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Sequence Seeking and Counter Streams:
A Computational Model for Bidirectional
Information Flow in the Visual Cortex

A computational model is proposed for some general aspects of in-
formation flow in the visual cortex. The basic process, called “se-
quence seeking,” is a search for a sequence of mappings, or trans-
formations, linking source and target pattemns. The process has two
main characteristics: it is bidirectional, bottom-up as well as top-
down, and it explores in parallel a large number of alternative se-
quences. This operation is performed in a “counter streams” structure,
in which multiple sequences are explored along two complementary
pathways, an ascending and a descending one, seeking to meet. A
biological embodiment of this model in cortical circuitry is proposed.
The model serves to account for known aspects of cortical intercon-
nactions and to derive new predictions.

This article describes a computational model for some general
aspects of information flow in the visual cortex. The model
combines computational and psychophysical considerations
with data concerning connectivity patterns in the visual cor-
tex, primarily interlaminar and connections between different
cortical areas.

The focus of the model is on vision (primarily the task of
visual recognition) and the visual cortex. The proposed com-
putation has, however, some useful generic aspects, and the
possible applicability of the scheme to other domains is brief-
Iy considered. The first part of this report outlines the pro-
posed computation, termed “sequence seeking,” and the sec-
ond part outlines its biological embodiment in a “counter
streams” structure. The model is used to account for known
features of cortical circuitry, and to derive a number of new
predictions.

Sequence Seeking and Counter Streams

A general task frequently faced by the brain is one of estab-
lishing a link between two different representations. For ex-
ample, in visual recognition, the task involves establishing a
connection between an incoming pattern and stored object
representations in visual memory. The two will often fail to
match exactly, due to changes in size, position, viewing direc-
tion, and so on. The problem is therefore not merely one of
direct pattern matching; considerable processing needs to be
performed to overcome the possible differences between a
given image and previously stored patterns. A common view
is, therefore, that prior to the matching the input is processed
through a sequence of stages that include, for example, edge
detection, extracting features of varying complexity, normal-
ization for size, position, orientation, and so on. The model
below modifies and extends this view based on the use of
two general strategies that are supported by computational
and psychological considerations. The first is to employ a bi-
directional search, where the matching of patterns can occur
at intermediate levels rather than some “topmost” level. Sec-
ond, rather than following a single path, multiple processing
alternatives are explored in parallel. The next two sections
describe these general strategies, followed by a proposed
model that combines bidirectional processing with the par-
allel exploration of multiple alternatives.
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Bidirectional Processing

In performing visual recognition, an input pattern P is
matched with an appropriate stored representation, from a
set of stored models M, The processing stages required to
obtain the match of P with the appropriate stored model can
be described in terms of applying a sequence of processes,
or transformations, that compensate for possible differences
between the two, for example, in scale, position, viewing di-
rection, illuminations conditions, and so on (Ullman, 1993).
These processing stages could be applied to the input B the
models M,, or both. Some of the processes are more naturally
applied to the incoming pattern. For example, a simple trans-
formation, such as overall shift or scaling, is best applied to
the input pattern, because then it will be applied to a single
pattern, rather than to multiple stored models. However, other
transformations are specific to a stored model, for example,
how a given 3D object appears from different viewing direc-
tions, or how a face may transform by facial expressions. Such
object-specific transformations are more difficult to compen-
sate for by processing the input pattern alone, but they can
be handled effectively by processes that utilize model-specific
information, accumulated through past experience, for ex-
ample, about the object’s 3D shape or the distortions it may
undergo (Lowe, 1985; Ullman, 1989; Grimson, 1990; Yuille and
Hallinan, 1992). An attractive overall strategy is therefore to
apply a bidirectional process, where processing can be ap-
plied simultaneously to both the input and the stored pat-
terns. An additional advantage is that a bidirectional compu-
tation can also be considerably more economical than
unidirectional processing in terms of the number of patterns
explored during the computation, as we shall see further be-
low in discussing simulation results.

There is considerable computational and psychophysical
evidence in support of the view that visual recognition is
indeed not a unidirectional process, but requires a coopera-
tion of processes applied to both the input image and stored
object models. The evidence points to a combination of bot-
tom-up and top-down processing, where “bottom-up” pro-
cesses are involved with the analysis of the incoming image,
and “top-down” processes originate with stored models and
information associated with them. In computer vision, the in-
tegration of bottom-up with top-down processing has been a
major concern. During the 1970s, the emphasis was placed
heavily on top-down processes. Fundamental difficulties with
building computer vision systems led to the view that the
processing must be guided primarily by knowledge associated
with stored models of objects and scenes, and systems in the
1970s were constructed using this approach (Freuder, 1974;
Tenenbaum and Barrow, 1976). Following in part the work of
Marr (1982), the emphasis shifted toward bottom-up process-
ing, but it was also evident that a key issue is the integration
of bottom-up with top-down processing (Marr, 1982; Grimson,
1990), and both processes are used in current recognition
systems (e.g., Lowe, 1985; Ullman, 1989; Grimson, 1990; Yuille
and Hallinan, 1992). Psychological studies have supported this
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view, and have shown the importance of both types of pro-
cesses in object recognition, segmentation, and scene percep-
tion (Palmer, 1975; Potter, 1975; Biederman et al., 1982), as
will be described in more detail in subsequent sections.

In the sequence-secking scheme presented below bottom-
up and top-down processes are equally important. The
scheme uses two streams of processing, an ascending one
starting at the input, and a descending one starting at the
stored models. Their integration is achieved by the interac-
tions between two complementary processing streams. From
a biological standpoint, these will correspond to the “forward”
and “backward” connections between cortical areas. A key
ingredient of the counter-streams scheme is the suggestion
that, roughly speaking, the ascending pathways subserve
mainly bottom-up processing, and the descending pathways
mainly top-down processing, and certain interactions be-
tween the streams provide a mechanism for integrating to-
gether the two types of processing.

Exploring Multiple Alternatives

A second general strategy is designed to face the possibility
that a large number of alternative routes may have to be ex-
plored before a link is successfully established between a
source and a target representation. To achieve efficient com-
putation, it will be necessary to explore simultaneously mul-
tiple alternatives. For example, to deal with size variations, the
input will be processed at multiple scales in parallel. Similarly,
in the case of recognition, the match of an input image and
stored model will be attempted by the system at different
orientations, positions, and 3D viewing directions. In many
models of visual processing, the input pattern undergoes a
single sequence of processing stages. In contrast, in the se-
quence-seeking scheme an input pattern gives rise to multiple
sequences of transformations and mappings that are explored
in parallel. The different transformations and mappings ex-
plored by the system should be taken here in a broad sense:
in addition to dealing with geometric transformations such as
changes in size, position, and orientation, the processing may
involve the recovery of different properties such as color, mo-
tion, texture, and 3D shape, as well as exploring alternative
ways of representing the pattern, for example, in terms of its
parts and its abstract shape properties (Ullman, 1989).

A simplified example can help to illustrate the processing.
Suppose that we attempt to recognize a face we have seen
before, but under novel viewing conditions, in terms of size
and 3D viewing direction. Such variations in viewing condi-
tions can be handled by combining bidirectional search with
the exploration of multiple alternatives. The top-down pro-
cesses will generate internally several representations, corre-
sponding to different 3D viewing directions, and the bottom-
up processes will analyze the input at multiple scales in
parallel. The system will explore the different alternatives for
a possible match between the transformed versions of the
input and stored model, and will be able to obtain in this
manner the appropriate match, despite the initial discrepancy
between them.

The need to evaluate multiple competing alternatives arises
frequently in computer vision systems performing tasks such
as segmentation and recognition. For example, some of the
best-performing visual recognition systems (Lowe, 1985;
Grimson, 1990) search for the best match between an input
shape and a candidate internal model by exploring and com-
paring multiple (e.g., in the hundreds) possible 3D poses of
the internal model. In current computer systems the multiple
comparisons are performed sequentially. In a biological sys-
tem, which is slower but inherently parallel, a better approach
is to explore simultaneously as many alternatives as possible.

It is interesting to note that in several recent neural net-
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work models in areas such as arm control (Jordan and Jacobs,
1993) or handwriting recognition (Matan et al., 1992), the
explicit exploration of multiple alternatives (e.g., by separate
“expert subnetworks”) proved useful in dealing with com-
plex problems that were not handled effectively by more
standard models. For example, in a network developed at
AT&T for reading handwritten numerals (Matan et al., 1992),
the letter identification stage is preceded by a process that
segments the string into individual characters. This turned out
to be a difficult task, and the segmentation was often unreli-
able. The approach adopted was to perform explicitly a num-
ber of different candidate segmentations, and later select the
best solution among the different alternatives. The network
also uses multiple-scale analysis: it processes the same input
through separate mechanisms tuned to different scales of the
letters, and again selects at the end the best alternative. This
design proved to perform better than a single network trained
to become scale invariant.

Another example is a network developed recently for con-
trolling the 3D movements of a simplified arm (Jordan and
Jacobs, 1993). In this work, the training of standard neural
networks failed to converge to a satisfactory solution to the
control problem. An approach that proved successful was to
train a number of different subnetworks, each one capable of
providing a good solution under restricted conditions. The
combined problem is then treated by letting the different net-
works work on the problem individually, followed by a gating
and selection stage.

Linking the Ascending and Descending Streams,

the Counter-Streams Structure

The scheme proposed for combining bidirectional and mul-
tipath processing is diagrammed schematically in Figure 1A.
The basic operation in this scheme is to seek a sequence of
processing steps linking a pattern of activity (§ in Fig. 14) in
one cortical area with stored representations (such as M,, M)
in another. The pattern S may arise from the image of an
object, for example, a familiar face, and the patterns M, rep-
resent stored object models, perhaps in visual area IT. The
recognition of the viewed object involves multiple processing
stages, applied in part to the incoming pattern and in part to
the stored models, in an attempt to establish a match between
the incoming pattern and a stored model. For example, the
bottom-up stream may include processes that compensate for
size and position variations, and the top-down stream pro-
cesses compensating for illumination conditions and viewing
direction. Intermediate patterns in the net will correspond to
different representations of the object, for example, at differ-
ent 3D orientations and scales. Biologically, the nodes in this
schematic figure represent patterns of activity, for example,
subpopulations of neurons acting together, possibly with
some degree of synchrony (Abeles, 1991; Engel et al., 1992),
and the arrows indicate how patterns activate subsequent
patterns, for example, S can activate A4,, A,, and A,. Since dif-
ferent patterns may share neurons, implementation con-
straints will place some limitations on the coactivation of pat-
terns; for example, patterns (B,, B,, B) may be prohibited
from being coactive. In expanding the sequences down from
M,, only a subset of these patterns will be activated initially,
and will later decay and be replaced by others.

The search is bidirectional, and a linking sequence is suc-
cessfully established when the two streams of activation meet
somewhere in this large network of interconnected patterns.
How can a successful link of patterns be found in the system?
The proposed scheme (Fig. 18) has two main components.
First, the ascending and descending streams proceed along
separate, complementary pathways. Second, when 2 track is
being traversed in one stream, it is assumed to leave behind
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Figure 1. A, The sequence-seeking computation seeks a sequence of mappings linking a source pattern (S) in one area with stored representations (M7, M2 in another. Nodes
represent patterns of activity {coactive populations of neurons), arrows indicate how patterns activate subsequent patierns. In expanding sequences only a subset of patterns will
be activated inrtially, and will later decay and be replaced by others. The procaessing is bidirectional, and a linking sequence is successfully established when the two searches
meet somewhere in a large network of interconnected patterns. B, Similar to A, except that each node is split into two complemantary ones. The ascending and descending streams
proceed along complementary pathways. When a track is being traversed in one stream, it leaves behind a primed trace in the complementary stream. C, The basic unit of the
counter-streams structure: Patterns A, B on the ascending, A, B on the descending path. Thin arrows denote connections of the priming type. This repeating unit is embedded in

8 network of nichly interconnected patterns.

a primed trace in the complementary stream, making it more
readily excitable, as explained further below. The scheme
shown schematically in Figure 18 is similar to Figure 14, ex-
cept that each node is now split into two complementary
nodes (populations of neurons), for example, B, in Figure 14
is now split into B, on the ascending pathway and its com-
plementary pattern B, on the descending one.

The full bidirectional search now proceeds as follows. A
number of sequences originating at § begin to be activated
along the ascending pathway. At the same time, sequences
originating at M, and M, begin to expand downward along
the descending pathway. (We will see below how some mod-
els, such as M,, M,, can be selected from a larger population
of stored patterns.) Whenever a track (subsequence) is being

traversed on either stream, the complementary track remains
in a primed state, ready to be activated. Not all of the possible
sequences are expanded simultaneously, and already-primed
patterns are activated with priority. The result will be a mech-
anism that searches for linking sequences in the network. Sup-
pose that by the time § has activated A4, along the ascending
stream, the track M, - B, - A, had already been traversed
in the descending stream. This is an example of a linking
taking place between the two streams; that is, a node, or
group of neurons, on the ascending streams (A, in the ex-
ample) and its counterpart (4,) on the descending stream,
have both been activated within a limited time interval (up
to a few hundred milliseconds in the case of typical recog-
nition).
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The activity will then proceed along the primed traces,
since, for example, A, will activate next B, (which is primed)
rather than alternative, nonprimed nodes. This will result,
therefore, in the immediate activation of the complete se-
quences S — M, and M, —> S, establishing a complete link
between the source and target patterns. This will also select
M, as the stored pattern corresponding to the input image S,
thereby serving to recognize § as an instance of M,. In this
manner, as a result of the priming, the top-down processing
guides and “paves the way” for the bottom-up processing. The
task of relating the sensory input to the appropriate stored
representations is achieved by the cooperation of bottom-up
and top-down processing, and by exploring, in each direction,
multiple alternatives.

The linking process described above achieves a number of
goals. First, a link between the ascending and descending
streams can take place at any intermediate level; this has the
advantage that the overall task can be split in a flexible man-
ner between bottom-up and top-down processing. Second, to
establish a link, the ascending and descending patterns need
not arrive at a given node simultaneously; a meeting is also
possible between an active pattern and a pattern that had
been active some time before and decayed, but left a primed
trace in the complementary stream. Third, the proposed sep-
aration between the streams avoids possible intermixing be-
tween data supported by the input and states explored inter-
nally by the system. This distinction is crucial in a system that
uses both top-down and bottom-up processes. For example,
top-down processing can initiate the activation of an internal
model (such as M, in Fig. 1B), but this event will be distin-
guished in the system from the activation of an internal model
(M, in Fig. 1B) on the ascending stream by a sequence orig-
inating at the sensory input.

In terms of connectivity, the excitatory connections be-
tween patterns are predominantly reciprocal, obeying the fol-
lowing general rule (Fig. 1C): whenever 4 is connected to B,
there is a back-connection from B to A, with cross-connec-
tions between 4 and 4 and B and B. (Inhibitory connections
also play a role, but will not be discussed.) The cross-connec-
tions are assumed to have a priming effect; when B, for in-
stance, is activated, it also provides input to B, making it more
readily excitable by a subsequent input along the descending
stream. The reciprocity of the connections is an inherent as-
pect of the model, and it is also a distinguishing feature of
cortical connectivity (although some exceptions have been
noted; see Distler et al., 1991; Rockland et al., 1992). It should
also be noted that although the counter-streams structure
uses “forward” and “backward” connections, it does not nec-
essarily imply a hierarchical structure; it can incorporate a
more general structure as long as the above connectivity rule
is obeyed.

In summary, the sequence-seeking process above has two
main characteristics: it is bidirectional, and it explores multi-
ple alternatives simultaneously. The basic structure of the
model is relatively straightforward, comprising two comple-
mentary networks going in opposite directions, with inter-
action between them primarily (but not exclusively) in the
form of enhancing patterns across the two streams.

The descending pathways are used in the model as the
anatomical substrate for top-down processing. This role can
be contrasted with other models, where the descending pro-
jections are used for different purposes: controlling selective
attention (Fukushima, 1986; Koch, 1987), grouping and fig-
ure-ground segregation (Okajima, 1991; Sporns et al., 1991),
learning processes (Zipser and Rumelhart, 1990), modulating
cortical output to other visual centers (Sandell and Schiller,
1982) or to correlate and synchronize the activity of interre-
lated neuronal groups (Edelman, 1978; Tononi et al., 1992).
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Compared with other models (e.g., Geman and Geman,
1984; Poggio et al., 1985; Mumford, 1992), the scheme places
emphasis on the parallel exploration and selection of multiple
alternatives, rather than relaxation and iterative computations.
Timing considerations (Maunsell and Gibson, 1992; Rolls et
al., 1991; Thorpe et al., 1991) appear to place rather stringent
restrictions on the use of multi-iteration relaxation processes
in tasks such as visual recognition. A visual cortical area may
introduce an average delay of about 10-15 msec, and there
are several (about six) stations spanning the hierarchy from
V1 to anterior IT. This suggests that visual processing should
usually require a limited number of sweeps through the sys-
tem. It is desirable, therefore, especially for an inherently par-
allel system, to explore multiple alternatives simultancously,
rather than explore and refine them in sequence.

The bidirectional processing above provides the skelcton
of the computation, a number of elaborations and properties
of the basic process are discussed below.

Express Lines

The bidirectional process raises an important question re-
garding the activation of stored models for top-down pro-
cessing. To initiate appropriate top-down processing, some
initial selection, and subsequent refinement, of a relevant sub-
set of stored models is required. The next two sections pro-
pose two mechanisms for this task, both supported by evi-
dence regarding human perception.

To cut down the number of competing sequences in the
descending stream, it would be useful to expand with higher-
priority alternatives that appear more promising. For example,
in attempting to recognize an object, some models (a face,
say) may become more likely than others on the basis of par-
tial analysis, although it may not yet be possible to identify
the individual face. It would be advantageous under these
circumstances to expand preferentially face-related sequenc-
es, possibly at the expense of others. Such an effect can be
obtained by using “express lines”: the activation (or inhibi-
tion) of high-level patterns on the descending stream by low-
level ascending patterns. Such express lines could activate, for
example, “face” models based on partial evidence for a face
in the image, and thereby initiate an expansion of sequences
from the selected patterns. This selection of higher-level pat-
terns can be viewed as invoking a hypothesis suggested by
the data, but which has yet to be confirmed. A link to the
ascending stream will still be required to confirm the hypoth-
esis. Note that, unlike the priming interaction between the
pathways, in the case of express lines the ascending stream
can activate the descending one. Express lines could also use
inhibition rather than facilitation: if the partially expanded se-
quences in the ascending stream render some higher-level
nodes unlikely, inhibitory “express lines” could be used to
suppress their expansion in the descending stream.

This notion of fast initial selection of subsets of models is
compatible with a substantial body of psychophysical evi-
dence regarding visual classification and recognition. The first
stage in visual recognition appears to be a rough classification
of the object into a general class or a small number of classes
such as a face, a car, and so on (Rosch et al., 1976). Identifi-
cation follows in a subsequent stage, and there is evidence
(Cavanagh, 1991) that at this stage information associated
with the class of objects is used (e.g., to separate actual object
contours from cast and attached shadow contours, a distinc-
tion that cannot be performed in a bottom-up manner).

The express lines provide one mechanism for “indexing”
into the large number of models stored in memory. “Indexing”
is a term used in computational vision for the initial selection
of a general class, or classes of models, that are likely to cor-
respond to the input image. It appears that such a stage is
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necessary to enable artificial recognition systems, which are
currently limited to a small number of object-models, to deal
with large object libraries (Grimson, 1990). The express lines
play a role in this process by the fast selection, based on
partial information, of likely models on the descending stream.
This initial selection is not limited to the activation of models
at a single “topmost” level; models at different levels along the
descending stream can also be activated and serve as the start-
ing point for descending subsequences. For example, in ad-
dition to the selection of a complete face model, intermediate
models of face-parts can also be activated. Anatomically, such
express lines may correspond to direct connections from low
to high visual areas (such as the connections from area V4 to
AIT, or from V3 and VP to area TF; Felleman and Van Essen,
1991).

A second mechanism for model selection is provided by
the effects of expectation and context. The essential idea is
that temporal and spatial correlations can influence the like-
lihood of different models. Knowledge about the current sit-
uation can thereby be used to influence the activation or
priming of a subset of models, that will then become prefer-
ential sources for descending sequences. The set of active
models will then be modified and refined throughout the se-
quence-seeking process, as described below.

The Effect of Context

Context can have a powerful influence on the processing of
visual information (as well as in other perceptual and cogni-
tive domains). A pair of similar, elongated blobs in the image
may be ambiguous, but in the appropriate context, for ex-
ample, under the bed, they may be immediately recognized
as a pair of slippers.

Familiar objects can often be recognized in the lack of con-
text, but in dealing with less familiar objects, or with complex
scenes, or when the viewing conditions are degraded, the role
of context increases in importance and can become indispen-
sable. Even when context is not strictly required, context still
facilitates the recognition process, and makes it faster and
more reliable (Palmer, 1975; Potter, 1975; Biederman et al.,
1982). Context information that helps the observer expect a
certain class of objects facilitates recognition significantly, and
when objects are placed in an unusual context, recognition
is hampered. Under natural conditions, useful context infor-
mation is almost always present, and this accounts in part for
our capacity to deal effectively with complex scenes.

Context effects can operate in the framework of the se-
quence-seeking scheme by the prior priming of some of the
nodes (populations of neurons). The effect will be similar to
the mutual priming of the ascending and descending streams
but over longer time scales. (Priming between the streams
may last for tens to hundreds of milliseconds; context effect
should last for considerably longer, up to minutes or hours.)
Sequences passing through the primed patterns will then be-
come facilitated. In the above example, the location of the
blobs, under the bed, will prime patterns representing objects
that are commonly found in that location, making slippers a
likely interpretation.

The general notion of priming internal representations is a
common one, but its effects in the framework of the se-
quence-seeking scheme are particularly broad. When certain
patterns are activated, for example, by noticing and identify-
ing the bed in the image, they will initiate sequences of their
own, and an entire set of patterns will end up in a primed
state. Later on, other sequences passing through a primed
trace will be facilitated, compared with the nonprimed se-
quences. The resulting effect is that a context pattern A may
help to bring about the activation of B not as a result of direct
prewired association, but because an intermediate subse-

quence leading from A to B had been previously facilitated.
Context effects will therefore have indirect and widespread
influence.

The spread of context effects may capture some of the
fundamental aspects of context effects in humans. Humans’
perception and cognition appear to have an almost uncanny
capacity (which is extremely difficult to reproduce in artificial
systems) for bringing in relevant context information in a
broad and flexible manner. It seems that broad, indirect, con-
text effects can be reproduced by the sequence-seeking com-
putation.

Learning Sequences

A simple and local learning rule is sufficient in the counter-
streams structure to reinforce selectively complete successful
sequences. The reason is that every pattern along a successful
sequence will receive both a direct activation and a priming
signal from the complementary track; patterns on dead-end
tracks will receive one or the other but not both. The ap-
proximate temporal coincidence of the two signals can there-
fore be used to strengthen the successful sequence prefer-
entially. This role is local, since it depends on the activation
of a single pattern. Yet, it is sufficient to reinforce preferen-
tially successful sequences forming an uninterrupted link be-
tween source and target patterns. Following practice, out of
the huge number of possible sequences, those that proved
useful in the past will be explored with higher priority in
future uses of the network.

In the process of reinforcing successful sequences, changes
due to learning are distributed throughout the system, and
are not confined to high-level centers specializing in learning
(Sejnowski, 1986). Recent studies of learning certain percep-
tual skills suggest that low-level visual areas are indeed in-
volved in the modifications that take place during the learn-
ing process (Karni and Sagi, 1991).

In addition to the learning of complete sequences, as above,
the system may also be engaged in the leaming of the indi-
vidual stages, that is, the different steps comprising the pro-
cessing sequences (Poggio, 1990). This aspect of the learning
is, however, outside the scope of the present discussion, since
the focus is not on the specifics of individual processes, but
on their overall common structure.

Due to the parallel exploration of multiple alternatives, and
to the tuning of the system by past experience, straightfor-
ward recognition tasks will require little or no search. When
search becomes necessary, simulations described next suggest
that the system will be able to locate the optimal solution
efficiently.

Refining the Expansion

The matching between patterns is not an all-or-nothing event,
but a graded one: some sequences will lead to better matches
than others, and then serve as starting points for exploring
additional sequences, that will lead in turn to an improved
match. This process has some features in common with a
family of optimization and search procedures known as “ge-
netic algorithms” (Holland, 1975), and it is also related to the
method of Bayesian optimization (Mockus, 1989). Recent eval-
uations have shown such methods to behave quite efficiently
(Brady, 1985; Peterson, 1990). Our own simulations in the con-
text of pattern matching have also shown that computations
based on sequence seeking compare favorably with alterna-
tive methods, such as gradient descent and simulated anneal-
ing.

Figure 2 shows a simulation of a simplified sequence-seek-
ing process, intended not as a biological model, but to illus-
trate the process in a simple example. The task is to recognize
an input shape (example in Fig. 24) by comparing it with
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Figure 2a '/I/FigUf‘é‘Afb

Figure 2c " Figure 2d
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20 Probes 400
Figure 2e

Figure 2 Simulation of a simpfified sequence-seeking process, used to match an input shape (example in a) by comparing it with stored shapes buried in noise. The input shape
is displaced in the xy-directions with respect to the stored pattem. The objective function to be minimized 1s complex and contains multiple mimima (level contours in b). In the
bidirectional search, the model M is shifted in x to generate a number of copies M, the input image in y, generating displaced copies /.. A good match between a pair M, /,,
leads to the generation of new copies around the corresponding displacement x,, y,. In the unidirectional version, M remains fixed, /,, ere generated by shifting / in both x- and
y-directions. The [fikefihood of generating a new sample increases near good past samples, and decreases with the density of past samples. Bias toward good sample points was
determined by £, (! in c), showing the fikelthood of generating a new sample point in the wicinity of a previous one. The final likelihood at a point was determined by E the avarage
of £, induced by nearby sample points (k = 10) weighted by distance, divided by £, a penalty for density, f, = exp, L, (Ix — x| + 0.25)-2 Details of the mathematical derivation
of £,, algorithm, and computational results will be described elsewhere. d, A representation of the search following 20 displacements in x and y. The tick marks show the selected
displacements; the squares show the degree of match obtained at some x, y displacements, coded by size. (For each x,, the bast matching y, is shown, and similarly for the y,s.
The search combines exploration of the domain with concentration around good matches. e, Match quality as a function of number of patterns explored for one- (SS-1) and two-
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Figure 3. A, How the basic counter-stream structure may be embodied in cortical con-
nectivity. The structure contains two interconnacted streams, an ascending and a de-
scending one. The ascending path goes through layer 4 and the ascending superficial
population (AS} to the next area. The descending path goes from the descending su-
perficial (DS) population to D/ {descending infra) and back to the first area. Thin arrows
show pathways that “leap over” a step in the stream. Inhibitory and long-range intra-
areal connections are not shown. See text for more details. b, A schematic represen-
tation of the main connections according to the model along the magno stream from
the LGN via V1 to V2 (V1 is also connected to other visual areas; not shown in the
diagram.} The connactions are drawn in a manner suggested by the model and a. Thick
armows, established connections; thin arrows, connections predicted by the model. c,
The main connections according to the model along the parvo stream from the LGN via
V1 to V2 Thick arrows, established connections; thin arrows, connections predictad by
the model.

stored shapes buried in noise. The input shape is displaced
in the x, y-directions with respect to the stored pattern. The
objective function to be minimized (degree of match as a
function of displacement) is complex and contains multiple
minima (level contours shown in Fig. 2b). A typical search
space was composed of about a million possible locations.
To determine the optimal match between the input shape
and the stored pattern, one possibility is to displace the input
shape by different amounts in x and ), and compare each
displaced version with the model, until the best match is ob-
tained. Instead, the simulation used a bidirectional search: the
model M was shifted in x, to generate a number of copies M,,
the input image in 3 generating displaced copies I,. The
search proceeds by comparing the displaced versions of the
input and stored patterns. A good match between a pair M,,
I, then leads to the generation of new copies around the

corresponding displacement x,, y,. The results were compared
with the unidirectional version, where M remained fixed and
1,, were generated by shifting 7 in both x- and y-directions.

The procedure used to generate the new “offsprings”
around the existing patterns was a simple genetic-like algo-
rithm: the likelihood of generating a new sample increases
near good past samples (as determined by the excitatory
function f; in Fig. 2¢), and decreases with the density of past
samples. This function is computed in the vicinity of past
samples. For example, if a good match was obtained between
the input displaced horizontally by % units and the stored
pattern displaced vertically by ¥ units, new displacements will
be generated around the successful values % 3. However, if
the match was poor, or if many patterns with similar displace-
ment were already compared, then the likelihood of attempt-
ing further solutions in the vicinity of x, ¥ will decrease. In
this manner the past samples induce over the search space a
likelihood function, and the next samples occur at maxima of
this function. The process is simple: it proceeds by trying a
number of alternatives, and then selecting and refining suc-
cessful solutions.

The simulations of the bidirectional search show that the
process has a number of favorable general properties. First,
the search locates the optimal match efficiently (Fig. 2e). It
proved more efficient in the pattern matching task than com-
monly used methods such as simulated annealing (SA in Fig.
2e) or gradient descent using multiple starting points. Second,
the bidirectional scheme in these examples is considerably
more efficient in terms of the number of patterns explored
than a unidirectional process (5§51 vs SS-2 in Fig. 2e). This
advantage will hold as long as the number of stored patterns
to be explored is not too large. Third, the use of past results
in guiding the search biases the process to concentrate in
more promising regions, compared with SA and gradient de-
scent. Finally, it exhibits good capacity to escape local minima
in reaching for the global solution. The example used a sim-
plified task, but the search space was of significant size and
contained multiple local minima. Initial experiments using
more complex pattern transformations (such as rotation, scal-
ing, and shear) show similar general properties, and additional
simulations and mathematical analysis are currently under

way.

Generic Aspects of Sequence Seeking

The discussion of the sequence-seeking process used as an
example the domain of visual recognition. However, the pro-
cess of establishing a sequence of transformations, mappings,
or states, linking source and target representations, could pro-
vide a useful general mechanism for various aspects of per-
ception as well as for nonperceptual functions. For example,
the planning of a motor action can be cast at some level in
terms of seeking a sequence of possible moves linking an
initial configuration with a desired final state. Movement tra-
jectories could be based in a sequence-seeking scheme on a
repertoire of elementary movements, and these basic move-
ments will then be transformed (scaled, stretched, rotated,
etc.) and concatenated together to generate more complex
movements. In analogy with sequence seeking in vision,
movement planning could also utilize the application of trans-
formations and the generation of compound sequences. Sim-
ilarty, more general planning and problem solving can also
often be formulated in terms of establishing a sequence of

—

directional ($8-2) versions of the sequence-seeking search, compared with one- {SA-1) and two-directional (SA-2) versions of simulated annealing. (The score is in units of o, the

standard deviation of the terrain in b.}
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transformations, mappings, or intermediate states, linking
some source and target representations [e.g., Newell and Si-
mon’s (1972) GPS model, Quillian’s (1968) semantic net the-
ory; see also Winston, 1992], and they may therefore benefit
from computations similar to the sequence-seeking scheme. I
will not discuss these general problems further, beyond rais-
ing the possibility that general aspects of the sequence-seek-
ing process provide a useful computational scheme that could
be applied, with appropriate modifications, to different cog-
nitive tasks. This possibility is consonant with the hypothesis,
raised by a number of neuroscientists (e.g., Barlow, 1985;
Creutzfeldt, 1978; Crick and Asanuma, 1986; Martin, 1988a)
regarding the possible existence of some general cortical
mechanisms that are applicable, with suitable local modifica-
tions, to a broad range of different tasks.

Biological Embodiment

In this section, biological aspects of the model will be dis-
cussed. The discussion will focus primarily on general features
of the model, such as the ascending and descending streams,
and the laminar distribution and general pattern of connec-
tions between and within cortical areas. Several aspects of a
more specific nature will also be considered, to illustrate pos-
sible predictions and questions for further study.

The sequence-secking model requires two pathways going
in opposite directions with the appropriate cross connec-
tions. A schematic diagram proposing how the counter-
streams structure may be embedded in cortical connections
is shown in Figure 34. The proposed embodiment is pre-
sented in schematic outline only, focusing on a number of
central aspects, but without discussing details or possible vari-
ations of the model.

The ascending stream goes through layer 4 to a subpopu-
lation of the superficial layers, denoted in the figure as AS
(ascending superficial), and then projects to layer 4 of the
next cortical area (Il in Fig. 3). The descending stream goes
through a different subpopulation of the superficial layers
(DS, descending superficial) to DI (descending infra), a sub-
population of the infragranular layers (often in layer 6), and
from there to DS of a preceding area. The connections can
also leap over one step (or occasionally more) in the stream,
for example AS directly to AS on the ascending stream, and
DS — DS or 6 = 6 on the descending stream (thin lines in
Fig. 3a).

Layer 5 is left out of the diagram because, according to the
model, it (or a part of it) is involved primarily not in the main
streams, but with their control, in cooperation with subcor-
tical structures. There are at least two reasons for assuming
that layer 5 (or parts of it, e.g., layer 5b of the macaque’s V1)
may be involved in control functions. First, its orderly con-
nections to subcortical structures (e.g., from visual cortex to
the pulvinar and the superior colliculus, structures implicated
in controlling attention and eye movements; Desimone et al.,
1990) that are reciprocally connected in turn in a topograph-
ic manner to multiple visual areas. Second, the firing pattern
of a population of pyramidal cells in this layer that “can ini-
tiate synchronized rhythms and project them on neurons in
all layers” (Silva et al., 1991, p 434).

Note that the counter-streams structure suggests a natural
organization in about five or six main layers: one or two per-
forming control functions, two (an input and an output layer)
for the ascending, and two for the descending streams. The
division between the roles of the different layers is likely to
be in reality less clear cut, and there are known variations and
specialized sublaminations. However, the main goal of the di-
agram is to emphasize the possible common underlying struc-
ture according to the model, rather than to account for pos-
sible variations.

8 Computational Model for Visual Cortex Information Flow « Ullman

It is interesting to note that from a developmental stand-
point the layered cortical structure appears to develop in two
stages, possibly from distinct origins (Marin-Padilla, 1978; Dea-
con, 1990). The most superficial and deepest layers develop
first, and all other layers develop subsequently in between
them. These two structures may be the precursors of the de-
scending and ascending streams, respectively (Deacon, 1990;
Mumford, 1994). This developmental view is compatible with
the notion of the two distinct and interconnected streams of
the counter-streams structure.

Connections of VI1: Data and Predictions

To give a more specific example, Figure 3, b and ¢, shows an
expanded version of the diagram, applied to cortical area V1
(which is somewhat special, but for which the data are more
comprehensive than for other visual areas), and its connec-
tions to the LGN and cortical area V2 (V1 is also connected
to other visual areas, not shown in the diagram). Figure 3, b
and ¢, shows the connections in the macaque of the mag-
nocellular stream and the parvocellular stream, respectively
(Rockland and Lund, 1983; Lund, 1988a,b; Martin, 1988a). The
diagram shows the main connections; additional secondary
ones will not be considered. The connections are drawn in a
manner suggested by the model, and they include both
known connections (thick arrows) and connections predict-
ed by the proposed scheme but for which empirical evidence
is partial or lacking (thin arrows).

The pattern of connections in the two streams appears to
be in general agreement with the counter-streams structure
and Figure 34. The model suggests that a similar structure
can be used, with local modifications, as a repeating circuit
within a large network to utilize the cortex inherent parallel-
ism and combine ascending and descending information
flows.

If the general hypothesis regarding the counter-streams
structure is broadly correct, then 2 number of predictions can
be made regarding the main connectivity patterns within and
between areas. One general prediction is the possible distinc-
tion between the AS and DS subpopulations. This separation
reflects the most straightforward implementation of the
scheme; however, some alternatives can exist without violat-
ing the constraints of the model.

A separation between the ascending and descending pop-
ulations is evident in the connections involving layer 4: the
ascending streams terminate in layer 4; the descending
streams always avoid it. In the superficial layers the situation
is more difficult to assess, and the available evidence is at
present restricted. In the magnocellular projection from V1
to V2 the forward projection originated mainly in layer 4B,
while the back-projection is mainly to other layers (Fig. 36).
It is further expected that even when the superficial layers
provide both the source and the target of connections to an-
other area, there will in fact often be a separation to the AS/
DS subpopulations. If these populations exist, they should be
connected in a reciprocal manner. A related expectation de-
rived from the model is the existence of priming-type syn-
aptic interactions, that is, excitatory synaptic input that by
itself may not be very effective in driving the target cells, but
that facilitates the effects of subsequent inputs to these cells.

An example at the other end of the spectrum, of a specific
expectation, is that in the magnocellular stream the model
suggests reciprocal interconnections between layer 4B (play-
ing the part of AS in the model), and layers 1-3, the recipients
of descending projections from V2 (DS in the modeD, and
that the same superficial cells connected to layer 4B will also
be the recipients of descending projections from V2 The pro-
jection from 4B to the superficial layers is well established. It
is also known (Lund, 1988a) that 4B pyramidal cells send api-
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cal dendrites to the superficial layers where the connection
may take place.

The model also includes a reciprocal connection between
layer 4, and the LGN-projecting cells in layer 6. The projection
from layer 6 to layer 4 is well-established in both the cat
(McGuire et al., 1984) and monkey (Lund, 1988a), and there
is support for the opposite connection as well (Lund and
Boothe, 1975). It is also interesting to note in this regard that
the population of layer 6 cells projecting back to the LGN
were found (in the cat) to be the same cells that are also
connected to layer 4C, by axonal collaterals and dendritic ar-
bors (Katz et al., 1984), in accordance with the connectivity
in Figure 3, b and c

The connections between layers 4 and 6 are expected in
the model to have a priming effect (not necessarily the only
effect; see Bolz and Gilbert, 1986; Martin, 1988b), and this
notion has some physiological support. It was found (Ferster
and Lindstrom, 1985) that using electrical activation of layer
6 cells by antidromic activation increased the probability of
layer 4 firing, and most cells fire multiple spikes in response
to each stimulus. Under the opposite conditions, when layer
6 was inactivated, the main observed effect was the reduction
in excitability of layer 4 cells (Grieve et al, 1991).

From an anatomical standpoint, EM reconstructions (Mc-
Guire et al., 1984) have shown terminations of layer 6 axons
on smooth and sparsely spiny cells. The model suggests also
a projection onto layer 4 spiny cells. Recent data by Ahmed
et al. (1994) support this suggestion, and indicate that the
major target of layer 6 pyramidal output to layer 4 is in fact
the spiny stellate cells.

Layer 6 is also involved in the model in the descending
pathway (although, as mentioned, layers 5 and 6 are often
further divided into distinct sublayers, and the identification
of layer 6 with the DI population in the model is not always
straightforward). The involvement of layer 6 in the descend-
ing pathway, as either the origin or the target of the descend-
ing projection, has been demonstrated in various visual areas,
including V1, V2, V3, V4, TEO, MT, MST, VIP, PO, and LIP (Lund
et al., 1981; Maunsell and Van Essen, 1983; Felleman and Van
Essen, 1984; Rockland and Virga, 1989; Andersen et al., 1990;
Rockland et al., 1992).

Lateral Connections between Areas
Connections between cortical areas (not only visual, also so-
matosensory and motor) can be classified into “forward,
“backward,” and “lateral” connections, on the basis of the lam-
inar distribution of their source and destination (Rockland
and Pandya, 1979; Friedman, 1983; Maunsell and Van Essen,
1983; Van Essen, 1985; Zeki and Shipp, 1988; Andersen et al.,
1990; Boussaud et al., 1990; Felleman and Van Essen, 1991).
Lateral connections terminate in all layers, and their origin is
bilaminar, from the supra as well as infra layers. The lateral
pattern is relatively complex; it is therefore interesting that a
number of its main features can be derived almost directly
from the model. The counter-streams structure does not have
a distinct, third type of connections. It allows, however, for-
ward and backward connection simultaneously in both direc-
tions, and it can include lateral connections by assuming that
they are the union of ascending and descending connections.
If this view is correct, then the main connections participat-
ing in the lateral connection can be inferred from the basic
scheme (Fig. 3a). According to the model, they include the
direct connections, AS — 4 and DI — DS, as well as the con-
nections that leap over one stage in the diagram, AS — AS,
DS — DS,DI, and DI — DI.

The origin of the projections according to the model would
be bilaminar, and the terminations would span all layers, in
agreement with the observed pattern. This can also explain

several difficulties such as the problem of irregular termina-
tions (Felleman and Van Essen, 1991) that occurs, for example,
when some of the terminations are restricted to layer 4 of
the target area while others show columnar terminations. This
was termed F/C (i.e., a mixture of “four” and “columnar”)
paradoxical termination, since termination in layer 4 is a sig-
nature for ascending connections, while a columnar termi-
nation signifies lateral connections. In the counter-streams
structure, the point to note is that the lateral connections
from the superficial layers of area A to target area B are com-
posed of two subprojections: AS — 4 (ascending) and DS —
DS,DI (descending). Anterograde labeling of the upper layers
of area A can therefore show mixed patterns of terminations,
such as layer 4 alone, or a columnar termination, in agreement
with the F/C paradoxical termination. It can also (by labeling
the DS alone) show a bilaminar pattern of connections; this
can account for the other types of irregular terminations.

The detailed nature of these connections is still not entirely
conclusive. However, the proposed account serves to illus-
trate two points; first, that some of the apparent complexities
may have a natural explanation within the counter-stream
structure; second, if the account is generally correct, it pro-
vides support for the existence of the AS and DS subpopu-
lations in the model.

Priming Mecbanisms

Synaptic interactions in the model include priming-type ef-
fects between the complementary streams. Although this has
not been studied directly, some known or physiologically
plausible mechanisms could play a role in such priming in-
teractions.

Priming can be obtained for example by long-lasting de-
polarization, combined with subsequent input, added either
linearty or nonlinearly. A long-lasting depolarization can be
caused by a number of possible mechanisms, including ionic
channels with a slow time course (McCormick, 1990; Hirsch
and Gilbert, 1991; Amitai et al., 1993), NMDA receptors (Miller
et al., 1989), or the activation of distal parts of the dendritic
tree (Stratford et al., 1989). This depolarization will facilitate
subsequent inputs by summation (Miller et al., 1989), or by a
nonlinear interaction (Koch, 1987; Esguerra et al., 1989; Sher-
man et al., 1990). Although the details are not known, it ap-
pears that synaptic mechanisms for priming connections are
physiologically plausible, and it will be of interest to try to
test them empirically.

Effects of tbe Feedback Projection

According to the sequence-seeking scheme, the physiological
effects of the descending projections can assume two differ-
ent forms: either the priming and modulation of the ascend-
ing stream, or the direct activation of a lower area.

Both effects have been observed in physiological studies,
modulatory (Sandell and Schiller, 1982; Nauit et al., 1990), as
well as direct excitatory effects (Cauller and Kullics, 1991;
Mignard and Malpeli, 1991). Further predictions of the model
regarding the modulatory effects include (1) that similar mod-
ulatory effects are also likely to be induced by ascending sig-
nals on descending ones, and (2) that the two effects may be
segregated into two distinct subpopulations: in Figure 1¢, B
can be directly driven along the descending stream, but pat-
terns such as B on the ascending stream are expected to
show modulatory effects.

In summary, the computation proposed by the sequence-
seeking model is a bidirectional process performed by top-
down and bottom-up streams of processing seeking to meet.
Bottom-up processing is supported by the ascending path-
ways; top-down processing, by the descending ones. In each
direction, different alternatives are explored in parallel. The
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scheme incorporates a number of basic lessons from com-
puter vision and perceptual psychology. Essential properties
of the scheme include the simultaneous exploration of mul-
tiple alternatives, the relatively simple, uniform, and extensible
structure, the flexible use of “bottom-up” and “top-down” se-
quences that can meet at any level, the roles of context and
of fast classification, and the learning of complete sequences
by a simple local reinforcement rule.

The model combines the proposed computation with a
number of known as well as predicted aspects of cortical
circuitry. Given the still limited knowledge regarding cortical
structures and the computations they perform, the model ad-
dresses mainly general aspects of the computation. The com-
bination of the proposed computation and structure serves
to suggest a framework, that offers a computational account
for several basic features of cortical circuitry, such as the pre-
dominantly reciprocal connectivity between cortical areas,
the forward, backward, and lateral connection types, the reg-
ularities in the distribution patterns of interarea connections,
the organization in five or six layers, and the effects of back-
projections, as well as a number of more specific details. It
also poses problems for further study at the structural as well
as computational levels.
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