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the user to tightly characterize his tra�c in advance[1]. This is true even for stored media such as video-on-demand, as the user is expected to be able to ex-ercise interactive control (such as pause, fast-forwardetc.) As a result, tra�c speci�cations can be expectedto be quite loose. Second, there exists a modelingtradeo� between the ability to police and the statis-tical multiplexing gain. Deterministic models such asleaky buckets are easy to police, as they specify theworst-case behavior of tra�c on a single time-scale,but they fail to provide a su�cient characterization toextract a large fraction of the potential statistical mul-tiplexing gain. While a sequence of leaky buckets canapproach such a multiple time-scale characterization,the number of model parameters grows accordingly[2]. Stochastic models such as those based on e�ectivebandwidth are better suited to achieve good statisticalmultiplexing gain, but at the expense of policing [3].It is not clear how to ensure that a tra�c ow corre-spond to the speci�ed parameters, without which calladmission control can easily be \fooled".In this paper, we focus on a di�erent approach, inwhich admission control decisions are made based onnetwork measurements alone. Instead of assuming astatistical or worst-case model for the tra�c, the be-havior of the current calls are monitored, and this in-formation is used to make admission decisions. Thismeasurement-based approach alleviates the burden onthe users to provide accurate tra�c models, and thusis a more practical approach for achieving statisticalmultiplexing gain with variable-rate tra�c.In this paper, we concentrate on a single-link bu�er-less model for the network. The QOS measure is theprobability of network overload when the aggregatebandwidth requirements of the calls currently in thesystem exceeds the link capacity. The goal of admis-sion control is to keep this overload probability belowa desired threshold while minimizing the call blockingprobability, or equivalently, maximizing the utilization



of the network. We restrict ourselves to the homoge-neous case, in which the statistical behavior of callsare similar.The speci�c admission control scheme we are inves-tigating is of the certainty equivalent type. The admis-sion controller assumes that the measured statisticsare the true statistics of the calls, and uses the infor-mation to make decisions in the same way as a con-troller which has perfect a priori knowledge of the callstatistics. Certainty-equivalent controllers are gener-ally sub-optimal, as they do not take the measurementerrors into account. We shall examine the impact ofsuch measurement errors on the performance of theschemes via both theoretical analysis and simulationswith synthetic and real tra�c.Our main theoretical result is that in the regime oflarge link capacities and separation of call and bursttime-scale, a memoryless certainty-equivalent controlcan achieve the performance of an optimal schemewith knowledge of the tra�c statistics. The proof ofthis result yields the important insight that it is essen-tial to consider the dynamics of the controlled systemto gain a full understanding of its performance. Thus,even though the controller is prone to measurementerrors at any single admission decision, it turns outthat in the above parameter regime, overload occursonly after a succession of admission mistakes, which isan unlikely event.Past work on measurement-based admission con-trol [4], [5], [6] have either ignored measurement errorsor assumed a static situation where calls do not ar-rive or depart the system and there is arbitrarily longtime to make accurate measurements. Recent workby Gibbens et. al. [7] advocates the explicit incorpo-ration of call-level dynamics into the model and pro-vides much inspiration to the present work. However,there are several major di�erences. First, the separa-tion of time-scale assumption is already built into theirmodel, whereas we deal directly with the interplay be-tween call and burst dynamics. Given that a lot oftra�c sources have long-range structure, such a sep-aration of time-scale assumption should not be takenfor granted a priori. However, due to this complexityin our model, we have to resort to a combination ofasymptotic large deviations analysis and simulations.Second, the focus of their work is on the use of priorknowledge about the sources, whereas our scheme usesno such information. Lastly, the performance of theirschemes are evaluated on on-o� sources, whereas wetest on real multi-level tra�c sources.We conclude this section by outlining two reasonsfor focusing on a bu�erless model. First, the dynamicsleading to the overload event in a bu�erless system ismuch simpler than that of overowing in a bu�eredsystem, as the event occurs whenever the instanta-

neous aggregate tra�c load exceeds the link capacity.This simpli�cation allows us to focus on the measure-ment problem that is of central interest in this pa-per. Second, recent work on multiple time-scale tra�c[8] such as compressed VBR video has indicated thata signi�cant bulk of the statistical multiplexing gaincan be obtained by a Renegotiated Constant Bit Rate(RCBR) service. In this service model, bu�ering onlyoccurs at the network edge. Bandwidth renegotiationsfail when the current aggregate bandwidth demand ex-ceeds the link capacity, and the renegotiation failureprobability is the QOS measure of this service. Thus,our bu�erless model is directly applicable to this prob-lem.2 Analysis2.1 Basic ModelThe network resource is a single bu�erless link withcapacity C. Calls arrive according to a Poisson pro-cess at rate � and stay for an exponential distributedtime with mean T if admitted. The calls have iden-tical bandwidth requirement statistics, described by acontinuous-time ergodic Markov uid process. Thereare K states in the Markov process, and a call gener-ates uid at rate of �k in state k. The transition ratefrom state k to state l is rkl. Let �k be the steady-state probability that the source is at state k. Also,assume that when a call begins to transmit data, theMarkov process is at steady state. The uid processesof di�erent calls are assumed to be independent.A measurement-based admission control scheme de-cides whether to accept a new call based on the ob-served past history of calls that are currently in thesystem and possibly those that have already departedthe system. Note that given any admission controlscheme, the entire system is a stationary process.We are interested in two performance measures of ascheme: the steady-state probability of the event thatthe system overloads, i.e. the instantaneous aggregateuid rate of calls in the system exceeds C, and the ex-pected fraction of the total bandwidth utilized. For agiven arrival rate, maximizing the latter is equivalentto minimizing the blocking probability. The successof the admission control scheme is evaluated by howwell it meets the QOS-requirement (in terms of over-load probability) and how close its bandwidth utiliza-tion is to that of the optimal scheme which knows thebandwidth requirements statistics a priori.Suppose the statistics of each call is known a priori.Then one can estimate the overload probability giventhe number of calls in the system. For large numberof calls, an accurate approximation is the Cherno�'sestimate: the probability of overload when there are



m calls in the system is approximatelyexp(�mL�(Cm )) (1)whereL�(�) = supr>0[�r�L(�)]; L(r) = log( KXi=1 �k exp(�kr))assuming that the average rate �� of each call is lessthan Cm so that overloading is indeed a rare event.This is the well known approximation for the tail ofthe distribution of the sum of n i.i.d. random variableshaving the stationary bandwidth requirement distri-bution of a call. To satisfy a desired overload prob-ability pqos, one can a priori compute the maximumnumber of callsm� such that the above approximationis less than pqos. The admission control is simply toaccept a new call if there are less than m� calls in thesystem, and reject it otherwise. The notion of e�ec-tive bandwidth for bu�erless system is developed usingthis approximation [3]; in this homogeneous case, thee�ective bandwidth of a call is simply Cm� .Now we should focus on the problem of interest,when no prior information about the statistics of thecalls is available. The idea now is to estimate thestatistics of the calls from observing their past empir-ical behavior. We will study a very simple scheme tofocus on the essential issues. Motivated by the recentwork of Gibbens et al. [7] on measurement-based ad-mission control, we consider a scheme which is mem-oryless, i.e. every time a new call arrives, the schemeuses only information about the current state of thenetwork in making the decision of accepting or reject-ing the call. More speci�cally, the scheme determinesthe number of calls nk(t) that is currently generatingdata at rate ck, for each k (k = 1; : : : ;K). This yieldsan empirical distribution f�̂kg of bandwidth require-ments for a typical call, where �k = nk(t)x(t) and x(t) isthe number of calls currently in the system at time t.The idea is to use f�̂kg to estimate the distributionf�kg of the bandwidth requirements throughout theentire lifetime of a call. The admission criterion forthe new call for a given threshold pqos on the renego-tiation failure probability is taken to be:exp��L̂� � Cx(t) + 1� � (x(t) + 1)� � pqos (2)and KXk=1 �̂k�k < C (3)whereL̂(r) = log KXk=1 �̂k exp(�kr) L̂�(�) = maxr>0 [�r�L̂(r)]

Note that the left hand side of inequality (2) is theCherno� approximation of the failure probability fora system with n + 1 calls each with bandwidth re-quirements distributed as f�̂kg. Thus, this admissioncontrol scheme is of the certainty-equivalent type: thecontroller assumes that the measured values are thetrue parameters and acts like the optimal controllerwhich has perfect knowledge of the values of those pa-rameters.2.2 Asymptotic AnalysisTo get some insights into the dynamics of thisscheme and to compare its performance to the schemewith perfect knowledge, we will consider a uid ap-proximation as well as a large deviations analysis forthe above model. Such an analysis is relevant in theasymptotic regime of large link capacity and small lossprobabilities.Let the total capacity be scaled as C � n, and thecall arrival rate as �nT , where n is a large parameter.Thus, n��� is the o�ered load, and ��� is the o�ered uti-lization, i.e. o�ered load normalized by the the linkcapacity. Keeping the ratio of o�ered load to systemcapacity �xed in this scaling means that we are assum-ing that the link capacity is sized so that it is of thesame order of magnitude as the demand. Also, notethat the o�ered load is independent of the average callholding time. We also set the quality-of-service re-quirement pqos = exp(�n�qos), for a parameter �qoswhich speci�es the exponential decay rate. Thus, thelarger the system, the more stringent is the QOS re-quirement.To explain ideas in the simplest terms, let us focuson two-state on-o� sources. When it is on, the sourcetransmits uid at the peak rate of 1; when it is o�,rate 0. Let p be the steady-state probability that asource is on, i.e. its mean rate is p. By an appropriatenormalization of the time unit, we can assume thatthe on-to-o� transition rate is 1� p and the o�-to-ontransition rate is p.2.2.1 Known StatisticsConsider �rst the case when admission control is doneusing the Cherno�'s estimate eqn. (1) of the overloadprobability based on perfect prior knowledge of thesource statistics. For the n th system, let G�n(t) andH�n(t) be the total number of calls in the system andthe number that are on at time t respectively. (The su-perscript `*' denotes quantities associated with schemewith perfect prior knowledge.) De�ne the scaled pro-cesses: X�n(t) � G�n(t)n ; Z�n(t) � H�n(t)nand let u�(n; T ) � E[Z�n(t)] be the average utilization.



(We indicate explicitly the dependence on the meancall holding time T .). Also, let p�(n; T ) be the over-load probability.For the nth system, the maximum number of callsm�(n) admitted under the admission control is thelargest m such thatmL�( nm ; p) � n�qos and nm � pwhere L� is large deviations rate function for on-o�sources with mean rate p. It can be explicitly calcu-lated as:L�(�; p) = � log(�p ) + (1 � �) log(1� �1� p ) (4)for � 2 [0; 1] and equals 1 otherwise. Note thatL�(1; p) = � log p, correspond to the exponent of theprobability that all sources are on.As n! 1, it can be seen that m�(n)n converges tox�(�qos) which is the largest x 2 [1; 1p ] satisfying:xL�( 1x ; p) � �qosor equivalently,� log(xp) + (x� 1) log x� 1x� xp � �qosIf �qos � � log p, then x�(�qos) is the unique solutionto the equation� log(xp) + (x� 1) log x� 1x� xp = �qosOn the other hand, if �qos > � log p, then x�(�qos) = 1.In this case, the QOS requirement is too stringent (rel-ative to the burstiness of the tra�c) such that peak-rate admission control has to be done. The system willnever overload but also no statistical multiplexing gainis possible.We now examine the behavior of the system asn ! 1. It can be seen that typical behavior of thescaled system is well approximated by a uid limit inwhich calls arrive at a deterministic rate of �T and theytransmit data at the mean rate of p once they are ad-mitted into the system. The expected utilization ofthe system in this uid limit depends on the o�eredrate �:limn!1u�(n; T ) � u�1 = � �p if � < x�(�qos)x�(�qos)p if � > x�(�qos)where x�(�qos) is computed as above. In the �rst case,the o�ered load is su�ciently low such that almost allcalls are admitted. In the second case, the o�eredload is too high so that to maintain the desired QOS,

a fraction of the o�ered calls has to be rejected. Inthis case, the number of calls in the system most of thetime is close to the maximumpossible for a given QOS.Moreover, since the number of calls in the system isno greater than x�(�qos) at all times, it is clear thatby de�nition of x�(�qos), that the QOS is satis�ed, i.e.for all T , limn!1 1n logp�(n; T ) � ��qos:In particular, in the case when x�(�qos) = 1,p�(n; T ) = 0 for all n and T . In the case whenx�(�qos) > 1 and � > x�(�qos), the QOS is satis�edexactly (in an exponential sense) for large call holdingtime T , i.e.limT!1 limn!1 1n log p�(n; T ) = ��qos:2.2.2 Unknown StatisticsWe now turn to an asymptotic analysis of the memo-ryless admission control scheme. In analogous to theprevious analysis, for the nth system, let Gn(t) andHn(t) be the total number of calls in the system andthe number that are on at time t respectively, underthe memoryless admission control scheme. Note that(Gn(t);Hn(t)) is the state of the system at time t.De�ne the scaled processes:Xn(t) � Gn(t)n ; Zn(t) � Hn(t)nand let u(n; T ) � E[Zn (t)] be the average utilization.Also, let p(n; T ) be the overload probability. Our goalis to compare the average utilization and the over-load probability to the corresponding quantities underthe scheme with perfect prior knowledge, for n growslarge.The measurement-based scheme estimates thestatistics of the sources under their current band-width requirements. In the case of on-o� sources,the only parameter to estimate is p, the mean band-width requirement. The estimate p̂(t) of p at time tis p̂(t) = Hn(t)Gn(t) . Using the certainty-equivalent admis-sion criterion (2), a call is admitted at time t if andonly ifL�( nGn(t) + 1; p̂(t)) � n�qos and Hn(t) < n(5)where L� is given by eqn. (4).The scaled process (Xn(t); Zn(t)) is a jump Markovprocess on the state space S(n) � f( in ; jn ) : 0 � j � ig.De�ne the setsS(n)a � �� in; jn� 2 S(n) :



L�� ni+ 1; ji� � n�qos and jn < 1�S(n)r � S(n) � S(n)aNew calls are admitted if the state of the system isin S(n)a and rejected if in S(n)r . For large n, the scaledprocesses (Xn(t); Zn(t)) converge to a uid limitwhichtake values in a two dimensional continuous statespace S � f(x; z) : 0 � z � xg. The regions S(n)aand S(n)r converge into two regions in S divided by aboundary. De�ne f on S asf(x; z) = � � log z + (x� 1) log x�1x�z if x � 11 elseThen in the region Sa � f(x; z) 2 S : f(x; z) ��qos; z < 1g, calls are accepted where in the comple-ment Sr, calls are rejected. We shall call Sa the ac-ceptance region and Sr the rejection region. It shouldbe noted that this partitioning depends both on thenumber of sources x in the system and the number zwhich are on, whereas in the case with known sourcestatistics, it depends only on the number of sourcesx which are on (i.e. whether x � x�(�qos)). This isthe essence of the di�erence between a measurement-based scheme and one with known statistics.
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Figure 1: State space of uid limit.We shall now gather more information about theboundary. Clearly, (x; z) 2 Sa if x � 1. (No pos-sibility of overload even if all sources in the systemtransmit at peak rate.) For x � 1, (x; z) 2 Saif f(x; z) � �qos and z < 1. Further analysis re-veals that one can �nd a function g such that thiscondition is equivalent to z � g(x), where g satis-�es f(x; g(x)) = �qos and has the properties that:1)limx!1+ g(x) = exp(��qos); 2) g(x) decreases mono-tonically with x; and 3) limx!1 g(x) = z� wherez� > 0 satis�es z� � log z� � 1 = �qos

Note that when there are x sources, g(x)x is the meanrate of each source such that the overload probabil-ity requirement is just satis�ed. For the number ofsources x close to 1 (link capacity), the only way tohave an overload event is for all sources to transmit atpeak rate. To satisfy the desired QOS, the mean rateof each source should then be exp(��qos). Properties(2) and (3) imply that as there are more sources inthe system, the maximum number of them that canbe on and still permits new admissions decrease, andmoreover approaches a non-zero limit as x goes to in-�nity. The situation is depicted in Figure 1. Note thatthe boundary consists of two segments: z = g(x) forx 2 (1;1) and x = 1 for z 2 (exp(��qos); 1). Also,the boundary partitions the state space into two con-nected regions.In the uid limit, the process follows a deterministicvector �eld starting from any initial point. In regionSa, calls are accepted into the system at determinis-tic rate �T , while in region Sb, the acceptance rate iszero. We now �nd the stable equilibrium points of thevector �eld and thus compute the average utilizationin the uid limit. First, one can easily see that thestable equilibrium points must lie on the line z = px,since p is the (true) mean rate of each source. As aconsequence of the law of large numbers, the typicalfraction of sources in the system that are on must bep. Moreover, there are no stable equilibrium pointsstrictly inside the rejection region Sr, since in thisregion, sources leave the system and no new sourcesenter. Thus, the stable equilibrium points must bestrictly inside Sa or on the intersection of the bound-ary and the line z = px.Suppose the line z = px intersects the boundaryat the point (x�(�qos); px�(�qos)). If �qos � � log p,the intersection is with the segment z = g(x), andx�(�qos) � 1 satis�es the equation:� log(xp) + (x� 1) log x� 1x� xp = �qosIf �qos > � log p, the intersection is with the segmentx = 1, and x�(�qos) = 1. Note that x�(�qos) is pre-cisely the maximum (scaled) number of calls that thescheme with perfect knowledge of the source statis-tics would admit. If � < x�(�qos), the (unique) stablepoint (�x; �z) is (�; �p), which lies strictly inside Sa. Inthis case, almost all calls are accepted. If � � x�(�qos),the stable equilibrium point (�x; �z) is on the bound-ary: (x�(�qos); px�(�qos). In this case, a fraction ofthe calls are rejected. Thus, the stable equilibriumfor the uid limit under the measurement-based ad-mission control is exactly the same as that under thescheme with perfect knowledge. This implies that theaverage utilization under the two schemes are asymp-



totically the same as n!1, i.e.limn!1 u(n; T )u�(n; T ) = 1 (6)We now turn to an analysis of the overload proba-bility p(n; T ) under the memoryless admission controlscheme. This corresponds to the event O = f(x; z) :z > 1g. Since this set does not contain the stable equi-librium, it is a rare event for n large, with probabilitydecaying exponentially with n. We have:p(n; T ) � exp[�nI�(T )] (7)where I�(T ) = inf(~r(�);�)2F Z �0 l(~r(t); _~r(t))dt (8)and F = f(~r(�); � ) : ~r(0) = (�x; �z); ~r(� ) 2 Og (9)Thus, the exponent is given by the cost of the cheapestpath starting from the equilibrium point and leadingto an overload. This is in accordance with Laplace'sprinciple: the probability of the most likely way fora rare event to happen is approximately the same asthe probability of the rare event. Here, l(x; z;~v) is thelocal rate function, which gives the cost of travelingwith velocity ~v at the state (x; z).At present, we do not have a rigorous large devia-tions limit theorem justifying the approximation (7);thus, it is only a heuristic. To have such a theorem,we need to prove a large deviations principle for thescaled processes (Xn(�); Zn(�)), which have discontin-uous jump rates across a curved boundary. Dupuisand Ellis [9] have proved a large deviations principlefor discrete-time processes with jump rates across astraight boundary, and Alanyali and Hajek [10] hasproved one for continuos-time processes. The localrate function we use is a natural generalization oftheirs.Our main result about the overload probability per-formance is the following.Theorem 2.1 If x�(�qos) > 1 and � � x�(�qos) thenlimT!1 I�(T ) = �qosIf x�(�qos) = 1 or � < x�(�qos) thenlimT!1 I�(T ) � �qosThe �rst case corresponds to the situation when thestable equilibrium is on the segment z = g(x) of the

boundary, whereas the second is when the equilibriumis on the segment x = 1 or in the interior of Sa.A large T means that the average call holding timeis much longer than the time-scale of the uctuation ofthe bit-rate of the sources, and thus implies a regimeof separation of call and burst time-scales. Thus, forlarge T , the memoryless scheme satis�es the QOS re-quirement in terms of the exponential decay rate of theoverload probability, and also performs asymptoticallyas well as the scheme which have perfect prior knowl-edge in terms of average utilization (from (6)). Wecan conclude that for large capacities and a separationof time-scales, the memoryless scheme is asymptoti-cally optimal. This is somewhat surprising since themeasurement-based scheme has no a priori knowledgeabout the sources and only uses information about thecurrent state of the network to make admission deci-sions. Due to space limitation, we shall only outlinethe intuition behind the proof of this result.If the statistics of the bandwidth requirements ofthe call were known, then the maximum number ofcalls allowed in the system, approximately nx�(�qos),can be determined, such that the overload probabil-ity when there are that many calls in the system sat-isfy the QOS requirements. The measurement-basedscheme essentially tries to estimate nx�(�qos) basedon observing the current state of the network. Dueto statistical uctuations in the bandwidth require-ments of the calls, the estimate may be too high dueto atypically large number of calls being o�. Thismay result in the control scheme making a mistakein accepting a new call which it should have rejected.However, the key point is that for a large system, theoverload probability will deteriorate signi�cantly onlyif the number of calls in the system is considerablylarger than nx�(�qos); thus, making an occasional mis-take in admitting a call is not fatal. Rather, makinga succession of mistakes in accepting calls will lead toserious degradation in performance. However, becauseof the separation of the time-scales of call arrivals anductuations of bandwidth requirements, it is very un-likely for the state of the network to remain atypicalover the period of time for the arrivals of a successionof calls. In fact, it can be shown that the probabil-ity of making a succession of mistakes is much smallerthan that of overload due to having a typical numbernx�(�qos) of calls in the system but atypically largenumber of calls being on.This intuition can be translated into a proof of The-orem 2.1 via an analysis of the costs of the paths inF (the set of paths leading to overload, as de�nedin (8)) as T grows large. Two candidate paths aredepicted in Fig. 1. Suppose the stable equilibriumis (x�(�qos); px�(�qos)) on the segment z = g(x) ofthe boundary. Consider the straight-line path P1 =



f(x�(�qos); z) : z 2 [px�; 1]g. This corresponds to theevent that the measurement-based scheme estimatesthe maximum admissible number of calls nx�(�qos)correctly, and overload occurs during call rejectionphase with nx�(�qos) calls in the system but an atyp-ical fraction of them turning on. Also, no call departsthe system during this phase. We observe that as theaverage call holding time increases, the cost of thispath approaches �qos, since the probability of overloadwhen there are nx�(�qos) calls permanently in the sys-tem is approximately exp(�n�qos).Now let us consider alternate paths of which an ex-ample is P2, shown in Fig. 1. These paths consistsof two phases. In the �rst phase, calls are admittedby mistake due to an atypically large fraction of theexisting calls in the system turning o�. This phaseends at time �1, resulting in nx1 calls in the system,where x1 > x�(�qos). In the second phase, new callsare rejected, but many of the existing calls turn backon, resulting in overload. Let us consider the costsof these paths in the regime of large holding time T .First, observe that the call arrival rate is �T �n; hence,for those paths with �1 << T , the cost is high becauseit is unlikely to have n(x1�x�(�qos)) arrivals in dura-tion �1. On the other hand, for those paths with longduration �1, the cost is also high because it is unlikelyfor the calls in the system to be in an atypical statefor so long. Using similar logic, it can be shown thatthe costs of all paths bounded away from P1 go to in-�nity uniformly as average holding time T !1. Thisimplies that the cost of the cheapest path approaches�qos as T !1.We have only considered the case when the equilib-ria is on the segment z = g(x). For the cases whenthe stable equilibrium point is on the segment x = 1or in the interior of Sa, one can show that the cost ofthe cheapest path must in fact be greater than �qos.So far, we have focused on only on-o� sources forease and concreteness of exposition. The analysis andthe Theorem 2.1 carry over to the general case ofMarkov uid sources with general state space.3 ExperimentsIn the previous section, we obtained some analyt-ical insights into the performance of a memorylessmeasurement-based admission control scheme usinguid and large deviations analysis. Such results arevalid in the asymptotic regime of large link capaci-ties and for Markov sources. In this section, we willcomplement the theoretical investigations with simu-lation results for �nite-size systems and on both realand synthetic tra�c sources. In particular, we studythe following issues: 1) the impact of parameters suchas link capacity and o�ered load on the performanceof the memoryless scheme; 2) the appropriateness of

using Markov models in studying the performance ofmeasurement-based schemes on real tra�c sources.3.1 Basic Simulation Set-upOur simulation set-up is based on the RenegotiatedCBR (RCBR) service [8]. Each call is represented asan RCBR schedule, i.e., as a sequence of intervals overwhich the bandwidth consumed by the call is assumedconstant. This schedule represents the slow time-scaledynamics of the tra�c source. Times at which thebandwidth changes correspond to instants when thesource renegotiates for a new CBR rate. In this ser-vice, renegotiation fails when there is insu�cient ca-pacity in the link to cater for a requested bandwidth.Thus, this corresponds to the overload event in ourbu�erless model. For a real tra�c source, we use atwo-hour long MPEG-1 Star Wars trace [11], fromwhich the RCBR schedule is computed by the o�-lineoptimization algorithm presented in [8]. This schedulehas a peak-to-mean bandwidth ratio of about 5. Oneimportant advantage of using the RCBR set-up is e�-ciency: we do not simulate on a per video frame basisbut rather per renegotiation event. Since the particu-lar schedule we use has about one renegotiation every20 seconds on the average, this leads to an increasede�ciency of 2 to 3 orders of magnitude.In the simulations, calls arrive according to a Pois-son process. We measure both the average networkutilization and the renegotiation overload probability.We consider that the system state between time in-stants separated by more than twice the average calllength is independent. Therefore, each interval of thatsize provides us with one sample for these metrics.We collect samples until the 95%-con�dence intervalfor both metrics is su�ciently small with respect tothe estimated value (within � 30% of the estimatedvalue.) For the overload probability, we also stop if thetarget overload probability of 10�5 lies to the right ofthe con�dence interval, i.e., if we are con�dent thatthe actual failure probability is lower than the target.This is necessary in order to terminate simulationswithin reasonable time when the observed overloadprobability is very low (e.g. 10�8).3.2 Performance of Memoryless SchemeThe �rst set of experiments evaluates the impact ofthe link capacity and of the o�ered load on the per-formance of the memoryless scheme as de�ned by (2),where the desired overload probability pqos is chosento be 10�5.Arriving calls are randomly phase-shifted versionsof the entire RCBR schedule for the two-hour StarWars trace. Fig. 2 and 3 show the overload probabil-ity and the average network utilization respectively,plotted as a function of link capacity, expressed as amultiple of the call average rate, and the o�ered uti-lization, which is the o�ered load normalized by the



link capacity. The network utilization is normalized tothe utilization that is achieved with the same param-eter values when call admission is performed based onthe Cherno� approximation (1) and perfect knowledgeof the call's marginal distribution. Thus, for example,a value of 1 means that the memoryless scheme doesequally well as the scheme with perfect knowledge.
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Figure 2: Overload probability for call duration equalslength of entire trace
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Figure 3: Utilization for call duration equals length ofentire traceIt can be seen from Fig. 2 that the memorylessscheme performs poorly for small link capacities, sayless than 60. The overload probability is much largerthan the target of 10�5.3.3 Equivalent Markov ModelOur analysis in the previous section is based on aMarkov model of the tra�c source. It is therefore ofinterest to see how well a Markov model of a real tra�c

source can predict the performance of a measurement-based admission control scheme on the actual tra�csource. In particular, we would like to investigate ifthe long-range dependence in the correlation structure,postulated recently to be present in many types oftra�c, has any impact on the performance.For a real tra�c source, such as the Star WarsRCBR schedule, we obtain an Equivalent Markovmodel in the following way. We match both themarginal distribution �i of the bandwidth, as well asthe average residence time per bandwidth level �i. Thebandwidth is described by a random process that staysat one of the bandwidth levels �i for an exponentiallydistributed time with mean �i. It then jumps to a newbandwidth level �j with probability fj . The lengths ofthe intervals and the bandwidth levels within intervalsare individually and mutually independent. To matchthe marginal distribution, we want�i = fi�iPMj=1 fj�j : (10)Thus, fi = 0@ MXj=1 �j�j 1A �i�i : (11)Note that the actual expected residence time perbandwidth level is slightly higher than �i, as withprobability fi, the model selects the same bandwidthin two consecutive intervals1. We thus have a tra�cmodel that allows us to match the �rst-order charac-teristics of an RCBR trace, namely the marginal distri-bution of the bandwidth, and the mean residence timeper bandwidth level, but which exhibits an exponen-tially decreasing correlation function, and therefore nolong-range dependence (LRD).We now evaluate the performance of the memory-less scheme when the Equivalent Markov model of theStar Wars RCBR scheme is used. Figs. 4 and 5 showthe overload probability and utilization respectively inthe scenario when the bandwidth processes of calls aregenerated independently and according to the Equiva-lent Markov model of the Star-Wars schedule, and thecalls stay for the same duration as the entire trace (ap-prox. 2 hours). Comparing them to the correspondingFigs. 2 and 3 when the actual RCBR schedule is used,we see that the performance is quite similar in the twoscenarios.It is interesting that [11] concluded that this tra�cexhibits long-range dependence, based on a statisticalanalysis of the Star Wars video trace. Our results indi-cate that such long-range dependence has little impacton the performance of the measurement-based admis-sion control scheme considered here.1The actual expected residence time is �i=(1� fi).
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Figure 4: Overload probability for equivalent Markovmodel
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Figure 5: Utilization for equivalent Markov model4 ConclusionsTo obtain insights on the problem of measurement-based admission control, we have focused on a sim-ple scheme, which has the main characteristics of be-ing memoryless (admission decision based only on thecurrent network state) and certainty-equivalent (mea-sured statistics taken to be true values of the unknownparameters). We have studied this scheme through acombination of asymptotic analysis and simulations onreal and synthetic tra�c sources. The main theoreti-cal result is that the scheme is asymptotically optimalin the regime of large link capacity and a separation ofcall and burst time-scales, in the sense of attaining theperformance of the optimal scheme which has perfectknowledge of the tra�c statistics. The performanceis measured in terms of the ability to maximize theutilization of the network while maintaining the over-
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