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Abstract

We consider the problem of admission control for
variable-rate traffic sources sharing a bufferless link, in
order to provide a quality-of-service in terms of overload
probability. Through analysis and simulations, we study
the performance of a scheme which has no prior knowl-
edge of the traffic statistics and makes admission deci-
sion based on the current network state only. We analyze
the dynamics of the system under this control, and show
that in the regime of large link capacity and separation of
call and burst time-scales, this scheme performs as well
as the optimal scheme which has full knowledge of the
statistics. We evaluate the performance of the scheme
on real traffic sources.

1 Introduction

Integrated-services networks are expected to carry
a class of traffic that requires Quality of Service (QoS)
guarantees. One of the main challenges consists in pro-
viding QoS to users while efficiently sharing network
resources through statistical multiplexing. The role of
Call Admission Control (CAC) is to limit the num-
ber of flows admitted into the network such that each
individual flow obtains the desired QoS.

Traditional approaches to call admission control re-
quire an a priort traffic specification in terms of the pa-
rameters of a deterministic or stochastic model. The
admission decision is then based on the specifications
of the existing and the new flow. This approach suffers
from several drawbacks. First, i1t is usually difficult for
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the user to tightly characterize his traffic in advance
[1]. This is true even for stored media such as video-
on-demand, as the user is expected to be able to ex-
ercise interactive control (such as pause, fast-forward
etc.) As aresult, traffic specifications can be expected
to be quite loose. Second, there exists a modeling
tradeoff between the ability to police and the statis-
tical multiplexing gain. Deterministic models such as
leaky buckets are easy to police, as they specify the
worst-case behavior of traffic on a single time-scale,
but they fail to provide a sufficient characterization to
extract a large fraction of the potential statistical mul-
tiplexing gain. While a sequence of leaky buckets can
approach such a multiple time-scale characterization,
the number of model parameters grows accordingly
[2]. Stochastic models such as those based on effective
bandwidth are better suited to achieve good statistical
multiplexing gain, but at the expense of policing [3].
It is not clear how to ensure that a traffic flow corre-
spond to the specified parameters, without which call
admission control can easily be “fooled”.

In this paper, we focus on a different approach, in
which admission control decisions are made based on
network measurements alone. Instead of assuming a
statistical or worst-case model for the traffic, the be-
havior of the current calls are monitored, and this in-
formation 1s used to make admission decisions. This
measurement-based approach alleviates the burden on
the users to provide accurate traffic models, and thus
is a more practical approach for achieving statistical
multiplexing gain with variable-rate traffic.

In this paper, we concentrate on a single-link buffer-
less model for the network. The QOS measure 1s the
probability of network overload when the aggregate
bandwidth requirements of the calls currently in the
system exceeds the link capacity. The goal of admis-
sion control is to keep this overload probability below
a desired threshold while minimizing the call blocking
probability, or equivalently, maximizing the utilization



of the network. We restrict ourselves to the homoge-
neous case, in which the statistical behavior of calls
are similar.

The specific admission control scheme we are inves-
tigating is of the certainty equivalent type. The admis-
sion controller assumes that the measured statistics
are the true statistics of the calls, and uses the infor-
mation to make decisions in the same way as a con-
troller which has perfect a prior: knowledge of the call
statistics. Certainty-equivalent controllers are gener-
ally sub-optimal, as they do not take the measurement
errors into account. We shall examine the impact of
such measurement errors on the performance of the
schemes via both theoretical analysis and simulations
with synthetic and real traffic.

Our main theoretical result is that in the regime of
large link capacities and separation of call and burst
time-scale, a memoryless certainty-equivalent control
can achieve the performance of an optimal scheme
with knowledge of the traffic statistics. The proof of
this result yields the important insight that it is essen-
tial to consider the dynamics of the controlled system
to gain a full understanding of its performance. Thus,
even though the controller is prone to measurement
errors at any single admission decision, it turns out
that in the above parameter regime, overload occurs
only after a succession of admission mistakes, which is
an unlikely event.

Past work on measurement-based admission con-
trol [4], [5], [6] have either ignored measurement errors
or assumed a static situation where calls do not ar-
rive or depart the system and there is arbitrarily long
time to make accurate measurements. Recent work
by Gibbens et. al. [7] advocates the explicit incorpo-
ration of call-level dynamics into the model and pro-
vides much inspiration to the present work. However,
there are several major differences. First, the separa-
tion of time-scale assumption is already built into their
model, whereas we deal directly with the interplay be-
tween call and burst dynamics. Given that a lot of
traffic sources have long-range structure, such a sep-
aration of time-scale assumption should not be taken
for granted a priori. However, due to this complexity
in our model, we have to resort to a combination of
asymptotic large deviations analysis and simulations.
Second, the focus of their work 1s on the use of prior
knowledge about the sources, whereas our scheme uses
no such information. Lastly, the performance of their
schemes are evaluated on on-off sources, whereas we
test on real multi-level traffic sources.

We conclude this section by outlining two reasons
for focusing on a bufferless model. First, the dynamics
leading to the overload event in a bufferless system is
much simpler than that of overflowing in a buffered
system, as the event occurs whenever the instanta-

neous aggregate traffic load exceeds the link capacity.
This simplification allows us to focus on the measure-
ment problem that is of central interest in this pa-
per. Second, recent work on multiple time-scale traffic
[8] such as compressed VBR video has indicated that
a significant bulk of the statistical multiplexing gain
can be obtained by a Renegotiated Constant Bit Rate
(RCBR) service. In this service model, buffering only
occurs at the network edge. Bandwidth renegotiations
fail when the current aggregate bandwidth demand ex-
ceeds the link capacity, and the renegotiation failure
probability is the QOS measure of this service. Thus,
our bufferless model is directly applicable to this prob-
lem.

2 Analysis
2.1 Basic Model

The network resource 1s a single bufferless link with
capacity C'. Calls arrive according to a Poisson pro-
cess at rate A and stay for an exponential distributed
time with mean 7' if admitted. The calls have iden-
tical bandwidth requirement statistics, described by a
continuous-time ergodic Markov fluid process. There
are K states in the Markov process, and a call gener-
ates fluid at rate of py in state k. The transition rate
from state k to state [ is ry;. Let m be the steady-
state probability that the source is at state k. Also,
assume that when a call begins to transmit data, the
Markov process 1s at steady state. The fluid processes
of different calls are assumed to be independent.

A measurement-based admission control scheme de-
cides whether to accept a new call based on the ob-
served past history of calls that are currently in the
system and possibly those that have already departed
the system. Note that given any admission control
scheme, the entire system 1s a stationary process.
We are interested in two performance measures of a
scheme: the steady-state probability of the event that
the system overloads, i.e. the instantaneous aggregate
fluid rate of calls in the system exceeds C, and the ex-
pected fraction of the total bandwidth utilized. For a
given arrival rate, maximizing the latter is equivalent
to minimizing the blocking probability. The success
of the admission control scheme is evaluated by how
well it meets the QOS-requirement (in terms of over-
load probability) and how close its bandwidth utiliza-
tion is to that of the optimal scheme which knows the
bandwidth requirements statistics a prior:.

Suppose the statistics of each call is known a priori.
Then one can estimate the overload probability given
the number of calls in the system. For large number
of calls, an accurate approximation is the Chernoff’s
estimate: the probability of overload when there are



m calls in the system is approximately

exp(-mL* (5) (1)

where
K
L*(p) = suplpr—L(p)],
r>0 im1
assuming that the average rate p of each call is less
than % so that overloading is indeed a rare event.
This is the well known approximation for the tail of
the distribution of the sum of n 1.1.d. random variables
having the stationary bandwidth requirement distri-
bution of a call. To satisfy a desired overload prob-
ability pgos, one can a priort compute the maximum
number of calls m* such that the above approximation
is less than pg.s. The admission control is simply to
accept a new call if there are less than m* calls in the
system, and reject it otherwise. The notion of effec-
tive bandwidth for bufferless system is developed using
this approximation [3]; in this homogeneous case, the
effective bandwidth of a call is simply nf* .
Now we should focus on the problem of interest,
when no prior information about the statistics of the
calls is available. The idea now is to estimate the
statistics of the calls from observing their past empir-
ical behavior. We will study a very simple scheme to
focus on the essential issues. Motivated by the recent
work of Gibbens et al. [7] on measurement-based ad-
mission control, we consider a scheme which is mem-
oryless, 1.e. every time a new call arrives, the scheme
uses only information about the current state of the
network in making the decision of accepting or reject-
ing the call. More specifically, the scheme determines
the number of calls ny(¢) that is currently generating
data at rate ¢, for each k (k =1,..., K). This yields
an empirical distribution {73} of bandwidth require-

ments for a typical call, where 7, = nxk(tt) and z(¢) is

the number of calls currently in the system at time ¢.
The idea is to use {7y} to estimate the distribution
{7} of the bandwidth requirements throughout the
entire lifetime of a call. The admission criterion for
the new call for a given threshold pg,; on the renego-
tiation failure probability is taken to be:

o (-1 (speg) GO+ D) < @)

and
K
Zﬁ'kﬂk <C (3)
k=1

where
K

L(r) =logy  mrexp(uer)  L* (1) = max(ur—L(r)]
k=1

L(r) = log() _ mx exp(puxr))

Note that the left hand side of inequality (2) is the
Chernoff approximation of the failure probability for
a system with n + 1 calls each with bandwidth re-
quirements distributed as {75 }. Thus, this admission
control scheme is of the certainty-equivalent type: the
controller assumes that the measured values are the
true parameters and acts like the optimal controller
which has perfect knowledge of the values of those pa-
rameters.

2.2 Asymptotic Analysis

To get some insights into the dynamics of this
scheme and to compare its performance to the scheme
with perfect knowledge, we will consider a fluid ap-
proximation as well as a large deviations analysis for
the above model. Such an analysis is relevant in the
asymptotic regime of large link capacity and small loss
probabilities.

Let the total capacity be scaled as C' = n, and the
call arrival rate as >‘T—", where n is a large parameter.
Thus, nAp 1s the offered load, and Ap is the offered uti-
lization, i.e. offered load normalized by the the link
capacity. Keeping the ratio of offered load to system
capacity fixed in this scaling means that we are assum-
ing that the link capacity is sized so that it is of the
same order of magnitude as the demand. Also, note
that the offered load is independent of the average call
holding time. We also set the quality-of-service re-
quirement pgos = exp(—ndgos), for a parameter g,
which specifies the exponential decay rate. Thus, the
larger the system, the more stringent is the QOS re-
quirement.

To explain ideas in the simplest terms, let us focus
on two-state on-off sources. When it is on, the source
transmits fluid at the peak rate of 1; when it is off,
rate 0. Let p be the steady-state probability that a
source is on, i.e. its mean rate is p. By an appropriate
normalization of the time unit, we can assume that
the on-to-off transition rate is 1 — p and the off-to-on
transition rate is p.

2.2.1 Known Statistics

Consider first the case when admission control is done
using the Chernoff’s estimate eqn. (1) of the overload
probability based on perfect prior knowledge of the
source statistics. For the n th system, let G7%(¢) and
H(t) be the total number of calls in the system and
the number that are on at time ¢ respectively. (The su-
perscript ‘“*’ denotes quantities associated with scheme
with perfect prior knowledge.) Define the scaled pro-
cesses:

xay= Gl ey = Hal)

n n

and let v*(n,T) = E[Z} (t)] be the average utilization.



(We indicate explicitly the dependence on the mean
call holding time T.). Also, let p*(n,T) be the over-
load probability.

For the nth system, the maximum number of calls
m*(n) admitted under the admission control is the
largest m such that

mL*(ﬁ;p) > ndgos and L >p
m m
where L* is large deviations rate function for on-off
sources with mean rate p. It can be explicitly calcu-
lated as:
. p L —p
L*(psp) = plog(=) + (1 —p)log(-—)  (4)
p l—p
for 4 € [0,1] and equals oo otherwise. Note that
L*(1;p) = —logp, correspond to the exponent of the
probability that all sources are on.

As n — 00, 1t can be seen that m*n(n)
2*(8g0s ) which is the largest z € [1, %] satisfying:
1

l‘L*(;,p) Z 6(]05

converges to

or equivalently,

—log(p) + (¢ — 1) log ——

Z 6(]05
xr —zxp

If 040s < —logp, then x*(d405) is the unique solution
to the equation
—log(zp) + (z — 1)1 v-1_ )
og(x T o = 0405
8lep & x — xp 4

On the other hand, if 6505, > —log p, then #*(J405) = 1.
In this case, the QOS requirement is too stringent (rel-
ative to the burstiness of the traffic) such that peak-
rate admission control has to be done. The system will
never overload but also no statistical multiplexing gain
is possible.

We now examine the behavior of the system as
n — oco. It can be seen that typical behavior of the
scaled system is well approximated by a flued limit in
which calls arrive at a deterministic rate of % and they
transmit data at the mean rate of p once they are ad-
mitted into the system. The expected utilization of
the system in this fluid limit depends on the offered
rate A:

. X e Ap if A < 2" (Jg0s)
tim run == { gl S

where *(d4,5) 1s computed as above. In the first case,
the offered load is sufficiently low such that almost all
calls are admitted. In the second case, the offered
load is too high so that to maintain the desired QOS,

a fraction of the offered calls has to be rejected. In
this case, the number of calls in the system most of the
time is close to the maximum possible for a given QOS.
Moreover, since the number of calls in the system is
no greater than x*(d4s) at all times, it is clear that
by definition of #*(d40s ), that the QOS is satisfied, i.e.
for all T,

.1 .
nlgr;o - logp™(n,T) < —dg0s.
In particular, in the case when 2*(dgs) = 1,
p*(n,T) = 0 for all n and T. 1In the case when
2% (8gos) > 1 and A > 2*(dg0s), the QOS is satisfied
exactly (in an exponential sense) for large call holding
time T, 1.e.

lim lim —logp (n,T) = —bg0s-

T— 00 n—o0

2.2.2 Unknown Statistics

We now turn to an asymptotic analysis of the memo-
ryless admission control scheme. In analogous to the
previous analysis, for the nth system, let G,(t) and
H,(t) be the total number of calls in the system and
the number that are on at time ¢ respectively, under
the memoryless admission control scheme. Note that
(Gn(t), Hn(t)) is the state of the system at time ¢.
Define the scaled processes:
_ Gal®) _ Ha(1)
Xo =z =
and let u(n, T) = E[Z, (t)] be the average utilization.
Also, let p(n, T') be the overload probability. Our goal
is to compare the average utilization and the over-
load probability to the corresponding quantities under
the scheme with perfect prior knowledge, for n grows
large.

The measurement-based scheme estimates the
statistics of the sources under their current band-
width requirements. In the case of on-off sources,
the only parameter to estimate is p, the mean band-
width requirement. The estimate p(t) of p at time ¢

isp(t) = %% Using the certainty-equivalent admis-
sion criterion (2), a call is admitted at time ¢ if and
only if

ap(t)) > n(sqos and Hn(t) <n
(5)

Zn(t)) is a jump Markov

={(£,4):0<j<i}.

_n
Gr(t) +1

where L* is given by eqn. (4).

The scaled process (X, (1),
process on the state space S(*)
Define the sets

s =



L*(,n ;i)Znéqos and i<1}
n

New calls are admitted if the state of the system is

n S((ln) and rejected if in Sﬁn). For large n, the scaled
processes (X, (t), Zn(t)) converge to a fluid limit which
take values in a two dimensional continuous state
space § = {(#,2) : 0 < z < z}. The regions S
and Sﬁn) converge into two regions in § divided by a
boundary. Define f on § as
Fla,2) = { —logz+ (x —1)logZ=L ifa>1
00 else

Then in the region S, = {(z,2) € § : f(z,2) >
dg0s, 2 < 1}, calls are accepted where in the comple-
ment §,, calls are rejected. We shall call §, the ae-
ceptance region and 8, the rejection region. It should
be noted that this partitioning depends both on the
number of sources z in the system and the number z
which are on, whereas in the case with known source
statistics, 1t depends only on the number of sources
# which are on (i.e. whether @ > #*(d40,)). This is
the essence of the difference between a measurement-
based scheme and one with known statistics.

z
1 ,,,,,,,,,,,,,,,,,,,,,,,
A
P1: P2
: rejection region
(x*,px
z=g(x)
acceptance region
1 X

Figure 1: State space of fluid limit.

We shall now gather more information about the
boundary. Clearly, (z,2) € S, if # < 1. (No pos-
sibility of overload even if all sources in the system
transmit at peak rate.) TFor z > 1, (x,z) € 5,
it f(z,2) > d40s and z < 1. Further analysis re-
veals that one can find a function ¢ such that this
condition is equivalent to z < g(x), where g satis-
fies f(x,9(x)) = 405 and has the properties that:1)
lim, 1+ g(2) = exp(—dgos); 2) g(z) decreases mono-
tonically with z; and 3) limg e g(2) = z* where
z* > 0 satisfies

z¥ —logz™ — 1= 6405

Note that when there are x sources, ﬂxﬂ is the mean

rate of each source such that the overload probabil-
ity requirement 1s just satisfied. For the number of
sources z close to 1 (link capacity), the only way to
have an overload event is for all sources to transmit at
peak rate. To satisfy the desired QOS, the mean rate
of each source should then be exp(—d40s). Properties
(2) and (3) imply that as there are more sources in
the system, the maximum number of them that can
be on and still permits new admissions decrease, and
moreover approaches a non-zero limit as x goes to in-
finity. The situation is depicted in Figure 1. Note that
the boundary consists of two segments: z = g(z) for
z € (l,00) and # = 1 for z € (exp(—dg0s),1). Also,
the boundary partitions the state space into two con-
nected regions.

In the fluid limit, the process follows a deterministic
vector field starting from any initial point. In region
S,, calls are accepted into the system at determinis-
tic rate %, while in region 8, the acceptance rate is
zero. We now find the stable equilibrium points of the
vector field and thus compute the average utilization
in the fluid limit. First, one can easily see that the
stable equilibrium points must lie on the line z = pa,
since p is the (true) mean rate of each source. As a
consequence of the law of large numbers, the typical
fraction of sources in the system that are on must be
p. Moreover, there are no stable equilibrium points
strictly inside the rejection region &,, since in this
region, sources leave the system and no new sources
enter. Thus, the stable equilibrium points must be
strictly inside &, or on the intersection of the bound-
ary and the line z = px.

Suppose the line z = pz intersects the boundary
at the point (27 (040s), P2"(9g0s)). If dqos < —logp,
the intersection is with the segment z = g¢(x), and
2*(8g0s) > 1 satisfies the equation:

r—1

T —xp

— log(ap) + (x — 1) log

= 6qos

If §40s > —logp, the intersection is with the segment
# =1, and 2*(d40s) = 1. Note that &*(d40s) is pre-
cisely the maximum (scaled) number of calls that the
scheme with perfect knowledge of the source statis-
tics would admit. If A < #*(d405), the (unique) stable
point (z,z) is (A, Ap), which lies strictly inside S,. In
this case, almost all calls are accepted. If A > 2*(d40s ),
the stable equilibrium point (%, Z) is on the bound-
ary: (2*(0gos), p2*(dgos). In this case, a fraction of
the calls are rejected. Thus, the stable equilibrium
for the fluid limit under the measurement-based ad-
mission control is exactly the same as that under the
scheme with perfect knowledge. This implies that the
average utilization under the two schemes are asymp-



totically the same as n — oo, i.e.

. ou(n,T)
AT ) = (6)
We now turn to an analysis of the overload proba-
bility p(n, T) under the memoryless admission control
scheme. This corresponds to the event @ = {(x,z) :
z > 1}. Since this set does not contain the stable equi-
librium, it is a rare event for n large, with probability
decaying exponentially with n. We have:

p(n, T) & exp[—nI*(T)] (7)

where

ry =t /0 NGOG (8)

and
F=A{(F(),r):70) = (z,%),7(r) € O} (9)

Thus, the exponent is given by the cost of the cheapest
path starting from the equilibrium point and leading
to an overload. This is in accordance with Laplace’s
principle: the probability of the most likely way for
a rare event to happen is approximately the same as
the probability of the rare event. Here, [(z, z, ¥) is the
local rate function, which gives the cost of traveling
with velocity ¥ at the state (z, z).

At present, we do not have a rigorous large devia-
tions limit theorem justifying the approximation (7);
thus, it is only a heuristic. To have such a theorem,
we need to prove a large deviations principle for the
scaled processes (X, (-), Zn(+)), which have discontin-
uous jump rates across a curved boundary. Dupuis
and Ellis [9] have proved a large deviations principle
for discrete-time processes with jump rates across a
straight boundary, and Alanyali and Hajek [10] has
proved one for continuos-time processes. The local
rate function we use is a natural generalization of
theirs.

Our main result about the overload probability per-
formance is the following.

Theorem 2.1 If 2%(8g0s) > 1 and A > 2*(6g0s) then

lim I*(T) = 0

T— o0
If £*(0g0s) = 1 01 A < 2% (0g0s) then

lim I*(T) > 405

T—oo

The first case corresponds to the situation when the
stable equilibrium is on the segment z = g(x) of the

boundary, whereas the second is when the equilibrium
is on the segment 2 = 1 or in the interior of S,.

A large T means that the average call holding time
i1s much longer than the time-scale of the fluctuation of
the bit-rate of the sources, and thus implies a regime
of separation of call and burst time-scales. Thus, for
large T', the memoryless scheme satisfies the QOS re-
quirement in terms of the exponential decay rate of the
overload probability, and also performs asymptotically
as well as the scheme which have perfect prior knowl-
edge in terms of average utilization (from (6)). We
can conclude that for large capacities and a separation
of time-scales, the memoryless scheme is asymptoti-
cally optimal. This is somewhat surprising since the
measurement-based scheme has no a priori knowledge
about the sources and only uses information about the
current state of the network to make admission deci-
sions. Due to space limitation, we shall only outline
the intuition behind the proof of this result.

If the statistics of the bandwidth requirements of
the call were known, then the maximum number of
calls allowed in the system, approximately na*(dg0s ),
can be determined, such that the overload probabil-
ity when there are that many calls in the system sat-
isfy the QOS requirements. The measurement-based
scheme essentially tries to estimate nz*(dq05) based
on observing the current state of the network. Due
to statistical fluctuations in the bandwidth require-
ments of the calls, the estimate may be too high due
to atypically large number of calls being off. This
may result in the control scheme making a mistake
in accepting a new call which it should have rejected.
However, the key point is that for a large system, the
overload probability will deteriorate significantly only
if the number of calls in the system is considerably
larger than nz*(d40,); thus, making an occasional mis-
take in admitting a call is not fatal. Rather, making
a succession of mistakes in accepting calls will lead to
serious degradation in performance. However, because
of the separation of the time-scales of call arrivals and
fluctuations of bandwidth requirements, it is very un-
likely for the state of the network to remain atypical
over the period of time for the arrivals of a succession
of calls. In fact, it can be shown that the probabil-
ity of making a succession of mistakes is much smaller
than that of overload due to having a typical number
n&*(0g0s) of calls in the system but atypically large
number of calls being on.

This intuition can be translated into a proof of The-
orem 2.1 via an analysis of the costs of the paths in
F (the set of paths leading to overload, as defined
in (8)) as T" grows large. Two candidate paths are
depicted in Fig. 1. Suppose the stable equilibrium
is (2*(0gos ), pr*(0g0s)) on the segment z = g(z) of
the boundary. Consider the straight-line path P, =



{(2"(0405),2) : # € [px*,1]}. This corresponds to the
event that the measurement-based scheme estimates
the maximum admissible number of calls na*(d405)
correctly, and overload occurs during call rejection
phase with na*(d4.s) calls in the system but an atyp-
ical fraction of them turning on. Also, no call departs
the system during this phase. We observe that as the
average call holding time increases, the cost of this
path approaches d,,, since the probability of overload
when there are na*(d405) calls permanently in the sys-
tem is approximately exp(—ndqos ).

Now let us consider alternate paths of which an ex-
ample 18 P», shown in Fig. 1. These paths consists
of two phases. In the first phase, calls are admitted
by mistake due to an atypically large fraction of the
existing calls in the system turning off. This phase
ends at time 7y, resulting in nz; calls in the system,
where #1 > #"(d405). In the second phase, new calls
are rejected; but many of the existing calls turn back
on, resulting in overload. Let us consider the costs
of these paths in the regime of large holding time T'.
First, observe that the call arrival rate is % -n; hence,
for those paths with 7 << T, the cost is high because
it is unlikely to have n(z1 — 2*(d40s)) arrivals in dura-
tion 71. On the other hand, for those paths with long
duration 71, the cost is also high because it 1s unlikely
for the calls in the system to be in an atypical state
for so long. Using similar logic, it can be shown that
the costs of all paths bounded away from P, go to in-
finity uniformly as average holding time 7" — oco. This
implies that the cost of the cheapest path approaches
dg0s a8 T — o0.

We have only considered the case when the equilib-
ria is on the segment z = g(z). For the cases when
the stable equilibrium point is on the segment & = 1
or in the interior of S, one can show that the cost of
the cheapest path must in fact be greater than dgo,.

So far, we have focused on only on-off sources for
ease and concreteness of exposition. The analysis and
the Theorem 2.1 carry over to the general case of
Markov fluid sources with general state space.

3 Experiments

In the previous section, we obtained some analyt-
ical insights into the performance of a memoryless
measurement-based admission control scheme using
fluid and large deviations analysis. Such results are
valid in the asymptotic regime of large link capaci-
ties and for Markov sources. In this section, we will
complement the theoretical investigations with simu-
lation results for finite-size systems and on both real
and synthetic traffic sources. In particular, we study
the following issues: 1) the impact of parameters such
as link capacity and offered load on the performance
of the memoryless scheme; 2) the appropriateness of

using Markov models in studying the performance of
measurement-based schemes on real traffic sources.
3.1 Basic Simulation Set-up

Our simulation set-up is based on the Renegotiated
CBR (RCBR) service [8]. Each call is represented as
an RCBR schedule, 1.e., as a sequence of intervals over
which the bandwidth consumed by the call is assumed
constant. This schedule represents the slow time-scale
dynamics of the traffic source. Times at which the
bandwidth changes correspond to instants when the
source renegotiates for a new CBR rate. In this ser-
vice, renegotiation fails when there is insufficient ca-
pacity in the link to cater for a requested bandwidth.
Thus, this corresponds to the overload event in our
bufferless model. For a real traffic source, we use a
two-hour long MPEG-1 Star Wars trace [11], from
which the RCBR schedule is computed by the off-line
optimization algorithm presented in [8]. This schedule
has a peak-to-mean bandwidth ratio of about 5. One
important advantage of using the RCBR set-up is effi-
ciency: we do not simulate on a per video frame basis
but rather per renegotiation event. Since the particu-
lar schedule we use has about one renegotiation every
20 seconds on the average, this leads to an increased
efficiency of 2 to 3 orders of magnitude.

In the simulations, calls arrive according to a Pois-
son process. We measure both the average network
utilization and the renegotiation overload probability.
We consider that the system state between time in-
stants separated by more than twice the average call
length is independent. Therefore, each interval of that
size provides us with one sample for these metrics.
We collect samples until the 95%-confidence interval
for both metrics is sufficiently small with respect to
the estimated value (within + 30% of the estimated
value.) For the overload probability, we also stop if the
target overload probability of 1075 lies to the right of
the confidence interval, i.e., if we are confident that
the actual failure probability is lower than the target.
This is necessary in order to terminate simulations
within reasonable time when the observed overload
probability is very low (e.g. 107%).

3.2 Performance of Memoryless Scheme

The first set of experiments evaluates the impact of
the link capacity and of the offered load on the per-
formance of the memoryless scheme as defined by (2),
where the desired overload probability pg.s is chosen
to be 1075,

Arriving calls are randomly phase-shifted versions
of the entire RCBR schedule for the two-hour Star
Wars trace. Fig. 2 and 3 show the overload probabil-
ity and the average network utilization respectively,
plotted as a function of link capacity, expressed as a
multiple of the call average rate, and the offered uti-
lization, which is the offered load normalized by the



link capacity. The network utilization is normalized to
the utilization that is achieved with the same param-
eter values when call admission is performed based on
the Chernoff approximation (1) and perfect knowledge
of the call’s marginal distribution. Thus, for example,
a value of 1 means that the memoryless scheme does
equally well as the scheme with perfect knowledge.
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Figure 2: Overload probability for call duration equals
length of entire trace
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Figure 3: Utilization for call duration equals length of
entire trace

It can be seen from Fig. 2 that the memoryless
scheme performs poorly for small link capacities, say
less than 60. The overload probability is much larger
than the target of 107>,

3.3 Equivalent Markov Model

Our analysis in the previous section is based on a
Markov model of the traffic source. It is therefore of
interest to see how well a Markov model of a real traffic

source can predict the performance of a measurement-
based admission control scheme on the actual traffic
source. In particular, we would like to investigate if
the long-range dependence in the correlation structure,
postulated recently to be present in many types of
traffic, has any impact on the performance.

For a real traffic source, such as the Star Wars
RCBR, schedule, we obtain an Equivalent Markov
model in the following way. We match both the
marginal distribution m; of the bandwidth, as well as
the average residence time per bandwidth level 7;. The
bandwidth is described by a random process that stays
at one of the bandwidth levels p; for an exponentially
distributed time with mean 7;. It then jumps to a new
bandwidth level p; with probability f;. The lengths of
the intervals and the bandwidth levels within intervals
are individually and mutually independent. To match
the marginal distribution, we want

fiTi

= =g (10)

Zj:l fiTi
Thus,

Mo\ m

- J) L

R DDkl (11)
j=1

Note that the actual expected residence time per
bandwidth level is slightly higher than 7;, as with
probability f;, the model selects the same bandwidth
in two consecutive intervals'. We thus have a traffic
model that allows us to match the first-order charac-
teristics of an RCBR trace, namely the marginal distri-
bution of the bandwidth, and the mean residence time
per bandwidth level, but which exhibits an exponen-
tially decreasing correlation function, and therefore no
long-range dependence (LRD).

We now evaluate the performance of the memory-
less scheme when the Equivalent Markov model of the
Star Wars RCBR scheme is used. Figs. 4 and 5 show
the overload probability and utilization respectively in
the scenario when the bandwidth processes of calls are
generated independently and according to the Equiva-
lent Markov model of the Star-Wars schedule, and the
calls stay for the same duration as the entire trace (ap-
prox. 2 hours). Comparing them to the corresponding
Figs. 2 and 3 when the actual RCBR schedule is used,
we see that the performance is quite similar in the two
scenarios.

It is interesting that [11] concluded that this traffic
exhibits long-range dependence, based on a statistical
analysis of the Star Wars video trace. Our results indi-
cate that such long-range dependence has little impact
on the performance of the measurement-based admis-
sion control scheme considered here.

!The actual expected residence time is 7;/(1 — f;).
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Figure 4: Overload probability for equivalent Markov
model
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4 Conclusions

To obtain insights on the problem of measurement-
based admission control, we have focused on a sim-
ple scheme, which has the main characteristics of be-
ing memoryless (admission decision based only on the
current network state) and certainty-equivalent (mea-
sured statistics taken to be true values of the unknown
parameters). We have studied this scheme through a
combination of asymptotic analysis and simulations on
real and synthetic traffic sources. The main theoreti-
cal result is that the scheme is asymptotically optimal
in the regime of large link capacity and a separation of
call and burst time-scales, in the sense of attaining the
performance of the optimal scheme which has perfect
knowledge of the traffic statistics. The performance
is measured in terms of the ability to maximize the
utilization of the network while maintaining the over-

load probability below a desired threshold. Our sim-
ulation results on the Star Wars trace indicate that
the scheme only works well for large link capacities
(> 100 times the mean rate of a call) and not too high
offered load (no more than 2 to 3 times the link ca-
pacity.) For small link capacities, it makes too many
admission mistakes due to measurement errors. Wars
trace serves as a good predictor of the performance of
the admission control scheme on the actual traffic, de-
spite the claimed presence of long-range dependence
in the latter. Our current work focuses on finding
schemes which have better performance under high

offered load.
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