Learning and

& Instruction
ELSEVIER Learning and Instruction 17 (2007) 722—738

www.elsevier.com/locate/learninstruc

Instructional animation versus static pictures: A meta-analysis

Tim N. Hoffler®, Detlev Leutner

nwu-Essen, Research Group and Graduate School on Science Education, Duisburg-Essen University,
P.O. Box, D-45117 Essen, Germany

Abstract

A meta-analysis of 26 primary studies, yielding 76 pair-wise comparisons of dynamic and static visualizations, reveals a
medium-sized overall advantage of instructional animations over static pictures. The mean weighted effect size on learning out-
come is d =0.37 (95% CI 0.25—0.49). Moderator analyses indicate even more substantial effect sizes when the animation is rep-
resentational rather than decorational (d =0.40, 95% CI 0.26—0.53), when the animation is highly realistic, e.g., video-based
(d=0.76, 95% CI 0.39—1.13), and/or when procedural-motor knowledge is to be acquired (d =1.06, 95% CI 0.72—1.40). The
results are in line with contemporary theories of cognitive load and multimedia learning, and they have practical implications
for instructional design.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years there has been a lengthy debate about the opportunities for using animation in learning and instruc-
tion. The enthusiasm of the first years, in which the potential of dynamic visualization seemed to be boundless, gave
way to a more pragmatic view. In particular, the review of Tversky, Morrison, and Bétrancourt (2002) influenced the
instructional designers’ community. The authors showed that animations often had no advantages over still pictures;
but if they had, it was because more information was available in the animated than in the static version. Due to this
result, the focus turned to the question of when dynamic displays are more effective in learning than static ones
(Hegarty, 2004).

While there are many promising approaches to identifying such conditions (e.g., Ainsworth & VanLabeke, 2004;
ChanLin, 2001; Lowe, 1999), there has been no systematic collection of these research results as yet. The present
meta-analysis of 76 pair-wise comparisons of static pictures versus animations attempts to identify the factors respon-
sible for successful learning with animations. In addition, it presents a comprehensive survey of studies comparing
these two forms of visualization, and it analyzes which form may be superior in learning outcomes under what
conditions.
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2. Theoretical framework
2.1. The effect of pictures on learning outcome

Even though the research on learning with pictures has been conducted from different theoretical perspectives (see
Levie & Lentz, 1982; Levin, Anglin, & Carney, 1987; Lewalter, 1997; Weidenmann, 2002), recent cognitive theories
like Mayer’s ““Cognitive Theory of Multimedia Learning” (Mayer, 2001, 2005) or Schnotz’s “Integrative Model of
Text and Picture Comprehension” (Schnotz, 2005) can be used to describe and explain the results of a large number of
studies. Mayer’s theory, for example, regards the learner as a constructor of his or her own knowledge, actively select-
ing, organizing, and integrating relevant visual and verbal information. It is based on three basic assumptions:

e Active processing: According to Wittrock’s (1974, 1989) generative theory of meaningful learning, learning oc-
curs when learners actively process information (select — organize — integrate).

e Dual channel processing and dual coding: From Paivio’s dual coding theory (Clark & Paivio, 1991; Paivio,
1986) and Baddeley’s working-memory model (Baddeley, 1992), the notion of two different cognitive systems
for information processing is taken: a verbal system transmitting and processing sequential information like
written or spoken text and a visual system responsible for spatial information and images.

e Limited capacity: The overall information processing capacity is very strictly constrained by the limitations of
short-term memory load within each system (Baddeley, 1992; Chandler & Sweller, 1991).

There is strong empirical evidence that learning outcomes are improved by presenting the learner with verbal and
pictorial information in a coordinated way (the so-called “multimedia principle”; Mayer, 2001, 2005).

2.2. The effect of animations on learning outcome

Neither in Mayer’s original theory (Mayer, 2001, 2005) nor in Schnotz’s integrative model is there a basic distinc-
tion between static and animated pictures — both are examples of a pictorial presentation format. An animation can be
defined as a series of rapidly changing computer screen displays suggesting movement to the viewer (Rieber & Kini,
1991). It aims at giving an exact presentation of a process or procedure to facilitate generating an adequate mental
model. The supplantation framework of Salomon (1979) proposes that an animation, by dynamically displaying a pro-
cess or a procedure, should be able to compensate for a student’s insufficient aptitude or skill to imagine motions.
Thus, the animation provides an external model for a mental representation. Mayer and Moreno (2002) showed
that the basic principles of the generative theory of multimedia learning are valid for learning with animations as
well as for learning with static pictures.

2.3. Cognitive load theory

When learning with dynamic or non-dynamic visualizations, the capacity of working memory sets very narrow lim-
itations: following cognitive load theory (Chandler, 2004; Chandler & Sweller, 1991; Sweller, 1994), there are three
different types of cognitive load — extraneous, intrinsic and germane cognitive load. Intrinsic cognitive load is consid-
ered as determined largely by element interactivity, i.e. the number of interacting elements in a content area, and this,
therefore, cannot be manipulated by instructors and instructional designers. On the other hand, extraneous cognitive load
is determined by how the information is presented — when intrinsic load is high, a high level of extraneous cognitive load
can be a critical factor for successful learning (Carlson, Chandler, & Sweller, 2003). Thus, the instructional format (e.g.,
animations or static pictures) might influence the learning efficacy of a learning environment. By reducing extraneous
cognitive load and increasing germane cognitive load — the third type of cognitive load, referring to the effort involved in
the processing, construction and automation of schemas — more efficient learning may be possible.

2.4. Animations versus static pictures

There are several reasons for expecting that both visual representation formats, animations as well as static pic-
tures, can be of benefit for learning. As for animations, one might argue that they help in mentally visualizing a process
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or a procedure, resulting in a reduction of cognitive load compared to a situation in which the process or the procedure
has to be reconstructed from a series of static pictures. Furthermore, in static pictures often more or less abstract
signaling cues like arrows or highlightings have to be interpreted and integrated with the pictorial information.
This imposes even more cognitive load and can lead to misinterpretations and therefore to a deficient mental model
(Lewalter, 1997). On the other hand, an animation does not provide permanent but transient information, which means
that “one views one frame at a time, and once the animation or video has advanced beyond a given frame, it is no
longer available to the viewer” (Hegarty, 2004, p. 346). This imposes — according to cognitive load theory (Chandler
& Sweller, 1991) — cognitive load due to temporal limits of working memory. Furthermore, the learning efficacy of
static pictures could possibly be increased by using certain key pictures that illustrate very specific moments of the
process or the procedure to be learned (Catrambone & Seay, 2002; Hegarty, Kriz, & Cate, 2003). Another way to
improving pictures is to use a certain level of realism (Michas & Berry, 2000).

Individual differences can influence whether static pictures or animations within a specific domain of knowledge or
skills are superior: spatial ability, for instance, can play a critical role (Blake, 1977; Hays, 1996; Large, Beheshti,
Breuleux, & Renaud, 1996; Yang, Andre, & Greenbowe, 2003) as well as prior knowledge. With higher prior knowl-
edge, for instance, a learner has to invest less mental effort into learning a given topic and, thus, has more cognitive
capacity left for trying to comprehend a displayed motion concerning that topic on a very detailed level (ChanLin,
2001; Hoffler, 2003; Nerdel, 2003; Szabo & Poohkay, 1996).

The difference in learning from dynamic and non-dynamic pictures with retention or problem-solving tasks has
been researched rather often. In particular, deeper understanding and, thus, the ability to solve advanced problems
should profit from learning with animations (Mayer & Moreno, 2002). However, previous studies provide a very het-
erogeneous picture (e.g., Catrambone & Seay, 2002; ChanLin, 1998, 2001; Large et al., 1996; Nerdel, 2003; Wright,
Milroy, & Lickorish, 1999; Yang et al., 2003).

In addition, there are several other moderators that have not been focused on in previous studies and will be sur-
veyed in the present meta-analysis. For example, there may be a difference when the topic to be learned is explicitly
depicted in the animation and when the animation is used for decorational purposes only (Rieber, 1990). Likewise,
computer-based and video-based animations may differ in their advantages to their static equivalents because of dif-
ferent levels of realism: it can be expected that — although highly realistic pictures, like photos, are not necessarily
better for learning than line drawings of the same topic (e.g., Dwyer, 1978) — highly realistic animations, like videos,
can compensate or even over-compensate the disadvantage of seductive details, which are usually included in highly
realistic pictures, more so than less realistic computer-based animations can do for less realistic pictures with less se-
ductive details.

Last but not least, the specific instructional domain might also make a difference in determining the instructional
effectiveness of static pictures compared to animations.

This short survey indicates that there are many theoretical arguments for the advantages of either form of visual-
izing processes and procedures, i.e. using static pictures and animations, and there is a wide and divergent range of
research results. Thus, there are good reasons for conducting a formal meta-analysis in order to search for overall-
effects and to identify moderator variables.

3. Method

In the present study, a meta-analysis was conducted following methods developed by Glass, McGaw, and Smith
(1981) and Hedges and Olkin (1985). Its goals are to integrate the findings of a large number of studies, to calculate
overall-effects and to identify possible moderator variables (Lipsey & Wilson, 2001). Specifically, we attempted to
find overall-effects of instructional animations compared to static pictures on learning outcomes. Furthermore, factors
or variables moderating the effect size are to be identified. A meta-analysis is traditionally conducted in three main
steps: (1) location and selection of appropriate studies, (2) coding of study features and calculating effect sizes, and (3)
statistically analyzing effect sizes and the influence of study features.

3.1. Location and selection of appropriate studies

To identify studies comparing the effects of animations versus static pictures, the computerized databases SCI and
SSCI (1993—2004), ERIC (1966—2004), PsycInfo (1887—2004) and Psyndex (1977—2004) were searched. A range of
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combinations of descriptors such as “animation”, “‘dynamic picture”, ‘“dynamic image’’, “still picture”, “still im-
age’’, “‘static picture”, “‘static image”’, “motion”’, “steps’, ‘““simulation”, etc. were used. The large number of hits
was screened on the basis of their abstracts, if available. When in doubt of whether to exclude an article, the full doc-
ument was retrieved. Apart from the articles found in databases, cross-references from identified articles helped to find
additional studies. Especially useful were the reviews of Alesandrini (1982), Bétrancourt and Tversky (2000), Large
(1996), Milheim (1993), Park and Hopkins (1993), and Tversky et al. (2002). To counteract a possible publication
bias, we tried to include some unpublished dissertations, diploma theses, and conference proceedings as well. These
were, however, difficult to detect and often did not fulfill the methodological criteria listed below.

The search located 57 articles for closer examination. In the next step, these studies were checked whether they
fulfilled the following four criteria for being included in the meta-analysis: the study (1) compared animated with
static displays, (2) did not mix both types of visualization (otherwise the versions would not be comparable), (3)
had no (or only minimal) interactivity within the animation (e.g., options of changing parameters so that the animation
would not be comparable to static pictures), and (4) investigated static pictures and animations that are roughly equiv-
alent concerning the specific content presented to the learner. Based on these criteria, 25 of 57 articles were excluded
from the meta-analysis. Five other studies had to be excluded because they did not specify the basic statistics needed
for computing effect sizes or did not meet minimal statistical standards. However, this criterion was handled fairly
liberally, as it is customary in meta-analyses (Bangert-Drowns, 1986). One article had to be excluded because it pre-
sented the same statistical material that had previously been published in another article (ChanLin, 2000). In the end,
26 studies were included in the present meta-analysis.

3.2. Coding of study features

While all included studies examined the differences in learning outcomes between static pictures and animations,
this was seldom their only focus. Each study, of course, had different emphases. These circumstances made it neces-
sary to code a multitude of study features to be able to identify as many moderator variables as possible that might
account for variation in effect sizes. As a result, the following features were coded:

e Three coded variables focused on features of the animation version:

(1) Distinction between video-based animations and computer-based animations.

(2) Differentiation between four rated levels of realism of the animation (schematic, rather simple, rather real-
istic, photo-realistic [= video]).

(3) Distinction between representational animations and decorational animations. Adapted from the denotation
of Carney and Levin (2002), in a representational animation the topic to be learned is explicitly depicted
in the animation, whereas in a decorational animation the primary instructional function is to motivate the
learner.

e Two variables focused on additional features:

(4) It could make a difference in learning efficacy if visualizations are annotated by coherent text. It should be
mentioned that in all analyzed studies care was taken that neither version of visualization included more in-
formation, i.e. whenever static pictures were accompanied by annotating text, the same was true for the
animation.

(5) Sometimes visualizations were provided with signaling cues like arrows and highlighting.

e Two variables coded the characteristics of the learning task:

(6) One variable classified the instructional domain, e.g., biology, mathematics, military, etc.

(7) The type of knowledge (as the specific goal of learning) was classified into three categories: procedural-mo-
tor knowledge, declarative knowledge and problem-solving knowledge.

e One variable followed a remark of Tversky et al. (2002) that often both versions, i.e. animation and static pic-
tures, differed in learners’ time on task and therefore were not comparable:

(8) The amount of time the learners worked with either version was coded when specified.

e Finally, substantial study features were listed:
(9) Year of publication.
(10) Sample sizes.
(11) Sample characteristics (students, undergraduates, recruits, adults, etc.).
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3.3. Calculation and analysis of effect sizes

The effect sizes were calculated as Cohen’s d in the modified form of Hedges and Olkin (1985): the mean of one
group was subtracted from the mean of the other group, divided by the pooled standard deviation. When means or
standard deviations were not reported, formulas for calculating d from ¢ or F statistics (Glass et al., 1981) were
used, or an estimation of d from X2 (Cohen, 1966) was obtained. As the effect of animations versus static pictures
was not the main target of most studies, the relevant statistics were often not listed separately. Instead, mean differ-
ences between those test conditions which were the focus of the specific study were provided. Thus, the method of
Glass et al. (1981) was chosen to integrate all given effect sizes in the meta-analysis and to handle each pair-wise
comparison as an independent study. As a result, 26 studies provided 76 effect sizes, a positive d indicating an advan-
tage of the animation over the static pictures, a negative d indicating an advantage of the static pictures over the an-
imation. We followed Lipsey and Wilsons’s (2001) suggestion to identify outliers which are located more than 3
standard deviations from the mean effect size and recoded them to the value of mean effect size +3 standard deviations
(it turned out that this had to be done in two pair-wise comparisons derived from a study of Blake, 1977).

A correction for small sample bias in effect-size estimation (Hedges & Olkin, 1985) was calculated. Furthermore,
to avoid over-representing studies with many pair-wise comparisons, we calculated weighted effect sizes. This com-
monly used strategy in meta-analysis gives greater weight to pair-wise comparisons with larger samples, assuming
that larger samples yield better estimates of population parameters (Bangert-Drowns, Hurley, & Wilkinson, 2004).
Thus no study received a disproportionally large weight because of a large number of effect sizes derived from
that study. In fact, each pair-wise comparison is based on fewer subjects than the whole study and accordingly
achieves less weight. Thus, the sum of weights of all pair-wise comparisons derived from one study does not exceed
the total weight the study should have based on its sample size." To reach this goal, each effect size was weighted by
the inverse of the effect size’s standard error (Hedges & Olkin, 1985).

We adopted a random-effects model for calculating estimates of mean effect sizes and 95% confidence intervals
around these estimates (using the software Zumastat; Jaccard, 2006). In comparison to fixed-effects models,
random-effects models tend to yield confidence intervals closer to their nominal width (e.g., Quintana & Minami,
2006) and are therefore recommended by a number of authors (e.g., Erez, Bloom, & Wells, 1996; Hunter & Schmidt,
2000). The random-effects model was applied for calculating both overall analyses and moderator analyses. In case of
moderating variables consisting of more than two categories, Bonferroni-corrected pair-wise comparisons were con-
ducted (setting alpha at 0.05 and using the Holm-modified Bonferroni procedure?; Holm, 1979; for an example of this
approach, see Ginns, 2005).

4. Results
4.1. Characteristics of the sample

Twenty-six studies yielding 76 pair-wise comparisons of learning outcome differences between instructional an-
imations and static pictures were included in the meta-analysis. The selected studies were published between 1973
and 2003, but only three of them were published before 1980, when the technological potentials of computer-based

! Some studies, which are indicated in Table 1, used multiple learning outcome measures and/or multiple comparisons of different experimental
groups with the same control group. Adapting a suggestion of Hedges and Olkin (1985, p. 206), the weights of effect sizes derived from these
studies were additionally adjusted according to the number of those non-independent pair-wise comparisons. For example, Craig, Gholson, and
Driscoll (2002) used four different multiple learning outcome measures and compared two different static picture versions to the same animated
version. Therefore, eight different pair-wise comparisons were included in the meta-analysis. As these comparisons consisted of the same 30 sub-
jects, their sample size had to be adjusted to 30/8 = 3.75 each, thereby assuring that no comparison gained inappropriate weight. Another way to
handle dependency problems of this type would have been to apply a hierarchical method of excluding specific pair-wise comparisons from the
meta-analysis (e.g., Ginns, 2005). We chose to adjust sample sizes and, thus, to adjust the weights of pair-wise comparisons instead of the ex-
clusion procedure in order not to exclude too much information that might be informative for moderator analyses from our analysis.

2 Holm’s (1979) method compares the most significant pair-wise comparison to a critical value of alpha divided by k, the number of compar-
isons. Afterwards, the second most significant comparison is compared to a critical value of alpha/(k — 1), and so on, until the first non-rejected
null-hypothesis occurs.
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learning environments were very restricted. Only 6 out of 26 studies used video-clips in contrast to static pictures; the
other studies compared computer-based animations with static pictures.

The sample sizes for calculating mean learning outcomes ranged from 21 to 263; the mean sample size was 55 and
the median 40. In 17 studies (65%) the participants were undergraduates and in 7 studies (27%) high school students.
In one study the participants were adults and in one study recruits. Table 1 lists all included studies with selected study
features.

4.2. Overall-effects of animations

If there were no differences in learning outcomes between animations and static pictures one could assume that
the effect sizes would show an approximate normal distribution with an expected mean of zero. However, the
meta-analysis resulted in 21 pair-wise comparisons with a statistically significant advantage of the animation, in
only 2 pair-wise comparisons the static pictures are significantly superior. A possible publication bias appears to
be unlikely, as there are 53 pair-wise comparisons in which the difference between animation and static pictures is
not statistically significant. The fail-safe N (Rosenthal, 1979; modified by Orwin, 1983) — that is the fictitious number
of non-significant comparisons that would be necessary to be integrated in the meta-analysis in order to cause the
overall-effect to be no longer existent — is calculated to be 2736. Following Rosenthal (1991), a publication bias
seems reasonably implausible when the fail-safe N exceeds the quintuple of the total number of included effect sizes
plus 10, which is clearly the case (here: 5 x 76 4+ 10 =390).

Focusing on the distribution of derived effect sizes, 54 out of 76 pair-wise comparisons (71%) are positive indicat-
ing an advantage of animations over static pictures. The mean weighted effect size (corrected according to Hedges &
Olkin, 1985) is d = 0.37 standard deviations with a 95% confidence interval of 0.25—0.49.

Fig. 1 shows the histogram of weighted effect sizes. It suggests that the effect-size distribution does not represent
a single and homogeneous population of effect sizes but rather reflects differences in study features.> An overall ho-
mogeneity test (Hedges & Olkin, 1985) confirms that the set of effect sizes is heterogeneous: Qo = 425.09, df =75,
p < 0.001. Hence, a detailed analysis of moderator variables is warranted.

4.3. Impact of moderator variables

Following the overall analysis of effect sizes, the impact of potential moderator variables was investigated. In these
analyses, the following variables were included: (1) role of animation (representational, decorational), (2) type of re-
quested knowledge (procedural-motor, declarative, problem-solving knowledge), (3) type of animation (video-based,
computer-based), (4) level of realism (schematic, rather simple, rather realistic, photo-realistic), (5) annotating text
(included, not included), (6) cues in static pictures (included, not included), and (7) instructional domain (biology,
mathematics, military, etc.). Learners’ time on task, unfortunately, could not be included, as there were only seven
studies indicating this variable. Table 2 displays number of effect sizes, weighted mean effect sizes and confidence
intervals within the categories of the included variables.

The analyses showed significant moderating effects which will be presented and discussed in the following
sections.

4.3.1. Role of animation

It is reasonable to expect that it makes a difference whether the topic to be learned is explicitly depicted in the an-
imation or not, i.e. whether the animation has a representational rather than a decorational function (Carney & Levin,
2002). The results indicate (Table 2) that representational animations are significantly superior to representational
static pictures (d = 0.40; 95% confidence interval, 95% CI, 0.26—0.53) whereas decorational animations are not sig-
nificantly superior to decorational static pictures (d = —0.05, 95% CI —0.37 to 0.27). The difference between the two
mean weighted effect sizes reaches statistical significance (Zeongase = 3-86, p < 0.001).

3 There appears to be an outlier at d = 2.63. Note that a correction for outliers has already been performed at the raw effect-size level. Therefore,
it is not reasonable to conduct a second adjustment on the weighted effect-size level. In fact, such a second adjustment to the value of mean
weighted effect size 43 standard deviations (according to Lipsey & Wilson, 2001) would not affect the results.



Table 1
Selected features of 26 primary studies yielding 76 pair-wise comparisons of animations versus static pictures

8CL

Study Total Sample size Adjusted Weighted  Sample Instructional Type of Level Cues Text Role of Type of requested
sample  n of pair-wise sample size effect domain animation of animation knowledge
size N comparison of pair-wise size d realism
comparison
Baek & Layne, 119° 46 46.0 0.58 Students Mathematical Computer-based 2 n/a Yes  Representational Problem-solving
1988 38 38.0 0.35 Students rule for Computer-based 2 n/a Yes  Representational Problem-solving
average speed
Blake, 1977 84° 28 28.0 1.25" Undergraduates Movement Video-based 4 Yes No Representational Declarative
28 28.0 0.10 Undergraduates  patterns of Video-based 4 Yes No Representational Declarative
28 28.0 1.25" Undergraduates  chessmen Video-based 4 No No Representational Declarative
28 28.0 0.97 Undergraduates Video-based 4 No No Representational Declarative
Catrambone & 1884 188 94.0 0.74 Undergraduates Computer Computer-based 1 No Yes  Decorational Problem-solving
Seay, 2002, 188 94.0 —1.19 Undergraduates ~ algorithms Computer-based 1 No Yes  Decorational Problem-solving
Exp. 2
ChanLin, 1998  135%“¢ 50 25.0 0.37 Undergraduates Recombinant Computer-based 3 Yes Yes  Representational Declarative
50 25.0 —0.38 Undergraduates DNA Computer-based 3 Yes  Yes  Representational Problem-solving
40 20.0 0.00 Undergraduates  technology Computer-based 3 Yes Yes  Representational Declarative
40 20.0 0.11 Undergraduates Computer-based 3 Yes  Yes  Representational Problem-solving
ChanLin, 2001  357%%¢ 142 71.0 1.13 Students Forces in Computer-based 2 Yes Yes  Decorational Declarative
142 71.0 0.97 Students physics Computer-based 2 Yes Yes  Decorational Problem-solving
92 46.0 —0.86 Students Computer-based 2 Yes Yes  Decorational Declarative
92 46.0 —1.13 Students Computer-based 2 Yes Yes  Decorational Problem-solving
Craig, Gholson, & 135™<" 30 3.75 0.01 Undergraduates  Lightning Computer-based 3 Yes Yes  Representational Declarative
Driscoll, 2002, 30 3.75 0.06 Undergraduates  formation Computer-based 3 No Yes  Representational Declarative
Exp. 1 30 3.75 —0.01 Undergraduates Computer-based 3 Yes Yes  Representational Declarative
30 3.75 0.04 Undergraduates Computer-based 3 No Yes  Representational Declarative
30 3.75 0.02 Undergraduates Computer-based 3 Yes Yes  Representational Declarative
30 3.75 0.08 Undergraduates Computer-based 3 No Yes  Representational Declarative
30 3.75 —0.01 Undergraduates Computer-based 3 Yes Yes  Representational Problem-solving
30 3.75 0.03 Undergraduates Computer-based 3 No Yes  Representational Problem-solving
Hays, 1996 1164 77 77.0 0.11 Students Diffusion Computer-based 3 n/a Yes  Representational Declarative
67 67.0 1. 05 Students Computer-based 3 n/a Yes  Representational Problem-solving
Héoffler, 2003 115%h 59 29.5 —0.19 Undergraduates  Photosynthesis =~ Computer-based 3 Yes Yes  Representational Declarative
59 29.5 —0.15 Undergraduates Computer-based 3 Yes Yes  Representational Problem-solving
Kaiser, Proffitt, & 105! 51 51.0 1.72 Undergraduates  Natural and Video-based 4 Yes No Representational Problem-solving
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Table 1 (continued)

0€L

Study Total Sample size Adjusted Weighted  Sample Instructional Type of Level Cues Text Role of Type of requested
sample  n of pair-wise sample size effect domain animation of animation knowledge
size N comparison of pair-wise size d realism
comparison
Rigney & Lutz, 40° 40 10.0 0.21 Undergraduates  Concepts of Computer-based n/a n/a Yes  Decorational Declarative
1976 40 10.0 0.15 Undergraduates  electrochemistry Computer-based n/a n/a Yes  Decorational Declarative
40 10.0 0.21 Undergraduates Computer-based n/a n/a Yes  Decorational Declarative
40 10.0 0.18 Undergraduates Computer-based n/a n/a Yes  Decorational Declarative
Spangenberg, 120 40 40.0 1.44 Recruits Disassembly of  Video-based 4 No No Representational Procedural-motor
1973, Exps. 1 40 40.0 1.10 Recruits a machine gun  Video-based 4 Yes No Representational Procedural-motor
and 2 40 40.0 1.10 Recruits Video-based 4 No No Representational Procedural-motor
Spotts & Dwyer, 63’ 41 41.0 0.76 Undergraduates  Blood flow in Computer-based 2 No Yes  Representational Declarative
1996 human heart
Swezey, 1991 120" 120 120.0 0.00 Undergraduates  Functions of a ~ Video-based 4 No No Decorational Declarative
diesel engine
Szabo & Poohkay, 174" 117 117.0 2.63 Undergraduates  Triangle- Computer-based 2 Yes Yes  Representational Declarative
1996 construction
using a compass
Wright et al., 604 40 20.0 0.24 Adults British history Computer-based n/a n/a Yes  Decorational Declarative
1999, Exp. 1 40 20.0 —0.09 Adults Computer-based n/a n/a Yes  Decorational Declarative
Yang et al., 2003 263 263 263.0 1.76 Undergraduates  Electro-chemical Computer-based 2 Yes Yes  Representational Declarative

principles in a
flashlight

e o 6 o
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Another test condition which was not considered in the meta-analysis was text only.
Two different static versions (with/without cues) were compared to one animated version. n was adjusted accordingly.
Sample sizes n were adjusted due to the inclusion of multiple dependent variables.
“Near transfer”” and ““far transfer” tasks were given to the same subjects. Results were averaged.
Experienced and novice learners were distinguished and asked to answer declarative and problem-solving tasks.
Declarative and problem-solving tasks were given to the same subjects and were analyzed separately.
Problem-solving knowledge was assessed 1 week after testing as “‘long-term comprehension”.

Other test conditions were interactive animations (simulations), which were not regarded in the meta-analysis.
The authors do not state why they used only 51 of their 105 participants to analyze differences between ‘“motion and no-motion condition”.
Additional test conditions were not regarded in the meta-analysis.
The same test was used as posttest and retention test 1 week later.
Two different problem-solving tests were averaged.

The authors state that “due to a miscommunication” another group of subjects should not be considered for further analyses.
Declarative and problem-solving tasks were further divided in “near”” and “‘far”. All conditions were analyzed separately.
Four different declarative tests were given to the same subjects and were analyzed separately.
Different knowledge tests were used, but only one (“‘conceptual knowledge™) was clearly relatable to the categories of the meta-analysis and, thus, further analyzable.
Two different knowledge tests existed and were analyzed separately.

The raw effect size has been adjusted beforehand because it was larger than the mean raw effect size +3 standard deviations.
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Fig. 1. Distribution of weighted effect sizes.

4.3.2. Type of requested knowledge

In different studies — as well as sometimes within the same study — different types of knowledge were tested: in
most cases (N = 40 comparisons), declarative knowledge had to be learned. Often (N = 31) the pair-wise comparisons
focused on deeper comprehension allowing learners to solve problems (problem-solving knowledge). A third type of
requested knowledge is procedural-motor knowledge. This type of knowledge, tested in five comparisons, for example
requested the trained capability to reconstruct a machine gun (Spangenberg, 1973). Procedural-motor knowledge
(Table 2) has the largest mean weighted effect size in favor of animations (d = 1.06, 95% CI 0.72—1.40). When de-
clarative knowledge was requested, the mean effect size is d = 0.44 (95% C10.27—0.57), whereas for problem-solving
knowledge the mean effect size is d = 0.24 (95% CI 0.04—0.44). Contrasts between the different types of requested
knowledge indicate two significant differences: the mean effect size involving procedural-motor knowledge exceeds
the mean effect size involving problem-solving knowledge (zcontast = 4-16, p < 0.001) as well as the mean effect size
involving declarative knowledge (zconwast = 3-41, p = 0.001). Note that these results may be influenced by some con-
founding of type of knowledge with role of animation (see above), as all five visualizations requesting procedural-mo-
tor knowledge were also representational, whereas a considerable number of visualizations requesting declarative
knowledge or problem-solving knowledge were decorational (12 out of 40, 5 out of 31, respectively). Mean effect
sizes involving declarative or problem-solving knowledge do not differ significantly (zcongas = 1.41, p = 0.159).

4.3.3. Type of animation

In 12 comparisons of animations and static pictures, the animations were video-based. For these animations
(Table 2), the mean weighted effect size is d = 0.76 (95% CI 0.39—1.13), whereas for computer-based animations
the mean effect size is only d = 0.36 (95% CI 0.25—0.46), the difference being statistically significant (z.operas = 2.06,
p =0.039). Again, this result may be influenced by some confounding of type of animation with role of animation (see
above): nearly all, 11 out of 12, video-based animations (92%), whereas only 48 out of 64 computer-based animations
(75%) were used in a representational role. When looking at the representational animations separately, the effect-size
difference between video-based animations (d = 0.85, 95% CI 0.47—1.23) and computer-based animations (d = 0.68,
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Table 2
Mean weighted effect sizes and confidence intervals for moderator categories
Moderator variable Number of effect sizes Mean weighted d 95% CI for d
Role of animation
Decorational animation 17 —0.05 —0.37 to 0.27
Representational animation 59 0.40 0.26—0.53
Type of requested knowledge
Procedural-motor 5 1.06 0.72—1.40
Declarative 40 0.44 0.27—-0.57
Problem-solving 31 0.24 0.04—0.44
Type of animation
Computer-based 64 0.36 0.25—0.46
Video-based 12 0.76 0.39—1.13
Level of realism of animation
Schematic 24 0.24 0.07—0.42
Rather simple 11 0.47 —0.24 to 1.17
Rather realistic 22 0.17 —0.01 to 0.35
Photo-realistic 12 0.76 0.39—-1.13
Annotating text
Included 59 0.35 0.21—-0.49
Not included 17 0.39 0.16—0.62
Signaling cues in static pictures
Included 52 0.33 0.16—0.49
Not included 13 0.47 0.18—0.76
Instructional domain
Biology 12 0.13 —0.09 to 0.34
Physics 39 0.28 —0.15 to 0.41
Chemistry 7 0.75 —0.33 to 1.16
Mathematics 5 0.62 —0.57 to 1.81
Military 3 1.21 0.82—1.60
Other 10 0.32 —0.12 to 0.76

95% CI1 0.57—0.79) vanishes (Z¢onrast = 0.85, p = 0.395). On the other hand, 16 out of 64 computer-based animations
(25%) are decorational with d = —0.05 (95% CI —0.39 to 0.29), and the effect size of the one video-based animation,
which is — as it turns out — also decorational (Swezey, 1991), is zero. Thus, the overall smaller effect size of
computer-based animations compared to video-based animations reflects, at least partly, that nearly all video-based
animations are at the same time representational whereas a quarter of the computer-based animations are at the
same time decorational: when these decorational animations with effect sizes at zero are excluded, the difference
between video-based and computer-based animations is no longer statistically significant.

4.3.4. Level of realism

Video-based animations are by definition photo-realistic (level 4). As computer-based animations can have differ-
ent grades of realism, we coded them on three levels: schematic (level 1), rather simple (level 2), and rather realistic
(level 3). Between the four levels of realism (level 1: d = 0.24, 95% C10.07—0.42; level 2: d = 0.47, 95% CI —0.24 to
1.17; level 3: d=0.17, 95% CI —0.01 to 0.35; level 4: d =0.76, 95% CI 0.39—1.13; Table 2), there are two statisti-
cally significant effect-size differences, which are in line with the difference between video-based and computer-based
animations as shown in Section 4.3.3: the contrast, adjusted according to Holm—Bonferroni, of level 3 (rather real-
istic) and level 4 (photo-realistic) is significant (Zcongast = 2-81, p = 0.005) as well as the contrast of level 1 (schematic)
and level 4 (photo-realistic; zZconrast = 2.47, p = 0.014). The results are in line with the difference between video-based
and computer-based animations as shown in Section 4.3.3.

4.3.5. Annotating text
In 59 comparisons of animations and static pictures, the visualizations had annotating text or narration, in 17
comparisons they had not. In both cases (Table 2), animations are superior to static pictures (with text: d = 0.35,
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95% CI1 0.21—0.49; without text: d = 0.39, 95% CI 0.16—0.62). However, the effect-size difference is not statistically
significant in the expected direction (Zconast = 0.29, p = 0.386).

4.3.6. Signaling cues in static pictures

In 52 comparisons of animations and static pictures, the pictures had signaling cues like arrows and highlighting, in
13 comparisons the pictures did not have such signaling cues. Animations turn out to be superior to static pictures
(Table 2) when the pictures do not have signaling cues (d =0.47, 95% CI 0.18—0.76) — and seemingly less so
when static pictures do have signaling cues (d = 0.33, 95% CI 0.16—0.49). However, the effect-size difference is
not statistically significant in the expected direction (Zconast = 0.82, p = 0.206).

4.3.7. Instructional domain

This moderator variable is characterized by a rather rough categorization of the instructional domains based on the
particular learning environment from which the effect sizes were calculated. Clear-cut encodings were sometimes dif-
ficult to make, which might be a reason for obtaining rather large confidence intervals in some cases (Table 2). Con-
trasts, adjusted according to Holm—Bonferroni, show that visualizations in the domain of military, investigated in
three cases only (Spangenberg, 1973; d =1.21, 95% CI 0.82—1.60), have a statistically significant larger mean
weighted effect size than those in the domains of physics (d =0.28, 95% CI —0.15 to 0.41; Zeongrast = 4-39,
p < 0.001), biology (d =0.13, 95% CI —0.09 to 0.34; zconuast = 4.73, p < 0.001), and “other” domains (d = 0.32,
95% CI —0.12 to 0.76; zZcongast = 2.92, p = 0.004). However, the three visualizations from the military domain are
also classified to be representational (role of animation), to focus on procedural-motor knowledge (type of requested
knowledge), and to be video-based (type of animation). Thus, the confounding of “military domain” with these fea-
tures (see above) might, at least to a certain amount, account for the stronger effect size.

5. Summary and discussion

In the present meta-analysis, 76 pair-wise comparisons out of 26 studies comparing the instructional effectiveness
of animations with static pictures were included. Five comparative questions will be used to summarize the results.

5.1. Are animations better than static pictures in general?

Ignoring moderator variables, a clear advantage of non-interactive animations compared to static pictures was ob-
served in the present meta-analysis: the mean weighted effect size of d = 0.37 (95% CI 0.25—0.49) indicates a small to
medium effect (Cohen, 1988). Tallmadge (1977) even considers effect sizes of d = 0.25 to d = 0.33 as “‘educationally
significant” (p. 34). Taking into account that weighted effect sizes were calculated and that a publication bias seems to
be unlikely (based on fail-safe N calculations according to Rosenthal, 1979), other than purely statistical reasons like
sampling error may account for the present findings. Given that this assumption is valid, the results of the present
meta-analysis seem to contradict the mainstream of contemporary research on instructional animations according
to which non-interactive animations are usually not regarded as universally helpful for learning (Bétrancourt & Tver-
sky, 2000). To the contrary, it is reasonable to assume that animations are able to take advantage of their specific char-
acteristics under specific circumstances, which can then result in rather large effect sizes. Although many primary
studies did not find a significant advantage of animations over static pictures, an overall mean weighted effect size
of d = 0.37 indicates that there seem to be instructional situations in which the particular benefits of animations arise.
In unison with other authors (e.g., Mayer & Moreno, 2002; Milheim, 1993; Tversky et al., 2002; Weiss, Knowlton, &
Morrison, 2002) the moderator analyses discussed below are an attempt to identify some of them.

5.2. Are representational animations better than decorational animations?

One clearly identified moderating variable in the present meta-analysis is the instructional role of animation. It
makes a difference whether the topic to be learned is explicitly depicted in the animation or not, or, in other words,
whether the animation has a representational rather than a decorational function (Carney & Levin, 2002): represen-
tational animations are far more superior to static pictures than are decorational animations (mean weighted effect size
of d =0.40 versus d = —0.05). Hence, animations seem to be especially useful when the motion depicted in the
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animation is the content to be learned. However, across the primary studies of the present meta-analysis, the
classification variable ‘“‘role of animation™ co-varies with other classification variables so that the significance of
representational-animation effect sizes and the non-significance of decorational-animation effect sizes, as appropriate,
have to be taken into account when interpreting the moderator effects of other classification variables.

Examples for a successful use of a representational animation are the study of Michas and Berry (2000), in which
the exact procedure of how to bandage a hand is taught, and the study of Yang et al. (2003), in which students had to
learn about the motions of electrons inside a flashlight battery. One interpretation of this finding is that an animation,
when representational, facilitates generating a mental model of the motion to be learned by providing a prototype: “An
animation is likely to be useful when the learning material entails motion, trajectory or change over time so that the
animation helps to build a mental model of the dynamics” (Bétrancourt & Tversky, 2000).

Whenever an animation is only used for decorational purposes, a learner’s mental model “in motion” does not
seem to be necessary for understanding. In the study of Lai (2000), for example, in which concepts of programming
with Quick BASIC were taught via an animated comic figure, the animation did not have an advantage over static pic-
tures. To the contrary, in such a case the animation may distract the learner’s attention from the actual topic to be
learned: thus, following Cognitive Load Theory (Chandler & Sweller, 1991), the animation would impose extraneous
cognitive load on the learner, which burdens the capacity of working memory unnecessarily. In other words, the dec-
orational animation may offer seductive details (Harp & Mayer, 1998). Although decorational visualizations are often
assumed to have specific effects on a learner’s motivation (Levin et al., 1987), this effect seems to play only a minor
role in the present context.

5.3. Are animations better for acquiring procedural-motor knowledge rather than declarative
knowledge or problem-solving knowledge?

The results of the present meta-analysis reveal greater benefits of animations when procedural-motor knowledge
rather than problem-solving knowledge or declarative knowledge is requested. The effect-size difference between
problem-solving knowledge and declarative knowledge, however, falls short of being significant (a future meta-
analysis, including incoming primary studies, should repeat the test).

The effect-size difference between procedural-motor knowledge and problem-solving knowledge is at least partly
due to the fact that all effect sizes concerning procedural-motor knowledge are exclusively based on representational
animations and pictures whereas effect sizes concerning problem-solving knowledge are based on representational as
well as decorational animations and pictures. These results are partly surprising, as animations are commonly viewed
as especially beneficial for the comprehension of processes or procedures — whereas for learning of simple facts static
pictures should suffice. Weiss et al. (2002) recommend that, for teaching of procedures, an ““animation might be useful
in helping your audience understand the steps in the procedure” (p. 474). Accordingly, the superiority of animations
when procedural-motor knowledge is requested is in line with this recommendation. On the other hand, a similar su-
periority would have been expected for animations when requesting problem-solving knowledge (e.g., Mayer & Mor-
eno, 2002). The present results allow one to question this common prescription — in many cases, static pictures may
suffice to learn not only simple facts, but even to gain deeper understanding.

5.4. Are computer-based animations better than video-based animations?

Concerning the question whether animations should be computer-based rather than video-based — which leads di-
rectly to the question of an adequate level of realism — the pattern of results of the present meta-analysis is rather
inconclusive. Although, at first sight, video-based animations seem to be superior to computer-based animations,
the advantage of highly realistic (video-based) animations can, at least to a certain amount, be attributed to a confound-
ing with the role of animation: all video-based animations are also representational whereas a substantial portion of
computer-based animations is decorational.

Thus, compared to learning with static pictures, animations with lower levels of realism do not necessarily result in
smaller effect sizes, which is consistent with Tversky et al. (2002): ““‘Animations should lean toward the schematic and
away from the realistic” (p. 258). In so doing, learners should be able to concentrate on essential contents of the
animation — “‘sufficiently complex to convey the important information within it, yet simple enough to be easily
understood” (Milheim, 1993, p. 173; see also Lowe, 1999, 2003). Rieber (1994) demanded as well that animations
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should directly indicate the crucial aspects of the topic. In his studies (Rieber, 1990, 1991), he used a chunking-
strategy: “By partitioning the animations to discrete steps the new information was presented step-by-step”’. In
addition, Rieber used animations with a very low level of realism. Rieber (1994) remarked that his chunking-strategy
is only one of several possibilities of cueing in animations (p. 176). Following Tversky et al. (2002), such a cueing
strategy could include narrations, arrows or graphic accentuations. Finally, the critical point seems to be to reduce
learners’ cognitive load by excluding as many elements as possible, which disturb attention and — thus — increase
the amount of extraneous cognitive load (Sweller, 1994).

5.5. Can static pictures be improved?

The present meta-analysis suggests that instructional animations are, in general, superior to static pictures with re-
spect to learning outcome. Based on this result, an important question arises: can static pictures be designed to com-
pensate somewhat for their disadvantages? Interestingly, we did not find that the presence or absence of annotating
text in animations and pictures accounts for differences in effect size: the superiority of animations to static pictures
does not vary significantly. While Mayer’s “multimedia principle” (Mayer & Gallini, 1990) states that static pictures
and text are better for learning than text alone, one could have assumed that static pictures and text should have been
better than pictures alone. This is, however, not the case for the primary studies included in the present meta-analysis.

Likewise, the effect size in favor of animations does not vary significantly depending on the presence or absence of
signaling cues such as arrows and highlighting in static pictures. Concerning static pictures one might have expected
that there is no necessity to point out their most important elements, as the viewer normally has sufficient time to find
them by him- or herself. On the other hand, concerning animations, especially non-interactive ones, cues might have
been expected to be reasonable and “conducive” (as an antonym to “seductive” details; Harp & Mayer, 1998): in
principle, there is the risk of missing critical aspects because of the transient character of the animation with high de-
mands on working-memory capacity (Ainsworth & VanLabeke, 2004). However, the present meta-analysis does not
provide evidence for such a hypothesis. Future meta-analytic research based on a larger number of incoming primary
studies is needed for clarifying this question.

5.6. Limitations of the present meta-analysis

Specific characteristics of meta-analyses in general should be kept in mind when discussing the results. Once again
we would like to point out that the present meta-analysis is limited to studies including animations which are not in-
teractive or just minimally interactive, which is a necessary prerequisite for fair comparisons. In addition, the included
studies had to fulfill further requirements: they had to compare animated displays with static displays while not mixing
both types of visualization, they had to offer two at least roughly informationally equivalent versions, and they had to
specify the basic statistics needed for computing effect sizes. As described above, these criteria were the reasons for
excluding a number of studies, which might have had potentially interesting results.

Finally, the present meta-analysis does not claim to have included all potentially relevant moderator variables.
Quite to the contrary, there are many possible other variables that could be considered, such as prior knowledge
(e.g., ChanLin, 2001), spatial ability (e.g., Yang et al., 2003), motivation (e.g., Hoffler, 2003), the number of displayed
key pictures (e.g., Hegarty, 1992), learners’ time on task (e.g., Tversky et al., 2002) or, of course, the option that the
learner may interact with the animation (e.g., Nerdel, 2003; Ploetzner & Lowe, 2004; Schnotz, Bockheler, & Grzond-
ziel, 1999; Schuh, Gerjets, & Scheiter, 2005). Because these and other potential factors of instructional relevance have
been analyzed or mentioned only by a small number of studies, they could not be included as moderator variables in
the present meta-analysis.

6. Conclusion

The present meta-analysis is an attempt to bring some objectivity into a field of research that is still quite difficult to
survey. With a mean weighted effect size of d =0.37 and a 95% confidence interval, 95% CI, from 0.25 to 0.49, we
found a rather substantial overall advantage of animations over static pictures, and this advantage becomes particu-
larly evident under specific combinations of instructionally relevant circumstances.
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There is evidence that animations are specifically superior to static pictures when the depicted motion in the an-
imation explicitly refers to the topic to be learned (i.e. when the visualization plays a representational role;
d =0.40, 95% CI 0.26—0.53). However, when the visualization is intended to play a decorational rather than a repre-
sentational role, animations are not superior to static pictures (d = —0.05, 95% CI —0.37 to 0.27). Furthermore, ev-
idence was found suggesting the use of an adequate level of realism (e.g., video-based animations; d = 0.76, 95% CI
0.39—1.13). Finally, there is evidence that animations seem to be especially effective for acquiring procedural-motor
knowledge (d = 1.06, 95% CI 0.72—1.40), but as well for acquiring declarative (d = 0.44, 95% CI 0.27—0.57) or prob-
lem-solving knowledge (d = 0.24, 95% CI 0.04—0.44). Note, however, that the effects of representational role, real-
ism and psycho-motor type of knowledge cannot satisfactorily be decomposed because these features of animations
are often combined and thus do not vary independently across the primary studies of the present meta-analysis.

It is desirable to validate the results of the present meta-analysis using additional primary studies that may be pub-
lished in the future. However, the results of our analysis suggest that animations are capable — in specific areas, under
specific circumstances — of facilitating learning even without being interactive. Thus, animations appear to be better
than their reputation, but — in order to be effective — they require an instructional design that is grounded in research-
based theories about learning and instruction. In other words, we agree with Bétrancourt and Tversky (2000) that an
animation is ‘“not a panacea in itself”” (p. 326).
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