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Abstract

We address the problem of computing a sequence of
dense disparity maps from two synchronized video streams
recorded by slightly displaced cameras. Generating such
disparity videos is becoming increasingly important in the
light of new autostereoscopic displays and novel viewpoint
applications. We propose a good-quality, computationally
fast and easy-to-use solution to accomplish this task.

This paper describes the four major steps of our 2D to
3D video conversion procedure. (1) The user segments the
video into its scenes. (2) For each scene, we rectify the
uncalibrated stereo pairs so that correspondences lie on
the same horizontal scanline. (3) A fast and accurate dy-
namic programming-based stereo matcher is then applied
to compute a dense disparity map for each stereo pair. (4)
We perform temporal smoothing on the computed dispar-
ity sequence to reduce the disparity flickering problem. All
of these functionalities can be accessed via an easy-to-use
Graphical User Interface, which makes our conversion pro-
cedure applicable even for technical unskilled users. We
demonstrate the good quality of our results using various
challenging real-world stereo streams.

1. Introduction

Autostereoscopic displays have recently made a big step
in the quality of 3D impression provided to the user. To-
gether with constantly decreasing prices, this is starting to
make them attractive also for the mass market. In addi-
tion to a color image, displays such as the Philips WOWvx
screen [1] require a corresponding depth map of the scene
for enabling 3D viewing. These depth maps are used to
synthesize arbitrary stereo views as they would appear from
different viewing angles (i.e. novel viewpoint generation).
The user can therefore walk in front of the display and get
a perspectively correct 3D impression of the scene from its
current viewing point.

One major problem that currently hinders the spread of
such displays is the difficulty of content creation. While
for artificial content (e.g. animation movies) depth maps
can easily be made available as byproduct of the produc-

tion process, this is clearly more challenging for videos of
real scenes. Apart from a rather expensive commercial so-
lution (Philips Blue Box), there does currently not exist a
feasible method for a standard user to perform the 2D to 3D
conversion in an automatic manner.

In the context of prior work, there exists a vast amount
of literature on the stereo matching problem for single im-
age pairs. The reader is referred to [10] for a review and
evaluation of existing stereo techniques. However, the prob-
lem of matching stereo videos - which also includes a tem-
poral component - is studied in much less detail. In this
context, the work of Zitnick et al. [12] computes disparity
maps in multi-view video sequences for generating a novel
viewpoint system. However, the authors do not consider
the temporal relationship between disparity frames. Larsen
et al. [9] use optical flow to propagate disparities among
consecutive frames of a stereo video sequence. However,
the belief propagation-based optimization makes their algo-
rithm relatively slow. Recently, Sizintsev and Wildes [11]
have proposed to model temporal continuity without explic-
itly recovering the optical flow via using stequels as match-
ing primitives. In contrast to prior work, our goal is to pro-
vide a good-quality and computational efficient method for
performing the 2D to 3D video conversion. Our conver-
sion procedure is intended to be used also by people without
computer vision background.

2. Method

Figure 1 illustrates the workflow of our approach. Our
method accepts a stereo video as input. In the first step,
this video is divided into its individual scenes. The stereo
pairs of each scene are then rectified so that pixel corre-
spondences lie on the same horizontal scanline in both im-
ages. This rectification is required by our stereo matcher.
Given the rectified images, the stereo matcher produces a
dense disparity map that represents the distance of each
pixel to the camera. Finally, we apply smoothing on the
disparity map sequence to enforce temporal consistency.
This smoothing procedure aims at overcoming the dispar-
ity flickering problem. We describe each of these steps in
more detail in the remainder of this section.
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Figure 1. Overview of our method. More in-
formation is found in the text

2.1. Scene Segmentation

The input to our conversion is formed by two video files
representing the left and right cameras, respectively. Once
the user has loaded the video, he/she is asked to specify the
shot boundaries as is shown in figure 2. We are planning to
automate this process in future work by using one of many
existing shot boundary detection methods (e.g. [5]).

The reasons for dividing the movie into its scenes are
threefold. First, it makes sense to run an individual calibra-
tion procedure for each scene as is described in section 2.2.
Second, we use different disparity ranges for each scene
in the stereo matching step of section 2.3. Third, we aim
to avoid smoothing over shot boundaries in the temporal
smoothing step of section 2 .4.

2.2. Rectification

In the ideal case, one would fully calibrate the stereo
camera system before recording the 2D videos. The calibra-
tion parameters would then be provided as input to our con-
version method. However, it is difficult to perform stereo
calibration for a standard user without experience in com-
puter vision. Moreover, there is also a large number of al-
ready existing stereo streams for which the calibration infor-
mation is simply not available. We have therefore decided
to incorporate uncalibrated rectification into our method so
that the rectification matrices are computed solely from the
image content of the stereo video.

Our rectification procedure assumes that internal and ex-
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Figure 2. Scene segmentation. The user is
asked to set the shot boundaries by clicking
the scissors button.

ternal camera parameters remain constant within a scene.
In particular, this means that the relative positioning of the
cameras to each other (baseline, camera angles) should not
vary within the scene. Assuming constant calibration pa-
rameters, we can rectify all stereo pairs of the scene using
the same rectification matrices.

To compute these rectification matrices, we determine a
set of correspondences between left and right images us-
ing the computational efficient SURF features [2]. In prin-
ciple, it is sufficient to use the correspondences of only a
single image pair as input to the subsequent rectification al-
gorithm. However, for the sake of robustness, the user can
specify multiple stereo pairs (e.g. 10) from which the corre-
spondences are gathered. In our experiments, the capability
to use more than one image pairs in our method has consid-
erably improved our rectification results.

The correspondences form the input for a rectification
algorithm. We have first experimented with the standard
method of Hartley and Zisserman [7]. However, we have
finally decided to implement the rectification algorithm of
Fusiello and Irsara [6], as we have found that it produces
accurate rectified views of smaller distortions.

2.3. Stereo Matching

We apply a dense stereo matching algorithm that is based
on the method of [3]. This algorithm uses dynamic pro-
gramming for disparity optimization. However, as opposed
to conventional dynamic programming-based methods (e.g.
[4]), it does not operate on scanlines, but on trees that in-
clude horizontal and vertical smoothness edges. The algo-
rithm can therefore overcome the scanline streaking prob-
lem, which is the inherent disadvantage of classical dy-
namic programming methods.

From a practical point of view, the applied stereo method
is attractive, since it is capable of producing disparity results
of similar quality in comparison to state-of-the-art tech-
niques such as graph-cuts or belief propagation. In contrast



to these state-of-the-art techniques, our stereo algorithm of-
fers the advantage of greatly reduced processing time. Even
for relatively high resolutions, results for a stereo pair are
computed in approximately a second. We are currently
working on a graphics card implementation to achieve real-
time frame rates.

We have extended the method of [3] to improve its ap-
plicability on real-world stereo pairs. Our first extension
allows coping with radiometric distorted stereo images. For
example, we can handle the case in which the left image
is darker than the right one due to different illumination
conditions under which the left and right images have been
recorded. Our second extension is the inclusion of sub-pixel
support. Sub-pixel accuracy is important for reconstructing
detailed disparity surfaces, especially if there is only small
parallax between left and right images.

One critical point in stereo matching is the setting of al-
gorithm parameters. The first parameter that we have to
determine is the disparity range, i.e. the range in which
the algorithm searches for correspondences. This parame-
ter is found via user input (figure 3a). First, the user has to
overlay the images of a stereo pair so that the background
is “in focus”. This defines the minimum allowed dispar-
ity. This user input is then also required for the image fore-
ground (maximum allowed disparity). Moreover, the user
can “tune” the stereo matching results. We therefore gener-
ate nine different disparity results by changing the smooth-
ness parameter of our algorithm. The user then selects the
best disparity result (figure 3b) and the smoothness param-
eter is adjusted accordingly. However, we have noticed that
our stereo algorithm is relatively insensitive to different pa-
rameter settings so that the default parameters are typically
sufficient for obtaining good-quality results.

2.4 Temporal Smoothing

In principle, the disparity maps generated in the previous
section can already be used as the result of the 3D conver-
sion procedure. However, the resulting disparity sequence
is, in general, not temporally smooth. A common artifact is
the so-called disparity flickering, which is caused by erro-
neously computed abrupt disparity changes over time. Es-
pecially in the context of autostereoscopic displays, artifacts
of this type are extremely disturbing for the viewer. We
tackle the disparity flickering problem using the temporal
smoothing algorithm described in the following.

The median filter represents a natural choice for the de-
sired temporal smoothing. In a naive implementation, one
can smooth the disparity dj, y of pixel p in the fth frame by
computing the array of disparities D:

D={dy;|f —o<i<f+o} (1)

Here, o represents a parameter that defines the smoothing
strength. The smoothed disparity d;,’ 7 is then derived by

d,, s = med(D) ()

where med() denotes a function that computes the median.
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Figure 3. Adjusting the parameters of the
stereo matcher. (a) The user defines the dis-
parity range by overlaying left and right im-
ages. (b) The user sets the algorithm’s inter-
nal parameters by selecting one of the nine
disparity maps.

However, the problem of this method is that it fails if
there is motion in the disparity sequence (e.g. consider a
camera pan). To overcome this problem, we compute the
optical flow in the sequence of left input images.! More
precisely, we compute the optical flow between frames 1
and 2, frames 2 and 3 and so on. To avoid that the optical
flow computation becomes the bottleneck in our conversion
procedure, we apply a fast implementation of the method
of Horn and Schunck [8]. Instead of using stationary pixels,
we can now exploit the optical flow results to build the array
D of equation (1) in a more correct manner. To compute D,
we trace the pixel over time using the optical flow vectors.
Hence, we can cope with image motion in our smoothing
procedure. Analogously to above, the smoothed disparity
is then derived by computing the median in the array D
(equation (2)). The user can change the amount of temporal
smoothing by changing the parameter o of equation (1). By
default, the parameter o is set to 3.

3. Results

In order to make our method applicable for users with
relatively little technical skills and to simplify the handling
of the huge amount of image data, we have built an easy-
to-use Graphical User Interface. The main window of this

The left images are chosen, because also the disparity maps are com-
puted in the geometry of the left image.
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Figure 4. The main window of the Graphical
User Interface.

interface is shown in figure 4. From this form the user can
access all of the described functionality (scene segmenta-
tion, rectification, stereo matching and temporal smoothing)
and inspect the generated disparity maps.

We have tested our 2D to 3D video conversion method
using rather large sequences of 5 minutes video content at
25 frames per second. The image resolution of these se-
quences ranges from 720 x 288 to 720 x 576 pixels. At
these resolutions, computation of a disparity map takes ap-
proximately a second.

Figure 5 shows the results of our 2D to 3D conversion
on some selected real-world sequences. More precisely, the
figure shows the left images of the stereo sequences along
with the computed disparity maps after temporal smooth-
ing. It can be observed that the results of our disparity com-
putation are of good quality and temporally consistent.

We have also tested viewing the disparity videos on the
Philips WOWvx display [1]. The depth layers appeared
to be correct and the object boundaries seemed to be ac-
curately captured. Note that especially the accuracy of
depth boundaries is important for satisfactory viewing ex-
perience on the autostereoscopic display.> Disparity flick-
ering has almost not been visible in the computed disparity
sequences.

4. Conclusions and Future Work

We have presented a method for generating temporal-
consistent disparity sequences from uncalibrated stereo
video streams. The advantages of the proposed method in-
clude the good quality of results, fast computation times
and an easy-to-use interface for standard users without com-
puter vision background. We have described the main steps

2In contrast to this, disparity errors in untextured regions only play a
minor role.
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of our 2D to 3D conversion procedure. This includes in-
teractive scene segmentation and our method for perform-
ing uncalibrated rectification. We have then provided in-
sights into our stereo matching procedure and presented our
technique for enforcing temporal consistency in the dispar-
ity sequence. We have demonstrated the good results of
our conversion procedure using various real-world stereo
sequences.

Future work will concentrate on further improving the
computational performance of our stereo matching algo-
rithm to achieve real-time frame rates. We are also plan-
ning to test alternative optical flow methods for the tempo-
ral smoothing step, since the results of our current optical
flow implementation are of moderate quality.
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Figure 5. Results of our method. For each sequence, we show the left image of the stereo pair along
with the computed temporally smoothed disparity map.
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