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Abstract—The knowledge of the channel at the transmit side methods can be applied to boost the performance. The idea
of a communication system can be exploited by using precoding

techniques, from which the overall transmission quality might
benefit significantly. However, in practical wireless systems, the
channel state information is prone to errors, which sometimes de-
teriorates the performance drastically. In this paper, we addres
the problem of robust transceiver design in a downlink multiuser
system, with respect to the erroneous channel knowledge at the
transmitter. The base station is equipped with an antenna array,
while users have single antennas. The transceiver optimization is
performed under a set of predefined users’ quality-of-servicean-
straints, defined as maximum mean square errors, or minimum
signal-to-interference-plus-noise ratios, which must be satisfied
for all disturbances that belong to given, bounded uncertainty
sets. Efficient numerical solutions are obtained using semidefinite
programming methods from convex optimization theory. The
proposed algorithms are found to outperform related approachs
in the literature in terms of the achieved performance, while
maintaining low computational complexity. The studied uncer-
tainty models are applicable in mitigating typical errors that
emerge as a result of quantization or channel estimation.

Index Terms—Multiuser multiple-input single-output (MISO)
systems, joint transmit-receive equalization, robustness, sadef-
inite programming, ellipsoid method.

I. INTRODUCTION

is to pre-equalize signals at the transmitter, and mitigiage
channel-induced interference [2]. These techniques altur
demand that the channel state information (CSI) is supjaited
the transmit side. However, the provisionparfect CSl is of-
ten a formidable task in wireless systems. The transmiffer t
ically obtains the channel knowledge either through feekba
channels from the receiver, where it is estimated usingitrgi
sequences, or by estimating it in the uplink phase direwily
the latter approach being applicable in time division duple
(TDD) systems. In both cases, estimation errors are ingeita
in practice [3]. Furthermore, the feedback channels arallysu
of limited capacity [4], so the quantization effects must be
taken into account. If the uplink values are used, the proble
of having outdated estimates appears frequently, becaluse o
the fast varying wireless environment. These effects, galon
with the fact that the downlink precoding methods can be
quite sensitive to the imperfect CSI [5], instigated a digant
amount of research work in enabling a sort of robustness
regarding the channel knowledge. Considered robust design
are usually either of stochastic or the worst-case nature.
Stochastic robustness has been studied in [6]-[11], asgumi
that the error in the channel knowledge possesses certain

The ability to exploit the spatial diversity by employingstatistical properties. This hypothesis is in some cases re

antenna arrays and provide significant performance gaiss
given a great stimulus in wireless communications reseal

in recent years [1]. Systems in which a multi-antenna bad

gqnable, since the error in the estimation process can often
r@ﬂ approximated as a random variable with the Gaussian

Istribution. Statistical assumption on the CSI distudzan

station (BS) serves single-antenna users present prcgnis‘?ﬁm then be used for optimizing the mean or the outage

candidates for future cellular networks, since the compl

signal processing is performed at the BS, where the issP e X
having only statistical properties of the exact channkég the

of computational power is less problematic, while the mmbi
units can be kept relatively simple and inexpensive.

Qerformance of the system. A related direction in probstodi

roaches is the transmitter design under the assumgtion o

mean or the covariance of the channel coefficients (see, e.g.

In the downlink of such setups, which is a multiusepz]’ [13]).

multiple-input, single-output (MISO) scenario, precaglin
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Worst-case analysis, that we adhere to in this paper, is
also well-established in robust signal processing [9],],[10
[14]-[19]. Here, the errors are supposed to belong to the
given bounded uncertainty sets, and the system is optimized
to satisfy certain requirements for all channels from the
uncertainty regions. This approach requires no statistisa
sumption on the disturbances, which often indeed do not
exhibit any, and corresponds well to the quantization srror
It is also convenient for handling slow fading channels, iehe
no sufficient statistics for the averaging is available [Zl0je
robustness against unbounded errors (e.g., the ones with th
Gaussian distribution) can also be supported with this fnode
by controlling the system outage [18].

The main problem of interest in this paper is the transceiver
optimization with the goal of minimizing the total transmit
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power subject to predefined users’ quality-of-service (poSS . “’i o s
targets, in a flat-fading environment. The transmitter Wil —— G 5ra H=H+A T Fl=1] . sl} —=
provided with imperfect channel estimates and with the ldgun 0 J

on the uncertainty regions, which surely contain the exact

channel values (contrary to [21], our focus is on erroneo&®. 1. Block-scheme of the studied multiuser MISO system.
channels and not on disturbed channel covariance matrices)

the cases where the receivers’ equalizers should be désigne )

it is also supposed that the users either know their channBtsNotation

perfectly, or that there exists an error-free mechanismh@n t Small and large bold fonts are used to denote vectors and
system, which delivers scaling coefficients to the userss Thmatrices, respectively. If not explicitely stated, the dirsions
formulation presents one way of defining a robust countemll be clear from the context. is the identity matrix
part of the standard downlink beamforming problem, whoswd 0 is the zero-matrix.A > B means thatA — B is
solution in the perfect CSI case is known from [21]-[24]positive semidefinite is used for the positive definiteness)
The considered robust scenario is considerably more iedolV{32]. The trace of a matrix is denoted withr{-}. ||(-)1,
due to the fact that the QoS requirements must be supportéd |2 and||(-)||» denote the,-norm, the spectral norm and
for an infinite number of possible channels, contained in tiike Frobenius norm, respectively [33]. The matrix transpos

uncertainty regions, with a single set of filters. the conjugate (Hermitian) transpose and the Moore-Penrose
pseudoinverse are written @87, (-)* and (-)T, respectively.
A Related Work and Contributions A(,m) is the element in the positiofk, m) of A, while

A m) and A, . are themth column andkth row of A,

As QoS constraints, maximum allowable mean square @gspectively. The standard indexing with subscripts isluse
rors (MSEs), or minimum tolerated signal-to-interferencgyenote an element of a vector. The vecter(A) contains
plus-noise-ratios (SINRs) will be considered. The relatgfle columns of the matrixA, stacked below each other.
robust problems in the single user, multiple-input mudipl diag(as, . .., ax) is a diagonal x K matrix having elements
output (MIMO) setting were analyzed in [16], [19], [25]. Twoal, ..., ax on the main diagonalR{-} and{-} extract real

approaches emerged recently to cope with specific aspexts th, imaginary parts of the argument, respectivelz} is the
appear in a multiuser MISO setup: the MSE-constrained 'tOblé?(pectation operator.

power control studied in [26], and robust precoding with RIN
targets proposed in [27]. The main contributions of thisgrap
can be briefly summarized as follows:
« We solve the MSE-constrained problem by optimizin(ﬂ The rest of the paper is organized as follows. In Section
the systemcompletely using semidefinite programming’ the system model is introduced. Section Il fqrmulatbet
(SDP) methods [28]. Thereby the performance of tHYSE-constrained problem statement and provides an SDP-

solution from [26], that aimed at power control only ané)ased solut|on_. Ro_bust precoders for a system with SI_NR
had the beamforming matrix fixed, is improved, with afgrgets are derived in Section IV. The rectangular unagstai
acceptable increase in computational complexity sets are analyzed in Section V. Simulation results are sliwn

« The SINR-constrained problem, posed originally in [zﬁection VI, and the paper is concluded with a short summary

with conservative solutions provided, is shown to have dff Section Vil.
optimal solution, based on the computationally involved
ellipsoid method [29]. Il. SYSTEM MODEL
o By applying the derived MSE-optimization framework, Consider a multiuser MISO system witli single-antenna
an elegant conservative solution for the SINR-problemsers, where the BS is equipped willi antennas, as il-
is found, which outperforms the related results from thieistrated in Fig. 1. In one time instant, the BS transmits
literature in terms of performance-complexity tradeoffll independent symbols;, sz, ..., sk, where the symbol
This yielded a unifying framework for handling boths; is intended for thekth usert To simplify the expres-
types of QoS constraints. sions, we group the transmit symbols into a vectors =
» Besides the standard ellipsoidal uncertainty assumptic{n,sl So ... SK ]T, with E(ss*) = I assumed, w.l.0.g.
methods for supporting somewhat less-understood box-The complete downlink, flat-fading channel is represented
like error models, that completely change the mathematith the matrix H, H € CX*M_|f multicarrier techniques,
ical structure of the problems, are derived, as well.  like orthogonal frequency division multiplexing (OFDM)4B
In this work, our focus was mainly on optimization technigueare employed to combat the intersymbol interference in fre-
with the developed convergence theory. In other wordsgethéfuency selective channels, the used model in this paperwoul
exist upper bounds for the maximum number of iterations ag@rrespond to the performance analysis for one subcarrier
arithmetical operations necessary for the terminationhef t(see also [19], [36] for other ways of providing robustness
algorithms, which should grow slowly with the size of thdn multi-antenna systems with frequency-selective chine

problem. We remark that after completing this paper, a feral | _ N
We note that the problems of broadcasting and multicastingerevh

work on similar problems [30], [31] has been brought t0 Oy, mmon information is transmitted to certain groups of useessinificantly
attention. different [34].

C. Outline of the Paper
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The channel of théith user is given add ;.. It is assumed key idea in optimizing the scaling factors in (5)-(6) is that
that the BS knows only erroneous channel eStimmﬁ’:), the BS determines its beamform@&rby having some (partial)
with knowledge of what could be done at the reception, which,
. as it will be shown in Section VI, yields significant gains.
H) = Hg) + Ay, Vhe{l,... K}, @) Finally, we note that the incorporation of the MMSE solution

where A, ) is the error in the channel knowledge. The B$7) immediately into the problem formulation (5)-(6) would
is also supposed to know the structure of the uncertaintigld problems of significantly more complex structure, as
regionsDy, which surely contain the disturbancas, ,. The discussed in Section IV. . _
requirement on the CSI at the receivers will be commentedThe problem (5)-(6), with the assumption of having the
in more detail in the following sections, depending on thBerfect CSl at both sides, can be solved using the methoglolog
problem of interest. derived in [21]-[23]. We approach the uncertain problem (5)

The transmit filter (precoder) of the BS is denoted b ) using numerical methods from convex optimization tigeor
G, G ¢ CMxK_ The eventual equalization of the non 32]. Firstly, we notice that the MSE expression of thth
cooperating users, is represented with a diagonal mdfgix USer can be written as
F = diag(fi, fo,..., fx), fr € C\ {0}, and the inverses are 1 _ N e eye 9
used for convenience. Finally, the system equations forthe MSEy, = £ 2 (H )G = fuel) (Hwn G = fre})” + %)
users can be written as (8)
1 wheree;, are standard basis vectorsBf€ [33]. From (8), it

7 (Hp,)Gs+wr), Vke{l,...,K}, (2) can be concluded that assumifige R_ . would not change
4§ the solution for the minimal transmit power of the optiminat
where wy, is the additive noise at the reception, with = proplem (5)-(6), due to the possibility of multiplying the
[wi wy ... wg | ,and§, is the estimate ofz. We columns of G with complex numbers of unit magnitude,
assume that the transmit signals and the receive noise @fthout changing the objective function in (5). Therefone
uncorrelated, and tha(ww*) = diag(of,...,0%) holds.  can proceed with the equivalent representation okthaiser’s

constraint

IIl. ROBUSTMSE-CONSTRAINED OPTIMIZATION
MSE,;, < = H, G — fref o < fe/tk-
In this section, the MSEs will be adopted as the QoS k= H[ () Jrei o ”’2 = Mk(g)

measure, with

Sk =

The convexity of the problem (5)-(6) can be proved now for

MSE; = E {|s; — 8}, Vke{l,...,K}. (3) aW uncertainty regiom;,. _ _ _
Theorem 1: The problem (5)-(6) is convex, irrespectively
The robust MSE-optimization problem assumes the minimizgf the shape of the uncertainty regioPs.
tion of the total transmit powep, Proof: Being the squared Frobenius norm of the transmit
* vk filter matrix G, the objective function in (5) is clearly convex
P =E{Tr(Gss*G")} = ||G|? 4 . .
{Tr(Gss JF =16 “) [32]. Consider now théith user’s constraint (9) under uncer-
subject to predefined MSE targets, which must be satisfied tainty. For anyH ., from the uncertainty regions defined

under uncertainty: by IEI(,W) and Dy, (9) is a second-order cone constraint,
min P ) which yields a convex feasible set for_ the unk_nown .trarllsirelv
G.f1,fK ’ parameters [32]. The complete domain of (9) is the inteizect
st. MSE, < jp, VA, €Dy, k=1,...,K.(6) of all such convex sets, corresponding to each channel from

, _the uncertainty regiod (;, ., + Ak, Ak,:) € Dg. Since the
The problem (5)-(6) is meant to be solved by the BS, havingeyity is preserved under intersection [32], we conelud

in mind that it possesses only imperfect CSI. As far 8§ the domain of (9) is also convex. Finally, the complete
the users are concerned, in this section, it is assumed tBF’&bIem domain, defined by (6), is again convex as the

there either exists an error-free control mechanism in thige section of the domains related to the constraintsv)y
system that delivers the equalization coefficients fromB&e ; _ K -

to the users, or that the users have the perfect CSI, WhiChyiq,qh the problem of interest is convex, it is still not

is, comparing to the availability of the CSI at the transmijo, it it can be efficiently solved, because of the uncatyai
side, generally considered as less critical in practicethin In the sequel, we derive efficient numerical solutions fa th
latter case, after the BS calculates its fil@; the receivers g\ sed ball uncertainty model

would estimate the equivalent channél§, , = H; .)G and
adopt the standard minimum MSE (MMSE) solutions for their |Awyll, <er, VEe{l,...,K}. (10)

equalization coefficientg;, with
f,;l _ ( o HE, .)* +U}2€) 1G? k)ka ) @) bances that are a result of quantization (see also Section
" " VI), but it is convenient for representing the CSI errorshwit
This approach will result in the obtained MSEs that suredpal Gaussian distribution and optimizing the outage perforrean
comply to the uncertain constraints (6), but without redgci [18], [26], as well. In Section V, we analyze in more detail
the transmit power, obtained as the solution of (5)-(6). Thhe case where the uncertainty regions are boxes.

The model (10) naturally captures well the bounded distur-



4 ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SIGNAL PROCESSING

Since the objective function in (5) is relatively simple, weroblem with second order and semidefinite cones) and can be
focus in the sequel on the transformation of the uncertasolved with interior point methods in a very efficient manner
constraints (6) into a tractable form. The following equeva [28], [29], [38].
representation of (9), obtained as a direct applicationhef t At this point, we notice that the practical per-antenna
Schur Complements lemma [33] on (9), will be of great ugsower constraints can be easily introduced into the derived

in the further robust optimization semidefinite program, since they can be expressed as convex
0 ApnyG 0 qguadratic constraints
&, + | G'A 00 0 |=0 Y|Ags, <
KT Yo 0 04 =0 Ayl < e, 1G sl < VPmy m=1,..., M, 17
Vke{l,...,K}, where P, is the power limit for antennan. This possibility

(11) of extension holds for all problems studied in this paper.
Furthermore, the uncertainty at the transmitter with respa

where N the knowledge of the noise variances can also be incorpgbrate
AJ:k\/,uk H . )G — fre; Ok in a straightforward manner. Finally, instead of balls,itasloy
®r= | G"H ) — frex e/t d 0 . ellipsoids of the form
Ok 0 Jrn/bk
(12 HVA(k )H <1, (18)
To obtain a computationally tractable form from (11), we use
the following lemma: with given V' > 0, can also be supported as uncertainty
Lemma 1: Let A, B and C be given matrices, wittA = regions for thekth user’s channel (notice that f&f = iIM,
A”. The relation the model (10) is obtained). A simple substitutibhA ;. ., =

A= B*DC +C*D*B, VYD: ||D|:<-, (13) 7% H(S,F}H2 <11 and the replacement @k ;, ., in the LMI (11)
with §; V™, enable again the application of Lemma 1 and

is valid, if and only if an SDP reformulation similar to that in Theorem 2. This is
A_\B*B —:C* of particular importance, since there exist numerous na=stho
A >0, —.C N =~ 0. (14) for calculating the unique minimum volume ellipsoid that

contains a certain set [29]. In that way, conservative atalet
Proof: The proof, based on th&-lemma [29], [32], [37], approximations can be obtained for a large class of uncgytai

can be found in [16]. B regions. We will return to this concept briefly also in Setio
Now, we are equipped with the tools for rewriting the undertay/|_

constraint (11) into a form that is convenient for the numeri
analysis.

Theorem 2: The uncertain MSE constraints in (6), with the IV. SINR AS THE PERFORMANCEMEASURE
uncertainty region®,, defined by (10), are equivalent to the

linear matrix inequalities (LMIs) in the unknown transaaiv Consider the system model described in Section II. The

SINR of thekth user can be calculated as

coefficients
: ) \H (oG o |?
Sev/i =X H)G = frej, on 0 SINRj, = — (ky2) 7 (5,6) —. (19)
G"H ;. — frex Tev/ied 0 —&G” D=1, H k) G| + 0
Ok 0 Tev/ike 0

0 e 0 T Let the uncertainty model be defined as in (10). We can
k k now formulate a robust counterpart of the standard SINR-

=0, Vke{l,...,K}, constrained downlink beamforming problem

(15
where )\, are slack variables. et P,
Proof: The LMIs in (15) are obtained by a direct appli-s.t. SINR; > v, VHA(k=5>H2 <en, Vke{l,...,K},

cation of Lemma 1 on the derived, equivalent representsition (20)
(11) of the users’ uncertain MSE constraints, with= ®,,
D= A, ¢ =¢;and where~, are the required QoS targets, expressed in terms of

minimum tolerable SINRs.
B =— [ 1 00 ] , C= [ 0 G 0 } : (16) The problem (20) is an involved, non-convex problem. This
m can be concluded by rewriting its constraints into a form

It can be noticed that the objective function in (5) can be
immediately resolved by introducing one slack variable H[ H; )G ox }HQ < \/1+%§1 ’H(k,:)G(:,
that should be minimized and a rotated second-order coney | A .y, < e,
constraint||vec(G )||2 < t. Therefore, under the uncertainty T2
model (10), the problem (5)-(6) is equivalent to an SDRhich, due to the existence of the uncertainty on both sides
problem (more rigorously, this is a linear conic optimirati and the absolute values, has, to the best of our knowledge, no

(21)
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tractable representation. Therefore, we formulate tHevidhg A. Solution by the Ellipsoid Method

problem of interest The ellipsoid method presents a multidimensional extensio

of the bisection approach. The main idea behind the algarith

min 1HG‘Hg , can be formulated as follows. At a given iteration we are
G 2 F equipped with an ellipsoid which surely contains the optima
s.t. H[ ﬁ(k,:)é oL ]H2 <4 /1 +%;1 f{(k#)f;(:’k)’ solution and check whether the center of the ellipsoid is in
N the problem domain. If that is the case, a subgradient of
V‘)A(k,:)HQ <er, Vke{l,... K} the objective function in the center of the ellipsoid should

(22) be calculated. Zero value of the subgradient means that the
optimal solution is found, otherwise, the subgradient aefia
where hyperplane and, consequently, a half-ellipsoid, whichtaios
the optimal solution. In the latter case, the new searchsslid
~ is the minimal volume ellipsoidal container of the desadibe
Hk) = [ R{Heo} S{Huo} | (23) half-ellipsoid. If the center of the ellipsoid is not in the
Ay = R{Awy} H{Awy} ], (24)  problem domain, the hyperplane that separates the centar fr
& R{G} S{G} 25) the problem domain can be constructed to obtain a new half-
| =S{G} R{G} |- ellipsoid whose minimal volume ellipsoidal container ieds
for the subsequent search. The procedure yields a sequence
In [21], [24], it is proved that the non-robust variations off th_e shrinking ellipsoids which converges to the optimal
(20) and (22) are equivalent. The idea was in showing thegution- _ o _ _
the term H (;, G/, in the numerator of (19) can be real We sta_rt Wlth recalling t_h_e ellipsoid me_thod in Algorlt_hm 1,
and positive, w...o.g., which removes the absolute value ¢ described in [29], omitting the technical details regayd
the right-hand side of (21), yields second-order cone coW—_e |p|t|al|zat|on and the formalization of the convergenc
straints, and, consequently, a relatively simple conicgatic cntenop. The unknown .ve.ctor tq be calculated, which usigu
optimization problem, whose real-valued version is eyactfetermines the transmit filtef, is denoted by
(22) with ¢, = 0. Unfortunately, the same principle is not o o T .,
applicable for the robust designs, due to the fact that aniiafi 9=1|G. - Gug } € RY, (26)
number of channels must be supported with a single filter.
However, the fulfillment of uncertain constraints in (22ally Whered = 2M K. Notice that in Algorithm 1,g, is the
implies that the conditions (21) are also valid. Theref¢?) sequence of the search ellipsoids’ centers, while in each
can be viewed as a conservative approximation of (20). figration the vecton; defines the hyperplane that divides the
other words, a filter obtained by solving (22) will surely b&urrent search ellipsoid.
a feasible solution for (20), as well. However, the feasg#e
of (22) is smaller than in (20), so it is more likely to haveAlgorithm 1 Algorithmic solution for the robust, SINR-
infeasible scenarios, and the resulting transmit powemfroconstrained precoder.
solving (22) is an upper bound for the optimal solution of 1. |nitialize the first search ellipsoifig, + Bou, |[ul|> < 1}.
(20). Finally, we note that in the SINR-constrained problem Sets = ( (step number).
formulations, no particular requirement on the CSI knogted 2. repeat
at the receive side is necessary, as the users’ equaliatigs 3. ¢ ¢4 1.

no role in (19). 4. if g,_, € S, whereS is the domain of (22): Calculate
The problem (22) was posed originally in [27], where three the vectora, as the subgradient of the objective function
further restrictions of (22) are optimally solved usingcteble in g,_,. If a; = 0 the optimal solution igg,_,. Skip

SDP reformulations. Notice that due to the existence of the  the following step.

uncertainty on both sides in the constraints in (22), rémgit 5. if g, , ¢ S: Calculate the separation vectos that
these constraints as LMIs would not yield a suitable stmectu satisfies

needed for the application of Lemma 1, as observed also in
[27], [39]. We show in the sequel that the problem (22) can
actually be solved optimally, by applying the ellipsoid ined
from convex optimization theory. Due to the fact that the®
ellipsoid method exhibits high (though still polynomial9[2 BtT_lat 1

complexity, we derive then an efficient SDP-based suboptima Py = p - v 9 =91 — th—lpt
solution for the same problem, which exhibits better progsr Vet Be1By_a

alg, ;> sup alg, a;#0. (27)
g

Update the search ellipsoid:

in terms of both performance and complexity, w.r.t. thetezla (28)
. . _ dBy_; d d T

results from the literature. Furthermore, a comparison by By = —— + = B, _1p,p;

numerical simulations will reveal that this SDP-based eons vd? -1 d+1 az—1 (29)

vative solution seems to perform as well as the theoreticall

optimal benchmark provided by the ellipsoid method. 7: until : convergence is reached
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We formulate the main conclusion of this section as a The problem (22) can now be approached in the following
theorem: way: For a fixed set of targe&INRy > 7, the virtual MSE

Theorem 3. The sequencg, from Algorithm 1 converges constraintsMSE < u; are defined using (30). The problem
to the optimal solution of the problem (22). The feasibilityf5)-(6) is solved then by applying the SDP method from
check forg,_, and the construction o&; can be efficiently Section Ill, and the resulting transmit filter surely coragli
performed, and the complexity of Algorithm 1 is polynomialto the specified SINR requirements. The excellent quality

Proof: The proof is given in Appendix A. m of this approximation with respect to the optimal solutioonf
Section IV-A will be seen from simulation results in Section
B. SDP-Based Solution VI

. ) . While we have shown how the optimal solution of (22) can
In this section, we approach the problem (22) indirectlys ¢omnyted by employing the ellipsoid method, the optimal
Define a virtual MSE-optimization problem (5)-(6), with théqtion of the SINR-constrained problem (20) remains as an
same channels and with QoS targets open topic for the future work (see also the discussion after
_ 1 Wk e {1 K} (30) the definition of (22)). We remark also that if the perfect CSI
1+ ER is assumed at the reception side, and if the equivalent etann

It is known that if perfect CSl is provided at both sides, such" be estimated, it can b? easily proved thaF th? applrc_aflo
MSE-constrained problem is equivalent to (22) and (20)aas 1.Ihe standard MMSE.squnon (7) for the receiver’s coeffitsen
as the transmit filter is concerned [23]. The following tresor 1N theé MSE-constrained problem (5)-(6) would lead to the
shows that in the robust case, the virtual MSE-optimizatioitMe non-convex problem (20). There lies the possibility fo
problem can serve as a conservative, tractable approximatMProving the performance for both QoS measures. However,
of (22) and consequently (20). due to the ngn-convexny of the.problems, the price that has
Theorem 4: Let the MSE problem (5)-(6) be feasible withto be pa|q will probably be the increased or non-guaranteed
the targetsu, € (0,1), £ = 1,..., K, and letG,,; be the computational complexity [40].
resulting optimal transmit filter. The SINR constraints #2)
are satisfied then fofy, obtained from (30), with the same

M

V. RECTANGULAR UNCERTAINTY REGIONS

transmit filter Gopy. In practical systems, the uncertainty regions in the form of
Proof: It can be seen that the conditiViSE;, < uy is boxes (hyperrectangles) might be of particular interegt) w
equwalent to ‘SR{A(k,m)H < e, |%{A(k,m)}| < &, (36)
K 2 2 9 .
1 1 o forall k=1,...,K, m=1,...,M. Notice that we do not
— .G — NGy — = < . T Ll
1—12;# i H i) Gy +‘fk H ) Gy — 1 +sz =Mk suggest any specific quantization scheme (scalar or vector)

(31) but just focus on another possible bounded error model. For
Since f, > 0 and g, € (0,1), it follows that convenience, we return to the MSE-optimization problenmfro

R{H ;)G (.1} > 0, because otherwise the absolute value Siection 111 (hgving in mind also the. abil@ty to gupport the
2l L G 1\ would be larger than 1. Therefore itSINR-constramed problems, as explained in Section IViR) a
. {ﬁ_ (k) () T L gert : ' “proceed by transforming the LMI in (11) into a tractable form
is sufficient to prove thaMSE;, < pj implies with respect to the model (36).

2 1 2 Theorem 5. The constraints in (6), with uncertainty regions
Il Hun G on ]I, < 1— (ER{H(’“’:)G(%’“)D » (32) specified by (36), are equivalent to the following set of LMIs
. _ g = M M
sincel+v;, ' = (1—p) "L R{H 4., G .1y } = H (3,0 G0 kp k.p
and the spectral norms of vectofs H )G o ] and @ + Zlvm Yo + Z:lU"HMZ’" =0 (37)
| Hy )G oy | are equal, so the SINR constraints in (2212 "= "= . s
would be fulfilled. We proceed by rewriting (31) into anfor all & € {1,..., K} and all vectorsv™”, p = 1,..., 2%,
equivalent form given as
H .G 2 <2 H. G| VPP =g [ v vy o vam ]T
H[ (kv:) Ok ]HQ — f}c'uk + ’ (k7:) (k)’ ’
2 (33) 2M
= [H )Gy — fil vy = =£1,..., o0 = £1, p=1—|—222M_l max{v;,0},
The theorem is proved by noticing that =1 (38)
2 2 2
T 7; |H(k,:)G(:7k')| - ‘H(Qlc-,:)G(:v’f) - f’“’ (34) and where the matrice¥,,, and Z,,, are defined as
<1 (ﬁ{H(k,;)G(:,k)}) [0 Gmy O
a Y, = Gz{m,:) 0 0 ) (39)
is true, because it is equivalent to 0 0 0
2 i 0 JGimsy O
R{H . \G. — 1- > 0. 35 (m.:)
( {H Gy} — frl Mk)) > (35) z. - G o 0 (40)
] 0 0 0
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Proof: Define for notational convenience vectas !
ko k E T A T QoS satisfied Sl System outage
0" = [ of ... 621” ] - A(kai)’ Vk € {1’ Y K%41) osr [ ]Non-robust solution [23] ! i
with A, .y given by (24). The constraints (11) (and equiva- !;Z’E”f;;jt‘m” (Sec.tlh |
lently (6)) in the case of rectangular uncertainty regiods)( £ 4 |
can be rewritten into a form £
M M e 03 1
B+ > Y+ Y 0 Zm =0, 2
m=1 m=1 .'5‘7’ 02} B
Vor eR:0F| <en, 1=1,...,2M, Vke{l,...,K}.
(42) ]
Consider (42) as an LMI id*. The set of all error vectors H
6" that represent one user’s channel uncertainty is the conve T S Ty v P S W
hull of the finite set of fixed vectors*?, p = 1,...,22M, MSE,

Therefore, due to the convexity of the LMIs (42) with respect
to 5k, the fulfillment of (37) is the necessary and suﬁicierﬁig- 2. Compariso_n of the r_obust (Section IlI) and non-rof@8} solutions
condition for (42) to be valid, which concludes the proal In an MSE-constrained multiuser MISO system.

Similarly to Section Ill, the desired optimization can be-pe

formed in principle using the SDP methods. However, notiGg clearly beneficial in terms of the decreased computationa
that the number of additional constraints (LMIs) corresfing  complexity, despite the additionally introduced slackiales.

to one userk, reflected in the indey, grows exponentially \we discuss the quality of this approximation in more detail i
with the number of transmit antennas. Such behavior mig8kction Vi.

prevent this approach from practical application, esplgcia

if the BS employs an antenna array with many elements.  v|. NUMERICAL EXAMPLES AND DISCUSSION
Therefore, having simpler, conservative (in the sense thatE
the MSE targets are never violated) tractable approximatiois implemented directly, numerical simulations in thistset
might be of significant interest in practice. The followinga e obtained obtained L,Jsing SeDuMi [41].

theorem proposes one such approximation of the problem wit e start with a simulation result that compares the robust

lower computational burden. . . and the non-robust solution of the MSE-optimization prable
Theorem 6: In _the case of_rect_angular uncertainty reglon&)_«s) in a 3-user system. The noise variance, the MSE tsrge
(36), the constraints (6) are implied by the LMIs and the bounds on the uncertainty (10) are assumed to be the
Yt -4y, ®F-+Z. m=1,...,M, (43) same forall userss? = 0.1, px = 0.15 ande, = 0.1. The
M BS is equipped with\/ = 4 antennas. The distributions of the
b, — Z (Tfn + \Ilfn) =0, Vke{l,...,K}, (44) third user's MSE, if the non-robust solution from [23] an& th
m—1 robust solution from Section Ill are implemented, are pldtt
. . in Fig. 2 for 10® randomly chosen channel realizations which
where‘rfn a}nd ‘I'ic" are slack matrix variables, arid. and yielded feasible problems for the specified targets. Thé rea
Zny are deflnec_j by (39)-(40). _ and imaginary parts of each channel coefficient had normal
P_roof: th|ce that fo_r arbitraryY, ¥ ande > 0 the distribution with zero mean and varian6es, and the errors
following relations are valid were uniformly chosen from the uncertainty regions (10).
YT>+Y & 4eY = —eY (45) It can be concluded that if the transceiver optimization is
) performed disregarding the disturbances, the system dates n
& Wz -—eX, VER: | <e (46) satisfy the QoS constraint for more thaa% of the channel
where the equivalence relation (45) is obtained by a simpiealizations. Contrary to this, the robust algorithm prsgabin
multiplication with —, and (46) follows from the same Section lll guarantees the targets all the time, and theesyst
arguments based on the convex hull as in the proof of Theor@@ver experiences an outage.
5. Therefore, with the assumption (43), we conclude For introducing robustness in the system, clearly, a aertai
o o Ny price had to be paid. In the problem formulation (5)-(6)sthi
k k -~ k k would correspond to the increased transmit power with i@spe
‘I’k+mZ::1 5’”Ym+mz::1 OmintZm = Pr—es Z(T’"+\I’m)’ to the situation when the obtained channel knowledge was
(47) perfect. In Fig. 3, we compare the performance of the salutio
for all 5* (41) that comply to (36), which completes the proofor the MSE-optimization problem from Section Il with thre
of the theorem. B strategies. The first one is the robust power allocationgseg
Contrary to the exact solution, the number of additionah [26]. We plot also the result of optimization from Section
constraints for the procedure described by Theorem 6 iseealll if the receivers are fixed, withf, = 1, k£ € {1,2,3}.
only linearly with the number of transmit antenn&s which Finally, the performance of the hypothetical system, where

xcept for the ellipsoid method from Section IV-A which

m=1
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—o— Robust power control [26]
SDP method (Sec. Ill), fk=1

—+— SDP method (Sec. Ill)
—4— Perfect CSI

Fig. 3.

I
0.15

0.2 0.25

0.3

Hy

I
0.35 0.4

Minimal transmit power versus the QoS (MSE) target @f third
user,of , 3 = 0.1, pu1,2 = 0.15.

oi Per. CSI | SDP (Sec. lll) | Pow. Con. [26]| SDP, fr =1
0.01 | 0.0011 0.0083 0.0112 0.0202
0.1 0.0056 0.0169 0.0208 0.1213
TABLE |
MINIMUM FEASIBLE MSE TARGET 3 IN A 3-USERMISO SYSTEM WITH
p1,2 = 0.15.

—=o— Robust power control [26]

0.3
—+— SDP method (Sec. Ill)

__.__ SDP method (Sec. Ill), fk=1

0.25

I I
0.18 0.2

0.2 I
0.28 0.3 0.32

I I
0.24 0.26

Hs

I I
0.16 0.22

Fig. 4. Maximum size of the uncertainty set, assumed to be the same
for all users, for the MSE-constrained problem.

3, with the additional power constraiit < 10, and with the
boundse;, assumed to be the same for all users, are given
in Fig. 4. The results from Table | and Fig. 4 confirm that
the proposed SDP-based approach exhibits better propertie
comparing to the other two robust methods also in terms of
the feasibility regions and the sustained level of uncetyai

In Fig. 5, we plot the Monte Carlo simulations for the mini-
mum transmit power against the SINR targets, which are now

the obtained CSI is correct, is given, as well. The minimurissumed to be the same for all users. The system parameters
transmit power is plotted for various MSE targetg of
the third user, with other simulation parameters being thgesent an average over 2000 channel realizations thategiel
same as in the previous example. The results present feasible problems for the considered range of SINR tardiets.
average overl0® channels, chosen so that the problem wasn be seen that the solution based on the ellipsoid mettebd an
feasible for the observed range of QoS constraints. It can #h@ SDP-based approach from Section IV perform the same.
seen that the proposed SDP-based solution from SectionTHey both outperform the structured RSDP approach from
outperforms in performance other robust strategies. The-SO27]. Furthermore, the complexity of the proposed SDP-ase
based robustness, which enabled the fulfillment of the taygemethod appears to be smaller comparing to the solution from
required roughly 25-3% more power comparing to the casg27], which employs larger LMIs and more unknown variables.
when the obtained channel knowledge was exact. We remantke average number of iterations necessary for the teriinat
that the performance gaps between the investigated stategf the algorithms in our implementation (the accuracy was
vary depending on the system size, the uncertainty level angt6 [41]) varied from 9.47 to 11.02 depending on the SINR
the signal-to-noise ratio (noise power) in the system.
Due to the fact that the uncertain MSE constraints are shofar the same parameters in the structured RSDP approach. The
to be LMlIs, the feasibility range of the MSE constrainis
can be calculated by the bisection method [32]. In Table the order ofl02. We remark that we performed no additional
we list the average feasibility ranges of the MSE target ef tfoptimization of the code, and that the tailored applicatién
third userus, with 11 » = 0.15 fixed, for two noise variances. the interior point algorithms, which could exploit furthére
Other system parameters are the same as in the first simmulagtructure of the problems, is beyond the scope of this paper.
example. Additionally, we imposed a total power constrair8ection VI-A, however, we present a brief theoretical asialy
P < 10, which is introduced into the optimization frameworkof the complexity of all investigated methods.
in a straightforward manner, as discussed in Section lll.
Similarly to the previous example, it can be concluded thay plotting in Fig. 6 the percentage of feasible channel
the maximum size of the uncertainty is also readily obtained realizations in a system with the same parameters as in the
by the bisection method. This parameter is of importance jgmevious simulation and the default SeDuMi settings used.
determining the roughness of the quantization that can Bhe SINR target of 10 dB is assumed to be the same for
allowed in the CSI, e.g., when returning it from the receiverll three users. 2000 randomly generated multiuser channel
to the BS using the feedback channels. The averaged resulith the complex Gaussian distribution of the channel coef-
with the same system parameters as for the example in Figients remaining the same as for the first simulation result

areM = K =3, 07,3 = 0.1 ande; 53 = 0.1. The results

target for our SDP solution, comparing to the 22.83 to 24.37

number of iterations for the ellipsoid method was typicaify

We finish the analysis of the SINR-constrained problem
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25 55

—=4— Perfect CSI 5 . —— Approximate solution i
20} ——&— Ellipsoid method (Sec. IV) il ——&— Exact solution

—+— SDP method (Sec. IV) ——&— Spherical approximation

—<— Structured RSDP [27] Y : —2— Perfect CSI i

1 1 L L
s 9 10 11 12 13 14 15 0.05 0.1 0.15 0.2 0.25 0.3
SINR target [dB] Hs

Fig. 5. Minimal transmit power versus the SINR target (assuroeetthe Fig. 7. Minimal transmit power for the rectangular quantiaatin a 3-user
same for all users) for a system wittf , , = 0.1 ande1,2,3 = 0.1. MISO system withu1 2 = 0.1.

100

I isoic method (Sec. V) approximation has somewhat worse performance if the target
ool | I soP method (sec. 1v) i is far from the border of the feasibility region.
[ ]structured RSDP [27]

A. Notes on Computational Complexity

Except for the ellipsoid method from Section IV-A, that
i exhibits significantly larger computational burden [29]| a
studied methods in this paper and in the relevant resulta fro
| the literature applied the SDP techniques, or they can ki eas
transformed into them for the sake of a rough comparison.
The arithmetic complexity of the SDP programming methods
depends significantly on the problem structure, and thelddta
analysis is beyond the scope of this paper. However, a good
insight can be gained already from studying the general
bounds. Consider a standard real-valued semidefinite gmogr
mingep-{c’x: Ao+ > — 7;A; = 0, ||z||3 < R}, where

A; are symmetric block-diagonal matrices with diagonal

Fig. 6. Percentage of feasible channel realizations in tesysvith M =  blocks of sizeé; xk;, [ = 1,...,m. Stack all data that uniquely

K =3,07,5=01-¢1,23=01andy 23 =10dB. describe the system into a vectdy and lets be the size of
this vector. The number of elementary arithmetic operation

necessary for determining thesolution is known to be upper-
in this section, were inspected. The conclusions regarttiag pounded by [29]

performance ordering are similar as in the power minimérati

case. .

Finally, in Fig. 7, we illustrate the algorithms for dealing ¢=0(1) <1 T Zkl> " (”2 + ”Zk? + zkf>
with the rectangular quantization, described in Section V. 1212 =t =t
The system parameters weld = K = 3, 0f,3 = 0.1, « In (S+||d||1+€>
€123 = 0.01 in (36) andyy 2 = 0.1. Minimum transmit €
power, averaged ovean? feasible random channel realizations, (48)
is plotted versus the MSE target of the third uger The exact Therefore, the key influence on the computational compjexit
and the approximate solution from Section V, the perforreans made by the size of the vector containing unknown varsble
if the CSI is perfect, and a conservative approach, where theand by the sizes of the LMI5;. We use these parameters
rectangular uncertainty regions are approximated by mimim to compare the examined strategies in this paper. The sthnda
volume balls containing them with the solution from Sectiotransformation of the objective function into a minimizatiof
[l applied (the radius of these balls can be simply cal@dat a linear function with slack variables and an LMI constraint
ase,V/2K), are compared. It can be seen that the approximatéll be neglected, since this has a minor influence on the
approach, derived in Section V, matches well for the most pérformance.
the observed QoS range with the computationally involved The SDP algorithm derived in Section Il had/ K + K
exact method, while the computationally simplest sphéricariginal unknown values (real and imaginary parts of the

80

70

Perc. of feas. channel realizations

30
0.05

€
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transceiver coefficients) and additional slack variableg.
There are LMIs corresponding to the users’ constraints with
sizes2(K + M + 2) in the real-valued SDP representation.
This also determines the complexity of the conservativeRSIN
optimization from Section IV-B, with the users’ equalizati
coefficients treated as slack variables.

The solution from [26] is simpler firstly in the sense that
only power allocation, i.e., onlyK real-valued coefficients
qi,---,qx are optimized. These coefficients are tightly con-
nected with the equalization scaling factofs ..., fx from
Fig. 1. The constraints in [26] are originally given in therfo

b o 1
)\max (H dlag(qh R qK)H ) S C14k + C2, (49)

wherec; andcy are constants depending on the MSE targets,

the noise variances and the sizes of the uncertainty regions

and )\max(.'). denotes the maximum eigenvalue of a matriXF'ig 8. Separation hyperplanes,, defined by (27), and the domaii,

The condition (49) can be rewritten in the real-valued forma; correspond to users’ constraints in (22). ’ "

aeIons — X (qu,-..,qx) = 0, where X depends affinely on

the powersy, ..., qx [29].? Therefore, the size of the LMIs

is 2M which is smaller comparing to the proposed solutioponvergence polynomial in time is guaranteed. In the case of

in Section Ill. However, as seen from Fig. 3, Fig. 4 and Tabkectangular uncertainty regions, besides an involvedtes@c

I, the gains introduced by the proposed full optimization caution, conservative approximations with significantly adfar

be significant. computational burden have been derived, with a minor loss in
As far as the SINR-constrained downlink transmission erformance.

concerned, in [27], the size of the LMI and the number of ad- We remark also that the first results show promising pos-

ditional slack variables corresponding to ftte user constraint sibilities for an application of the proposed framework in

are2(K+1)(2M+1) and(K+1)(2K +3), respectively, which a more general multiuser context, where the receivers also

is larger comparing to the same parameters in the solutibave multiple antennas (multiuser MIMO systems), and for

based on the virtual MSE-optimization problem, that is aldeandling a broader range of optimization problems, such as

seen to exhibit better performances. the sum-MSE (SINR) optimization, fairness, etc. [42].
Finally, in the rectangular quantization case, studied in

Section V, a qualitatively clear difference in complexityang APPENDIXA

the exact solution, which cannot be considered as solvable i PROOF OFTHEOREM 3

polynomial time, and the approximate methods can be naticed|n the sequel, it will be shown that all ingredients for

In a practical application, for the QoS targets close to th®gorithm 1 are indeed available. The ability to construct
edges of the feasibility region, the spherical approxiorati the subgradient of the objective function is not problemati
would be preferred, while for the rest of the feasible regiolearly, P = ||g||3 is valid, and this function is differentiable,
the approximate solution, based on Theorem 6, could be %f its subgradient is equal to the usual gradiért:= 2g.
more interest. The problems of determining whether a particular vector
g = g is feasible for (22) and the construction of the separation
VII. CONCLUSION oracle, defined by (27), are considerably more involvedidgot
The unified framework for a robust support of minimum althat the domainS of (22) is an intersection of setsy,
lowable SINR targets and maximum tolerable MSE constraints= 1, . .., K, whereS;, is the feasible region corresponding
in a multiuser MISO setting has been derived. The algorithri@ the kth user’s target in (22). By using similar reasoning
are based on SDP methods and efficiently handle ellipsoig@l in the proof of Theorem 1, we conclude th§t and
uncertainty sets. The formulated MSE-optimization prable consequentlys are convex sets. Let us construct the procedure
has been solved optimally, while a conservative tractabier determining the feasibility of a particular vecigr= g and
approximation, with performance that closely matches tfiee separation hyperplang, according to (27), with respect
derived, computationally more involved optimal solutidgs, to thekth user constraint and the doma only. Clearly, as
provided for the SINR-constrained optimization. In botses, illustrated in Fig. 8 for a 3-user system, the global fedisjbi
however, the obtained methods are found to outperform ¢hecking routine would consist of examining each of the user
performance the related results from the literature. Wil t constraints. If, e.g., théth constraint is declared infeasible,
MSE as the QoS measure, a relatively small increase the hyperplaner; separateg andS, as well.g is feasible, if
complexity is observed, while in the SINR case the methand only if each of thek™ constraints is fulfilled.
appears to be even simpler than the known approaches. ThEirst, we rewrite thekth user’s constraint in (22) as

T
2We remark that in special cases of the problems studied in fBéle are ||‘I’k(g)‘sk +¥i(g) H2 < aj (9)0k + Or(g),  VIIokl2 <1,
possibilities for employing more efficient iterative algbrts than SDP. (50)
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whereé;, = iAa:) and ¥y, v¢,, oy and g, are affine in It can be noticed that the obtainef(\) in (53) is a
the unknown transmit filter coefficients grouped in the vectgpiecewise linear concave function for > 0. Observe its
g. For the constraints of type (50), robust optimization tyeo maximum, and conclude that anc (0,1) and0 < l;,lo < L
developed in [39], can be applied, in order to examine tloan be found so that (the procedure should be slightly madifie
feasibility and determine the separation hyperplane. & tif one affine function is the minimizer af for all A > 0)
sequel, we present the main ideas of the procedure. The user
index & and the explicit dependence of the terfig, v,, o (A) =z, (A) + (1 —2)¢1,(A) <0, VA>0.  (55)
and 3, on g will be occasionally omitted in rest of this sectio o s _ T T
to make the formulas less cumbersome. nfSetu = VEE (= Viez, and Z = ppu 4 CC It
- . . ollows that
The feasibility problem is resolved by the following lemma:
Lemma 2. The uncertain constraint (50) is valid if and only e(\) =Tr{X(\)Z} <0, VYA>0. (56)
if the following two inequalities are fulfilled
By using basic linear algebra and the theory of quadraticfun
[ell2 <8, (51) tions, it can be shown that a transformatién= nn? + £¢7,
X2 M+ aa® —9T® o — 0Ty } - 0.(52) where n, ¢ are elements of the second-order cdp&/+!
BaT —pTw 2Ty — | = [32], can be calculated [39]. From (56), one concludes that

H T
for some) > 0. The feasibility of (51)-(52) for a fixeg can - A2 ()} < 0. It follows that eitherTr{nn” X (0)} <0,

T . . . .
be determined in an efficient manner. In the case when (ﬂgr{gg X(0)} < 0, or both. If the first inequality is true,

o . - . . required infeasibility certificaté is obtained by scaling
is infeasible, a finite set of vectoes with the corresponding o 7 T )
affine functionsg;(\) = 27 X (\)z;, 1 =0,..., L so that n with its last element:[ o 1 } = 25" The proof

d(\) = min{¢po(N),..., ¢ (N} <0, ¥rA>0, (53) followsfrom the facts thaE ' 1 } X(0) [ "1 "o

. L . . i implies that the first inequality in"(50) is not valid, and tha
wheremin means the pointwise minimum, is readily found.n € L2M+1 yields HSH < 1. The analog procedure can be

Proof: It can be noticed that (50) requires performed wher*[[&r{ggﬁX(O)} <.
T

a”(g)d + B(g) >0, V|[d]l2 < 1. (54)  Lety — [(\1; @) +v(@)" aT(g)S_yﬁ(g)} ¢

(51) is obtained by applying the Cauchy-Schwarz inequaIiHyQK”- Set

on (54). Now the inequalities in (50) can be squared, and a _ T B 1 T

direct use of theS-Lemma renders the equivalent form (52). ¥ = { (T(@)o+v(g) [|®(@)é+v(g), —1} . (57)
It is straightforward to examine the validity of (51) for aI b iced thab ™3 Ty for all 2Kc42 Th

given vectorg = g, so in the sequel we focus on analyzin%t can be noticed thav”y > v"y, for ally € L - The

(52). For a fixedg, X(\) is an LMl in \. N<T3tice that nomogenous part of

Ao < A< A, whered. =0, \y = 3% — 1 1, must - - T

be valid, for (52) to hold. In other word$A_, A,] can be v’ { (‘I’(9)5+¢(9))T a’(g)d + B(g) } ,  (58)

considered as a starting search interval Xpso that the LMI C . '
(52) is positive semidefinite. Therefore, for, < 0, it can which is immediately computed because of the affine nature
P ' » fa ' of the respective terms ig, yields the required vectai,.

2;'?:;:%?_8'%;3”3ug,egrfzgt( (\?vzh)e?r? :r)c(o(r)]\ls;e q; eS,ﬂ)\lNEf? )ar The fact that the degcribed eIIipso?d method converges to
A = 0.5(A_ + A,). If X(\) is positive semidefinite, the the optimal solution WI.th a polynomial complexity follows
required A is \;, and the feasibility of (52) can be claimed.dIreCtIy from Lecture 5 in [29].
If not, by examining the eigenvalues d€(),;), a vectorz;
can be found so that an affine functign(\) = z] X (\)z; REFERENCES
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