
The Mathematica® Journal

Efficient, High-Quality
Force-Directed Graph
Drawing
Yifan Hu
We propose a graph drawing algorithm that is both efficient and high
quality. This algorithm combines a multilevel approach, which effectively
overcomes local minimums, with the Barnes and Hut [1] octree technique,
which approximates short- and long-range force efficiently. Our numerical
results show that the algorithm is comparable in speed to Walshaw’s [2]
highly efficient multilevel graph drawing algorithm, yet gives better results
on some of the difficult problems. In addition, an adaptive cooling scheme
for the force-directed algorithms and a general repulsive force model are
proposed. The proposed graph drawing algorithm and others are included
with Mathematica 5.1 and later versions in the package DiscreteMath‘GraphÑ
Plot.

‡ 1. Introduction
Graphs are often used to encapsulate the relationship between objects. Graph
drawing enables visualization of these relationships. The usefulness of the
representation is dependent on the aesthetics of the drawing. While there are no
strict criteria for aesthetics, it is generally agreed that minimal edge crossing,
evenly distributed vertices, and depiction of graph symmetry is desirable.

This problem has been studied extensively in the literature [3] and many
approaches have been proposed. In this article we concentrate on drawing
undirected graphs with straight-line edges using force-directed methods [4, 5, 6,
7]. Force-directed methods, however, are one of many classes of methods pro-
posed for straight-edge drawing. Other methods include the spectral method [8]
and the high-dimensional embedding method [9].

A force-directed algorithm models the graph drawing problem through a physi-
cal system of bodies with forces acting between them. The algorithm finds a
good placement of the bodies by minimizing the energy of the system. There are
many variations of force-directed algorithms. The algorithm of Fruchterman and
Reigold [4], which is based on the work of [5, 6], models the graph drawing
problem with a system of springs between neighboring vertices of the graph,

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

pulling them together. At the same time, repulsive electrical forces that exist
push all vertices away from each other. The algorithm of Kamada and Kawai [7],
on the other hand, associates springs between all vertices, with the ideal length of
a spring proportional to the graph distance of the vertices. In a force-directed
algorithm, the energy of the system is typically minimized iteratively by moving
the vertices along the direction of the force. This amount may be large initially,
but reduces gradually based on a “cooling schedule.”

There are two limiting factors in drawing large graphs for standard
force-directed algorithms. The first is that the physical model typically has many
local minimums, particularly so for a large graph. Starting from a random
configuration, the system is likely to settle in a local minimum. This may be
improved, to a limited extent, by using a slow cooling schedule at the expense of
more iterations. Nevertheless, it is practically impossible to use the standard
force-directed algorithms to find a good layout of very large graphs.

The second limiting factor is the computational complexity of the standard
force-directed algorithms. In the algorithm of Fruchterman and Reigold [4], for
any given vertex, repulsive force from all other vertices needs to be calculated.
This makes the per iteration cost of the algorithm OH » V »2 L, with » V » the num-
ber of vertices in the graph. The algorithm of Kamada and Kawai [7] requires the
calculation of the graph distance among all vertices with the force based on that.
Thus the algorithm not only has a computational complexity of OH » V » » E »L,
with » E » the number of edges in the graph but also a memory complexity of
OH » V »2 L, although the latter can be circumvented at the cost of repeated calcula-
tions of the graph distances on the fly, instead of storing them in memory.

To overcome the first limiting factor, a multilevel approach was proposed. This
idea has been successfully used in many fields, including graph partitioning [10,
11, 12] and was found to be able to overcome the localized nature of the
Kernighan–Lin algorithm. Fruchterman and Reigold [4, 1148] alluded to that
type of solution when, in the context of overcoming local minimums, they stated
“we suspect that if we apply a multi-grid technique that allows whole portions of
the graph to be moved, it might be of some help…”. Harel and Koren [13],
extending the earlier work of Hadany and Harel [14], proposed the so-called
multiscale approach. In that approach, a sequence of coarser and coarser graphs
are formed by finding the k-centers and the distance matrix associated with them.
They used the Kamada and Kawai spring model [7], thus incurring high computa-
tional complexity for distance calculation and memory. Although, for the force
calculation the algorithm has a computational complexity of OH » V » logH » V »LL,
achieved by restricting force calculation to a neighborhood, thus ignoring
long-range force. Gajer et al. [15] built up the multilevel of graphs by using
maximal independent vertex sets, with the ith level consisting of a maximal
independent vertex set such that the vertices are of distance ¥ 2i-1 + 1,
i = 1, 0, … apart. They avoided the high computational and memory complexity
by calculating the graph distances on the fly and only for a restricted neighbor-
hood, thus also ignoring the long-range force. Walshaw [2] proposed a multilevel
algorithm and demonstrated that it was able to draw graphs as large as a quarter
of a million vertices in a few minutes. Based on the author’s earlier work in graph

38 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

partitioning, the coarser graphs are formed by finding a maximal independent
edge set and collapsing these edges. The forces between vertices are based on the
Fruchterman and Reigold spring-electrical model [4]. Long-range force is again
ignored by restricting the force calculation to a neighborhood with a radius that
decreases as one moves from coarser to finer graphs and coincides with the
radius used in the original graph.

Reducing the computational cost by restricting force calculation to a neighbor-
hood has been an often used practice, dating at least as far back as Fruchterman
and Reigold [4]. Such a practice, however, comes at a cost. Because long-range
forces are ignored, there is no force to evenly distribute faraway vertices. When
used within the multilevel approach, Walshaw [2] argued that global untangling
has been achieved on coarser graphs, thus for the final large graphs, restricting
force calculation to a small neighborhood does not penalize the quality of the
placement. While this is to a large extent true, for some graphs we found that the
lack of long-range force did hurt at least one, if not more, of the drawings in [2].

It is possible to take account of long-range forces in an efficient way in the
spring-electrical model. In this model the attractive force (the spring force) is
only between neighboring vertices, while the repulsive force is global and is
proportional to the inverse of the (physical) distance between vertices. The
repulsive force calculation resembles the n-body problem in physics, which has
been well studied. One of the widely used techniques for calculating the repulsive
forces in OHn logHnLL time with good accuracy, but without ignoring long-range
force, is to treat groups of faraway vertices as a supernode using a suitable data
structure, as in the Barnes and Hut algorithm [1]. This idea was implemented for
graph drawing by both Tunkelang [16] and Quigley and Eades [17, 18]. Tunke-
lang combined the Barnes and Hut algorithm with a conjugate gradient method,
thus per iteration computational is only OH » V » logH » V »LL, even though long-
range forces are approximated to the required accuracy. However, the algorithm
is not suitable for large graphs because the conjugate gradient is a local optimiza-
tion algorithm and the number of conjugate gradient iterations increases as the
size of the graph increases. Quigley and Eades [17, 18] also used the Barnes and
Hut algorithm for efficient and accurate force calculation. In addition, they
employed a multilevel scheme that they called hierarchical clustering. However,
they used that scheme for the visual abstraction of graphs, rather than for the
placement of vertices. Therefore, the algorithm was not suitable for large graphs.

In this article we propose an algorithm that is both efficient and of high quality
for large graphs. The algorithm is included with Mathematica 5.1 and later
versions in the package DiscreteMath‘GraphPlot. We combine a multilevel
approach, which effectively overcomes local minimums, with the Barnes and Hut
octree algorithm, which approximates short- and long-range forces satisfactorily
and efficiently. In addition, we propose an adaptive cooling scheme for the basic
force-directed algorithms and a scheme for selecting the optimal depth of the
octree/quadtree in the Barnes and Hut algorithm. Our numerical results show
that the algorithm is competitive with Walshaw’s [2] highly efficient graph
drawing algorithm, yet gives better results on some of the difficult problems. We
also analyze the distortion effect of the standard Fruchterman–Reigold

Efficient, High-Quality Force-Directed Graph Drawing 39

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

spring-electrical model and propose a general repulsive force model to overcome
this side effect.

In Section 2, we give definitions and notations. In Section 3, we present the basic
force-directed algorithms, as well as an adaptive cooling scheme. In Section 4, we
briefly introduce the Barnes–Hut force calculation algorithm. In Section 5, we
describe the multilevel scheme used. In Section 6, we compare the efficiency and
drawings of our algorithm with that of Walshaw [2]. In Section 7, we conclude
by suggesting some future works.

‡ 2. Definitions and Notations
We use G = 8V , E< to denote an undirected graph, with V the set of vertices and
E the set of edges. We assume the graph is connected. Disconnected graphs can
be drawn by laying out each of the components separately.

If two vertices i and j form an edge, we denote that as i ¨ j. The coordinates of
node i are denoted as xi , and we use ˛ xi -x j ˛ to denote the 2-norm distance
between vertices i and j. We use dHi, jL to denote the graph distance between
vertices i and j, and we use diamHGL to denote the diameter of the graph.

The graph layout problem is one of finding a set of coordinates, x = 8xi » i œ V <,
with xi œ R2 or xi œ R3 , for 2D or 3D layout, respectively, such that when the
graph G is drawn with vertices placed at these coordinates, the drawing is visually
appealing.

‡ 3. Force-Directed Algorithms
In this section we present the basic force-directed algorithms and analyze the
characteristics of the layout given by the spring-electrical model. We will pro-
pose a general repulsive force model, as well as an adaptive step control scheme.

· 3.1. Spring and Spring-Electrical Models
Force-directed algorithms model the graph layout problem by assigning attrac-
tive and repulsive forces between vertices and finding the optimal layout by
minimizing the energy of the system.

The model of Fruchterman and Reigold [4], which we refer to as the
spring-electrical model, has two forces. The repulsive force, fr , exists between any
two vertices i and j and is inversely proportional to the distance between them.
The attractive force, fa , on the other hand, exists only between neighboring
vertices and is proportional to the square of the distance

(1)
fr Hi, jL = -C K2 ê ˛ xi -x j ˛, i ∫ j, i, j œ V

fa Hi, jL = ˛ xi -x j ˛2 êK , i ¨ j.

40 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

The combined force on a vertex i is

(2)f Hi, x, K , CL = „
i∫ j

-C K 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi -x j ˛2
 Hx j -xi L + ‚

i¨ j

˛ xi -x j ˛
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

K
 Hx j -xi L.

In these formulas, K is a parameter known as the optimal distance [4], or natural
spring length [2]. The parameter C regulates the relative strength of the repul-
sive and attractive forces and was introduced in [2]. It is easy to see that for a
graph of two vertices linked by an edge, the force on each vertex diminishes
when the distance between them is equal to K HCL1ê3 . The total energy of the
system can be considered as

Energyse Hx, K , CL = ‚
iœV

f 2 Hi, x, K , CL,
where x is the vector of coordinates, x = 8xi » i œ V <.
From a mathematical point of view, changing the parameters K and C does not
actually change the minimal energy layout of the graph but merely scales the
layout, as the following theorem shows.

Theorem 1. Let x* = 8xi
* » i œ V < minimizes the energy of the spring-electrical

model Energyse Hx, K , CL, then sx* minimizes Energyse Hx, K £ , C£ L, where
s = HK £ êKL HC£ êCL1ê3 . Here K , C, K £ and C£ are all positive real numbers.

Proof: This follows simply by the relationship

f Hi, x, K , CL = „
i∫ j

-C K 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi -x j ˛2
 Hx j -xi L + ‚

i¨ j

˛ xi -x j ˛
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

K
 Hx j -xi L

=
i
kjjj

C
ÅÅÅÅÅÅÅÅÅÅ
C£

y
{zzz

2ê3

K
ÅÅÅÅÅÅÅÅÅÅ
K £

i

k

jjjjjjjjjj„
i∫ j

-C£ HK £ L2
ÅÅ˛ s xi - s x j ˛2

 Hs x j - s xi L

+ ‚
i¨ j

˛ s xi - s x j ˛
ÅÅ

K £
 Hs x j - s xi L

y
{
zzzzzzz

=
i
kjjj

C
ÅÅÅÅÅÅÅÅÅÅ
C£

y
{zzz

2ê3

K
ÅÅÅÅÅÅÅÅÅÅ
K £

 f Hi, s x, K £ , C£ L,
where s = HK £ êK L HC£ êCL1ê3 . Thus,

Energyse Hx, K , CL =
i
kjjj

C
ÅÅÅÅÅÅÅÅÅÅ
C£

y
{zzz

4ê3

i
kjjj

K
ÅÅÅÅÅÅÅÅÅÅ
K £

y
{zzz

2

 Energyse Hs x, K £ , C£ L.
Even though the parameters K and C do not have any bearing on the optimal
layout from a mathematical point of view, from an algorithmic point of view, if
an iterative algorithm (see Algorithm 1) is applied to minimize the energy from
an initial layout, choosing a suitable K or C to reflect the range of the initial
position will help the convergence to the optimal layout. Throughout this article,
unless otherwise specified, we fix C = 0.2 as in [2], but vary K for this purpose.

Efficient, High-Quality Force-Directed Graph Drawing 41

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

One intrinsic feature of graph drawings by the spring-electrical model is that
vertices in the periphery tend to be closer to each other than those in the center,
even for a uniform mesh. We call this the peripheral effect. For example, Figure 1
shows a mesh of 100 vertices laid out using the spring-electrical model, with
vertices near the outside boundary clearly closer to each other than those near
the center.

Figure 1. A 10ä10 regular mesh laid out using the spring-electrical model. This graph
and the others in this article were drawn with the Mathematica GraphPlot command,
which is discussed in Section 6.

This peripheral effect is more profound for graphs with large diameter. We
studied this effect for a line graph, with 100 vertices linked in a line. The vertices
are numbered 1 to 100, with vertex 50 and 51 in the middle of the line. We find
an accurate layout under the spring-electrical model by finding the root of a
system of equations f Hi, x, K , CL = 0 (see equation (2)) using Mathematica’s
FindRoot function, instead of the usual force-directed iterative algorithm,
because the latter is far less accurate. We set the parameters K = 1 and C = 1.
Theorem 1 shows that the exact values of these two parameters are not impor-
tant.

Figure 2 shows the distribution of edge lengths. As can be seen, the edge lengths
of the 99 edges vary from 4.143 at the middle to 1.523 at the sides, with the ratio
of the longest length to the shortest 4.143 ê 1.523 = 2.72.

42 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

20 40 60 80 100
Edge index

1.5

2

2.5

3

3.5

4

Edge length

Figure 2. Distribution of edge lengths for a line graph of 100 vertices and 99 edges,
laid out using the spring-electrical model.

The reason for this distortion effect at the periphery is the strong long-range
force that decays slowly as the distance increases. While typically this strong
long-range force does not interfere with the aesthetics of the layout, some
applications, such as tree graphs, tend to suffer more. For these classes of graphs,
the following general repulsive force model can be used.

(3)fr Hi, jL = -C K1+ p ê ˛ xi -x j ˛p , i ∫ j, i, j œ V , p > 0.

The larger the parameter p, the weaker the long-range repulsive force. However,
too large a value of p, thus too weak a long-range force, could cause the graph
that should be spread out to crease instead. We found that p = 2 works well.
Figure 3 shows the peripheral effect against the size of the line graph, for both
the general model (4) with p = 2 and p = 3, and the Fruchterman and Reigold
force model (1), which corresponds to the general model with p = 1. As can be
seen, the general model with p > 1 reduces the peripheral effect significantly.

20 40 60 80 100

1.5

2

2.5

3 Fruchterman and Reigold spring-electrical model
Alternative repulsive force model Hp=2L
Alternative repulsive force model Hp=3L

Figure 3. A plot of the ratio between the largest and smallest edge lengths for line
graphs of size 3 to 100 vertices.

In the force model of Kamada and Kawai [7], which we will refer to as the spring
model, springs are attached between any two pairs of vertices, with the ideal

Efficient, High-Quality Force-Directed Graph Drawing 43

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

length of a spring proportional to the graph distance between these two vertices.
Thus both the repulsive and attractive forces are expressed as

(4)fr Hi, jL = fa Hi, jL = ˛ xi -x j ˛ -d Hi, jL, i ∫ j, i, j œ V

and the spring energy is

(5)Energys HxL = ‚
i∫ j ,i, jœV

H ˛ xi -x j ˛ -d Hi, jLL2 .

The spring model does not suffer from the peripheral effect of the
spring-electrical model. It can, however, suffer from its relatively weak repulsive
forces (see Section 6.3). Furthermore, as discussed later, in the spring-electrical
model, the long-range force between all vertices can be well approximated by
grouping vertices together using the octree/quadtree technique. This is, how-
ever, not possible in the spring model.

· 3.2. An Adaptive Cooling Scheme
The energy of both the spring-electrical and the spring models can be minimized
iteratively by moving the vertices along the direction of forces exerted on them.
The following force-directed algorithm iteratively minimizes the system energy,
with fa and fr as defined in (1) or (5). The algorithm starts with a random, or
user-supplied, initial layout.

Ë ForceDirectedAlgorithm(G, x, tol) 8
– converged = FALSE;
– step = initial step length;
– Energy = Infinity
– while (converged equals FALSE) 8

* x0 = x;
* Energy0 = Energy; Energy = 0;
* for i œ V 8

· f = 0;

· for (j ¨ i) f : = f + fa Hi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» x j -xi »» Hx j -xi L;
· for (j ∫ i, j œ V) f : = f + fr Hi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»» x j -xi »» Hx j -xi L;
· xi: = xi + step * H f ê ˛ f ˛L;
· Energy := Energy + ˛ f ˛2 ;

* <
* step := update_steplength Hstep, Energy, Energy0 L;
* if (» » x - x0 » » < K tol) converged = TRUE;

– <
– return x;

Ë <
Algorithm 1. An iterative force-directed algorithm.

44 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In the algorithm, tol > 0 is a termination tolerance. The algorithm stops when a
change in the layout between subsequent iterations is less than K to l.

As in [2], we update the layout of a vertex i as soon as the force for this vertex is
calculated, instead of waiting until forces for all vertices have been calculated.
This improves the convergence of the iterative procedure, much like the fact that
among stationary iterative linear system solvers, the Gauss–Seidel algorithm is
often faster than the Jacobi algorithm.

In Algorithm 1, it is necessary to update the step length step. The “cooling
schedule” used in most expositions (e.g., [19]) of force-directed algorithms allows
large movements (large step length) at the beginning of the iterations, but the
step length reduces as the algorithm progresses. Walshaw [2] used a simple
scheme,

(6)step := t step,

with t = 0.9. We found this to be adequate in the refinement phase of a multi-
level force-directed algorithm. However, for an application of a force-directed
algorithm from a random initial layout, an adaptive step length update scheme is
more successful in escaping from local minimums. This adaptive scheme is
motivated by the trust region algorithm for optimization [20], where step length
can increase as well as reduce, depending on the progress made. Here we mea-
sure progress by the decrease in system energy.

Ë function update_steplength Hstep, Energy, Energy0 L
Ë if (Energy < Energy0) 8

– progress = progress +1;
– if (progress > = 5) 8

* progress = 0;
* step := step ê t;

– <
Ë < else 8

– progress = 0;
– step := t step;

Ë <
In the preceding algorithm, progress is a static variable that is initialized to zero
and parameter t = 0.9. The idea of this algorithm is that the step length is kept
unchanged if energy is being reduced and increased to step ê t if the energy is
reduced more than five times in a row. We only reduce the step length if energy
increases.

Compared with the simple step length update scheme (6), the adaptive scheme is
much better in escaping from local minimums. Figure 4 shows the result of
applying 70 iterations of Algorithm 1 to the jagmesh1 graph with 936 vertices
from MatrixMarket (math.nist.gov/MatrixMarket). The adaptive scheme is
clearly much better and is able to untangle the graph a lot further than the
simple scheme.

Efficient, High-Quality Force-Directed Graph Drawing 45

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 4. Comparing adaptive and simple step length update schemes on jagmesh1
after 70 iterations: simple scheme (left); adaptive scheme (middle); what the layout
should look like (right).

‡ 4. Barnes–Hut Force Calculation
Each iteration of Algorithm 1 involves two loops. The outer loop iterates over
each i œ V . Of the two inner loops that calculate the attractive and repulsive
forces, the latter is the most expensive and loops over each j ∫ i, j œ V . Thus the
overall complexity is OH » V »2 L.
The repulsive force calculation resembles the n-body problem in physics, which
is well studied. One of the widely used techniques to calculate the repulsive
forces in OHn log nL time with good accuracy, but without ignoring long-range
forces, is to treat groups of faraway vertices as supernodes, using a suitable data
structure [1]. This idea was adopted by Tunkelang [16] and Quigley [18]. Both
used an octree (3D) or quadtree (2D) data structure. In principal, other space
decomposition methods can also be used. For example, Pulo [21] investigated
recursive Voronoi diagrams.

For simplicity, hereafter we use the term octree exclusively, which should be
understood as quadtree in the context of 2D layout. An octree data structure is
constructed by first forming a square (or cube in 3D) that encloses all vertices.
This is the level 0 square. This square is subdivided into four squares (or eight
cubes) if it contains more than one vertex and forms the level 1 squares. This
process is repeated until level L, where each square contains no more than one
vertex. Figure 5 (left) shows an octree on the jagmesh1 graph.

The octree forms a recursive grouping of vertices and can be used to efficiently
approximate the repulsive force in the spring-electrical model. The idea is that in
calculating the repulsive force on a vertex i, if a cluster of vertices, S, lies in a
square that is “far” from i, the whole group can be treated as a supernode. The
supernode is assumed to situate at the center of gravity of the cluster,
xS = I⁄ jœS x j M ë » S ». The repulsive force on vertex i from this supernode is

fr Hi, SL = - » S » C K2 ê ˛ xi -xS ˛ .

46 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

However, we need to define what “far” means. Following [16, 18], we define the
supernode S to be faraway from vertex i, if the width of the square that contains
the cluster is small, compared with the distance between the cluster and the
vertex i,

(7)
dS

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ˛ xi -xS ˛ § q.

Here dS is the width of the square that the cluster lies in, and q ¥ 0 is a parame-
ter. The smaller the value of q, the more accurate the approximation to the
repulsive force and the more computationally expensive it is. We found that
q = 1.2 is a good compromise and will use this value throughout the article. This
inequality (7) is called the Barnes–Hut opening criterion [1].

The octree data structure allows efficient identification of all the supernodes that
satisfy (7). The process starts from the level 0 square. Each square is checked and
recursively opened until the inequality (7) is satisfied. Figure 5 (right) shows all
the supernodes (the squares) and the vertices these supernodes consist of, with
reference to vertex i located at the top-middle part of the graph. In this case we
have 32 supernodes.

Figure 5. An illustration of the octree data structure: the overall octree (left); supernodes
with reference to a vertex at the top-middle part of the graph, with q = 1 (right).

Under reasonable assumption [1, 22] of the distribution of vertices, it can be
proved that building the octree takes a time complexity of OH » V » logH » V »LL.
Finding all the supernodes with reference to a vertex i can also be done in a time
complexity OHlogH » V »LL. Overall, by using an octree structure to approximate
the repulsive force, the complexity for each iteration of Algorithm 1 under the
spring-electrical model is reduced from OH » V »2 L to OH » V » logH » V »LL.
We only build the octree structure once every outer loop. Note that the posi-
tions of the vertices are actually updated continuously within the loop; therefore,
as they move about, some vertices may not be in the squares where they are
supposed to lie. However, we found that this does not cause a problem in prac-
tice. Consequently, we observed that construction of the tree structure only takes
a fraction of the total time, and the majority of the time in Algorithm 1 is spent
in finding the supernodes, as well as in the force calculations.

Efficient, High-Quality Force-Directed Graph Drawing 47

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

For very large graphs, it may happen that some of the vertices are very close to
each other. Therefore, if we keep subdividing the squares without a limit, we
may end up with a tree structure with one or more very deep branches. This will
make the algorithm less efficient. In particular, a disproportionately large
amount of time will be spent in searching through the tree to find supernodes. It
is therefore necessary to limit the number of levels in the octree. We denote this
limit max_tree _level. Even if a square at level max_tree _level still has multiple
vertices, it is not subdivided further. We call such a square a dense leaf (of the
octree).

However, it is difficult to decide a priori how many levels should be allowed. If
we set the max_tree _level too small, we will have many vertices in the same
square as at the last level. This increases the average number of supernodes,
because when identifying supernodes needed to approximate the repulsive force
on a vertex i, if a dense leaf happens to be close to i, each vertex on the dense leaf
has to be treated individually as a supernode since no subgrouping is available. In
the extreme case when max_tree _level = 0, every vertex belongs to one dense
leaf, and there are » V » -1 supernodes that correspond to every vertex i. On the
other hand, although a large value for max_tree _level reduces the average
number of supernodes, it increases the number of squares that need to be tra-
versed due to the deep branches.

We use an adaptive scheme to automatically find the optimal max_tree _level.
This is essentially a one-dimensional optimization problem with the variable
being max_tree _level and the objective function the CPU time of each outer
iteration of Algorithm 1, which consists largely of the time to transverse the
octree and the time in the repulsive force calculation. So one way to find the
optimal max_tree _level is to measure the CPU time of the outer loop and
increase/decrease max_tree _level by one each time until the bottom of a valley is
located. However, CPU time measurement can fluctuate and such a scheme may
cause a different max_tree _level from run to run. This in turn gives a different
layout between runs, which is undesirable. Instead, we use

(8)h Hmax_tree _levelL = counts + a ns

as the objective function, where counts is the total number of squares traversed,
ns is the total number of supernodes found during one outer iteration, and a is a
parameter chosen so that (8) gives the best estimate of the CPU time. Through
numerical experiments, we found that a in the range of 1.5 to 2.0 gives very good
correlation to CPU time measurement. Thus we used a = 1.7. The adaptive
scheme starts with max_tree _level = 8. After one outer iteration, we set
max_tree _level = 9. Then, depending on whether the estimated CPU time
increases or decreases, we try a smaller or larger depth. If we ever hit a depth
already tried, we end the procedure and use the depth corresponding to the
smallest estimated CPU time. Typically, we found that the procedure converges
within 3-4 outer iterations, and the max_tree _level located is very near the
optimal value. For smaller graphs of a few thousand vertices, typically
max_tree _level settles down at around 8, while for very large graphs,
max_tree _level can go as high as 11.

48 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

‡ 5. The Multilevel Algorithm
While approximation of long-range force using octree data structure greatly
reduces the complexity of Algorithm 1, it does not change the fact that the
algorithm repositions one vertex at a time, instead of laying out a whole region as
a unit. Large graphs typically have many local minimal energy configurations,
and such an algorithm is likely to settle to one of the local minimums. The
adaptive step length control scheme we introduce goes some way toward a better
layout, but as Figure 4 shows, is still insufficient toward a global minimum.

The multilevel approach has been used in many large-scale combinatorial
optimization problems, such as graph partitioning [11, 12, 23], matrix ordering
[24], the traveling salesman problem [25], and has proven to be a very useful
meta-heuristic tool [26]. The multilevel approach was also used in graph drawing
[2, 13, 14]. In particular, Walshaw [2] was able to lay out graphs with up to
225,000 vertices in a few minutes, and largely of good quality.

The multilevel approach has three distinctive phases: coarsening, coarsest graph
layout, and prolongation and refinement. In the coarsening phase, a series of
coarser and coarser graphs, G0 , G1 , … , Gl , are generated. The aim is for each
coarser graph Gk+1 to encapsulate the information needed to lay out its “parent”
Gk while containing fewer vertices and edges. The coarsening continues until a
graph with only a small number of vertices is reached. The optimal layout for the
coarsest graph can be found cheaply. The layouts on the coarser graphs are
recursively prolonged to the finer graphs, with further refinement at each level.
Hereafter, we use a superscript to denote the level. For example, xk is the coordi-
nates of vertices in the level k graph Gk , k = 0, … , l.

· 5.1. Graph Coarsening
There are a number of ways to coarsen an undirected graph. One frequently used
method is based on edge collapsing (EC) [11, 12, 23], in which pairs of adjacent
vertices are selected and each pair is coalesced into one new vertex. Each vertex
of the resulting coarser graph has an associated weight, equal to the number of
original vertices it represents. Each edge of the coarser graph also has a weight
associated with it. Initially, all edge weights are set to 1. During coarsening, edge
weights are unchanged unless both merged vertices are adjacent to the same
neighbor. In this case, the new edge is given a weight equal to the sum of the
weights of the edges it replaces. The edges to be collapsed are usually selected
using maximal matching. This is a maximal set of edges, no two of which are
incident to the same vertex. For undirected graph partitioning, heavy-edge
matching has been found to work well. Here, the idea is to preferentially collapse
heavier edges. When looking through a neighbor list for an unmatched vertex,
an edge with the largest weight is selected. In the context of graph drawing,
Walshaw [2] chose to keep vertex weights in the coarser graphs as uniform as
possible by matching a vertex with a neighbor with the smallest vertex weight.
We found that both heavy-edge matching and matching with a vertex of smallest
weight give graph layouts of similar quality and used the former in this article.
Figure 6 illustrates a graph (left) and the result (middle) of coarsening using EC.

Efficient, High-Quality Force-Directed Graph Drawing 49

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Other coarsening methods have been proposed. In [27], a maximal independent
vertex set (MIVS) of a graph is chosen as the vertices for the coarser graph. An
independent set of vertices is a subset of the vertices such that no two vertices in
the subset are connected by an edge in the graph. An independent set is maximal
if the addition of an extra vertex always destroys the independence. Edges of the
coarser graph are formed by linking two vertices in MIVS by an edge if their
distance apart is no greater than 3. Figure 6 illustrates a graph (left) and the
result (right) of coarsening using MIVS.

Figure 6. An illustration of graph coarsening: original graph with 788 vertices (left); a
coarser graph with 403 vertices resulted from EC (center); a coarser graph with 332
vertices resulted from MIVS (right).

We have implemented both EC and MIVS coarsening schemes for our multi-
level graph drawing algorithm. Notice that with EC, the coarse graph always has
more than 50% of the vertices of the original graph. For graphs with a high
average degree, it may happen that the number of vertices in the coarser graph,
Gi+1 , may be very close to the number of vertices in the original graph, Gi . This
can significantly increase the complexity of the multilevel algorithm. Therefore,
we will stop coarsening if there are only two vertices in the graph or

(9)
» V i+1 »

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» V i » > r.

We used r = 0.75. Here V i is the vertices in Gi .

On the other hand, for a connected graph, the MIVS coarsening usually, though
not necessarily, results in a coarser graph with less than 50% of the number of
vertices of the original graph. In our experience, for graph layout, EC tends to
give slightly better results than MIVS, probably because it coarsens less aggres-
sively. However, MIVS is usually faster, due to the lower complexity. To over-
come the complexity issue of EC, we propose a third scheme, HYBRID. This
scheme uses EC whenever possible, however, if the threshold (9) is breached, we
use MIVS coarsening instead.

50 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

· 5.2. Initial Layout on the Coarsest Graph
On the coarsest level, we lay out the graph using Algorithm 1 combined with the
adaptive step length control scheme. For MIVS and HYBRID coarsening
schemes, the coarsest graph has only two vertices, thus a random placement of
the two vertices would be sufficient.

· 5.3. The Refinement Step
The layouts on the coarser graphs are recursively prolonged to the finer graphs,
with further refinement at each level.

If graph Gi+1 = 8V i+1 , Ei+1 < was derived using EC from Gi = 8V i , Ei <, the
position of a vertex u œ V i+1 is given to the two vertices v, w œ V i that collapse
into u. If Gi+1 was derived using MIVS from Gi , then a vertex v œ V i either
inherits the position if it is in the MIVS, or v must have one or more neighbors
in MIVS, in which case the position of v is the average of the positions of these
neighbors.

Once the prolongation is carried out to give an initial layout for Gi , this layout is
refined using Algorithm 1. As in [2], if in the initial layout two vertices happen to
be at the same position, as could be the case with EC-based coarsening, a ran-
dom perturbation is done to separate them. Because the initial layout is derived
from the layout of a coarser graph, this layout is typically already well placed
globally and what is required is just some local adjustment. Therefore, we found
that it is preferable to use a conservative step length update scheme. The simple
scheme (6) works well.

Although the initial layout in graph Gi prolongated from the coarser graph Gi+1

is usually globally well positioned, a naive application of Algorithm 1 would
cause large movement of vertices, thus potentially destroying the useful informa-
tion inherited. For example, in the context of the spring model, the physical
distance between two vertices u and v in the initial layout in Gi is roughly the
same as the graph distance of the corresponding vertices in Gi+1 , that is

˛ xu
i - xv

i ˛ º dGi+1 Hu£ , v£ L,
where u£ and v£ are two vertices in the coarser graph Gi+1 that corresponds to u
and v. However, to minimize the energy on level i, we want ˛ xu -xv ˛ to be as
close to the graph distance of them in Gi , that is, we want

˛ xu
i - xv

i ˛ º dGi Hu, vL.
Typically dGi+1 Hu£ , v£ L is much smaller than dGi Hu, vL. If the initial layout is used
as is, then to achieve the minimal energy, the graph has to be expanded by the
ratio between these two distances through a serious of large moves, which is
inefficient and could lose some information in the initial good layout.

Efficient, High-Quality Force-Directed Graph Drawing 51

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Therefore, for a multilevel algorithm based on the spring model, we scale the
initial coordinates by the ratio of the pseudo-diameters between the two subse-
quent levels of graphs,

(10)g = diam HGi L ê diam HGi+1 L.
For the spring-electrical model, Walshaw [2] suggested keeping the coordinates
unchanged but reducing the natural spring length K i to

Ki = K i+1 ê g,

with g =
è!!!!!!!!!7 ê 4 . Walshaw derived this value based on examining a graph with

four vertices. We use instead (10) and found it to be equally effective. On the
coarsest level, we set K l to be the average edge length of the initial random
layout, as in [2].

To avoid the OH » V »2 L complexity of the repulsive force calculation in the
spring-electrical model, Walshaw [2], following Fruchterman and Reigold [4],
cut off the contributions from faraway vertices. Only repulsive forces from
vertices within a certain radius were considered. Specifically, on the ith level, for
vertex v, repulsive forces from vertex u were ignored when ˛ xu

i - xv
i ˛ > Ri . If a

small radius Ri is chosen, then repulsive force over even a short distance is
ignored. This can cause faraway regions to collapse into each other due to the
lack of force to spread them out. On the other hand, a larger radius Ri is expen-
sive. In the extreme, Ri = ¶ gives us the OH » V i »2 L complexity. Walshaw [2]
proposed the radius Ri

Ri = 2 Hi + 1L Ki .

Notice that the radius is larger, relative to the natural spring length, on the
coarser graphs, for which a large Ri value would not be too costly due to the
smaller sizes of the graphs. The effect of this cutoff, which would otherwise be
more profound, was largely dampened because of the multilevel approach.
Overall, the power of the multilevel approach means that the good quality global
layout achieved on coarser graphs was inherited by the finer graphs, and a small
radius on the finest graphs usually worked well. Nevertheless, we found that for
some graphs, particularly those with a hollow interior, such as the graph
finan512 in Section 6, the adverse effect of ignoring long-range repulsive force
was obvious. With our use of octree data structure, we no longer need to use a
cutoff radius for the spring-electrical model. Nevertheless we set a cutoff
radius of

(11)Ri = r Hi + 1L K i ,

and by default we set r = ¶, which is equivalent to not using a cutoff radius at all.
This, however, also allows us to have a finite r value to experiment with. For the
spring model, to avoid calculation of the all-to-all distance matrix needed to
compute the force (5), we used a similar strategy, by only calculating the distance
of two vertices u and v and their attractive/repulsive forces, if

(12)d Hu, vL § r Hi + 1L,
with a default r value of 4.

52 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

· 5.4. The Multilevel Algorithm
We present the overall multilevel algorithm in the following. In the algorithm,
ni = » V i » is the number of vertices in the ith level graph Gi . xi is the coordinate
vector for the vertices in V i . We represent Gi by a symmetric matrix Gi , with the
entries of the matrix the edge weights. The prolongation operator from Gi+1 to
Gi is also represented by a matrix Pi , of dimension ni äni+1 . For details on the
implementation of the multilevel process, and some examples, see [24]. The
starting point is the original graph, G0 = G.

function MultilevelLayout HGi , tolL
Ë Coarsest graph layout

– if (ni+1 < MinSize or ni+1 ê ni > r) 8
* xi: = random initial layout
* xi = ForceDirectedAlgorithmHGi , xi , tolL
* return xi

– <
Ë The coarsening phase:

– set up the ni ä ni+1 prolongation matrix Pi

– Gi+1 = Pi T
 Gi Pi

– xi+1 = MultilevelLayoutHGi+1 , tolL
Ë The prolongation and refinement phase:

– prolongate to get initial layout: xi = Pi xi+1

– refinement: xi = ForceDirectAlgorithmHGi , xi , tolL
– return xi

Algorithm 2. A multilevel force-directed algorithm.

In Algorithm 2, coarsening will stop if the graph is too small, ni+1 < MinSize, or
there is not enough coarsening, ni+1 ê ni > r. We used MinSize = 2 and
r = 0.75.

‡ 6. Numerical Results
In this section we demonstrate the drawings using our algorithms on some large
examples and also compare our algorithms with those of Walshaw [2], both in
terms of efficiency and quality of layout.

The algorithms are implemented in Mathematica 5.1, under the GraphPlot
package. To load the package, evaluate

�� DiscreteMath‘GraphPlot‘;

Efficient, High-Quality Force-Directed Graph Drawing 53

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

This package has many graph theory functions. Among them, GraphPlot and
GraphPlot3D draw graphs in 2D and 3D, respectively. Details of the package can
be found in the Mathematica Help Browser.

The details for the algorithms we will demonstrate and the names they are
denoted by follow. We also give the Mathematica command corresponding to
each of the algorithms, where we use gr to represent the graph.

MSE(r) (Multilevel Spring-Electrical Model)
Multilevel Algorithm 2 with HYBRID coarsening scheme, octree data structure,
and repulsive/attractive force given by (1). The cutoff radius for the repulsive
force calculation is (11), with r = ¶ by default. The Mathematica command for
MSE(¶) is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01}]

The Mathematica command for MSE(r) (r < ¶) is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01,
InferentialDistance�r}]

MSE(r , p) (Multilevel Spring-Electrical Model with General
Repulsive Force)
Multilevel Algorithm 2 with HYBRID coarsening scheme, octree data structure,
and repulsive/attractive force given by (1). The cutoff radius for the repulsive
force calculation is (11), with r = ¶ by default. The difference from MSE(r) is
that the general repulsive force model (4) is used with parameter p. MSE(r) is the
same as MSE(r, 1). The Mathematica command for MSE(¶, 1) is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01}]

The Mathematica command for MSE(r, 1) (r < ¶) is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01,
InferentialDistance�r}]

The Mathematica command for MSE(r, p) (r < ¶, p ∫ 1) is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01,
InferentialDistance�r, RepulsiveForcePower�-p}]

MS(r) (Multilevel Spring Model)
Multilevel Algorithm 2 with HYBRID coarsening scheme, octree data structure,
and repulsive/attractive force given by (5). The cutoff radius for the distance and
force calculation is (12), with r = 4 by default. The Mathematica command for
MS(¶) is

GraphPlot[gr, Method�{SpringModel, Tolerance�0.01}]

The Mathematica command for MS(r) (r < ¶) is

GraphPlot[gr, Method�{SpringModel, Tolerance�0.01, InferentialDistance�
r}]

54 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

SE (Spring-Electrical Model)
Algorithm 1 with octree data structure and repulsive/attractive force given by (1).
The Mathematica command for SE is

GraphPlot[gr, Method�{SpringElectricalModel, Tolerance�0.01,
RecursionMethod�None}]

MLFDP
The multilevel force-directed placement algorithm (MLFDP) from [2].

For all the preceding algorithms, we used a tolerance of tol = 0.01 to be compara-
ble with Walshaw [2]. All our results are from a 3.0 GHz Pentium 4 machine
with 2 GB of memory and a 512 KB cache under a Linux operating system. Our
code is written in C and compiled with gcc using compilation flag “gcc -O2”.

· 6.1. Comparison with Walshaw
In this section we compare our algorithm with that of Walshaw [2].

Table 1 lists a set of nine test problems from [2]. Some of these problems origi-
nate from engineering applications for which there is a known layout. Table 2
gives the CPU time for MSE(2) and MSE(¶), as well as the CPU time for the
multilevel force-directed placement algorithm (MLFDP) from [2]. To see the
extra cost of the multilevel approach, we also include the CPU time for the
single level spring-electrical model, SE, in the last column of the table. The set
of nine problems were chosen to be the same as those in Table 3 of [2]. We draw
all the graphs in 2D and use these layouts for all the subsequent figures. How-
ever to be able to compare them with [2], we also laid out the last four graphs in
3D, even though sierpinski10 is really a 2D graph and, as Figure 12 shows, we
can layout in 2D just fine.

Notice that Walshaw’s CPU results were for a 1 GHz machine, 1/3 of the clock
speed of our machine. However, based on our experience of clock speed and
actual performance, we would expect the performance of our machine to be less
than three times of Walshaw’s.

Walshaw’s MLFDP algorithm should be somewhat similar to our MSE(2),
because both employ a similar cutoff radius. There are, however, some differ-
ences. MSE(2) uses the octree data structure and searches through the structure
to decide if a cluster of vertices can form a supernode or should be excluded
because it is outside the cutoff radius. So we have two approximations. In terms
of CPU time, forming supernodes reduces the number of repulsive force calcula-
tions, but searching through the octree data structure is more expensive than the
regular mesh-like data structures used by Walshaw to implement the cutoff
radius. Therefore, overall, we expect the complexity of MLFDP and MSE(2) to
be comparable. This is confirmed in Table 2. MLFDP and MSE(2) indeed do
have quite comparable CPU time in general, although MSE(2) is notably faster
on finan512, while MLFDP is notably faster on dime20. MSE(¶), which does
not ignore long-range force, is only on average 21% more expensive than
MSE(2).

Efficient, High-Quality Force-Directed Graph Drawing 55

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Comparing multilevel algorithm MSE(¶) with its single level counterpart SE, it
is seen that MSE(¶) is no more than twice as expensive, in fact for most graphs
the difference is small. It is surprising that for sierpinski10, SE is more expensive
than MSE(¶) for both the 2D and 3D layouts! A careful examination of the
innermost loops of the force calculations and octree code reveals that MSE(¶)
takes between two to three times as many operations as SE. The abnormality in
CPU time is due to poor cache performance of the octree code in SE. SE starts
from a random layout and never quite gets to a good layout for large graphs.
When looping over vertices in the natural order to find their supernodes in the
octree code, the locations of the vertices are unpredictable. The multilevel
algorithm MSE(¶), on the other hand, always starts from a good initial layout.
For most of the graphs in Table 1, the natural vertex ordering is such that if two
vertices are close in their indices, they also tend to be close in their physical
locations in the original layout. Thus in the octree code, roughly the same
squares tend to be examined again and again when finding supernodes for
consecutive vertices. This means that cache performance is very good for multi-
level algorithm MSE(¶), but very poor for single level algorithm SE. This
analysis is confirmed when we randomly shuffle the vertices. With such a ran-
dom ordering, CPU timings for SE stay roughly the same, while the CPU
timings for MSE(¶) increase about twice.

The preceding analysis may suggest that the multilevel algorithm is susceptible
to poor initial vertex indexing. However, this is not true. First, large graphs tend
to have good natural ordering. Second, poor ordering can be easily remedied by
preordering the vertices using a suitable ordering algorithm that is inexpensive.
For example, we used the METIS [10] nested dissection algorithm to order
previously randomly shuffled graphs, using the adjacency matrix of the graphs,
and then applied the multilevel algorithm to the resulting graphs. We found that
the CPU timings of MSE(¶) on these preordered graphs are very comparable to
those in Table 2. In fact for dime20, the CPU time is reduced from 290.6 to
252.3 with nested dissection preordering! Nested dissection preordering, how-
ever, has no effect on the cache performance of SE, due to its poor initial and
subsequent layouts. It is possible to improve SE by ordering the vertices using a
nested dissection based on the physical locations of the vertices, but since SE is
not a good graph drawing algorithm anyway, we will not pursue this further
here.

56 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Graph » V » » E » Avg. Degree Diameter Graph Type

c-fat500-10 500 46627 186.5 4 Random clique test

4970 4970 7400 3. 106 2 D dual

4 elt 15606 45878 5.9 102 2 D nodal
finan512 74752 261120 7. 87 Linear programming

dime20 224843 336024 3. 1179 2 D nodal
data 2851 15093 10.6 79 3 D nodal

add32 4960 9462 3.8 28 32-bit adder

sierpinski10 88575 177147 4. 1024 2 D fractal
mesh100 103081 200976 3.9 203 3 D dual

Table 1. Description of test problems.

Size CPU

Graph » V » » E » MLFDP* MSE H2L MSE H¶L MS H4L SE

2 D

c-fat500-10 500 46627 5.6 0.37 0.37 0.82 0.2
4970 4970 7400 6.4 2.5 2.7 10.9 1.8
4 elt 15606 45878 24.3 9.4 11.7 102.9 9.2

finan512 74752 261120 363.8 56.6 59.8 3714.9 60.

dime20 224843 336024 264.3 195.5 290.6 1984.6 277.7
data 2851 15093 - 1.1 1.2 17.8 1.3

add32 4960 9462 - 3.1 3.3 44.4 2.6
sierpinski10 88575 177147 - 44.1 65.1 146.8 75.6

mesh100 103081 200976 - 91.6 109.4 5807.8 89.5

3 D

data 2851 15093 6.6 2.3 2.4 33. 1.6
add32 4960 9462 12.5 6.2 7.1 230.7 3.2

sierpinski10 88575 177147 136.7 64.7 100.9 317.2 114.9
mesh100 103081 200976 431.1 158. 204. 6431.3 138.2

Table 2. CPU time (in seconds) for some force-directed algorithms. *: MLFDP data from
[2], was for a 1 GHz Pentium III. All other times are for a 3 GHz Pentium 4. –: data not
available.

As we would expect, MS(4) is very slow. This is because the spring model seeks
to lay out vertices to have a physical distance equal to the graph distance. It is not
obvious how to extend the octree methodology to the spring model. We can
certainly work out the average graph distance of a cluster of vertices to another
vertex, but to do so we still have to find the individual graph distances first.
Therefore, no saving is achieved. A cutoff radius does allow us to reduce the
OH » V »2 L complexity. However, we found that for good drawing quality, we have
to use a relatively large radius. This is probably because, unlike the
spring-electrical model, the spring model does not have a strong repulsive force
and with the cutoff radius the repulsive force is weakened further. At a cutoff

Efficient, High-Quality Force-Directed Graph Drawing 57

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

radius of 4, a large number of vertices are included, making the algorithm quite
costly.

In terms of drawing quality, MSE(2) performs comparably to MLFDP, with
MSE(¶) the best. Both MSE(2) and MLFDP ignore long-range forces. How-
ever, the multilevel process enables them to inherit global information from
coarser graphs, thus in most cases both still give good quality drawings. Neverthe-
less, for some problems, the adverse effect can be seen.

· 6.2. Comparison of Drawings
In the following, we give drawings of the graphs in Table 1. Our drawings of
c-fat500-10 are the same as in [2] and are thus not included here. All our draw-
ings are done in 2D, as we found that 2D drawings give us good representation.

Figure 7 (left) gives drawings of 4970 using MSE(¶). In this case the mesh
around three corners is cluttered compared with the drawing in [2]. We believe
this is due to the peripheral effect discussed in Section 3.1, which is reduced
when there is a cutoff radius, as in Figure 10(b) of [2], and in MSE(2) (middle).
An alternative way to reduce the peripheral effect is to explicitly use a weaker
repulsive force model (3), as the drawing by MSE(¶, 2) (right) shows.

Figure 7. Drawings of 4970 by MSE(¶) (left), MSE(2) (middle), and weaker repulsive
force model MSE(¶, 2) (right).

Figure 8 (left) gives the drawing of finan512 using MSE(¶). This drawing is
more appealing than Figure 13 of [2]. In that drawing, the circle is elongated,
with the “knobs” flat and close to the circle. We believe this is due to the effect
of ignoring the long-range repulsive force, so that the circle does not have
enough force to make it rigid and rounded, and the knobs do not have enough
force to push them out. We observed a similar side effect when we looked at the
drawing given by MSE(2) in Figure 8 (right), where the circle is twisted,
although it does draw the knobs well.

58 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 8. Drawings of finan512 by MSE(¶) (left) and MSE(2) (right).

Figure 9 shows the drawings of dime20. The drawings are somewhat different
from Figure 14(b) of [2]. In that drawing, the tip we see in Figure 9 at the top of
the larger hole protrudes through the outer rim. Also, in [2], this large hole was
replaced by a figure eight. Comparing the drawings of MSE(¶) and MSE(2), the
drawing by MSE(2) has thicker outer rims, because of the weakened repulsive
force, and thus reduced peripheral effect.

Figure 9. Drawings of dime20 by MSE(¶) (left) and MSE(2) (right).

Figure 10 gives the drawings of add32. The drawings are different from
Figure 16(a) in [2] in that they occupy a larger area. Comparing the drawings of
MSE(¶) and MSE(2), the latter is “fluffier” in that the branches extend to
occupy more space. This is another example of the peripheral effect of a strong
repulsive force in MSE(¶). We found that for tree-type applications, drawings
by MSE(¶) tend to have leaves and some branches clinging to the main
branches. MSE(2) suffers less because of the weakened repulsive force due to the
cutoff radius. For these type of applications, it is often better to apply the general
repulsive force model (3) with a weaker force given by p > 1. Figure 11 shows
drawings with p = 2 (MSE(¶, 2)) and p = 3 (MSE(¶, 3)). In our view they give
more details.

Efficient, High-Quality Force-Directed Graph Drawing 59

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 10. Drawings of add32 by MSE(¶) (left) and MSE(2) (right).

Figure 11. Drawings of add32 with a weaker repulsive force by MSE(¶, 2) (left) and
MSE(¶, 3) (right).

Figure 12 gives the drawings of sierpinski10. In [2] Walshaw uses a 3D layout
since he found 2D layout unsatisfactory. We found our 2D layout to be good,
particularly MSE(2). MSE(¶) demonstrates again the peripheral effect. The
strong repulsive force pushes some of the vertices out. The bottom of Figure 12
shows the result of using a general repulsive force model (3) with weaker force
given by p = 2, which does not suffer from the peripheral effect.

60 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 12. Drawings of sierpinski10 by MSE(¶) (left), MSE(2) (middle), and MSE(¶, 2)
(right).

Figure 13 gives drawings of mesh100. Compared with the drawing in
Figure 18(b) of [2], our drawings bear a closer resemblance to the actual mesh
given in Figure 18(a) of [2].

Figure 13. Drawings of mesh100 by MSE(¶) (left) and MSE(2) (right).

Overall, our algorithms give comparable drawings to those in [2]. For difficult
graphs, notably finan512 and sierpinski10, we achieve more appealing drawings.
The general repulsive force model (3) offers choices to overcome the peripheral
effect and can sometimes give more appealing drawings. As a further example,
Figure 14 shows a good alternative drawing of finan512, by using a slightly
weaker repulsive force. A comparison with Figure 8 (left), shows that without a
very strong repulsive force to push them outward, some of the “spikes” now
point inward. We found that further weakening of the repulsive force would
cause the circle not to be rounded, much like what happens in Figure 8 (right).

Efficient, High-Quality Force-Directed Graph Drawing 61

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 14. An alternative drawing of finan512 by MSE(¶, 1.3).

· 6.3. Comparing the Spring-Electrical Model with the Spring Model
In addition to efficiency considerations that favor the spring-electrical model, we
also found that compared with the spring model, it gives good drawings for most
graphs. The spring model, on the other hand, works particularly well for graphs
originated from uniform or near-uniform meshes, albeit requiring more CPU
time. The spring model works well for such graphs because it is possible to lay
them out so that the physical distance is very close to the graph distance of
vertices.

For example, Figure 4 (right) gives a drawing of jagmesh1 using MSE(¶). It is
seen that closer to the outer boundary, the peripheral effect of the spring-electri-
cal model is obvious. This effect can be reduced using a weakened repulsive
force, as Figure 15 (left) shows using MSE(¶, 2). However, the spring model,
MS(4), gives probably the most appealing drawing, as shown in Figure 15 (right).
The same happens to sierpinski10 (Figure 16) and mesh100 (Figure 17). Both
come very close to what the graphs look like in their original layout, in
Figure 17(a) and Figure 18(a) of [2]. MS(4) also draws the data graph quite well,
compared with MSE(¶), as shown in Figure 18.

62 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 15. Alternative drawings of jagmesh1 of Figure 4 by MSE(¶, 2) (left) and MS(4)
(right).

Figure 16. A drawing of sierpinski10 using MS(4).

Efficient, High-Quality Force-Directed Graph Drawing 63

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 17. A drawing of mesh100 using MS(4).

Figure 18. Drawings of data using MS(4) (left) and MSE(¶) (right).

However, for graphs that come from a locally refined mesh, the spring model
works poorly. For example, Figure 19 shows the drawing of 4elt by MS(4) (right)
and MSE(¶). It is clear that MS(4) strives to draw the graph as uniformly as

64 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

possible, but since this is not possible for such a highly refined graph, and in the
absence of a strong long-range repulsive force, a lot of foldings occur near the
highly refined regions. Therefore, overall we favor the multilevel SE algorithm
for its efficiency and general good quality of drawings.

Figure 19. Drawings of 4elt by MSE(¶) (left) and MS(4) (right).

· 6.4. Further Examples
In this section we demonstrate our algorithms with further examples from the
University of Florida Sparse Matrix Collection
(www.cise.ufl.edu/research/sparse/matrices). Three of the graphs (skirt, bodyy6
and pwt) have known layouts. Table 3 describes the graphs and the CPU time
taken to lay these out in 2D.

Graph » V » » E » Diameter Graph Type CPU

skirt 12598 91961 981 NASA matrix 8.4

bodyy6 19366 57421 122 NASA matrix 14.4

pwt 36519 144794 2622 NASA matrix 25.0

pkustk01 22044 478668 26 Beijing botanicalexhibition hall 14.3
pkustk02 10800 399600 33 Feiyue twin tower building 9.5

Table 3. Problem description and CPU time (in seconds) for some graphs. 1 : skirt has
seven components; four of them are nontrivial and have diameters 98, 68, 68, and 39,
respectively. 2 : pwt has 57 components, 56 components are just a single vertex.

Figure 20 shows the original layout of the skirt graph. It is surprising to us that
this mesh actually consists of seven components; three of these are just an iso-
lated vertex. Of the four nontrivial components, one is the main tube and nozzle,
another is the skirt/struts at the bottom of Figure 20 (right). The other two

Efficient, High-Quality Force-Directed Graph Drawing 65

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

components are the two “rings” connecting the main tube/nozzle and the skirt.
They are seen in Figure 20 (right) as one thick horizontal belt.

Figure 21 shows the drawings of the tube/nozzle and the skirt/struts. The
tube/nozzle has a much finer mesh near the nozzle end, thus the drawing has the
nozzle part expanded. The drawing of the skirt/struts is interesting. In the
drawing, two struts protruding out of Figure 21 (left) are drawn separated from
three pieces of the skirt, revealing the weak linkage between the struts and the
pieces of skirts.

Figure 20. Original layout of skirt: two views.

Figure 21. Drawings of two components of skirt by MSE(¶): the skirt/struts (left); the
tube/nozzle (right).

Figure 22 (left) shows the original layout of a highly refined mesh. The mesh is
highly refined around the middle void and to its right. The drawing algorithm, in
its effort to draw edges as uniformly as possible, turned the mesh inside out
(Figure 22, right). The hole in the middle is actually the middle void in the
original mesh. The original mesh is so highly refined to the right of the middle
void that the drawing shows a folding. However, contrary to our intuition, using
algorithms MSE(¶, 2) or MSE(2), both having a weaker repulsive force, removes
the folding (Figure 23). So it seems the folding is due to the strong repulsive
force of the spring-electrical model, another example of the peripheral effect.
The original mesh is nearly symmetric and all the drawings also exhibit good
symmetry.

66 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 22. Original layout of bodyy6 (left) and drawing by MSE(¶) (right).

Figure 23. Drawings of bodyy6 using MSE(¶, 2) (left) and MSE(2) (right).

Figure 24 (left) shows the pwt mesh, which is probably a mesh for a pressured
wind tunnel. The drawing by MSE(¶) corresponds to the original layout well.
The large chamber in the original mesh has a mesh density similar to the pipe
and is thus indistinguishable from the pipe in the drawing. In Figure 25 close-up
views of the smaller chamber in the original layout and our corresponding
drawing are given. The drawing depicts the details well.

Efficient, High-Quality Force-Directed Graph Drawing 67

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 24. Original layout of pwt (left) and a drawing by MSE(¶) (right).

Figure 25. Close-up view of the original layout of pwt (left) and a drawing by MSE(¶)
(right).

Finally, Figure 26 shows drawings of pkustk01 and pkustk02. These two graphs
have high average degrees (43 and 74, respectively). However, judging by the
drawings, our algorithms performed very well.

68 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Figure 26. Drawings of pkustk01 (left) and pkustk02 (right) using MSE(¶).

‡ 7. Conclusions and Future Work
In this article we proposed an algorithm that uses a multilevel approach to find
global optimal layouts and the octree technique to approximate short- and
long-range forces satisfactorily and efficiently. These two techniques were each
proposed earlier for graph drawing [2, 16, 18], but as far as we are aware, were
never combined to form one powerful algorithm for large-scale graph drawing. A
number of practical techniques, including adaptive step and octree depth control,
and a hybrid coarsening scheme, were introduced for the algorithm to work
effectively. This algorithm is demonstrated to be both efficient and of high
quality for large graphs, competitive to Walshaw’s [2] highly successful graph
drawing algorithm, yet gives better drawings on some difficult problems.

We also proposed a general repulsive force model to overcome the peripheral
effect of the spring-electrical model. Finally, we compared the spring-electrical
model with the spring model and demonstrated examples where the spring
model may be suitable.

Both the multilevel approach and the octree data structure do have limitations.
For example, both the EC coarsening scheme and the MIVS-based coarsening
scheme would not work effectively on star graphs (a graph with one vertex
connected to all other vertices and no two other vertices connected). The former
would coarsen too slowly thus having unacceptable complexity, while the latter
would coarsen too fast and not preserve the graph information on the coarser
graphs. The parameter q in the Barnes and Hut octree algorithm is empirically
fixed (to 1.2 in all our drawings). We experienced one case where this value gives
an artifact only corrected with a smaller value q = 0.8. It may be possible to
correct this artifact without changing the q value by adding a random offset to
the first square of the octree. These limitations remain a topic for further investi-
gations. However, in general the proposed algorithm performed extremely well
on a range of graphs from different application areas, a small number of which
were shown.

The graph drawing algorithm presented in this article is in the Mathematica 5.1
release (November 2004).

Efficient, High-Quality Force-Directed Graph Drawing 69

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

After the completion of this article, our attention was drawn to an independent
work by Hachul and Jünger [28]. In that paper, the multilevel approach is com-
bined with the multipole expansion technique [29] to give a
OH » V » logH » V »L + » E »L algorithm. The efficiency and quality of the algorithm
in that paper appear to be at the same level as this article, although many details
differ, including the multilevel scheme and the force approximation.

‡ Acknowledgments
The author would like to thank Chris Walshaw for providing the graphs in
Table 1 and Andrew A. de Laix for bringing space decomposition techniques to
my attention.

‡ References
[1] J. Barnes and P. Hut, “A Hierarchical O(n log n) Force-Calculation Algorithm,” Nature,

324(4), 1986 pp. 446–449.

[2] C. Walshaw, “A Multilevel Algorithm for Force-Directed Graph Drawing,” Journal of
Graph Algorithms and Applications, 7(3), 2003 pp. 253–285.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for
the Visualization of Graphs, Englewood Cliffs, NJ: Prentice Hall, 1999.

[4] T. M. J. Fruchterman and E. M. Reigold, “Graph Drawing by Force-Directed Placement,”
Software—Practice and Experience, 21(11), 1991 pp. 1129–1164.

[5] P. Eades, “A Heuristic for Graph Drawing,” Congressus Numerantium, 42, 1984
pp. 149–160.

[6] N. R. Quinn and M. A. Breuer, “A Force Directed Component Placement Procedure for
Printed Circuit Boards,” IEEE Transactions on Circuits and Systems, CAS-26(6), 1979
pp. 377–388.

[7] T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Graphs,”
Information Processing Letters, 31(1), 1989 pp. 7–15.

[8] Y. Koren, L. Carmel, and D. Harel, “Drawing Huge Graphs by Algebraic Multigrid
Optimization,” Multiscale Modeling and Simulation, 1(4), 2003 pp. 645–673.

[9] D. Harel and Y. Koren, “Graph Drawing by High-Dimensional Embedding,” Journal of
Graph Algorithms and Applications, 8(2), 2004 pp. 195–214.

[10] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for Irregular Graphs,”
Journal of Parallel and Distributed Computing, 48(1), 1998 pp. 96–129.

[11] B. Hendrickson and R. Leland, “A Multilevel Algorithm for Partitioning Graphs,”
Technical Report SAND93-1301, Albuquerque, NM: Sandia National Laboratories,
1993. Also in Proceeding of Supercomputing’95 (SC95), San Diego, CA
www.supercomp.org/sc95/proceedings/509_BHEN/SC95.HTM.

[12] C. Walshaw, M. Cross, and M. G. Everett, “Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes,” Journal of Parallel and Distributed Computing, 47(2),
1997 pp. 102–108.

[13] D. Harel and Y. Koren, “A Fast Multi-Scale Method for Drawing Large Graphs,” Journal
of Graph Algorithms and Applications, 6(3), 2002 pp. 179–202.

[14] R. Hadany and D. Harel, “A Multi-Scale Algorithm for Drawing Graphs Nicely,”
Discrete Applied Mathematics, 113(1), 2001 pp. 3–21.

70 Yifan Hu

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

[15] P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A Fast Multi-Dimensional Algorithm for
Drawing Large Graphs,” Lecture Notes in Computer Science, 1984, New York:
Springer-Verlag, 2000 pp. 211–221.

[16] D. Tunkelang, “A Numerical Optimization Approach to General Graph Drawing,”
Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
1999.

[17] A. Quigley and P. Eades, “Fade: Graph Drawing, Clustering, and Visual Abstraction,”
Lecture Notes in Computer Science, 1984, New York: Springer-Verlag, 2000
pp. 183–196.

[18] A. Quigley, “Large Scale Relational Information Visualization, Clustering, and Abstrac-
tion,” Ph.D. thesis, Department of Computer Science and Software Engineering,
University of Newcastle, Australia, 2001.

[19] R. Davison and D. Harel, “Drawing Graphs Nicely Using Simulated Annealing,” ACM
Transactions on Graphics, 15(4), 1996 pp. 301–331.

[20] R. Fletcher, Practical Methods of Optimization, 2nd ed., New York: John Wiley & Sons,
2000.

[21] K. J. Pulo, “Recursive Space Decompositions in Force-Directed Graph Drawing Algo-
rithms,” in Proceedings of the Australian Symposium on Information Visualisation
(InVis.au 2001), Sydney, Australia (P. Eades and T. Pattison, eds.), Conferences in
Research and Practice in Information Technology Series, 9, Darlinghurst, Australia:
Australian Computer Society, 2001 pp. 95–102.

[22] S. Pfalzner and P. Gibbon, Many-Body Tree Methods in Physics, New York: Cambridge
University Press, 1996.

[23] A. Gupta, G. Karypis, and V. Kumar, “Highly Scalable Parallel Algorithms for Sparse
Matrix Factorization,” IEEE Transactions on Parallel and Distributed Systems, 8(5), 1997
pp. 502–520.

[24] Y. F. Hu and J. A. Scott, “A Multilevel Algorithm for Wavefront Reduction,” SIAM
Journal on Scientific Computing, 23(4), 2001 pp.1352–1375.

[25] C. Walshaw, “A Multilevel Approach to the Travelling Salesman Problem,” Operations
Research, 50(5), 2002 pp. 862–877.

[26] C. Walshaw, “Multilevel Refinement for Combinatorial Optimisation Problems,” Annals
of Operations Research, 131, 2004 pp. 325–372; originally published as University of
Greenwich Technical Report 01/IM/73, 2001.

[27] S. T. Barnard and H. D. Simon, “A Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems,” Concurrency: Practice and Experience,
6(2), 1994 pp. 101–117.

[28] S. Hachul and M. Jünger, “Drawing Large Graphs with a Potential-Field-Based Multilevel
Algorithm,” in Proceedings of the Twelfth International Symposium on Graph Drawing
(GD 2004), New York (J. Pach, ed.), Lecture Notes in Computer Science, 3383, New
York: Springer-Verlag, 2004 pp. 285-295.

[29] L. F. Greenguard, The Rapid Evaluation of Potential Fields in Particle Systems, ACM
Distinguished Dissertations Series, Cambridge, MA: The MIT Press, 1988.

Yifan Hu
Senior Developer
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820, USA
yifanhu@wolfram.com

Efficient, High-Quality Force-Directed Graph Drawing 71

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

