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Abstract—The knowledge of the channel at the transmit side
of a communication system can be exploited by using precoding
techniques, from which the overall transmission quality might
benefit significantly. However, in practical wireless systems, the
channel state information is prone to errors, which sometimes de-
teriorates the performance drastically. In this paper, we address
the problem of robust transceiver design in a downlink multiuser
system, with respect to the erroneous channel knowledge at the
transmitter. The base station is equipped with an antenna array,
while users have single antennas. The transceiver optimization is
performed under a set of predefined users’ quality-of-service con-
straints, defined as maximum mean square errors, or minimum
signal-to-interference-plus-noise ratios, which must be satisfied
for all disturbances that belong to given, bounded uncertainty
sets. Efficient numerical solutions are obtained using semidefinite
programming methods from convex optimization theory. The
proposed algorithms are found to outperform related approaches
in the literature in terms of the achieved performance, while
maintaining low computational complexity. The studied uncer-
tainty models are applicable in mitigating typical errors that
emerge as a result of quantization or channel estimation.

Index Terms—Multiuser multiple-input single-output (MISO)
systems, joint transmit-receive equalization, robustness, semidef-
inite programming, ellipsoid method.

I. I NTRODUCTION

The ability to exploit the spatial diversity by employing
antenna arrays and provide significant performance gains has
given a great stimulus in wireless communications research
in recent years [1]. Systems in which a multi-antenna base
station (BS) serves single-antenna users present promising
candidates for future cellular networks, since the complex
signal processing is performed at the BS, where the issue
of computational power is less problematic, while the mobile
units can be kept relatively simple and inexpensive.

In the downlink of such setups, which is a multiuser
multiple-input, single-output (MISO) scenario, precoding
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methods can be applied to boost the performance. The idea
is to pre-equalize signals at the transmitter, and mitigatethe
channel-induced interference [2]. These techniques naturally
demand that the channel state information (CSI) is suppliedat
the transmit side. However, the provision ofperfect CSI is of-
ten a formidable task in wireless systems. The transmitter typ-
ically obtains the channel knowledge either through feedback
channels from the receiver, where it is estimated using training
sequences, or by estimating it in the uplink phase directly,with
the latter approach being applicable in time division duplex
(TDD) systems. In both cases, estimation errors are inevitable
in practice [3]. Furthermore, the feedback channels are usually
of limited capacity [4], so the quantization effects must be
taken into account. If the uplink values are used, the problem
of having outdated estimates appears frequently, because of
the fast varying wireless environment. These effects, along
with the fact that the downlink precoding methods can be
quite sensitive to the imperfect CSI [5], instigated a significant
amount of research work in enabling a sort of robustness
regarding the channel knowledge. Considered robust designs
are usually either of stochastic or the worst-case nature.

Stochastic robustness has been studied in [6]–[11], assuming
that the error in the channel knowledge possesses certain
statistical properties. This hypothesis is in some cases rea-
sonable, since the error in the estimation process can often
be approximated as a random variable with the Gaussian
distribution. Statistical assumption on the CSI disturbance
can then be used for optimizing the mean or the outage
performance of the system. A related direction in probabilistic
approaches is the transmitter design under the assumption of
having only statistical properties of the exact channel, like the
mean or the covariance of the channel coefficients (see, e.g.,
[12], [13]).

Worst-case analysis, that we adhere to in this paper, is
also well-established in robust signal processing [9], [10],
[14]–[19]. Here, the errors are supposed to belong to the
given bounded uncertainty sets, and the system is optimized
to satisfy certain requirements for all channels from the
uncertainty regions. This approach requires no statistical as-
sumption on the disturbances, which often indeed do not
exhibit any, and corresponds well to the quantization errors.
It is also convenient for handling slow fading channels, where
no sufficient statistics for the averaging is available [20]. The
robustness against unbounded errors (e.g., the ones with the
Gaussian distribution) can also be supported with this model
by controlling the system outage [18].

The main problem of interest in this paper is the transceiver
optimization with the goal of minimizing the total transmit
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power subject to predefined users’ quality-of-service (QoS)
targets, in a flat-fading environment. The transmitter willbe
provided with imperfect channel estimates and with the bounds
on the uncertainty regions, which surely contain the exact
channel values (contrary to [21], our focus is on erroneous
channels and not on disturbed channel covariance matrices). In
the cases where the receivers’ equalizers should be designed,
it is also supposed that the users either know their channels
perfectly, or that there exists an error-free mechanism in the
system, which delivers scaling coefficients to the users. This
formulation presents one way of defining a robust counter-
part of the standard downlink beamforming problem, whose
solution in the perfect CSI case is known from [21]–[24].
The considered robust scenario is considerably more involved
due to the fact that the QoS requirements must be supported
for an infinite number of possible channels, contained in the
uncertainty regions, with a single set of filters.

A. Related Work and Contributions

As QoS constraints, maximum allowable mean square er-
rors (MSEs), or minimum tolerated signal-to-interference-
plus-noise-ratios (SINRs) will be considered. The related
robust problems in the single user, multiple-input multiple-
output (MIMO) setting were analyzed in [16], [19], [25]. Two
approaches emerged recently to cope with specific aspects that
appear in a multiuser MISO setup: the MSE-constrained robust
power control studied in [26], and robust precoding with SINR
targets proposed in [27]. The main contributions of this paper
can be briefly summarized as follows:

• We solve the MSE-constrained problem by optimizing
the systemcompletely using semidefinite programming
(SDP) methods [28]. Thereby the performance of the
solution from [26], that aimed at power control only and
had the beamforming matrix fixed, is improved, with an
acceptable increase in computational complexity.

• The SINR-constrained problem, posed originally in [27]
with conservative solutions provided, is shown to have an
optimal solution, based on the computationally involved
ellipsoid method [29].

• By applying the derived MSE-optimization framework,
an elegant conservative solution for the SINR-problem
is found, which outperforms the related results from the
literature in terms of performance-complexity tradeoff.
This yielded a unifying framework for handling both
types of QoS constraints.

• Besides the standard ellipsoidal uncertainty assumption,
methods for supporting somewhat less-understood box-
like error models, that completely change the mathemat-
ical structure of the problems, are derived, as well.

In this work, our focus was mainly on optimization techniques
with the developed convergence theory. In other words, there
exist upper bounds for the maximum number of iterations and
arithmetical operations necessary for the termination of the
algorithms, which should grow slowly with the size of the
problem. We remark that after completing this paper, a parallel
work on similar problems [30], [31] has been brought to our
attention.
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Fig. 1. Block-scheme of the studied multiuser MISO system.

B. Notation

Small and large bold fonts are used to denote vectors and
matrices, respectively. If not explicitely stated, the dimensions
will be clear from the context.I is the identity matrix
and 0 is the zero-matrix.A � B means thatA − B is
positive semidefinite (≻ is used for the positive definiteness)
[32]. The trace of a matrix is denoted withTr{·}. ‖(·)‖1,
‖(·)‖2 and‖(·)‖F denote thel1-norm, the spectral norm and
the Frobenius norm, respectively [33]. The matrix transpose,
the conjugate (Hermitian) transpose and the Moore-Penrose
pseudoinverse are written as(·)T , (·)∗ and (·)†, respectively.
A(k,m) is the element in the position(k,m) of A, while
A(:,m) andA(k,:) are themth column andkth row of A,
respectively. The standard indexing with subscripts is used to
denote an element of a vector. The vectorvec(A) contains
the columns of the matrixA, stacked below each other.
diag(a1, . . . , aK) is a diagonalK×K matrix having elements
a1, . . . , aK on the main diagonal.ℜ{·} andℑ{·} extract real
and imaginary parts of the argument, respectively.E{·} is the
expectation operator.

C. Outline of the Paper

The rest of the paper is organized as follows. In Section
II, the system model is introduced. Section III formulates the
MSE-constrained problem statement and provides an SDP-
based solution. Robust precoders for a system with SINR
targets are derived in Section IV. The rectangular uncertainty
sets are analyzed in Section V. Simulation results are shownin
Section VI, and the paper is concluded with a short summary
in Section VII.

II. SYSTEM MODEL

Consider a multiuser MISO system withK single-antenna
users, where the BS is equipped withM antennas, as il-
lustrated in Fig. 1. In one time instant, the BS transmits
K independent symbolss1, s2, . . . , sK , where the symbol
sk is intended for thekth user.1 To simplify the expres-
sions, we group the transmit symbols into a vectors, s =
[

s1 s2 . . . sK

]T
, with E(ss∗) = I assumed, w.l.o.g.

The complete downlink, flat-fading channel is represented
with the matrixH, H ∈ C

K×M . If multicarrier techniques,
like orthogonal frequency division multiplexing (OFDM) [35],
are employed to combat the intersymbol interference in fre-
quency selective channels, the used model in this paper would
correspond to the performance analysis for one subcarrier
(see also [19], [36] for other ways of providing robustness
in multi-antenna systems with frequency-selective channels).

1We note that the problems of broadcasting and multicasting, where
common information is transmitted to certain groups of users, are significantly
different [34].
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The channel of thekth user is given asH(k,:). It is assumed
that the BS knows only erroneous channel estimatesĤ(k,:),
with

H(k,:) = Ĥ(k,:) + ∆(k,:), ∀k ∈ {1, . . . ,K}, (1)

where∆(k,:) is the error in the channel knowledge. The BS
is also supposed to know the structure of the uncertainty
regionsDk, which surely contain the disturbances∆(k,:). The
requirement on the CSI at the receivers will be commented
in more detail in the following sections, depending on the
problem of interest.

The transmit filter (precoder) of the BS is denoted by
G, G ∈ C

M×K . The eventual equalization of the non-
cooperating users, is represented with a diagonal matrixF ,
F = diag(f1, f2, . . . , fK), fk ∈ C \ {0}, and the inverses are
used for convenience. Finally, the system equations for theK
users can be written as

ŝk =
1

fk

(

H(k,:)Gs+ wk

)

, ∀k ∈ {1, . . . ,K}, (2)

where wk is the additive noise at the reception, withw =
[

w1 w2 . . . wK

]T
, and ŝk is the estimate ofsk. We

assume that the transmit signals and the receive noise are
uncorrelated, and thatE(ww∗) = diag(σ2

1 , . . . , σ2
K) holds.

III. ROBUST MSE-CONSTRAINED OPTIMIZATION

In this section, the MSEs will be adopted as the QoS
measure, with

MSEk = E
{

|sk − ŝk|2
}

, ∀k ∈ {1, . . . ,K}. (3)

The robust MSE-optimization problem assumes the minimiza-
tion of the total transmit powerP ,

P = E {Tr(Gss∗G∗)} = ‖G‖2F , (4)

subject to predefined MSE targetsµk, which must be satisfied
under uncertainty:

min
G,f1,...,fK

P, (5)

s.t. MSEk ≤ µk, ∀∆(k,:) ∈ Dk, k = 1, . . . ,K. (6)

The problem (5)-(6) is meant to be solved by the BS, having
in mind that it possesses only imperfect CSI. As far as
the users are concerned, in this section, it is assumed that
there either exists an error-free control mechanism in the
system that delivers the equalization coefficients from theBS
to the users, or that the users have the perfect CSI, which
is, comparing to the availability of the CSI at the transmit
side, generally considered as less critical in practice. Inthe
latter case, after the BS calculates its filterG, the receivers
would estimate the equivalent channelsHe

(k,:) = H(k,:)G and
adopt the standard minimum MSE (MMSE) solutions for their
equalization coefficientsfk, with

f−1
k =

(

He
(k,:)H

e
(k,:)

∗ + σ2
k

)−1

G∗
(:,k)H

∗
(k,:). (7)

This approach will result in the obtained MSEs that surely also
comply to the uncertain constraints (6), but without reducing
the transmit power, obtained as the solution of (5)-(6). The

key idea in optimizing the scaling factors in (5)-(6) is that
the BS determines its beamformerG by having some (partial)
knowledge of what could be done at the reception, which,
as it will be shown in Section VI, yields significant gains.
Finally, we note that the incorporation of the MMSE solution
(7) immediately into the problem formulation (5)-(6) would
yield problems of significantly more complex structure, as
discussed in Section IV.

The problem (5)-(6), with the assumption of having the
perfect CSI at both sides, can be solved using the methodology
derived in [21]–[23]. We approach the uncertain problem (5)-
(6) using numerical methods from convex optimization theory
[32]. Firstly, we notice that the MSE expression of thekth
user can be written as

MSEk =
1

|fk|2
(

(H(k,:)G− fke
∗
k)(H(k,:)G− fke

∗
k)∗ + σ2

k

)

(8)
whereek are standard basis vectors ofR

K [33]. From (8), it
can be concluded that assumingfk ∈ R++ would not change
the solution for the minimal transmit power of the optimization
problem (5)-(6), due to the possibility of multiplying the
columns ofG with complex numbers of unit magnitude,
without changing the objective function in (5). Therefore,we
can proceed with the equivalent representation of thekth user’s
constraint

MSEk ≤ µk ⇔
∥

∥

[

H(k,:)G− fke
∗
k σk

]∥

∥

2
≤ fk

√
µk.

(9)
The convexity of the problem (5)-(6) can be proved now for
any uncertainty regionDk.

Theorem 1: The problem (5)-(6) is convex, irrespectively
of the shape of the uncertainty regionsDk.

Proof: Being the squared Frobenius norm of the transmit
filter matrixG, the objective function in (5) is clearly convex
[32]. Consider now thekth user’s constraint (9) under uncer-
tainty. For anyH(k,:) from the uncertainty regions defined
by Ĥ(k,:) and Dk, (9) is a second-order cone constraint,
which yields a convex feasible set for the unknown transceiver
parameters [32]. The complete domain of (9) is the intersection
of all such convex sets, corresponding to each channel from
the uncertainty region̂H(k,:) +∆(k,:), ∆(k,:) ∈ Dk. Since the
convexity is preserved under intersection [32], we conclude
that the domain of (9) is also convex. Finally, the complete
problem domain, defined by (6), is again convex as the
intersection of the domains related to the constraints (9),with
k = 1, . . . ,K.

Although the problem of interest is convex, it is still not
clear if it can be efficiently solved, because of the uncertainty.
In the sequel, we derive efficient numerical solutions for the
often used, ball uncertainty model

∥

∥∆(k,:)

∥

∥

2
≤ εk, ∀k ∈ {1, . . . ,K}. (10)

The model (10) naturally captures well the bounded distur-
bances that are a result of quantization (see also Section
VI), but it is convenient for representing the CSI errors with
Gaussian distribution and optimizing the outage performance
[18], [26], as well. In Section V, we analyze in more detail
the case where the uncertainty regions are boxes.
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Since the objective function in (5) is relatively simple, we
focus in the sequel on the transformation of the uncertain
constraints (6) into a tractable form. The following equivalent
representation of (9), obtained as a direct application of the
Schur Complements lemma [33] on (9), will be of great use
in the further robust optimization

Φk +





0 ∆(k,:)G 0
G∗

∆
∗
(k,:) 0 0

0 0 0



 � 0, ∀
∥

∥∆(k,:)

∥

∥

2
≤ εk,

∀k ∈ {1, . . . ,K},
(11)

where

Φk =





fk
√

µk Ĥ(k,:)G− fke
∗
k σk

G∗Ĥ
∗

(k,:) − fkek fk
√

µkI 0

σk 0 fk
√

µk



 .

(12)
To obtain a computationally tractable form from (11), we use
the following lemma:

Lemma 1: Let A, B andC be given matrices, withA =
A∗. The relation

A � B∗DC +C∗D∗B, ∀D : ‖D‖2 ≤ ε, (13)

is valid, if and only if

∃λ ≥ 0,

[

A− λB∗B −εC∗

−εC λI

]

� 0. (14)

Proof: The proof, based on theS-lemma [29], [32], [37],
can be found in [16].
Now, we are equipped with the tools for rewriting the uncertain
constraint (11) into a form that is convenient for the numerical
analysis.

Theorem 2: The uncertain MSE constraints in (6), with the
uncertainty regionsDk defined by (10), are equivalent to the
linear matrix inequalities (LMIs) in the unknown transceiver
coefficients








fk
√

µk − λk Ĥ(k,:)G− fke
∗
k σk 0

G∗Ĥ
∗

(k,:) − fkek fk
√

µkI 0 −εkG
∗

σk 0 fk
√

µk 0

0 −εkG 0 λkI









� 0, ∀k ∈ {1, . . . ,K},
(15)

whereλk are slack variables.
Proof: The LMIs in (15) are obtained by a direct appli-

cation of Lemma 1 on the derived, equivalent representations
(11) of the users’ uncertain MSE constraints, withA = Φk,
D = ∆(k,:), ε = εk and

B = −
[

1 0 0
]

, C =
[

0 G 0
]

. (16)

It can be noticed that the objective function in (5) can be
immediately resolved by introducing one slack variablet
that should be minimized and a rotated second-order cone
constraint‖vec(G)‖22 ≤ t. Therefore, under the uncertainty
model (10), the problem (5)-(6) is equivalent to an SDP
problem (more rigorously, this is a linear conic optimization

problem with second order and semidefinite cones) and can be
solved with interior point methods in a very efficient manner
[28], [29], [38].

At this point, we notice that the practical per-antenna
power constraints can be easily introduced into the derived
semidefinite program, since they can be expressed as convex
quadratic constraints

∥

∥G(m,:)

∥

∥

2
≤
√

Pm, m = 1, . . . ,M, (17)

wherePm is the power limit for antennam. This possibility
of extension holds for all problems studied in this paper.
Furthermore, the uncertainty at the transmitter with respect to
the knowledge of the noise variances can also be incorporated
in a straightforward manner. Finally, instead of balls, arbitrary
ellipsoids of the form

∥

∥

∥
V∆

T
(k,:)

∥

∥

∥

2
≤ 1, (18)

with given V ≻ 0, can also be supported as uncertainty
regions for thekth user’s channel (notice that forV = 1

εk

IM ,
the model (10) is obtained). A simple substitutionV∆

T
(k,:) =

δk, ‖δk‖2 ≤ 1 and the replacement of∆(k,:) in the LMI (11)
with δT

k V
−1, enable again the application of Lemma 1 and

an SDP reformulation similar to that in Theorem 2. This is
of particular importance, since there exist numerous methods
for calculating the unique minimum volume ellipsoid that
contains a certain set [29]. In that way, conservative tractable
approximations can be obtained for a large class of uncertainty
regions. We will return to this concept briefly also in Section
VI.

IV. SINR AS THE PERFORMANCEMEASURE

Consider the system model described in Section II. The
SINR of thekth user can be calculated as

SINRk =
|H(k,:)G(:,k)|2

∑K
l=1, l 6=k|H(k,:)G(:,l)|2 + σ2

k

. (19)

Let the uncertainty model be defined as in (10). We can
now formulate a robust counterpart of the standard SINR-
constrained downlink beamforming problem

min
G

P,

s.t. SINRk ≥ γk, ∀
∥

∥∆(k,:)

∥

∥

2
≤ εk, ∀k ∈ {1, . . . ,K},

(20)

whereγk are the required QoS targets, expressed in terms of
minimum tolerable SINRs.

The problem (20) is an involved, non-convex problem. This
can be concluded by rewriting its constraints into a form

∥

∥

[

H(k,:)G σk

]∥

∥

2
≤
√

1 + γ−1
k

∣

∣H(k,:)G(:,k)

∣

∣ ,

∀
∥

∥∆(k,:)

∥

∥

2
≤ εk,

(21)

which, due to the existence of the uncertainty on both sides
and the absolute values, has, to the best of our knowledge, no
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tractable representation. Therefore, we formulate the following
problem of interest

min
G̃

1

2

∥

∥

∥
G̃
∥

∥

∥

2

F
,

s.t.
∥

∥

[

H̃(k,:)G̃ σk

]
∥

∥

2
≤
√

1 + γ−1
k H̃(k,:)G̃(:,k),

∀
∥

∥

∥
∆̃(k,:)

∥

∥

∥

2
≤ εk, ∀k ∈ {1, . . . ,K},

(22)

where

H̃(k,:) =
[

ℜ{H(k,:)} ℑ{H(k,:)}
]

, (23)

∆̃(k,:) =
[

ℜ{∆(k,:)} ℑ{∆(k,:)}
]

, (24)

G̃ =

[

ℜ{G} ℑ{G}
−ℑ{G} ℜ{G}

]

. (25)

In [21], [24], it is proved that the non-robust variations of
(20) and (22) are equivalent. The idea was in showing that
the termH(k,:)G(:,k) in the numerator of (19) can be real
and positive, w.l.o.g., which removes the absolute value in
the right-hand side of (21), yields second-order cone con-
straints, and, consequently, a relatively simple conic quadratic
optimization problem, whose real-valued version is exactly
(22) with εk = 0. Unfortunately, the same principle is not
applicable for the robust designs, due to the fact that an infinite
number of channels must be supported with a single filter.
However, the fulfillment of uncertain constraints in (22) clearly
implies that the conditions (21) are also valid. Therefore,(22)
can be viewed as a conservative approximation of (20). In
other words, a filter obtained by solving (22) will surely be
a feasible solution for (20), as well. However, the feasibleset
of (22) is smaller than in (20), so it is more likely to have
infeasible scenarios, and the resulting transmit power from
solving (22) is an upper bound for the optimal solution of
(20). Finally, we note that in the SINR-constrained problem
formulations, no particular requirement on the CSI knowledge
at the receive side is necessary, as the users’ equalizationplays
no role in (19).

The problem (22) was posed originally in [27], where three
further restrictions of (22) are optimally solved using tractable
SDP reformulations. Notice that due to the existence of the
uncertainty on both sides in the constraints in (22), rewriting
these constraints as LMIs would not yield a suitable structure
needed for the application of Lemma 1, as observed also in
[27], [39]. We show in the sequel that the problem (22) can
actually be solved optimally, by applying the ellipsoid method
from convex optimization theory. Due to the fact that the
ellipsoid method exhibits high (though still polynomial [29])
complexity, we derive then an efficient SDP-based suboptimal
solution for the same problem, which exhibits better properties
in terms of both performance and complexity, w.r.t. the related
results from the literature. Furthermore, a comparison by
numerical simulations will reveal that this SDP-based conser-
vative solution seems to perform as well as the theoretically
optimal benchmark provided by the ellipsoid method.

A. Solution by the Ellipsoid Method

The ellipsoid method presents a multidimensional extension
of the bisection approach. The main idea behind the algorithm
can be formulated as follows. At a given iteration we are
equipped with an ellipsoid which surely contains the optimal
solution and check whether the center of the ellipsoid is in
the problem domain. If that is the case, a subgradient of
the objective function in the center of the ellipsoid should
be calculated. Zero value of the subgradient means that the
optimal solution is found, otherwise, the subgradient defines a
hyperplane and, consequently, a half-ellipsoid, which contains
the optimal solution. In the latter case, the new search ellipsoid
is the minimal volume ellipsoidal container of the described
half-ellipsoid. If the center of the ellipsoid is not in the
problem domain, the hyperplane that separates the center from
the problem domain can be constructed to obtain a new half-
ellipsoid whose minimal volume ellipsoidal container is used
for the subsequent search. The procedure yields a sequence
of the shrinking ellipsoids which converges to the optimal
solution.

We start with recalling the ellipsoid method in Algorithm 1,
as described in [29], omitting the technical details regarding
the initialization and the formalization of the convergence
criterion. The unknown vector to be calculated, which uniquely
determines the transmit filterG, is denoted by

g =
[

G̃
T

(:,1) · · · G̃
T

(:,K)

]T

∈ R
d, (26)

where d = 2MK. Notice that in Algorithm 1,ḡt is the
sequence of the search ellipsoids’ centers, while in each
iteration the vectorat defines the hyperplane that divides the
current search ellipsoid.

Algorithm 1 Algorithmic solution for the robust, SINR-
constrained precoder.

1: Initialize the first search ellipsoid{ḡ0 +B0u, ‖u‖2 ≤ 1}.
Set t = 0 (step number).

2: repeat
3: t← t + 1.
4: if ḡt−1 ∈ S, whereS is the domain of (22): Calculate

the vectorat as the subgradient of the objective function
in ḡt−1. If at = 0 the optimal solution is̄gt−1. Skip
the following step.

5: if ḡt−1 /∈ S: Calculate the separation vectorat that
satisfies

aT
t ḡt−1 ≥ sup

g∈S
aT

t g, at 6= 0. (27)

6: Update the search ellipsoid:

pt =
BT

t−1at
√

aT
t Bt−1B

T
t−1at

, ḡt = ḡt−1 −
1

d + 1
Bt−1pt

(28)

Bt =
dBt−1√
d2 − 1

+

(

d

d + 1
− d√

d2 − 1

)

Bt−1ptp
T
t

(29)
7: until : convergence is reached
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We formulate the main conclusion of this section as a
theorem:

Theorem 3: The sequencēgt from Algorithm 1 converges
to the optimal solution of the problem (22). The feasibility
check for ḡt−1 and the construction ofat can be efficiently
performed, and the complexity of Algorithm 1 is polynomial.

Proof: The proof is given in Appendix A.

B. SDP-Based Solution

In this section, we approach the problem (22) indirectly.
Define a virtual MSE-optimization problem (5)-(6), with the
same channels and with QoS targets

µk =
1

1 + γk
, ∀k ∈ {1, . . . ,K}. (30)

It is known that if perfect CSI is provided at both sides, such
MSE-constrained problem is equivalent to (22) and (20), as far
as the transmit filter is concerned [23]. The following theorem
shows that in the robust case, the virtual MSE-optimization
problem can serve as a conservative, tractable approximation
of (22) and consequently (20).

Theorem 4: Let the MSE problem (5)-(6) be feasible with
the targetsµk ∈ (0, 1), k = 1, . . . ,K, and letGopt be the
resulting optimal transmit filter. The SINR constraints in (22)
are satisfied then forγk obtained from (30), with the same
transmit filterGopt.

Proof: It can be seen that the conditionMSEk ≤ µk is
equivalent to

K
∑

l=1, l 6=k

∣

∣

∣

∣

1

fk
H(k,:)G(:,l)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

1

fk
H(k,:)G(:,k) − 1

∣

∣

∣

∣

2

+
σ2

k

f2
k

≤ µk.

(31)
Since fk > 0 and µk ∈ (0, 1), it follows that
ℜ{H(k,:)G(:,k)} ≥ 0, because otherwise the absolute value of

ℜ
{

1
fk

H(k,:)G(:,k) − 1
}

would be larger than 1. Therefore, it
is sufficient to prove thatMSEk ≤ µk implies

∥

∥

[

H(k,:)G σk

]
∥

∥

2

2
≤ 1

1− µk

(

ℜ{H(k,:)G(:,k)}
)2

, (32)

since1+γ−1
k = (1−µk)−1,ℜ

{

H(k,:)G(:,k)

}

= H̃(k,:)G̃(:,k),
and the spectral norms of vectors

[

H(k,:)G σk

]

and
[

H̃(k,:)G̃ σk

]

are equal, so the SINR constraints in (22)
would be fulfilled. We proceed by rewriting (31) into an
equivalent form

∥

∥

[

H(k,:)G σk

]∥

∥

2

2
≤ f2

kµk +
∣

∣H(k,:)G(:,k)

∣

∣

2

−
∣

∣H(k,:)G(:,k) − fk

∣

∣

2
.

(33)

The theorem is proved by noticing that

f2
kµk +

∣

∣H(k,:)G(:,k)

∣

∣

2 −
∣

∣H(k,:)G(:,k) − fk

∣

∣

2

≤ 1

1− µk

(

ℜ{H(k,:)G(:,k)}
)2 (34)

is true, because it is equivalent to
(

ℜ{H(k,:)G(:,k)} − fk(1− µk)
)2

≥ 0. (35)

The problem (22) can now be approached in the following
way: For a fixed set of targetsSINRk ≥ γk, the virtual MSE
constraintsMSE ≤ µk are defined using (30). The problem
(5)-(6) is solved then by applying the SDP method from
Section III, and the resulting transmit filter surely complies
to the specified SINR requirementsγk. The excellent quality
of this approximation with respect to the optimal solution from
Section IV-A will be seen from simulation results in Section
VI.

While we have shown how the optimal solution of (22) can
be computed by employing the ellipsoid method, the optimal
solution of the SINR-constrained problem (20) remains as an
open topic for the future work (see also the discussion after
the definition of (22)). We remark also that if the perfect CSI
is assumed at the reception side, and if the equivalent channels
can be estimated, it can be easily proved that the application of
the standard MMSE solution (7) for the receiver’s coefficients
in the MSE-constrained problem (5)-(6) would lead to the
same non-convex problem (20). There lies the possibility for
improving the performance for both QoS measures. However,
due to the non-convexity of the problems, the price that has
to be paid will probably be the increased or non-guaranteed
computational complexity [40].

V. RECTANGULAR UNCERTAINTY REGIONS

In practical systems, the uncertainty regions in the form of
boxes (hyperrectangles) might be of particular interest, with

∣

∣ℜ{∆(k,m)}
∣

∣ ≤ εk,
∣

∣ℑ{∆(k,m)}
∣

∣ ≤ εk, (36)

for all k = 1, . . . ,K, m = 1, . . . ,M . Notice that we do not
suggest any specific quantization scheme (scalar or vector),
but just focus on another possible bounded error model. For
convenience, we return to the MSE-optimization problem from
Section III (having in mind also the ability to support the
SINR-constrained problems, as explained in Section IV-B) and
proceed by transforming the LMI in (11) into a tractable form,
with respect to the model (36).

Theorem 5: The constraints in (6), with uncertainty regions
specified by (36), are equivalent to the following set of LMIs

Φk +

M
∑

m=1

vk,p
m Y m +

M
∑

m=1

vk,p
m+MZm � 0 (37)

for all k ∈ {1, . . . ,K} and all vectorsvk,p, p = 1, . . . , 22M ,
given as

vk,p = εk

[

v1 v2 · · · v2M

]T
,

v1 = ±1, . . . , v2M = ±1, p = 1 +

2M
∑

l=1

22M−l max{vl, 0},

(38)

and where the matricesY m andZm are defined as

Y m =





0 G(m,:) 0
G∗

(m,:) 0 0

0 0 0



 , (39)

Zm =





0 jG(m,:) 0
−jG∗

(m,:) 0 0

0 0 0



 . (40)
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Proof: Define for notational convenience vectorsδk

δk =
[

δk
1 . . . δk

2M

]T
= ∆̃

T

(k,:), ∀k ∈ {1, . . . ,K}.
(41)

with ∆̃(k,:) given by (24). The constraints (11) (and equiva-
lently (6)) in the case of rectangular uncertainty regions (36)
can be rewritten into a form

Φk +
M
∑

m=1

δk
mY m +

M
∑

m=1

δk
m+MZm � 0,

∀δk
l ∈ R : |δk

l | ≤ εk, l = 1, . . . , 2M, ∀k ∈ {1, . . . ,K}.
(42)

Consider (42) as an LMI inδk. The set of all error vectors
δk that represent one user’s channel uncertainty is the convex
hull of the finite set of fixed vectorsvk,p, p = 1, . . . , 22M .
Therefore, due to the convexity of the LMIs (42) with respect
to δk, the fulfillment of (37) is the necessary and sufficient
condition for (42) to be valid, which concludes the proof.

Similarly to Section III, the desired optimization can be per-
formed in principle using the SDP methods. However, notice
that the number of additional constraints (LMIs) corresponding
to one userk, reflected in the indexp, grows exponentially
with the number of transmit antennas. Such behavior might
prevent this approach from practical application, especially
if the BS employs an antenna array with many elements.
Therefore, having simpler, conservative (in the sense that
the MSE targets are never violated) tractable approximations
might be of significant interest in practice. The following
theorem proposes one such approximation of the problem with
lower computational burden.

Theorem 6: In the case of rectangular uncertainty regions
(36), the constraints (6) are implied by the LMIs

Υ
k
m � ±Y m, Ψ

k
m � ±Zm, m = 1, . . . ,M, (43)

Φk − εk

M
∑

m=1

(Υk
m + Ψ

k
m) � 0, ∀k ∈ {1, . . . ,K}, (44)

whereΥ
k
m andΨ

k
m are slack matrix variables, andY m and

Zm are defined by (39)-(40).
Proof: Notice that for arbitraryΥ, Y and ε ≥ 0 the

following relations are valid

Υ � ±Y ⇔ ±εY � −εΥ (45)

⇔ δY � −εΥ, ∀δ ∈ R : |δ| ≤ ε, (46)

where the equivalence relation (45) is obtained by a simple
multiplication with −ε, and (46) follows from the same
arguments based on the convex hull as in the proof of Theorem
5. Therefore, with the assumption (43), we conclude

Φk+

M
∑

m=1

δk
mY m+

M
∑

m=1

δk
m+MZm � Φk−εk

M
∑

m=1

(Υk
m+Ψ

k
m),

(47)
for all δk (41) that comply to (36), which completes the proof
of the theorem.

Contrary to the exact solution, the number of additional
constraints for the procedure described by Theorem 6 increases
only linearly with the number of transmit antennasM , which
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Fig. 2. Comparison of the robust (Section III) and non-robust[23] solutions
in an MSE-constrained multiuser MISO system.

is clearly beneficial in terms of the decreased computational
complexity, despite the additionally introduced slack variables.
We discuss the quality of this approximation in more detail in
Section VI.

VI. N UMERICAL EXAMPLES AND DISCUSSION

Except for the ellipsoid method from Section IV-A which
is implemented directly, numerical simulations in this section
are obtained obtained using SeDuMi [41].

We start with a simulation result that compares the robust
and the non-robust solution of the MSE-optimization problem
(5)-(6) in a 3-user system. The noise variance, the MSE targets
and the bounds on the uncertainty (10) are assumed to be the
same for all users:σ2

k = 0.1, µk = 0.15 and εk = 0.1. The
BS is equipped withM = 4 antennas. The distributions of the
third user’s MSE, if the non-robust solution from [23] and the
robust solution from Section III are implemented, are plotted
in Fig. 2 for 103 randomly chosen channel realizations which
yielded feasible problems for the specified targets. The real
and imaginary parts of each channel coefficient had normal
distribution with zero mean and variance0.5, and the errors
were uniformly chosen from the uncertainty regions (10).
It can be concluded that if the transceiver optimization is
performed disregarding the disturbances, the system does not
satisfy the QoS constraint for more than50% of the channel
realizations. Contrary to this, the robust algorithm proposed in
Section III guarantees the targets all the time, and the system
never experiences an outage.

For introducing robustness in the system, clearly, a certain
price had to be paid. In the problem formulation (5)-(6), this
would correspond to the increased transmit power with respect
to the situation when the obtained channel knowledge was
perfect. In Fig. 3, we compare the performance of the solution
for the MSE-optimization problem from Section III with three
strategies. The first one is the robust power allocation proposed
in [26]. We plot also the result of optimization from Section
III if the receivers are fixed, withfk = 1, k ∈ {1, 2, 3}.
Finally, the performance of the hypothetical system, where
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Fig. 3. Minimal transmit power versus the QoS (MSE) target of the third
user,σ2

1,2,3 = 0.1, µ1,2 = 0.15.

σ2

k
Per. CSI SDP (Sec. III) Pow. Con. [26] SDP,fk = 1

0.01 0.0011 0.0083 0.0112 0.0202
0.1 0.0056 0.0169 0.0208 0.1213

TABLE I
M INIMUM FEASIBLE MSE TARGET µ3 IN A 3-USERMISO SYSTEM WITH

µ1,2 = 0.15.

the obtained CSI is correct, is given, as well. The minimum
transmit power is plotted for various MSE targetsµ3 of
the third user, with other simulation parameters being the
same as in the previous example. The results present an
average over103 channels, chosen so that the problem was
feasible for the observed range of QoS constraints. It can be
seen that the proposed SDP-based solution from Section III
outperforms in performance other robust strategies. The SDP-
based robustness, which enabled the fulfillment of the targets,
required roughly 25-35% more power comparing to the case
when the obtained channel knowledge was exact. We remark
that the performance gaps between the investigated strategies
vary depending on the system size, the uncertainty level and
the signal-to-noise ratio (noise power) in the system.

Due to the fact that the uncertain MSE constraints are shown
to be LMIs, the feasibility range of the MSE constraintsµk

can be calculated by the bisection method [32]. In Table I,
we list the average feasibility ranges of the MSE target of the
third userµ3, with µ1,2 = 0.15 fixed, for two noise variances.
Other system parameters are the same as in the first simulation
example. Additionally, we imposed a total power constraint
P ≤ 10, which is introduced into the optimization framework
in a straightforward manner, as discussed in Section III.

Similarly to the previous example, it can be concluded that
the maximum size of the uncertaintyεk is also readily obtained
by the bisection method. This parameter is of importance in
determining the roughness of the quantization that can be
allowed in the CSI, e.g., when returning it from the receivers
to the BS using the feedback channels. The averaged results
with the same system parameters as for the example in Fig.

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
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µ
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ε m
ax

Robust power control [26]

SDP method (Sec. III)

SDP method (Sec. III), f
k
=1

Fig. 4. Maximum size of the uncertainty setεk, assumed to be the same
for all users, for the MSE-constrained problem.

3, with the additional power constraintP ≤ 10, and with the
boundsεk assumed to be the same for all users, are given
in Fig. 4. The results from Table I and Fig. 4 confirm that
the proposed SDP-based approach exhibits better properties
comparing to the other two robust methods also in terms of
the feasibility regions and the sustained level of uncertainty.

In Fig. 5, we plot the Monte Carlo simulations for the mini-
mum transmit power against the SINR targets, which are now
assumed to be the same for all users. The system parameters
are M = K = 3, σ2

1,2,3 = 0.1 and ε1,2,3 = 0.1. The results
present an average over 2000 channel realizations that yielded
feasible problems for the considered range of SINR targets.It
can be seen that the solution based on the ellipsoid method and
the SDP-based approach from Section IV perform the same.
They both outperform the structured RSDP approach from
[27]. Furthermore, the complexity of the proposed SDP-based
method appears to be smaller comparing to the solution from
[27], which employs larger LMIs and more unknown variables.
The average number of iterations necessary for the termination
of the algorithms in our implementation (the accuracy was
10−6 [41]) varied from 9.47 to 11.02 depending on the SINR
target for our SDP solution, comparing to the 22.83 to 24.37
for the same parameters in the structured RSDP approach. The
number of iterations for the ellipsoid method was typicallyof
the order of102. We remark that we performed no additional
optimization of the code, and that the tailored applicationof
the interior point algorithms, which could exploit furtherthe
structure of the problems, is beyond the scope of this paper.In
Section VI-A, however, we present a brief theoretical analysis
of the complexity of all investigated methods.

We finish the analysis of the SINR-constrained problem
by plotting in Fig. 6 the percentage of feasible channel
realizations in a system with the same parameters as in the
previous simulation and the default SeDuMi settings used.
The SINR target of 10 dB is assumed to be the same for
all three users. 2000 randomly generated multiuser channels,
with the complex Gaussian distribution of the channel coef-
ficients remaining the same as for the first simulation result
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in this section, were inspected. The conclusions regardingthe
performance ordering are similar as in the power minimization
case.

Finally, in Fig. 7, we illustrate the algorithms for dealing
with the rectangular quantization, described in Section V.
The system parameters wereM = K = 3, σ2

1,2,3 = 0.1,
ε1,2,3 = 0.01 in (36) and µ1,2 = 0.1. Minimum transmit
power, averaged over103 feasible random channel realizations,
is plotted versus the MSE target of the third userµ3. The exact
and the approximate solution from Section V, the performance
if the CSI is perfect, and a conservative approach, where the
rectangular uncertainty regions are approximated by minimum
volume balls containing them with the solution from Section
III applied (the radius of these balls can be simply calculated
asεk

√
2K), are compared. It can be seen that the approximate

approach, derived in Section V, matches well for the most of
the observed QoS range with the computationally involved
exact method, while the computationally simplest spherical
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Fig. 7. Minimal transmit power for the rectangular quantization in a 3-user
MISO system withµ1,2 = 0.1.

approximation has somewhat worse performance if the target
is far from the border of the feasibility region.

A. Notes on Computational Complexity

Except for the ellipsoid method from Section IV-A, that
exhibits significantly larger computational burden [29], all
studied methods in this paper and in the relevant results from
the literature applied the SDP techniques, or they can be easily
transformed into them for the sake of a rough comparison.
The arithmetic complexity of the SDP programming methods
depends significantly on the problem structure, and the detailed
analysis is beyond the scope of this paper. However, a good
insight can be gained already from studying the general
bounds. Consider a standard real-valued semidefinite program
minx∈Rn{cTx : A0 +

∑i=n
i=1 xiAi � 0, ‖x‖22 ≤ R}, where

Ai are symmetric block-diagonal matrices withm diagonal
blocks of sizekl×kl, l = 1, . . . ,m. Stack all data that uniquely
describe the system into a vectord, and lets be the size of
this vector. The number of elementary arithmetic operations
necessary for determining theǫ-solution is known to be upper-
bounded by [29]

C = O(1)

(

1 +

m
∑

l=1

kl

)1/2

n

(

n2 + n

m
∑

l=1

k2
l +

m
∑

l=1

k3
l

)

× ln

(

s + ‖d‖1 + ǫ2

ǫ

)

.

(48)

Therefore, the key influence on the computational complexity
is made by the size of the vector containing unknown variables
n, and by the sizes of the LMIskl. We use these parameters
to compare the examined strategies in this paper. The standard
transformation of the objective function into a minimization of
a linear function with slack variables and an LMI constraint,
will be neglected, since this has a minor influence on the
performance.

The SDP algorithm derived in Section III has2MK + K
original unknown values (real and imaginary parts of the
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transceiver coefficients) andK additional slack variablesλk.
There areK LMIs corresponding to the users’ constraints with
sizes2(K + M + 2) in the real-valued SDP representation.
This also determines the complexity of the conservative SINR-
optimization from Section IV-B, with the users’ equalization
coefficients treated as slack variables.

The solution from [26] is simpler firstly in the sense that
only power allocation, i.e., onlyK real-valued coefficients
q1, . . . , qK are optimized. These coefficients are tightly con-
nected with the equalization scaling factorsf1, . . . , fK from
Fig. 1. The constraints in [26] are originally given in the form

λmax

(

Ĥ
†
diag(q1, . . . , qK)Ĥ

†∗
)

≤ c1qk + c2, (49)

wherec1 andc2 are constants depending on the MSE targets,
the noise variances and the sizes of the uncertainty regions,
and λmax(·) denotes the maximum eigenvalue of a matrix.
The condition (49) can be rewritten in the real-valued form
qkI2M −X(q1, . . . , qK) � 0, whereX depends affinely on
the powersq1, . . . , qK [29].2 Therefore, the size of the LMIs
is 2M which is smaller comparing to the proposed solution
in Section III. However, as seen from Fig. 3, Fig. 4 and Table
I, the gains introduced by the proposed full optimization can
be significant.

As far as the SINR-constrained downlink transmission is
concerned, in [27], the size of the LMI and the number of ad-
ditional slack variables corresponding to thekth user constraint
are2(K+1)(2M+1) and(K+1)(2K+3), respectively, which
is larger comparing to the same parameters in the solution
based on the virtual MSE-optimization problem, that is also
seen to exhibit better performances.

Finally, in the rectangular quantization case, studied in
Section V, a qualitatively clear difference in complexity among
the exact solution, which cannot be considered as solvable in
polynomial time, and the approximate methods can be noticed.
In a practical application, for the QoS targets close to the
edges of the feasibility region, the spherical approximation
would be preferred, while for the rest of the feasible region,
the approximate solution, based on Theorem 6, could be of
more interest.

VII. C ONCLUSION

The unified framework for a robust support of minimum al-
lowable SINR targets and maximum tolerable MSE constraints
in a multiuser MISO setting has been derived. The algorithms
are based on SDP methods and efficiently handle ellipsoidal
uncertainty sets. The formulated MSE-optimization problem
has been solved optimally, while a conservative tractable
approximation, with performance that closely matches the
derived, computationally more involved optimal solution,is
provided for the SINR-constrained optimization. In both cases,
however, the obtained methods are found to outperform in
performance the related results from the literature. With the
MSE as the QoS measure, a relatively small increase in
complexity is observed, while in the SINR case the method
appears to be even simpler than the known approaches. The

2We remark that in special cases of the problems studied in [26],there are
possibilities for employing more efficient iterative algorithms than SDP.

S

S2

S1

S3

π2

π3

ḡ

π1

Fig. 8. Separation hyperplanesπk, defined by (27), and the domainsSk,
that correspond to users’ constraints in (22).

convergence polynomial in time is guaranteed. In the case of
rectangular uncertainty regions, besides an involved exact so-
lution, conservative approximations with significantly smaller
computational burden have been derived, with a minor loss in
performance.

We remark also that the first results show promising pos-
sibilities for an application of the proposed framework in
a more general multiuser context, where the receivers also
have multiple antennas (multiuser MIMO systems), and for
handling a broader range of optimization problems, such as
the sum-MSE (SINR) optimization, fairness, etc. [42].

APPENDIX A
PROOF OFTHEOREM 3

In the sequel, it will be shown that all ingredients for
Algorithm 1 are indeed available. The ability to construct
the subgradient of the objective function is not problematic.
Clearly,P = ‖g‖22 is valid, and this function is differentiable,
so its subgradient is equal to the usual gradient:∂P = 2g.

The problems of determining whether a particular vector
g = ḡ is feasible for (22) and the construction of the separation
oracle, defined by (27), are considerably more involved. Notice
that the domainS of (22) is an intersection of setsSk,
k = 1, . . . ,K, whereSk is the feasible region corresponding
to the kth user’s target in (22). By using similar reasoning
as in the proof of Theorem 1, we conclude thatSk and
consequentlyS are convex sets. Let us construct the procedure
for determining the feasibility of a particular vectorg = ḡ and
the separation hyperplaneπk according to (27), with respect
to thekth user constraint and the domainSk only. Clearly, as
illustrated in Fig. 8 for a 3-user system, the global feasibility
checking routine would consist of examining each of the user
constraints. If, e.g., thekth constraint is declared infeasible,
the hyperplaneπk separates̄g andS, as well.ḡ is feasible, if
and only if each of theK constraints is fulfilled.

First, we rewrite thekth user’s constraint in (22) as
∥

∥Ψk(g)δk +ψk(g)
∥

∥

2
≤ αT

k (g)δk + βk(g), ∀‖δk‖2 ≤ 1,
(50)
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whereδk = 1
εk

∆̃
T

(k,:) and Ψk, ψk, αk and βk are affine in
the unknown transmit filter coefficients grouped in the vector
g. For the constraints of type (50), robust optimization theory,
developed in [39], can be applied, in order to examine the
feasibility and determine the separation hyperplane. In the
sequel, we present the main ideas of the procedure. The user
indexk and the explicit dependence of the termsΨk, ψk, αk

andβk ong will be occasionally omitted in rest of this section
to make the formulas less cumbersome.

The feasibility problem is resolved by the following lemma:
Lemma 2: The uncertain constraint (50) is valid if and only

if the following two inequalities are fulfilled

‖α‖2 ≤ β, (51)

X(λ) ,

[

λI +ααT −Ψ
T
Ψ βα−Ψ

Tψ

βαT −ψT
Ψ β2 −ψTψ − λ

]

� 0,(52)

for someλ ≥ 0. The feasibility of (51)-(52) for a fixedg can
be determined in an efficient manner. In the case when (52)
is infeasible, a finite set of vectorszl with the corresponding
affine functionsφl(λ) = zT

l X(λ)zl, l = 0, . . . , L so that

φ(λ) = min{φ0(λ), . . . , φL(λ)} < 0, ∀λ ≥ 0, (53)

wheremin means the pointwise minimum, is readily found.
Proof: It can be noticed that (50) requires

αT (g)δ + β(g) ≥ 0, ∀‖δ‖2 ≤ 1. (54)

(51) is obtained by applying the Cauchy-Schwarz inequality
on (54). Now the inequalities in (50) can be squared, and a
direct use of theS-Lemma renders the equivalent form (52).

It is straightforward to examine the validity of (51) for a
given vectorg = ḡ, so in the sequel we focus on analyzing
(52). For a fixedg, X(λ) is an LMI in λ. Notice that
λ− ≤ λ ≤ λ+, where λ− = 0, λ+ = β2 − ψTψ, must
be valid, for (52) to hold. In other words,[λ−, λ+] can be
considered as a starting search interval forλ, so that the LMI
(52) is positive semidefinite. Therefore, forλ+ < 0, it can
be immediately concluded that (52) and consequently (50) are
not feasible. Ifλ+ > 0, check whetherX(λl) � 0, with
λl = 0.5(λ− + λ+). If X(λl) is positive semidefinite, the
requiredλ is λl, and the feasibility of (52) can be claimed.
If not, by examining the eigenvalues ofX(λl), a vectorzl

can be found so that an affine functionφl(λ) = zT
l X(λ)zl

is negative forλ = λl. A new interval [λ−, λ+] to search
for λ satisfyingX(λ) � 0 is obtained as a set of values
for which φl(λ) ≥ 0, and the procedure can be continued
in an iterative manner. The new search interval is at least two
times smaller than the original search space, which guarantees
a rapid convergence [39]. Finally, if noλ ≥ 0 is found so that
X(λ) � 0, (52) is declared infeasible, with a set of functions
φl(λ), that are affine inλ and satisfy (53), obtained.

We show now how, when (50) is infeasible, one vectorδ̄,
with

∥

∥δ̄
∥

∥

2
≤ 1, can be found so that the first inequality in (50)

is not satisfied forδ = δ̄. Using this infeasibility certificate
vector, we will construct the separating hyperplane (27).

In the case when (51) is infeasible, the required vectorδ̄ is
easily obtained as̄δ = − α

‖α‖2
. We focus in the sequel on the

problem when the infeasibility of (51)-(52) is due to (52).

It can be noticed that the obtainedφ(λ) in (53) is a
piecewise linear concave function forλ ≥ 0. Observe its
maximum, and conclude that anx ∈ (0, 1) and0 ≤ l1, l2 ≤ L
can be found so that (the procedure should be slightly modified
if one affine function is the minimizer ofφ for all λ ≥ 0)

ϕ(λ) = xφl1(λ) + (1− x)φl2(λ) < 0, ∀λ ≥ 0. (55)

Setµ =
√

xzl1 , ζ =
√

1− xzl2 andZ = µµT + ζζT . It
follows that

ϕ(λ) = Tr {X(λ)Z} < 0, ∀λ ≥ 0. (56)

By using basic linear algebra and the theory of quadratic func-
tions, it can be shown that a transformationZ = ηηT + ξξT ,
where η, ξ are elements of the second-order coneL

2M+1

[32], can be calculated [39]. From (56), one concludes that
Tr {ZX(0)} < 0. It follows that eitherTr{ηηTX(0)} < 0,
or Tr{ξξTX(0)} < 0, or both. If the first inequality is true,
the required infeasibility certificatēδ is obtained by scaling

η with its last element:
[

δ̄
T

1
]T

= 1
η2M+1

η. The proof

follows from the facts that
[

δ̄
T

1
]

X(0)
[

δ̄
T

1
]T

< 0

implies that the first inequality in (50) is not valid, and that
η ∈ L

2M+1 yields
∥

∥δ̄
∥

∥

2
≤ 1. The analog procedure can be

performed whenTr{ξξTX(0)} < 0.

Let ȳ =
[

(Ψ
(

ḡ)δ̄ +ψ(ḡ)
)T

αT (ḡ)δ̄ + β(ḡ)
]T

/∈
L

2K+2. Set

v =
[

(

Ψ(ḡ)δ̄ +ψ(ḡ)
)T ∥
∥Ψ(ḡ)δ̄ +ψ(ḡ)

∥

∥

−1

2
−1
]T

. (57)

It can be noticed thatvT ȳ ≥ vTy, for all y ∈ L
2K+2. The

homogenous part of

vT
[

(Ψ
(

g)δ̄ +ψ(g)
)T

αT (g)δ̄ + β(g)
]T

, (58)

which is immediately computed because of the affine nature
of the respective terms ing, yields the required vectorat.

The fact that the described ellipsoid method converges to
the optimal solution with a polynomial complexity follows
directly from Lecture 5 in [29].
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[26] M. Payaŕo, A. Pascual-Iserte, and M.́A. Lagunas, “Robust power allo-
cation designs for multiuser and multiantenna downlink communication
systems through convex optimization,”IEEE J. Sel. Areas Commun.,
vol. 25, no. 7, pp. 1390–1401, Sep. 2007.

[27] M. Botros Shenouda and T. N. Davidson, “Convex conic formulations
of robust downlink precoder design with quality of service constraints,”
IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 714–724, Dec.
2007.

[28] L. Vandenberghe and S. Boyd, “Semidefinite programming,”SIAM
Review, vol. 38, pp. 49–95, Mar. 1996.

[29] A. Ben-Tal and A. Nemirovski,Lectures on modern convex optimization:
Analysis, Algorithms, and Engineering Applications. PA, USA: MPS-
SIAM Series on Optimization, 2001.

[30] M. Botros Shenouda and T. N. Davidson, “Design of fair multi-user
transceivers with QoS and imperfect CSI,” inProc. Communication
Networks and Services Research Conference, Halifax, Canada, May
2008.

[31] ——, “Non-linear and linear broadcasting with QoS requirements:
Tractable approaches for bounded channel uncertainties,”submitted
for publication in IEEE Trans. Signal Process., available online:
http://arxiv.org/abs/0712.1659.

[32] S. Boyd and L. Vandenberghe,Convex Optimization. NY, USA:
Cambridge University Press, 2004.

[33] R. A. Horn and C. R. Johnson,Matrix Analysis. NY, USA: Cambridge
University Press, 1999.

[34] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beam-
forming for physical layer multicasting,”IEEE Trans. Signal Process.,
vol. 54, no. 6, pp. 2239–2251, Jun. 2006.

[35] A. Goldsmith, Wireless Communications. New York, NY, USA:
Cambridge University Press, 2005.

[36] N. Vucic and H. Boche, “Robust minimax equalization of imperfectly
known frequency selective MIMO channels,” inProc. Asilomar 2007,
Pacific Grove, CA, USA, Nov. 2007.
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