
To be presented in a lecture session at the 1999 European Control Conference.Supervisory Control of Integral-Input-to-StateStabilizing Controllers�Jo~ao P. Hespanha A. Stephen Morsehespanha@robotics.eecs.berkeley.edu morse@sysc.eng.yale.eduDept. Electr. Eng. & Comp. Science Dept. Electrical EngineeringUniversity of California at Berkeley Yale University275M Cory Hall #1770 P.O. Box 208267 Yale StationBerkeley, CA 94720-1770 New Haven, CT 06520-8267phone: (510) 643-5190 phone: (203) 432-4295fax: (510) 642-1341 fax: (203) 432-7481September 28, 1998AbstractA high-level supervisor, employing switching and logic, is proposed to orchestrate the switchingbetween a family of candidate controllers into feedback with an imprecisely modeled process so as tostabilize it. Each of the candidate controllers is required to integral-input-to-state stabilize one particularadmissible process model, with respect to a suitably de�ned disturbance input. The controller selectionis made by (i) continuously comparing in real time suitably de�ned \normed" output estimation errors or\performance signals" and (ii) placing in the feedback-loop, from time to time, that candidate controllerwhose corresponding performance signal is the smallest. The use of integral-input-to-state stability inthe context of supervisory control of nonlinear systems, allowed us to weaken the requirements on thecandidate controllers being used. It also seems quite natural when the performance signals are de�nedas \integral norms" of the output estimation errors.Topic: Model-Based, Adaptive and Learning Control.
�This research was supported by the Air Force O�ce of Scienti�c Research, the Army Research O�ce, and the NationalScience Foundation.



1 IntroductionThis paper deals with the control of poorly modeled nonlinear systems. Our paradigm of choice to undertakethis problem consists of an architecture in which a high-level, logic-based supervisor orchestrates the switchingbetween a family of candidate controllers so as to achieve some desired behavior for the closed-loop system.The need for switching arises from the fact that no single candidate controller would be capable, by itself,of guaranteeing good performance when connected with the poorly modeled process.In [1] it was shown that any stabilizing, certainty equivalence control used within an adaptive controlsystem, causes the familiar interconnection of a controlled process and associated output estimator to bedetectable through the estimator's output error ep, for every frozen value of the index or parameter vector pupon which both the estimator and controller dynamics depend. This was shown to be so whenever each ofthe candidate controllers input-to-state stabilizes the corresponding admissible process model, with respectto a suitably de�ned disturbance input.Here it is shown that just requiring that each candidate controller integral-input-to-state stabilize thecorresponding admissible process model su�ces for a suitably de�ned \integral" detectability of the intercon-nection of the candidate controller with the corresponding output estimator fthe so-called injected systemgthrough the estimator's output error. In turn, this is used to design a supervisor, employing switching andlogic, to orchestrate the switching between the set of candidate controllers into feedback with the impreciselymodeled process so as to stabilize it. The integral version of detectability, introduced in this paper, is dualto the concept of integral-input-to-state stability in [2].By replacing the requirement of input-to-state stability with that of integral-input-to-state stability,the conditions under which the supervisory control algorithm is proved to achieve stability are signi�cantlyweakened. The fact that input-to-state stability was, at times, too strong a requirement was stressed by recentresults in [3, 4]. For a discussion on integral-input-to-state stability v.s. input-to-state stability see [2, 5].The latter reference addresses the question of designing integral-input-to-state stabilizing controllers. Inlight of the results presented here, this topic becomes quite relevant for the supervisory control of nonlinearsystems.The use of integral-input-to-state stability and integral detectability also seems quite natural when theperformance signals are de�ned as \integral norms" of output estimation errors. In fact, with integraldetectability we were able to avoid many of the technical di�culties that arose in [1, 6]. Working with \time-domain" de�nitions of integral-input-to-state stability and integral detectability|instead of de�nitions basedon dissipation-like inequalities, as in [1, 6]|also helped simplifying the analysis.This paper is organized as follows. In Section 2 the notion of integral-input-to-state stability is reviewedand a dual de�nition of integral detectability is introduced. Section 3 describes the overall control problemaddressed in this paper|namely the stabilization of poorly modeled processes|and also the basic structureof an estimator-base supervisor. In Section 4 it is shown that the interconnection of the candidate controllerwith the corresponding output estimator is integral detectable through the estimator's output error. Section 5outlines the analysis of a supervisory control system in a fairly general setting. Section 6 contains someconcluding remarks.2 Integral-Input-to-State Stability and DetectabilityLet _x = A(x; u); y = C(x; u) (1)1



be a �nite dimensional dynamical system whose state, input, and output take values in real, �nite dimensionalspaces X , U , and Y, respectively. Suppose that A and C are at least locally Lipschitz continuous on X �U .In the sequel we denote by K the set of all continuous functions � : [0;1) ! [0;1) which are zero atzero, strictly increasing, and continuous, and by K1 the subset of K consisting of those functions that areunbounded. We also denote by KL the set of continuous functions � : [0;1)� [0;1)! [0;1) which, foreach �xed valued of the second argument, are of class K when regarded as functions of the �rst argument, andthat have lim�!1 �(s; � ) = 0 for each �xed s � 0. The following de�nition extends to nonzero equilibriumstates, the concept of \integral-input-to-state stability" in [2].
-stability: Given a function 
 2 K1, the system de�ned by (1) is said to be 
-stable, if A(~x; 0) = 0 forsome state ~x 2 X and there exists a function � 2 KL such that for each initial state x(t0) 2 X and eachpiecewise continuous input u,kx(t)� ~xk � �(kx(t0)� ~xk; t� t0) + Z tt0 
(ku(� )k)d�; t � t0 � 0 (2)along the corresponding solution to (1). If (1) is 
-stable there can be only one state ~x 2 X at whichA(~x; 0) = 0. We call ~x the stable equilibrium state of (1). A system that is 
-stable for some 
 2 K1 issimply called integral-input-to-state stable. Integral-input-to-state stability is a weaker notion than the morecommon input-to-state stability [7] in that any input-to-state stable system is integral-input-to-state stable,but the converse is not true.It is possible to de�ne detectability in a number of di�erent ways fsee [8] and references thereing. Anespecially useful characterization in terms of an inequality like (2) is as follows.f�; 
g-detectability: Given two functions �; 
 2 K1, the system de�ned by (1) is said to be f�; 
g-detectable if A(~x; 0) = 0 and C(~x; 0) = 0 for some state ~x 2 X , and there exists a function � 2 KL such thatfor each initial state x(t0) 2 X and each piecewise continuous input u,kx(t)� ~xk � �(kx(t0)� ~xk; t� t0) + Z tt0 �(ku(� )k)d� + Z tt0 
(ky(� )k)d�; t � t0 � 0 (3)along the corresponding solution to (1). If (1) is f�; 
g-detectable there is exactly one state ~x 2 X atwhich A(~x; 0) = 0 and C(~x; 0) = 0. We call ~x the detectable equilibrium state of (1). A system thatis f�; 
g-detectable for some �; 
 2 K1 is simply called integral detectable. In case (3) holds withoutthe term R tt0 �(kuk), (1) is said to be strongly 
-detectable. Clearly strong 
-detectability implies f�; 
g-detectability for any � 2 K1. It is straightforward to show that if the solution to (1) exists globally, strong
-detectability implies that x ! ~x as t !1, whenever R10 
(kyk) is bounded. The preceding de�nition off�; 
g-detectability reduces to the familiar one in the event that (1) is a linear system.3 Overall ProblemThe problem formulation is similar to that in [1, 6]. For ease of reference the basic setup is brie
y reproducedhere. Let Pdenote the model of a process of the form_xP= AP(xP; w; u); y = CP(xP; w) (4)with state xP, control input u, measured output y, and piecewise-continuous disturbance/noise input w thatcannot be measured. The signals xP, u, y, and w take values in real, �nite-dimensional vector spaces XP, U ,Y, and W, respectively. The functions APand CPare at least locally Lipschitz continuous on XP�W � U2



and XP� W, respectively1. Assume that P for equivalently, the pair (CP; AP)g is an unknown member ofsome suitably de�ned family of dynamical systems F that can be written as F = Sp2P Fp, where P is a setof indices and each Fp denotes a subfamily consisting of a given nominal process model Mp together with acollection of \perturbed versions" of Mp .The overall problem of interest is to devise a feedback control that regulates y about the value 0. Tothis e�ect, assume that one has chosen a family of o�-the-shelf, candidate loop-controllers C �= fC p : p 2 Pg,in such a way that for each p 2 P, C p would \solve" the regulation problem, were P to be any element ofFp. The idea then is to generate a switching signal � taking values in P, which causes the output y of theprocess model P in closed-loop with C �|as shown in Figure 1|to be regulated about zero. We call C � au wP yC �Figure 1: Process and Multi-Controller Feedback Loopmulti-controller and we require it to be a dynamical system with a real, �nite dimensional state space XCand de�ning equations of the form_xC = F�(xC; y); u = G�(xC; y) (5)where, for each �xed p 2 P, the equations _�xC = Fp(�xC; y) and up = Gp(�xC; y) model C p , with Fp and Gplocally Lipschitz continuous on XC � Y.Estimator-Based SupervisorThe algorithm used to generate � is going to be an \estimator-based supervisor". An estimator-basedsupervisor consists of three subsystems: a multi-estimator E, a performance signal generator PS, and aswitching logic Sfcf. Figure 2g.
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+E PS Syyyuy yp1yp2ypm ep1ep2epm �p1�p2�pm �Figure 2: Estimator-Based SupervisorBy a multi-estimator E for a given family of nominal process models M = fMp : p 2 Pg is meant anintegral-input-to-state stable system with �nite dimensional state-space XE, of the form_xE= AE(xE; u; y); yp = Cp(xE); p 2 P (6)1Here the exterior direct sum of two real linear spaces A and B, is denoted by A� B.3



where, for each �xed p 2 P, the equations _xE = AE(xE; u; y) and yp = Cp(xE) model an \estimator" Epfor Mp , with AE and each Cp locally Lipschitz continuous on XE� U � Y and XE, respectively. By anestimator for a given nominal process model Mp , is meant any �nite-dimensional, integral-input-to-statestable dynamical system whose input is the pair fu; yg and whose output is a signal yp which would be anasymptotically correct estimate of y, if Mp were the actual process model and there were no measurementnoise or disturbances. For Ep to have this property, it would have to exhibit funder the feedback inter-connection y �= yp and an appropriate initializationg the same input-output behavior between u and yp asMp does between its input and output. For linear systems such estimators would typically be observers oridenti�ers [9]. Estimators can also be de�ned quite easily for certain types of nonlinear systems includingthose which are linearizable by output injection; in this category is any system whose state and measuredoutput is one and the same [1, 6].A performance signal generator PSis a dynamical system whose inputs are output estimation errorsep �= yp � y; p 2 P (7)and whose outputs are performance signals �p, p 2 P. For each p 2 P, �p is intended to be a suitablyde�ned measure of the size of the ep.The third subsystem of an estimator-based supervisor is a switching logic S. The role of Sis to generate�. Although there are many di�erent ways to de�ne S, in each case the underlying strategy for generating �is more or less that same: From time to time set � equal to that value of p 2 P for which �p is the smallest.The motivation for this idea is obvious: the nominal process model whose associated performance signalis the smallest, \best" approximates what the process is and thus the candidate controller designed on thebasis of that model ought to be able to do the best job of controlling the process. The origin of this idea isthe concept of certainty equivalence. Precise de�nitions for the performance signal generator and switchinglogic are deferred to Section 5.4 The Implication of Certainty EquivalenceTo understand what certainty equivalence actually implies, let us assume that there is a family of functionsf
p : p 2 Pg � K1 such that for each p 2 P, C p was chosen so that the system shown in Figure 3 is 
p-stablewith respect to the input v. Suppose in addition, that �yp = 0 at the stable equilibrium state of this system.By this we mean that for each p 2 P, the interconnected system
+

-EpC p v�yp�upFigure 3: Feedback Interconnection_�xE= AE(�xE; �up; �yp � v) �yp = Cp(�xE)_�xC = Fp(�xC; �yp � v) �up = Gp(�xC; �yp � v) ) (8)with input v, is 
p-stable and that �yp = 0 at its stable equilibrium state.The intuition behind placing these requirements on C p stems from the fact that, when v is equal to zero,the subsystem enclosed within the dashed box in Figure 3 is input-output equivalent to the nominal process4



model Mp . If one then regards the signal v as a disturbance entering Mp , the requirements above can berestated as demanding C p to 
p-stabilize the nominal process model Mp , with respect to the disturbance2 v.In view of the control objective|which is to regulate y about zero|the output of Mp is also required to bezero at the stable equilibrium state of the closed-loop system.Take any two elements p; p� in the parameter set P. In analyzing adaptive and supervisory controlsystems, it is convenient to focus our attention on subsystems of the form_xE= AE(xE; u; y) el = Cl(xE) � y; l 2 fp; p�g_xC = Fp(xC; y) u = Gp(xC; y) ) (9)These equations describe the dynamics of the multi-controller/multi-estimator subsystem, while � is heldconstant and equal to p. Typically, p� is chosen to be the index of the subfamily Fp� within which P residesand therefore the estimation error ep� is expected to be small in a suitably de�ned sense [10]. The resultswhich follow do not depend on this fact.By the fp; p�g-injected system is meant the system which results when the equation y = Cp�(xE) � ep�from (9) is used to eliminate y from AE(�); Fp(�) and Gp(�) in (9). Once this is done, the fp; p�g-injectedsystem can be written as_x = App� (x; ep�); ep = Cpp�(x) + ep� ; (10)where x �= hx0E x0Ci0 andA�p�q(�x; e) �= "AE��xE; G�p��xC; C�q(�xE) � e�; C�q(�xE) � e�F�p(�xC; C�q(�xE)� e) # ; C�p�q(�x) �= C�p(�xE) �C�q(�xE):for each �p; �q 2 P, �x �= h�x0E �x0Ci0 2 XE� XC, and e 2 Y. Now, for any �xed �p; �q 2 P.A�p�q(�x; e) = A�p�p(�x;C�p�q(�x) + e); 8�x 2 XE� XC; e 2 Y;thus (10) can also be written as _x = App(x; ep); (11)with ep = Cpp�(x) + ep� (12)But the system de�ned by (11) is the same as the system de�ned by (8) when when v, �xE, and �xC areidenti�ed with ep, xE, and xC, respectively. By assumption, the latter is 
p-stable and �yp = 0 at its stableequilibrium state ~xp. From this and (12), one concludes that there exists a function �p 2 KL such that foreach initial state x(t0) and each piecewise continuous signal ep� ,kx(t)� ~xpk � �p(kx(t0) � ~xpk; t� t0) + Z tt0 
p(kCpp�(x) + ep�k)d�; t � t0 � 0 (13)along the corresponding solution to (11)-(12). Moreover, yp = 0 at x = ~xp. The following Lemma is a directconsequence of (13) and the fact that (10) is equivalent to (11)-(12).2The particular manner in which this disturbance is chosen to enter the nominal model will become clear shortly.5



Lemma 1 For each p; p� 2 P, the fp; p�g-injected system (10), with input ep� and output ep, is strongly
p-detectable and yp = 0 at its detectable equilibrium state.The implication of Lemma 1 is clear. For each p 2 P, the 
p-stabilization of the system in Figure 3 byC p causes the fp; p�g-injected system to be strongly 
p-detectable. In [1] this is summarized by the phrasecertainty equivalence implies detectability. With the preceding in mind, recall the underlying decision makingstrategy of an estimator-based supervisor: From time to time select for �, that value q 2 P such that theperformance signal �q is the smallest among the �p, p 2 P. Justi�cation for this strategy is now clear: Bychoosing � to maintain smallness of �� and consequently e� , the supervisor is also maintaining smallness ofthe composite state of the interconnection of C � and E, because of detectability through e� for each �xedvalue of �. Moreover, since the input and output of the process can be written in terms of the state of thef�; p�g-injected system and ep� asy = Cp�(xE) � ep� ; u = G�(xC; Cp�(xE)� ep� );these variable should also be small. The above equations were taken from (9).Because of the equivalence between (10) and (11)-(12), the strong 
p-detectability of the fp; p�g-injectedsystem can be traced directly to the 
p-stability of (8), with v, �xE, and �xC identi�ed with ep, xE, and xC,respectively. Now, since both ep and xE are available for measurement, the corresponding signals v and �xEcould be used for control in (8). In practice, this means that the multi-controller C � can be of the form_xC = ~F�(xC; xE; e�); u = ~G�(xC; xE; e�) (14)where, for each �xed p 2 P, the ~Fp and ~Gp are locally Lipschitz continuous functions on XC�XE�Y. In thiscase, Lemma 1 holds for the appropriate de�nition of the fp; p�g-injected system, when the interconnectedsystem _�xE= AE(�xE; �up; �yp � v) �yp = Cp(�xE)_�xC = ~Fp(�xC; �xE; v); �up = ~Gp(�xC; �xE; v)with input v, is 
p-stable and �yp = 0 at its stable equilibrium state. Since both the disturbance v and thestate �xE of the system to be 
p-stabilizable are available for control, the design of the candidate controllersis considerably simpler. Further note that the original multi-controller (5) is a special case of (14) when~Fp(�xC; �xE; e) �= Fp��xC; Cp(�xE) + e�; ~Gp(�xC; �xE; e) �= Gp��xC; Cp(�xE) + e�;for each p 2 P, �xC 2 XC, �xE 2 XE, and e 2 Y. Although all the results in this paper hold for the generalmulti-controller (14), we will continue to use the somewhat simpler multi-controller given by (5).5 Analysis of Supervised SystemThe intent of this section is to demonstrate how the preceding results can be used to deduce globalboundedness and asymptotic convergence in a supervisory control system when P is a �nite set|sayP �= f1; 2; : : : ;mg. This is done for the special case when the disturbance/noise input w is identicallyzero and one of the yp is an asymptotically correct estimate of y.For the performance signal generator PSwe consider the dynamical system_�p = ���p + 
p(kepk); p 2 P; (15)6



whose state and outputs are the performance signals f�1; �2; : : : ; �mg, � is a prespeci�ed positive number,and the 
p are as in Section 4. It is assumed that (15) is initialized so that�p(0) > 0; p 2 P (16)ForSwe consider the \scale-independent hysteresis switching logic" [11, 6]. By a scale-independent hysteresisswitching logic is meant a hybrid dynamical system SHwhose inputs are the �p and whose state and outputare both �. To specify SH it is necessary to �rst pick a positive number h > 0 called a hysteresis constant.SH's internal logic is then de�ned by the computer diagram shown in Figure 4 where, at each time t,q �= argminp2P �(p; x; t). The functioning of SH is roughly as follows. Suppose that at some time t0, SHhas(1 + h)�q � ��Initialize � � = qn yFigure 4: Computer Diagram of SH.just changed the value of � to q. � is then held �xed at this value unless and until there is a time t1 > t0 atwhich (1 + h)�p < �q for some p 2 P. If this occurs, � is set equal to p and so on.Three assumptions are made.Assumption 1 Each process model in F has the property that if its inputs and outputs are bounded thenso is its state fi.e., each process model in F is detectable [8]g.Assumption 2 Each 
p, p 2 P, is locally Lipschitz.Assumption 3 There exists an index p� 2 P such that, for each piecewise-continuous, open-loop controlsignal u, and each initial state fxP(0); xE(0)g 2 XP�XE, kep�k andZ t0 e��kep� (� )kd�are bounded on the interval of maximal length on which a solution to (4), (6) exists.E can typically be constructed so that Assumption 3 is satis�ed in the noise/disturbance free case, providedP is input-output equivalent to a nominal model fsay Mp� g which is linearizable by output injection [6].The main result of this paper fproved in [12]g is the following.Theorem 1 Let Assumptions 1 to 3 hold. For each initial state xP(0) 2 XP, xE(0) 2 XE, xC(0) 2 XC,�p(0) > 0, p 2 P, �(0) 2 P, the solution fxP; xE; xC; �1; �2; : : : ; �mg to (4), (5), (6), (7), and (15) fwith� the output of SHg exists and is bounded on [0;1). Moreover, y converges to zero as t!1.6 Concluding RemarksIn this paper we weaken the conditions under which the supervisory control algorithm proposed in [1]stabilizes a poorly modeled process. This was done by making use of the notion of integral-input-to-state7
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