  spring  model,  the  physical
distance  between  two  vertices  u  and  v  in  the  initial  layout  in  Gi  is  roughly  the
same as the graph distance of the corresponding vertices in Gi+1 , that is 

˛ xu
i - xv

i ˛ º dGi+1  Hu£  , v£ L,
where u£  and v£  are two vertices  in the coarser graph Gi+1  that  corresponds to u
and v.  However,  to minimize  the energy  on level i,  we want  ˛ xu  -xv ˛ to be  as
close to the graph distance of them in Gi , that is, we want 

˛ xu
i - xv

i ˛ º dGi  Hu, vL.
Typically dGi+1 Hu£  , v£ L  is  much smaller  than dGi Hu, vL.  If the initial  layout  is  used
as  is,  then  to  achieve  the  minimal  energy,  the  graph  has  to  be  expanded  by  the
ratio  between  these  two  distances  through  a  serious  of  large  moves,  which  is
inefficient and could lose some information in the initial good layout. 
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Therefore,  for  a  multilevel  algorithm  based  on  the  spring  model,  we  scale  the
initial  coordinates  by  the  ratio  of  the  pseudo-diameters  between  the  two  subse-
quent levels of graphs, 

(10)g = diam HGi L ê diam HGi+1 L.
For  the spring-electrical  model,  Walshaw [2]  suggested  keeping  the coordinates
unchanged but reducing the natural spring length K i  to 

Ki = K i+1  ê g,

with  g = 
è!!!!!!!!!7 ê 4 .  Walshaw  derived  this  value  based  on  examining  a  graph  with

four  vertices.  We  use  instead  (10)  and  found  it  to  be  equally  effective.  On  the
coarsest  level,  we  set  K l  to  be  the  average  edge  length  of  the  initial  random
layout, as in [2]. 

To  avoid  the  OH » V »2 L  complexity  of  the  repulsive  force  calculation  in  the
spring-electrical  model,  Walshaw  [2],  following  Fruchterman  and  Reigold  [4],
cut  off  the  contributions  from  faraway  vertices.  Only  repulsive  forces  from
vertices within a certain radius were considered. Specifically, on the ith level, for
vertex v,  repulsive forces from vertex u were ignored when ˛ xu

i - xv
i ˛ > Ri .  If a

small  radius  Ri  is  chosen,  then  repulsive  force  over  even  a  short  distance  is
ignored.  This  can  cause  faraway  regions  to  collapse  into  each  other  due  to  the
lack of force to spread them out. On the other hand, a larger radius Ri  is expen-
sive.  In  the  extreme,  Ri  = ¶  gives  us  the  OH » V i »2 L  complexity.  Walshaw  [2]
proposed the radius Ri  

Ri = 2 Hi + 1L Ki .

Notice  that  the  radius  is  larger,  relative  to  the  natural  spring  length,  on  the
coarser  graphs,  for  which  a  large  Ri  value  would  not  be  too  costly  due  to  the
smaller  sizes  of  the  graphs.  The effect  of  this  cutoff,  which  would  otherwise  be
more  profound,  was  largely  dampened  because  of  the  multilevel  approach.
Overall, the power of the multilevel approach means that the good quality global
layout achieved on coarser graphs was inherited by the finer  graphs, and a small
radius  on the finest  graphs usually  worked well.  Nevertheless,  we found that for
some  graphs,  particularly  those  with  a  hollow  interior,  such  as  the  graph
finan512  in  Section 6,  the  adverse  effect  of  ignoring  long-range  repulsive  force
was  obvious.  With  our  use  of  octree  data  structure,  we no longer  need to  use a
cutoff  radius  for  the  spring-electrical  model.  Nevertheless  we  set  a  cutoff
radius of 

(11)Ri = r Hi + 1L K i ,

and by default we set r = ¶, which is equivalent to not using a cutoff radius at all.
This, however, also allows us to have a finite r  value to experiment with. For the
spring  model,  to  avoid  calculation  of  the  all-to-all  distance  matrix  needed  to
compute the force (5), we used a similar strategy, by only calculating the distance
of two vertices u and v and their attractive/repulsive forces, if 

(12)d Hu, vL § r Hi + 1L,
with a default r value of 4. 
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· 5.4. The Multilevel Algorithm
We present  the  overall  multilevel  algorithm  in  the  following.  In  the  algorithm,
ni = » V i » is the number of vertices in the ith level graph Gi . xi  is the coordinate
vector for the vertices in V i . We represent Gi  by a symmetric matrix Gi , with the
entries  of the  matrix  the edge weights.  The  prolongation  operator  from Gi+1  to
Gi  is  also  represented  by  a  matrix  Pi ,  of  dimension  ni  äni+1 .  For  details  on the
implementation  of  the  multilevel  process,  and  some  examples,  see  [24].  The
starting point is the original graph, G0 = G. 

function MultilevelLayout HGi , tolL
Ë Coarsest graph layout 

– if (ni+1 < MinSize or ni+1  ê ni > r) 8 
* xi: = random initial layout 
* xi = ForceDirectedAlgorithmHGi  , xi , tolL
* return xi  

– < 
Ë The coarsening phase: 

– set up the ni  ä ni+1  prolongation matrix Pi  

– Gi+1 = Pi T
 Gi Pi  

– xi+1 = MultilevelLayoutHGi+1 , tolL
Ë The prolongation and refinement phase: 

– prolongate to get initial layout: xi = Pi  xi+1

– refinement: xi = ForceDirectAlgorithmHGi  , xi , tolL
– return xi  

Algorithm 2. A multilevel force-directed algorithm.

In Algorithm 2, coarsening will stop if the graph is too small,  ni+1 < MinSize, or
there  is  not  enough  coarsening,  ni+1  ê ni  > r.  We  used  MinSize = 2  and
r = 0.75. 

‡ 6. Numerical Results
In this section we demonstrate  the drawings using our algorithms on some large
examples  and  also  compare  our  algorithms  with  those  of  Walshaw  [2],  both  in
terms of efficiency and quality of layout. 

The  algorithms  are  implemented  in  Mathematica  5.1,  under  the  GraphPlot
package. To load the package, evaluate 

�� DiscreteMath‘GraphPlot‘;
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This  package  has  many  graph  theory  functions.  Among  them,  GraphPlot  and
GraphPlot3D draw graphs in 2D and 3D, respectively. Details of the package can
be found in the Mathematica Help Browser. 

The  details  for  the  algorithms  we  will  demonstrate  and  the  names  they  are
denoted  by  follow.  We  also  give  the  Mathematica  command  corresponding  to
each of the algorithms, where we use gr to represent the graph. 

MSE(r ) (Multilevel Spring-Electrical Model)
Multilevel  Algorithm 2  with HYBRID coarsening scheme,  octree data  structure,
and  repulsive/attractive  force  given  by  (1).  The  cutoff  radius  for  the  repulsive
force  calculation  is  (11),  with  r = ¶  by  default.  The  Mathematica  command  for
MSE(¶) is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01}] 

The Mathematica command for MSE(r) (r < ¶) is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01, 
InferentialDistance�r}] 

MSE(r , p ) (Multilevel Spring-Electrical Model with General 
Repulsive Force)
Multilevel  Algorithm 2  with HYBRID coarsening scheme,  octree data  structure,
and  repulsive/attractive  force  given  by  (1).  The  cutoff  radius  for  the  repulsive
force  calculation  is  (11),  with  r = ¶  by  default.  The  difference  from  MSE(r)  is
that the general repulsive force model (4) is used with parameter p. MSE(r) is the
same as MSE(r, 1). The Mathematica command for MSE(¶, 1) is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01}] 

The Mathematica command for MSE(r, 1) (r < ¶) is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01, 
InferentialDistance�r}] 

The Mathematica command for MSE(r, p) (r < ¶, p ∫ 1) is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01, 
InferentialDistance�r, RepulsiveForcePower�-p}] 

MS(r ) (Multilevel Spring Model)
Multilevel  Algorithm 2  with HYBRID coarsening scheme,  octree data  structure,
and repulsive/attractive  force given by (5). The cutoff radius for the distance and
force  calculation  is  (12),  with  r = 4  by  default.  The  Mathematica  command  for
MS(¶) is 

GraphPlot[gr, Method�{SpringModel, Tolerance�0.01}] 

The Mathematica command for MS(r) (r < ¶) is 

GraphPlot[gr, Method�{SpringModel, Tolerance�0.01, InferentialDistance�
r}] 
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SE (Spring-Electrical Model)
Algorithm 1 with octree data structure and repulsive/attractive force given by (1).
The Mathematica command for SE is 

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01, 
RecursionMethod�None}] 

MLFDP
The multilevel force-directed placement algorithm (MLFDP) from [2].

For all the preceding algorithms, we used a tolerance of tol = 0.01 to be compara-
ble  with  Walshaw  [2].  All  our  results  are  from  a  3.0  GHz  Pentium 4  machine
with 2 GB of memory and a 512 KB cache under a Linux operating system. Our
code is written in C and compiled with gcc using compilation flag “gcc -O2”. 

· 6.1. Comparison with Walshaw
In this section we compare our algorithm with that of Walshaw [2]. 

Table 1 lists a  set of nine test problems  from [2]. Some of these problems origi-
nate  from  engineering  applications  for  which  there  is  a  known  layout.  Table 2
gives  the  CPU time  for  MSE(2)  and  MSE(¶),  as  well  as  the  CPU time for  the
multilevel  force-directed  placement  algorithm  (MLFDP)  from  [2].  To  see  the
extra  cost  of  the  multilevel  approach,  we  also  include  the  CPU  time  for  the
single  level  spring-electrical  model,  SE, in the  last  column of  the table.  The  set
of nine problems were chosen to be the same as those in Table 3 of [2]. We draw
all  the  graphs  in 2D and  use  these  layouts  for  all  the  subsequent  figures.  How-
ever to be able to compare them with [2], we also laid out the last four graphs in
3D,  even  though  sierpinski10  is  really  a  2D  graph  and,  as  Figure 12  shows,  we
can layout in 2D just fine. 

Notice that Walshaw’s  CPU results were for a 1 GHz machine, 1/3 of the clock
speed  of  our  machine.  However,  based  on  our  experience  of  clock  speed  and
actual  performance,  we would expect  the performance  of our machine to be less
than three times of Walshaw’s. 

Walshaw’s  MLFDP  algorithm  should  be  somewhat  similar  to  our  MSE(2),
because  both  employ  a  similar  cutoff  radius.  There  are,  however,  some  differ-
ences.  MSE(2)  uses the octree  data structure  and searches through the structure
to  decide  if  a  cluster  of  vertices  can  form  a  supernode  or  should  be  excluded
because  it  is  outside  the cutoff  radius.  So we have two approximations.  In terms
of CPU time, forming supernodes reduces the number of repulsive force calcula-
tions, but searching through the octree data structure is more expensive than the
regular  mesh-like  data  structures  used  by  Walshaw  to  implement  the  cutoff
radius.  Therefore,  overall,  we  expect  the complexity  of  MLFDP and MSE(2) to
be  comparable.  This  is  confirmed  in  Table 2.  MLFDP  and  MSE(2)  indeed  do
have  quite  comparable  CPU time  in general,  although MSE(2)  is  notably  faster
on  finan512,  while  MLFDP  is  notably  faster  on  dime20.  MSE(¶),  which  does
not  ignore  long-range  force,  is  only  on  average  21%  more  expensive  than
MSE(2). 
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Comparing multilevel  algorithm MSE(¶) with its single  level counterpart  SE, it
is seen that MSE(¶)  is no more than twice as  expensive,  in fact for most graphs
the difference is small. It is surprising that for sierpinski10, SE is more expensive
than  MSE(¶)  for  both  the  2D  and  3D  layouts!  A  careful  examination  of  the
innermost  loops  of  the  force  calculations  and  octree  code  reveals  that  MSE(¶)
takes between  two to three times as many operations as SE. The abnormality  in
CPU time is  due to poor  cache performance of the octree code in SE. SE starts
from  a  random  layout  and  never  quite  gets  to  a  good  layout  for  large  graphs.
When looping over  vertices  in the natural  order  to  find their  supernodes  in the
octree  code,  the  locations  of  the  vertices  are  unpredictable.  The  multilevel
algorithm MSE(¶),  on  the  other  hand,  always  starts  from  a  good  initial  layout.
For most of the graphs in Table 1, the natural vertex ordering is such that if two
vertices  are  close  in  their  indices,  they  also  tend  to  be  close  in  their  physical
locations  in  the  original  layout.  Thus  in  the  octree  code,  roughly  the  same
squares  tend  to  be  examined  again  and  again  when  finding  supernodes  for
consecutive  vertices.  This  means that cache performance  is very good for multi-
level  algorithm  MSE(¶),  but  very  poor  for  single  level  algorithm  SE.  This
analysis  is  confirmed  when  we  randomly  shuffle  the  vertices.  With  such  a  ran-
dom  ordering,  CPU  timings  for  SE  stay  roughly  the  same,  while  the  CPU
timings for MSE(¶) increase about twice. 

The  preceding  analysis  may  suggest  that  the  multilevel  algorithm  is  susceptible
to poor initial vertex indexing. However, this is not true. First, large graphs tend
to have good natural  ordering. Second, poor ordering can be easily  remedied by
preordering  the  vertices  using  a  suitable  ordering  algorithm  that  is  inexpensive.
For  example,  we  used  the  METIS  [10]  nested  dissection  algorithm  to  order
previously  randomly  shuffled  graphs,  using  the  adjacency  matrix  of  the  graphs,
and then applied the multilevel algorithm to the resulting graphs. We found that
the CPU timings of MSE(¶) on these preordered graphs are very comparable to
those  in  Table 2.  In  fact  for  dime20,  the  CPU  time  is  reduced  from  290.6  to
252.3  with  nested  dissection  preordering!  Nested  dissection  preordering,  how-
ever,  has  no  effect  on  the  cache  performance  of  SE,  due  to  its  poor  initial  and
subsequent layouts.  It is  possible  to improve SE by ordering the vertices  using a
nested  dissection based  on the  physical  locations  of  the  vertices,  but  since  SE is
not  a  good  graph  drawing  algorithm  anyway,  we  will  not  pursue  this  further
here. 
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Graph » V » » E » Avg. Degree Diameter Graph Type

c-fat500-10 500 46627 186.5 4 Random clique test

4970 4970 7400 3. 106 2 D dual

4 elt 15606 45878 5.9 102 2 D nodal
finan512 74752 261120 7. 87 Linear programming

dime20 224843 336024 3. 1179 2 D nodal
data 2851 15093 10.6 79 3 D nodal

add32 4960 9462 3.8 28 32-bit  adder

sierpinski10 88575 177147 4. 1024 2 D fractal
mesh100 103081 200976 3.9 203 3 D dual

Table 1. Description of test problems.

Size CPU

Graph » V » » E » MLFDP* MSE H2L MSE H¶L MS H4L SE

2 D

c-fat500-10 500 46627 5.6 0.37 0.37 0.82 0.2
4970 4970 7400 6.4 2.5 2.7 10.9 1.8
4 elt 15606 45878 24.3 9.4 11.7 102.9 9.2

finan512 74752 261120 363.8 56.6 59.8 3714.9 60.

dime20 224843 336024 264.3 195.5 290.6 1984.6 277.7
data 2851 15093 - 1.1 1.2 17.8 1.3

add32 4960 9462 - 3.1 3.3 44.4 2.6
sierpinski10 88575 177147 - 44.1 65.1 146.8 75.6

mesh100 103081 200976 - 91.6 109.4 5807.8 89.5

3 D

data 2851 15093 6.6 2.3 2.4 33. 1.6
add32 4960 9462 12.5 6.2 7.1 230.7 3.2

sierpinski10 88575 177147 136.7 64.7 100.9 317.2 114.9
mesh100 103081 200976 431.1 158. 204. 6431.3 138.2

Table 2. CPU time (in seconds) for some force-directed algorithms. *: MLFDP data from
[2], was for a 1 GHz Pentium III. All other times are for a 3 GHz Pentium 4. –: data not
available.

As we would expect,  MS(4)  is  very  slow. This  is  because the spring  model seeks
to lay out vertices to have a physical distance equal to the graph distance. It is not
obvious  how  to  extend  the  octree  methodology  to  the  spring  model.  We  can
certainly  work  out  the  average  graph distance  of  a  cluster  of  vertices  to  another
vertex,  but  to  do  so  we  still  have  to  find  the  individual  graph  distances  first.
Therefore,  no  saving  is  achieved.  A  cutoff  radius  does  allow  us  to  reduce  the
OH » V »2 L complexity. However, we found that for good drawing quality, we have
to  use  a  relatively  large  radius.  This  is  probably  because,  unlike  the
spring-electrical  model,  the  spring model  does  not have  a  strong repulsive force
and  with  the  cutoff  radius  the  repulsive  force  is  weakened  further.  At  a  cutoff
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radius  of  4, a  large  number  of vertices  are  included, making the algorithm quite
costly. 

In  terms  of  drawing  quality,  MSE(2)  performs  comparably  to  MLFDP,  with
MSE(¶)  the  best.  Both  MSE(2)  and  MLFDP  ignore  long-range  forces.  How-
ever,  the  multilevel  process  enables  them  to  inherit  global  information  from
coarser graphs, thus in most cases both still give good quality drawings. Neverthe-
less, for some problems, the adverse effect can be seen.

· 6.2. Comparison of Drawings
In  the  following,  we  give  drawings  of  the  graphs  in  Table 1.  Our  drawings  of
c-fat500-10  are the same as in [2] and are thus not included here.  All  our draw-
ings are done in 2D, as we found that 2D drawings give us good representation. 

Figure 7  (left)  gives  drawings  of  4970  using  MSE(¶).  In  this  case  the  mesh
around  three corners  is  cluttered compared  with  the drawing in [2]. We believe
this  is  due  to  the  peripheral  effect  discussed  in  Section 3.1,  which  is  reduced
when there  is  a  cutoff  radius,  as  in Figure 10(b)  of [2], and  in MSE(2)  (middle).
An  alternative  way  to  reduce  the  peripheral  effect  is  to  explicitly  use  a  weaker
repulsive force model (3), as the drawing by MSE(¶, 2) (right) shows. 

Figure  7.  Drawings  of  4970  by  MSE(¶)  (left),  MSE(2)  (middle),  and weaker  repulsive
force model MSE(¶, 2) (right).

Figure 8  (left)  gives  the  drawing  of  finan512  using  MSE(¶).  This  drawing  is
more  appealing  than  Figure 13  of  [2].  In  that  drawing,  the  circle  is  elongated,
with the “knobs”  flat and close to the circle.  We believe this  is due to the effect
of  ignoring  the  long-range  repulsive  force,  so  that  the  circle  does  not  have
enough  force  to  make  it  rigid  and  rounded,  and  the  knobs  do  not  have  enough
force to push them out. We observed a similar side effect when we looked at the
drawing  given  by  MSE(2)  in  Figure 8  (right),  where  the  circle  is  twisted,
although it does draw the knobs well. 
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Figure 8. Drawings of finan512 by MSE(¶) (left) and MSE(2) (right).

Figure 9  shows  the  drawings  of  dime20.  The  drawings  are  somewhat  different
from Figure 14(b) of [2]. In that drawing, the tip we see in Figure 9 at the top of
the larger hole protrudes through the outer rim. Also,  in [2], this large hole was
replaced by a figure eight. Comparing the drawings of MSE(¶) and MSE(2), the
drawing  by  MSE(2)  has  thicker  outer  rims,  because  of  the  weakened  repulsive
force, and thus reduced peripheral effect. 

Figure 9. Drawings of dime20 by MSE(¶) (left) and MSE(2) (right).

Figure 10  gives  the  drawings  of  add32.  The  drawings  are  different  from
Figure 16(a)  in [2]  in that they occupy a larger area.  Comparing the drawings of
MSE(¶)  and  MSE(2),  the  latter  is  “fluffier”  in  that  the  branches  extend  to
occupy  more space.  This  is  another  example  of the  peripheral  effect  of a  strong
repulsive  force  in  MSE(¶).  We  found  that  for  tree-type  applications,  drawings
by  MSE(¶)  tend  to  have  leaves  and  some  branches  clinging  to  the  main
branches. MSE(2) suffers less because of the weakened repulsive force due to the
cutoff radius. For these type of applications, it is often better to apply the general
repulsive  force  model  (3)  with  a  weaker  force  given  by  p > 1.  Figure 11  shows
drawings  with  p = 2 (MSE(¶, 2))  and p = 3 (MSE(¶, 3)).  In  our  view  they give
more details. 
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Figure 10. Drawings of add32 by MSE(¶) (left) and MSE(2) (right).

Figure  11.  Drawings  of  add32 with  a  weaker  repulsive  force  by  MSE(¶, 2)  (left)  and
MSE(¶, 3) (right).

Figure 12  gives  the  drawings  of  sierpinski10.  In  [2]  Walshaw  uses  a  3D  layout
since  he  found  2D  layout  unsatisfactory.  We  found  our  2D  layout  to  be  good,
particularly  MSE(2).  MSE(¶)  demonstrates  again  the  peripheral  effect.  The
strong repulsive force pushes some of the vertices out.  The bottom of Figure 12
shows  the  result  of  using  a  general  repulsive  force  model  (3)  with  weaker  force
given by p = 2, which does not suffer from the peripheral effect. 
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Figure 12. Drawings of sierpinski10 by MSE(¶) (left), MSE(2) (middle), and MSE(¶, 2)
(right).

Figure 13  gives  drawings  of  mesh100.  Compared  with  the  drawing  in
Figure 18(b)  of  [2],  our  drawings  bear  a  closer  resemblance  to  the  actual  mesh
given in Figure 18(a) of [2]. 

Figure 13. Drawings of mesh100 by MSE(¶) (left) and MSE(2) (right).

Overall,  our  algorithms  give  comparable  drawings  to  those  in  [2].  For  difficult
graphs,  notably  finan512 and  sierpinski10,  we achieve  more appealing  drawings.
The general repulsive  force model (3)  offers  choices to overcome  the peripheral
effect  and  can  sometimes  give  more  appealing  drawings.  As  a  further  example,
Figure 14  shows  a  good  alternative  drawing  of  finan512,  by  using  a  slightly
weaker  repulsive  force.  A  comparison  with  Figure 8  (left),  shows  that  without  a
very  strong  repulsive  force  to  push  them  outward,  some  of  the  “spikes”  now
point  inward.  We  found  that  further  weakening  of  the  repulsive  force  would
cause the circle not to be rounded, much like what happens in Figure 8 (right). 
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Figure 14. An alternative drawing of finan512 by MSE(¶, 1.3).

· 6.3. Comparing the Spring-Electrical Model with the Spring Model
In addition to efficiency considerations that favor the spring-electrical model, we
also found that compared with the spring model, it gives good drawings for most
graphs.  The spring model,  on the other hand, works particularly  well for graphs
originated  from  uniform  or  near-uniform  meshes,  albeit  requiring  more  CPU
time.  The spring  model  works  well  for  such  graphs  because  it  is  possible  to  lay
them  out  so  that  the  physical  distance  is  very  close  to  the  graph  distance  of
vertices. 

For  example,  Figure 4  (right)  gives  a  drawing  of  jagmesh1  using  MSE(¶).  It  is
seen that closer to the outer boundary, the peripheral effect of the spring-electri-
cal  model  is  obvious.  This  effect  can  be  reduced  using  a  weakened  repulsive
force,  as  Figure 15  (left)  shows  using  MSE(¶, 2).  However,  the  spring  model,
MS(4), gives probably the most appealing drawing, as shown in Figure 15 (right).
The  same  happens  to  sierpinski10  (Figure 16)  and  mesh100  (Figure 17).  Both
come  very  close  to  what  the  graphs  look  like  in  their  original  layout,  in
Figure 17(a)  and Figure 18(a)  of [2]. MS(4) also draws the data graph quite well,
compared with MSE(¶), as shown in Figure 18. 
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Figure 15. Alternative drawings of jagmesh1 of Figure 4 by MSE(¶, 2) (left) and MS(4)
(right).

Figure 16. A drawing of sierpinski10 using MS(4).
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Figure 17. A drawing of mesh100 using MS(4).

Figure 18. Drawings of data using MS(4) (left) and MSE(¶) (right).

However,  for  graphs  that  come  from  a  locally  refined  mesh,  the  spring  model
works poorly. For example, Figure 19 shows the drawing of 4elt by MS(4) (right)
and  MSE(¶).  It  is  clear  that  MS(4)  strives  to  draw  the  graph  as  uniformly  as
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possible, but since this is not possible for such a highly refined graph, and in the
absence  of  a  strong  long-range  repulsive  force,  a  lot  of  foldings  occur  near  the
highly  refined  regions.  Therefore,  overall  we  favor  the  multilevel  SE  algorithm
for its efficiency and general good quality of drawings. 

Figure 19. Drawings of 4elt by MSE(¶) (left) and MS(4) (right).

· 6.4. Further Examples
In  this  section  we  demonstrate  our  algorithms  with  further  examples  from  the
University of Florida Sparse Matrix Collection 
(www.cise.ufl.edu/research/sparse/matrices).  Three  of  the  graphs  (skirt,  bodyy6
and  pwt)  have  known  layouts.  Table 3  describes  the  graphs  and  the  CPU  time
taken to lay these out in 2D. 

Graph » V » » E » Diameter Graph Type CPU

skirt 12598 91961 981 NASA matrix 8.4

bodyy6 19366 57421 122 NASA matrix 14.4

pwt 36519 144794 2622 NASA matrix 25.0

pkustk01 22044 478668 26 Beijing botanicalexhibition hall 14.3
pkustk02 10800 399600 33 Feiyue twin tower building 9.5

Table  3.  Problem  description  and CPU  time (in  seconds)  for  some  graphs.  1 :  skirt  has
seven components; four of them are nontrivial and have diameters 98, 68, 68, and 39,
respectively. 2 : pwt has 57 components, 56 components are just a single vertex.

Figure 20  shows the original  layout  of the skirt  graph.  It is  surprising  to us  that
this  mesh  actually  consists  of  seven  components;  three  of  these  are  just  an  iso-
lated vertex. Of the four nontrivial components, one is the main tube and nozzle,
another  is  the  skirt/struts  at  the  bottom  of  Figure 20  (right).  The  other  two
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components  are  the  two “rings”  connecting  the  main  tube/nozzle  and  the  skirt.
They are seen in Figure 20 (right) as one thick horizontal belt. 

Figure 21  shows  the  drawings  of  the  tube/nozzle  and  the  skirt/struts.  The
tube/nozzle has a much finer mesh near the nozzle end, thus the drawing has the
nozzle  part  expanded.  The  drawing  of  the  skirt/struts  is  interesting.  In  the
drawing,  two  struts  protruding  out  of  Figure 21  (left)  are  drawn separated  from
three  pieces  of  the  skirt,  revealing  the  weak  linkage  between  the  struts  and  the
pieces of skirts. 

Figure 20. Original layout of skirt: two views.

Figure  21.  Drawings  of  two  components  of  skirt  by  MSE(¶):  the  skirt/struts  (left);  the
tube/nozzle (right).

Figure 22  (left)  shows the original  layout  of a  highly  refined mesh.  The mesh is
highly refined around the middle void and to its right. The drawing algorithm, in
its  effort  to  draw  edges  as  uniformly  as  possible,  turned  the  mesh  inside  out
(Figure 22,  right).  The  hole  in  the  middle  is  actually  the  middle  void  in  the
original  mesh.  The original  mesh is  so highly refined to the right  of the middle
void that the drawing shows a folding. However, contrary to our intuition, using
algorithms MSE(¶, 2) or MSE(2), both having a weaker repulsive force, removes
the  folding  (Figure 23).  So  it  seems  the  folding  is  due  to  the  strong  repulsive
force  of  the  spring-electrical  model,  another  example  of  the  peripheral  effect.
The  original  mesh  is  nearly  symmetric  and  all  the  drawings  also  exhibit  good
symmetry. 
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Figure 22. Original layout of bodyy6 (left) and drawing by MSE(¶) (right). 

Figure 23. Drawings of bodyy6 using MSE(¶, 2) (left) and MSE(2) (right). 

Figure 24  (left)  shows  the  pwt  mesh,  which  is  probably  a  mesh  for  a  pressured
wind  tunnel.  The  drawing  by  MSE(¶)  corresponds  to  the  original  layout  well.
The  large  chamber  in  the  original  mesh  has  a  mesh  density  similar  to  the  pipe
and is thus indistinguishable from the pipe in the drawing. In Figure 25 close-up
views  of  the  smaller  chamber  in  the  original  layout  and  our  corresponding
drawing are given. The drawing depicts the details well. 
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Figure 24. Original layout of pwt (left) and a drawing by MSE(¶) (right). 

Figure 25. Close-up view of the original  layout  of pwt (left)  and a drawing by MSE(¶)
(right). 

Finally,  Figure 26  shows  drawings  of  pkustk01  and  pkustk02.  These  two graphs
have  high  average  degrees  (43  and  74,  respectively).  However,  judging  by  the
drawings, our algorithms performed very well. 
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Figure 26. Drawings of pkustk01 (left) and pkustk02 (right) using MSE(¶). 

‡ 7. Conclusions and Future Work
In  this  article  we proposed  an algorithm  that  uses  a  multilevel  approach  to  find
global  optimal  layouts  and  the  octree  technique  to  approximate  short-  and
long-range  forces  satisfactorily  and  efficiently.  These  two  techniques  were  each
proposed  earlier  for  graph  drawing  [2,  16,  18],  but  as  far  as  we are  aware,  were
never combined to form one powerful algorithm for large-scale graph drawing. A
number of practical techniques, including adaptive step and octree depth control,
and  a  hybrid  coarsening  scheme,  were  introduced  for  the  algorithm  to  work
effectively.  This  algorithm  is  demonstrated  to  be  both  efficient  and  of  high
quality  for  large  graphs,  competitive  to  Walshaw’s  [2]  highly  successful  graph
drawing algorithm, yet gives better drawings on some difficult problems. 

We  also  proposed  a  general  repulsive  force  model  to  overcome  the  peripheral
effect  of  the  spring-electrical  model.  Finally,  we  compared  the  spring-electrical
model  with  the  spring  model  and  demonstrated  examples  where  the  spring
model may be suitable. 

Both  the  multilevel  approach  and  the  octree  data  structure  do  have  limitations.
For  example,  both  the  EC  coarsening  scheme  and  the  MIVS-based  coarsening
scheme  would  not  work  effectively  on  star  graphs  (a  graph  with  one  vertex
connected to all other vertices and no two other vertices connected). The former
would  coarsen  too  slowly  thus  having  unacceptable  complexity,  while  the  latter
would  coarsen  too  fast  and  not  preserve  the  graph  information  on  the  coarser
graphs.  The  parameter  q  in  the  Barnes  and Hut  octree  algorithm  is  empirically
fixed (to 1.2 in all our drawings). We experienced one case where this value gives
an  artifact  only  corrected  with  a  smaller  value  q = 0.8.  It  may  be  possible  to
correct  this  artifact  without  changing  the  q  value  by  adding  a  random  offset  to
the first square of the octree. These limitations remain a topic for further investi-
gations.  However,  in  general  the  proposed  algorithm  performed  extremely  well
on  a  range  of  graphs  from  different  application  areas,  a  small  number  of  which
were shown. 

The graph  drawing  algorithm  presented  in this  article  is  in the Mathematica  5.1
release (November 2004). 
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After  the  completion  of  this  article,  our  attention  was drawn  to  an independent
work  by Hachul  and Jünger [28].  In that  paper,  the multilevel  approach is  com-
bined  with  the  multipole  expansion  technique  [29]  to  give  a
OH » V » logH » V »L + » E »L  algorithm. The efficiency and quality of the algorithm
in that paper appear to be at the same level as this article, although many details
differ, including the multilevel scheme and the force approximation. 
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