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Abstract. We show that probabilistically checkable proofs can be used to shorten non-interactive
zero-knowledge proofs. We obtain publicly verifiable non-interactive zero-knowledge proofs for cir-
cuit satisfiability with adaptive and unconditional soundness where the size grows quasi-linearly in
the number of gates. The zero-knowledge property relies on the existence of trapdoor permutations,
or it can be based on a specific number theoretic assumption related to factoring to get better
efficiency. As an example of the latter, we suggest a non-interactive zero-knowledge proof for circuit
satisfiability based on the Naccache-Stern cryptosystem consisting of a quasi-linear number of bits.
This yields the shortest known non-interactive zero-knowledge proof for circuit satisfiability.

Keywords: Non-interactive zero-knowledge proofs, adaptive soundness, probabilistically checkable
proofs, Naccache-Stern encryption.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [GMR89] are interactive
protocols that enable a prover to convince a verifier about the truth of a statement without
leaking any information but the fact that the statement is true. Blum, Feldman and Micali
[BFM88] followed up by introducing non-interactive zero-knowledge (NIZK) proofs where the
prover outputs just one message called a proof, which convinces the verifier of the truth of the
statement. The central properties of zero-knowledge proofs and non-interactive zero-knowledge
proofs are completeness, soundness and zero-knowledge.

Completeness: If the statement is true, the prover should be able to convince the verifier.

Soundness: A malicious prover should not be able to convince the verifier if the statement is
false.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true.

In this paper, we focus on the NP-complete language of circuit satisfiability, which is the most
widely studied language in the context of non-interactive zero-knowledge proofs. The statement
is a binary circuit C and a claim that there exists an input, a witness w, such that the circuit
outputs 1 when evaluated on w. The prover has the witness w as a private input, while the
statement C is public and known both to the prover and the verifier.

Only languages in BPP have non-interactive zero-knowledge proofs in the plain model with-
out any setup [Ore87,GO94,GK96]. Blum, Feldman and Micali [BFM88] therefore suggested the
common reference string model, where the prover and the verifier have access to a trusted bit-
string. The common reference string can for instance be generated by a trusted third party or
by a set of parties executing a multi-party computation protocol. Groth and Ostrovsky [GO07]
has as an alternative suggested NIZK proofs in the multi-string model, where many parties
generate a random string and the security of the NIZK proof relies on a majority of the strings

? Supported by Engineering and Physical Sciences Research Council grant number EP/G013829/1.



being honestly generated. In this paper, we work in the common random string model, where
the common reference string is a trusted uniformly random bit-string.

NIZK proofs have many applications, ranging from early chosen-ciphertext secure public-key
cryptosystems [DDN00,Sah01] to recent advanced signature schemes [BW06,CGS07]. They have
therefore been studied carefully in the literature. Blum, Feldman and Micali [BFM88] proposed
an NIZK proof for all of NP based on a number theoretic assumption related to factoring.
Feige, Lapidot and Shamir [FLS99] gave an NIZK proof for all of NP based on the existence of
trapdoor permutations. While these results established the existence of NIZK proofs based on
general assumptions, other works [Dam92,DDP02,KP98] have aimed at reducing the complexity
of NIZK proofs. Gentry’s fully homomorphic cryptosystem based on lattices can reduce the
complexity of an NIZK to grow linearly in the witness size as opposed to the circuit size [Gen09].
Groth, Ostrovsky and Sahai [GOS06b,GOS06a,Gro06,GS08] have constructed highly efficient
NIZK proofs using techniques from pairing-based cryptography.

1.1 Our Contribution

We construct NIZK proofs for circuit satisfiability with a size that grows quasi-linearly in the
size of the circuit. Our NIZK proofs have perfect completeness, statistical soundness, and com-
putational zero-knowledge. The zero-knowledge property of the NIZK proofs can be based on
trapdoor permutations or for higher efficiency on the semantic security of the Naccache-Stern
cryptosystem based on higher residues [NS98].

The Naccache-Stern cryptosystem is based on a decisional assumption in RSA-type groups,
which predates but is otherwise incomparable to the decisional assumptions used in pairing-
based NIZK proofs. Surprisingly, the construction based on the Naccache-Stern cryptosystem has
better asymptotic efficiency than the recent pairing-based NIZK proofs for circuit satisfiability
[GOS06b,GOS06a,GS08] (although pairing-based NIZK proofs remain more efficient for practical
purposes due to the large constants involved in our construction). With pairing group elements
of size kG and a circuit size that is polynomial in the security parameter k we get an asymptotic
improvement over pairing-based NIZK proofs of a multiplicative factor kG

polylog(k) . This brings

the NIZK proof size within a polylog(k) factor of the size of the circuit itself.
In Table 1, we compare our NIZK proofs with the current state of the art NIZK proofs for

circuit satisfiability based on respectively trapdoor permutations [KP98] and specific number
theoretic assumptions [GOS06b,GOS06a]. All of these NIZK proofs have an efficient (probabilis-
tic polynomial time) prover and they are all publicly verifiable.

CRS size Proof size Assumption

Kilian-Petrank [KP98] ω(|C|kT k log k) ω(|C|kT k log k) trapdoor perm.
This work |C|kT polylog(k) + poly(k) |C|kT polylog(k) + poly(k) trapdoor perm.

Gentry [Gen09] poly(k) |w|poly(k) lattice-based
GOS [GOS06b,GOS06a] Θ(kG) Θ(|C|kG) pairing-based
This work |C|polylog(k) + poly(k) |C|polylog(k) + poly(k) Naccache-Stern

Table 1. Comparison of NIZK proofs for security parameter k, circuit size |C| = kO(1), witness size |w|, trapdoor
permutations over {0, 1}kT , and pairing group size kG (usually kG ≈ k3 for 2−k security [GPS08].)

Soundness and zero-knowledge can be adaptive or non-adaptive. In non-adaptive soundness
and zero-knowledge, it is assumed that the statement to be proven is independent of the com-
mon reference string. Usually, NIZK proofs are used in a context where the common reference



string is publicly available though, and it is therefore unreasonable to assume the statement is
independent of the common reference string.1 Adaptive soundness and adaptive zero-knowledge
refers to the more realistic setting, where NIZK proofs need to be sound and zero-knowledge
even when the common reference string is publicly available and the statement may depend
on the common reference string. Our NIZK proofs are both adaptively sound and adaptively
zero-knowledge, and in Table 1 we have compared the schemes in the efficient prover, adaptive
soundness setting.

1.2 New Techniques

PCPs in NIZK proofs. Probabilistically checkable proofs (PCPs) [AS98,ALM+98,Din07] are
proofs for a statement that can be verified by reading a few bits in the proof instead of reading the
whole proof. A PCP for a circuit being satisfiable will be larger than the circuit itself; however,
one only needs to read a few bits of the proof to get more than 50% chance of detecting an
attempt to prove a false statement. By reading more bits, we can get exponentially small risk
of wrongly being convinced by the PCP.

PCPs have been very useful in the context of zero-knowledge arguments. Kilian [Kil92] for
instance suggested a sub-linear size zero-knowledge argument, where the prover commits to the
bits of a PCP and the verifier asks the prover to reveal the content of a few of these commitments.

We use PCPs in a different way. In our NIZK proofs the prover will prove that all queries
to the PCP have satisfactory answers. At first sight this may seem counterintuitive; the PCP
will be larger than the statement itself and it is odd that increasing the statement size would
help us in shortening the size of the NIZK proofs. Using a PCP for the statement, however,
has the advantage that the verifier can grant the malicious prover a non-trivial chance of falsely
answering some of the queries, as long as there are other queries where he will detect the
attempt to cheat. This stands in contrast to traditional NIZK proofs, where the verifier needs
high certainty for every single part of the statement being correct.

To illustrate our technique, consider an NIZK proof such as Kilian-Petrank [KP98]. They first
reduce circuit satisfiability to 3SAT5; where each clause has three variables and each variable
appears in at most 5 clauses. By choosing a trapdoor permutation and revealing hard-core bits
related to the common reference string, the prover can demonstrate that each clause is satisfied.
There is a risk of error though, and the prover therefore needs to repeat the proof many times
for each clause to increase the soundness guarantee.

Our idea is to use a PCP in a pre-processing step before applying the techniques of Kilian
and Petrank. The effect of the PCP (see Section 3) is to increase the gap between satisfiable
and unsatisfiable statements. In a standard 3SAT5 statement there are unsatisfiable statements
where all but one clause can be satisfied. With the PCP, however, we can ensure that either all
clauses can be satisfied or alternatively a constant fraction of the clauses are unsatisfied. The
advantage over Kilian and Petrank’s NIZK proof is that now we have resilience towards errors
in individual clauses. Even if a malicious prover succeeds in falsely creating NIZK proofs for
some of the clauses being satisfied, we still get soundness as long as this only happens for a
small constant fraction of clauses. We can therefore avoid the repetition of proofs that Kilian
and Petrank needed.

Implementing a Hidden Random String. We construct our NIZK proofs in two steps. We
use cryptographic techniques to convert the common reference string into a hidden string of
random bits, where the prover may selectively disclose some of the bits and keep other bits

1 We have a hard time thinking of any applications where non-adaptive soundness suffices, while non-adaptive
zero-knowledge sometimes may be useful.



secret. We then construct NIZK proofs that assume the existence of a string of hidden bits,
where the prover may keep some of them secret and reveal others to the verifier.

Feige, Lapidot and Shamir [FLS99] suggested the following way of implementing the hidden
bits model. When working with trapdoor permutations, we can interpret the common reference
string as a string of images of the trapdoor permutation. The hidden random bits are hardcore
bits of the pre-images. The prover may with the knowledge of the trapdoor learn all the hidden
random bits. By revealing a pre-image to the trapdoor permutation, she can disclose the value
of a particular hidden random bit. This is a costly approach, however, since we only get one
hidden random bit per trapdoor permutation image. In general, the common reference string
has to be a factor kT larger than the hidden random string, where kT is the size a trapdoor
permutation value.

The second contribution of this paper is using the Naccache-Stern cryptosystem [NS98] to
reduce the cost of implementing the hidden bits model. We interpret the common reference string
as a series of ciphertexts, but with the Naccache-Stern cryptosystem each ciphertext may hold
many hardcore bits. The message space is of the form ZP , where P =

∏n
i=1 pi is a product of

small primes of size log k. We will show that with the Naccache-Stern cryptosystem, it is possible
to disclose the plaintext modulo pi without revealing the rest of the plaintext. This means that
we can have Ω( kG

log k ) hidden random bits in each ciphertext, giving a common reference string
that is only a factor O(log k) larger than the hidden random string.

Combining PCPs and the Naccache-Stern cryptosystem, we get the asymptotically shortest
known NIZK proofs for circuit satisfiability consisting of a quasi-linear number of bits.

1.3 Overview

We construct NIZK proofs for circuit satisfiability in three steps. In Section 3 we describe how
a PCP can be used to convert the circuit into a Gap-3SAT5 formula, where either all clauses
are satisfiable or alternatively there are at least a constant fraction of unsatisfiable formulae. In
Section 4 we construct an NIZK proof in the hidden bits model, where it is assumed that the
prover has access to a string of uniformly random bits and may reveal an arbitrary subset of these
bits and their positions to the verifier. Finally, in Sections 5 and 6 we show how to implement
the hidden bits model under the general assumption of the existence of trapdoor permutations
and more efficiently under a concrete number theoretic assumption related to factoring. The two
main contributions of the paper are the conceptual idea of using PCPs in a preprocessing step
as described in Section 3 and the introduction of a new technique for efficiently implementing
the hidden random bits model using the Naccache-Stern cryptosystem described in Section 6.

2 Preliminaries

Notation. Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| =
O(k−c) for every constant c > 0. We say that f is negligible if f(k) ≈ 0 and that f is overwhelming
if f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We
write y ← A(x) for the process of picking randomness r at random and setting y = A(x; r). We
also write y ← S for sampling y uniformly at random from the set S. We will for convenience
assume uniform random sampling from various types of sets is possible; there are easy ways to
amend our protocols to the case where the sets are only sampleable with a distribution that is
statistically close to uniform.

NIZK proofs. Let R be a polynomial time computable binary relation. For pairs (C,w) ∈ R
we call C the statement and w the witness. Let L be the NP-language consisting of statements



with witnesses in R. In this paper, we will focus on the case where the statements are circuits
and L is the language of satisfiable circuits, i.e., where there exists an input w so C(w) = 1.
The size of the NIZK proofs will depend on the size of the statement. We will write Ln for the
language of satisfiable circuit consisting of n binary gates and write Rn for the corresponding
relation.

An efficient-prover non-interactive proof for the relation R consists of three probabilistic
polynomial time algorithms (K,P, V ). K is the common reference string generator that takes
the security parameter written in unary 1k and an intended statement size n as input and
outputs a common reference string σ of length Ω(k). P is the prover algorithm that takes as
input the common reference string σ, a statement C and a witness w so (x,w) ∈ R and outputs
a proof π. V is the verifier algorithm that on a common reference string σ, a statement C and
a proof π outputs 0 or 1. We interpret a verifier output of 0 as a rejection of the proof and
a verifier output of 1 as an acceptance of the proof. We call (K,P, V ) a non-interactive proof
system for R it is complete and sound as described below.

Perfect completeness. Completeness means that a prover with a witness can convince the
verifier. For all adversaries A and n = kO(1) we have

Pr
[
σ ← K(1k, n); (C,w)← A(σ);π ← P (σ,C,w) : V (σ,C, π) = 1 if (C,w) ∈ Rn

]
= 1.

Statistical soundness. Soundness means that it is impossible to convince the verifier of a
false statement. For all non-uniform polynomial time adversaries A and n = kO(1) we have

Pr
[
σ ← K(1k, n); (C, π)← A(σ) : C /∈ Ln and V (σ,C, π) = 1

]
≈ 0.

Computational zero-knowledge. A non-interactive argument (K,P, V ) is computationally
zero-knowledge if it is possible to simulate the proof of a true statement without knowing the
witness. Formally, we require the existence of a probabilistic polynomial time simulator S =
(S1, S2). S1 outputs a simulated common reference string σ and a simulation trapdoor τ . S2
takes the simulation trapdoor and a statement as input and produces a simulated proof π. We
require for all non-uniform polynomial time stateful interactive adversaries A and n = kO(1)

that

Pr
[
σ ← K(1k, n); (C,w)← A(σ);π ← P (σ,C,w) : (C,w) ∈ Rn and A(π) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k, n); (C,w)← A(σ);π ← S2(τ, C) : (C,w) ∈ Rn and A(π) = 1
]
.

3 Preprocessing with Probabilistically Checkable Proofs

We start by giving a polynomial time reduction f from circuit satisfiability to Gap-3SAT5. The
reduction f takes as its input a circuit with n binary gates and outputs a 3SAT formula with
N = n polylog n variables and 5

3N clauses. The 3SAT formula, will be such that each variable
appears exactly 3 times as a positive literal and 2 times as a negative literal. If the input of
f is a satisfiable circuit C, it will output a satisfiable 3SAT5 formula φ = f(C). If the circuit
C is unsatisfiable, the reduction f will output a formula φ = f(C) such that all assignments
have at least αN unsatisfied clauses for some constant α > 0. We also need a polynomial time
witness-reduction fw, which on input C,w such that C(w) = 1 outputs a satisfying assignment
fw(C,w) for the 3SAT5 formula φ = f(C).

The first step in our reduction is to map the circuit C to a constraint graph G(C) with
the following properties. The vertices of the constraint graph G may be assigned values from a



constant size alphabet Σ, but each edge between two vertices describes a constraint on the values
that they may be assigned. When starting with a satisfiable circuit, the output is a satisfiable
constraint graph. However, on an unsatisfiable circuit the output is an unsatisfiable constraint
graph where any assignment violates at least a α0-fraction of the constraints for some constant
α0 > 0. The polynomial time assignment tester [DR04] given by Dinur [Din07] in her proof of the
PCP theorem has the properties described above. Moreover, given a witness for the satisfiability
of the circuit C, we may in polynomial time compute a satisfying assignment for the constraint
graph G(C). Dinur’s most efficient assignment tester building on work by Ben-Sasson and Sudan
[BSS08] outputs a constraint graph G(C) with n polylog n vertices and edges.

Given a constraint graph G over a constant size alphabet Σ, we assign a constant number of
binary variables to each vertex such that it is possible to represent any element from the alphabet
Σ. Each constraint between two vertices is of constant size Σ2 and we can therefore write out a
constant size 3SAT formula describing the constraint. Taking the conjunction of all these 3SAT
formulas, we reduce the constraint graph to a 3SAT formula with n polylog n variables and
clauses. A satisfying assignment for the constraint graph gives us a satisfying assignment to the
3SAT formula. Since each vertex has a constant number of variables associated with it, and
each constraint has a constant number of clauses associated with it, a constraint graph with a
constant fraction α0 of unsatisfiable constraints reduces to a 3SAT formula with a α1 fraction
of unsatisfiable clauses for some constant α1 > 0.

Finally, we reduce the 3SAT formula to a 3SAT5 formula where each variable appears in
the clauses as exactly 5 literals and each clause has exactly 3 literals. First we copy clauses and
variables so each clause has exactly 3 literals and each variable appears at least 3 times. Then
the ` appearances of a variable as a positive literal xi or a negative literal ¬xi are replaced with
copies xi1, . . . , xi`. For each copy we add 4 clauses for consistency in the truth value assignment
with the predecessor xi,j−1 mod ` and the successor xi,j+1 mod ` according to whether the original
variable appeared as a positive or negative literal. In these consistency clauses the copy appears
twice as a negative literal and twice as a positive literal, so all copies appear as exactly 3 positive
literals and 2 negative literals in the resulting 3SAT5 formula. This is a linear size reduction,
so we end up with n polylog n variables and clauses. A satisfying assignment for the 3SAT
formula gives us a satisfying assignment for the resulting 3SAT5 formula. A 3SAT formula
with a constant fraction α1 of unsatisfiable clauses, gives a 3SAT5 formula with a α fraction of
unsatisfiable clauses for some constant α > 0.

In summary, there is a pair of polynomial time algorithms (f, fw) and a constant α > 0 so:

Reduction: f takes input a circuit C with n gates and outputs a 3SAT5 formula f(C) with
N = n poly log n variables. Each variable appears as 3 positive literals and 2 negative
literals, and each clause has exactly 3 literals. If C is satisfiable, then f(C) is satisfiable. If
C is unsatisfiable, then all assignments to the variables of f(C) leave at least αN clauses
unsatisfied.

Witness-preservation: fw takes as input a circuit C with n gates and a witness for C being
satisfiable and outputs a truth value assignment satisfying the 3SAT5 formula f(C).

4 NIZK Proofs in the Hidden Bits Model

We will now give an NIZK proof in the hidden-bits model for Gap-3SAT5-satisfiability. The
ideas in this section are quite similar to Kilian and Petrank [KP98], although our setting allows
us to simplify their scheme.

Let LN be the language of satisfiable 3SAT5 formulae withN variables and 5
3N clauses, where

each variable appears as 3 positive literals and 2 negative literals. Let RN be the corresponding



relation of formulae and satisfying assignments. Further, define LαN as the language of formulae
in LN that have a truth-value assignment to the variables that leaves at most αN clauses
unsatisfied. We will be interested in a hidden-bits NIZK proof (`H(N), PH , VH) for R with
perfect completeness, (α, εH(N))-soundness, and perfect zero-knowledge as described below.

Perfect completeness. For all N ∈ 3N and all (φ,w) ∈ RN we have

Pr
[
ρ← {0, 1}`H(N); (i1, . . . , it)← PH(ρ, φ, w) : VH(φ, i1, ρi1 , . . . , it, ρit) = 1

]
= 1.

Statistical soundness. For all N ∈ 3N and all adversaries A

Pr
[
ρ← {0, 1}`H(N); (φ, i1, . . . , it)← A(ρ) : φ /∈ LαN and VH(φ, i1, ρi1 , . . . , it, ρit) = 1

]
≤ εH(N).

Perfect zero-knowledge. There exists a probabilistic polynomial time simulator SH such
that for all N ∈ 3N and all (φ,w) ∈ RN the distribution

{ρ← {0, 1}`H(N); (i1, . . . , it)← PH(ρ, φ, w) : (i1, ρi1 , . . . , it, ρit)}

is identical to the distribution

{(i1, ρi1 , . . . , it, ρit)← SH(φ) : (i1, ρi1 , . . . , it, ρit)}.

4.1 Hidden-bits NIZK proof for Gap-3SAT5

Let φ be a 3SAT5 formula with N variables and 5
3N clauses, where each variable appears exactly

thrice as a positive literal xi and twice as a negative literal ¬xi in the clauses. The verifier has
the promise that either there is an assignment to the variables so all clauses are satisfied, or
all assignments of truth values to the variables lead to more than αN unsatisfied clauses. The
prover has a satisfying assignment and wants to give an NIZK proof in the hidden bits model
for φ being satisfiable.

We first sketch the NIZK proof and then afterwards explain the main ideas in the con-
struction. There is some freedom in the choice of parameters; for concreteness we suggest
a = d 8αe, b = dlogNe, ∆ = d N

logN e.

Statement: A 3SAT5 formula φ ∈ LN .
Prover’s input: A string ρ of 6a26a(bN + ∆) hidden bits. A truth-value assignment to the

variables x1, . . . , xN so φ(x1, . . . , xN ) = 1.
Proof:

1. Interpret the hidden bits as 6a26a−1(bN +∆) consecutive pairs of bits. Each pair of bits
is interpreted as one of three possible characters according to the following scheme

00 = 0 01 = W 10 = W 11 = 1.

Later the prover may reveal one of the bits in a character. In a wildcard character W
the prover can reveal either 0 or 1, whereas 0 can only be revealed as 0 and 1 can only
be revealed as 1.

2. Interpret the characters as 26a−1(bN +∆) consecutive 6a-character blocks. Call a block
good if it has exactly 3a W-characters and they are either all in the first half of the block
or all in the second half of the block. Otherwise, call the block bad.

3. A block has 21−6a chance of being good, so we expect on average (bN +∆) good blocks.
If the number of good blocks is outside the interval [bN ; bN + 2∆] reveal all hidden bits
and halt.



4. Reveal to the verifier all the hidden bits associated with bad blocks.
5. Assign the first b good blocks to the first variable, etc., so each variable has b blocks

assigned to it. The remaining good blocks will not be used.
6. Interpret each good block as a set of 6 consecutive a-character strings (see examples

in Figure 1). Assign in the order of appearance, 5 of these a-character strings to the 5
appearances of their variable xi in the clauses as follows. If the witness has xi = 1, assign
the 3 wildcard strings to the 3 appearances of xi, and the first 2 0/1-strings to the 2
appearances of ¬xi. If the witness has xi = 0, assign the first 2 wildcard strings to the
2 appearances of ¬xi and the 3 0/1-strings to the 3 appearances of xi. Taking all good
blocks into account, each appearance of xi or ¬xi has b a-character strings assigned to
it.

7. Each clause has 3 literals, and each literal has a corresponding tuple of b a-character
strings. Pick at random a literal for which the b a-character strings only contain wildcard
characters. Such a literal must exist since the clause is satisfied by the truth-value assign-
ment. For the other two literals reveal a random bit in each character’s bit pair, thereby
revealing two ab-bit strings. In the remaining wildcard literal, reveal in each wildcard
character one of the bits, such that the revealed ab-bit string is the exclusive-or of the
two other ab-bit strings.

8. The proof consists of the revealed bits. If the number of good blocks is outside the interval
[bN ; bN + 2∆] the proof reveals all hidden bits. Else, the proof reveals the hidden bits of
the bad blocks and a 5

12 -fraction of the hidden bits in the first bN good blocks.
Verification:

1. If the proof reveals all hidden bits, return 1 if the number of good blocks is outside the
range [bN ; bN + 2∆] and else return 0.

2. Verify that there are no good blocks among the blocks where all bits have been revealed.
3. Verify that there are at most bN + 2∆ blocks where some of the bits remain hidden.

Associate the first bN blocks with the variables in the order of appearance.
4. Verify that in each of the bN blocks corresponding to variables, exactly 5 of the 6 a-

character strings have one revealed bit in each character. Verify also that in each block
either the last a-character string in the first half of the block, or the last a-character
string in the second half of the block has no revealed bits. Based on this, each revealed
a-bit string can be uniquely associated with a corresponding literal in a clause.

5. For each clause, verify that the exclusive-or of the two first ab-bit strings corresponding
to the first 2 literals equals the ab-bit string corresponding to the third literal.

6. Return 1 if all verifications passed, else return 0.

In the first step, note that there is 50% chance that a character is a wildcard and 50% chance
that it is a 0 or a 1. Later, the prover will open some of the characters by revealing one of the bits.
Wildcards can be opened as 0 or 1, whereas 0 can only be opened as 0 and 1 can only be opened
as 1. The prover sets up the strings so wildcards correspond to true literals and non-wildcards
correspond to false literals. In satisfied clauses there is a true literal, which can be opened at will.
This is what gives the prover with a satisfying assignment the power to convince the verifier. On
the other hand, in an unsatisfied clause there will only be non-wildcard characters associated
with the false literals, which will reduce the power of the prover and make it hard to convince
the verifier of a false statement. Finally, for zero-knowledge we can set more of the characters
to be wildcard characters. This will make it possible to simulate a proof without knowing a
satisfying truth assignment for the statement.

We interpret the string of characters as blocks of 6a characters. There will be an expected
number of bN+∆ good blocks. We can use Chernoff-bounds to see that there is high probability



that most of the hidden blocks that have not been revealed are indeed good blocks. The point
of sampling good blocks is that they represent a consistent view of a variable. All true literals
are assigned wildcard strings, all false literals are assigned non-wildcard string.

010 . . . 101 100 . . . 011 010 . . . 110 WW . . .W WW . . .W WW . . .W

WW . . .W WW . . .W WW . . .W 010 . . . 110 000 . . . 111 100 . . . 101

Fig. 1. Two examples of good blocks.

The important thing to note is that with wildcard string, the prover may open the true
literals to any a-bit string. For the false literals, however, the prover is bound to a particular
a-bit string. We require that in each clause, the prover should open 3 a-bit strings, such that
they exclusive-or to 0. In clauses with a true literal this is easy to accomplish, since the prover
may open the corresponding wildcard string to any a-bit string. This gives us completeness.
In unsatisfied clauses, however, the prover has 3 fixed a-bit strings and the probability of their
exclusive-or being 0 is 2−a. For each unsatisfied clause, we therefore get a good chance of catching
a cheating prover.

We have now described the main idea in the construction. The prover has some degrees of
freedom in choosing the statement, taking advantage of a few bad blocks that may be camou-
flaged as good blocks, etc. However, by repeating the proof b times in parallel and using the fact
that for unsatisfiable statement there is actually a constant fraction of unsatisfied clauses no
matter what the truth assignment is, we can ensure that a cheating prover still has very small
chance of convincing the verifier on a false statement.

Theorem 1. For sufficiently large N the protocol given above is a hidden-bits NIZK proof for

3SAT5 with perfect completeness, (α, 2
− N

6 log3 N )-soundness and perfect zero-knowledge with a
hidden string of size `H(N) = O(N logN).

Proof. Perfect completeness follows by direct verification.

For perfect zero-knowledge, consider the simulator SH that selects a random string ρ ←
{0, 1}`H(N) and sorts it into good and bad blocks just as the prover would. If there are less than
bN good blocks or more than bN + 2∆ good blocks, it reveals the entire string just as a real
prover would. The probability of falling outside the [bN ; bN +2∆] range is the same in both real
proofs and in the simulation.

Let us now focus on the case, where the number of good blocks is within the range. The
simulator assigns good blocks to variables as the real prover does and for each good block flips
a coin as to whether positive or negative literals should be assigned the first or second half of
the characters. Next, it replaces the non-wildcards associated with literals in each good block
with wildcards by flipping the last bit of each non-wildcard bit-pair. For each clause, the three
literals therefore have associated ab-character strings consisting of wildcard characters only. The
prover selects at random for each character in the two first strings whether to open the first
or second bit of the character, and opens the corresponding bits in the ab-character string for
the third literal to the exclusive-or of these two bits. This way, the prover constructs a proof
that looks uniformly random under the condition that all clauses must have ab-bit strings that
exclusive-or to 0. If we look at a real proof, we get for any given truth-value assignment the
same distribution because the hidden bits are uniformly random.



We now proceed to evaluating the soundness of the protocol assuming we have a statement φ
such that for any assignment there are at least αN unsatisfied clauses. First, let us find Chernoff-
bounds for the probability that the number of good blocks falls outside the range [bN ; bN+2∆].
There are 26a−1(bN +∆) candidate blocks each having probability 21−6a of being a good block.
Letting X be the number of good blocks we expect an average of bN + ∆ good blocks, so we
get the following Chernoff-bound

Pr[X ≤ bN ] ≤ e−
1
2
( ∆
bN+∆

)2(bN+∆) = e−
1
2

∆2

bN+∆ .

We also get the Chernoff-bound

Pr[X ≥ bN + 2∆] ≤ e−
1
3
( ∆
bN+∆

)2(bN+∆) = e−
1
3

∆2

bN+∆ .

The combined probability of being outside the [bN ; bN + 2∆] range is therefore less than

e−
1
2

∆2

bN+∆ + e−
1
3

∆2

bN+∆ < 2−
1
3

∆2

bN+∆

.
Let us now continue the soundness analysis under the assumption that there are between bN

and bN + 2∆ good blocks. The verifier rejects the proof if there are more than bN + 2∆ blocks
where some bits remain hidden. A cheating prover can therefore hide at most 2∆ bad blocks and
pretend they are good blocks. Let us make the worst case assumption that the cheating prover
hides 2∆ blocks that consist only of wildcard characters, which would enable the prover to prove
anything in the clauses involving variables from the bad block. These variables can affect up
to 5 clauses each, for a total of up to 10∆ clauses. Again, making the worst case assumption,
we will say the prover can select 10∆ arbitrary clauses where it can cheat with the proof. The
remaining variables and clauses will be assigned good blocks only.

The cheating prover has some control over which good block each variable is assigned. It
may choose to cheat by using a bad block in some spot, which will shift the assignment of the
subsequent good blocks to variables. In the worst case, the prover has complete freedom of where
it will inject up to 2∆ bad blocks between the good blocks. The prover may therefore choose
from up to (

bN + 2∆

2∆

)
≤ (e

bN + 2∆

2∆
)2∆ < 22∆ logN

different assignment of good blocks to variables.
Another freedom the prover has is that in each good block, it may assign the wildcard strings

to the positive literals or to the negative literals. Since each variable has b blocks, this gives it
2bN possible ways to assign a character strings to the variables.

Finally, the prover is adaptive and may choose the false statement to be proven freely from
LαN . With 5N literals to assign to 5

3N clauses there are less than (53N)5N < 26N logN choices of
statement φ ∈ LαN .

We have now described the degrees of freedom available to the prover, but there are con-
straints as well. Consider a fixed choice of a particular statement, injection of bad blocks, etc.
The proof can be considered as b layers of parallel proofs with a single good block associated to
each variable. We see that within each layer the choice of associating the positive or the negative
literal with the wildcard strings of a good block, indirectly indicates a truth-value assignment
to the variables. However, there are at least αN − 10∆ clauses that will not be satisfied by this
truth value assignment. For the unsatisfied clauses, the three literals have three corresponding
random non-wildcard a-character strings that can only be opened in one way. The probability



that the exclusive-or of the three a-bit strings is 0 is therefore 2−a. With at least αN − 10∆
unsatisfied clauses, we get a probability of 2−a(αN−10∆) in each layer for convincing the verifier.
Totaling over b layers, we get a probability of 2−ab(αN−10∆) of convincing the verifier for this
particular statement, injection of bad blocks, etc.

Combining everything for the case where the number of good blocks is between bN and
bN + 2∆, we get a soundness error of less than

22∆ logN · 2bN · 26N logN · 2−ab(αN−10∆) = 22∆ logN+bN+6N logN−ab(αN−10∆).

The combined soundness error is therefore

max(2−
1
3

∆2

bN+∆ , 22∆ logN+bN+6N logN−ab(αN−10∆)).

Choosing a = d 8αe, b = dlogNe, ∆ = d N
logN e we get a soundness error smaller than εH(N) =

2
− N

6 log3 N . �

5 Implementing the Hidden Bits Proof with Trapdoor Permutations

Trapdoor permutations. We will now implement the hidden bits NIZK proof using trapdoor
permutations. A trapdoor permutation is a triple of algorithms (KT, F, F

−1). KT generates a
public key pk, which we for convenience will assume has k bits, and a secret key sk for the
trapdoor permutation. Fpk and F−1sk are efficiently computable permutations of k-bit strings,
such that Fpk(F

−1
sk (y)) = y. We will assume it is hard to compute F−1sk without knowledge of sk.

All trapdoor permutations can easily be converted into trapdoor permutations with a hardcore
predicate [GL89] so we will assume the existence of a hardcore predicate B for the trapdoor
permutation. If y ← {0, 1}k is chosen uniformly at random then B(F−1sk (y)) is uniformly random
in {0, 1} and given only (pk, y) it is computationally hard to decide B(F−1sk (y)).

Implementing the hidden bit string. To implement a hidden bit string with N ′ random
bits, we generate a common reference string σ consisting of k(4N ′ + 4∆′) uniformly random

bits. There is a range of choices of ∆′, for the sake of concreteness let us say ∆′ = d(N ′)
3
4 e.

The prover picks a trapdoor permutation and interprets σ as 4N ′ + 4∆′ images of the trapdoor
permutation. This gives the prover 4N ′ + 4∆′ secret hardcore bits. The prover can selectively
open some of the hardcore bits by computing the corresponding preimages and giving them to
the verifier. This idea first described in [FLS99] indicates how we can generate hidden random
bits that the prover can see and selectively disclose to the verifier.

Our hidden bits proof has perfect zero-knowledge if the simulator can choose the hidden bits
itself. Once a trapdoor permutation has been chosen we cannot alter the preimages though so
we have not yet implemented the hidden bits model in the adaptive zero-knowledge sense. The
problem is that the common reference string is chosen before the adversary picks the statement
and therefore the simulator needs to get hidden bits out of the simulated common reference
string that can be revealed as both 0 and 1 depending on what is needed in the simulation. Our
solution is to interpret pairs of hardcore bits as hidden bits as follows:

00 = 0 01 = S 10 = S 11 = 1.

The prover reveals a hidden bit by revealing one of the two preimages associated with it. This
means it is bound to open 0 as 0 and open 1 as 1, but it can open a soft bit S as either 0 or
1. In the zero-knowledge simulation, we will set up the common reference string such that all



hidden bits are soft. When all hidden bits are soft, the zero-knowledge simulator can open them
as it likes and simulate the hidden bits proof.

When half the hidden bits are soft we have to be careful to preserve soundness though. We
therefore require that the prover reveals the preimages corresponding to soft hidden bits. On
average the prover should reveal N ′+∆′ soft hidden bits; and the verifier checks that at last N ′

soft hidden bits are revealed. This leaves the prover with approximately N ′ hidden bits, which
mostly will be hard hidden bits which can only be opened as 0 or only be opened as 1. Soundness
will now follow from the fact that most of the remaining hidden bits are uniformly random hard
bits.

NIZK proof. We will now give the full NIZK proof for circuit satisfiability. The statement
will be a circuit C and the prover will have a satisfying witness w so C(w) = 1. We have to
be careful that the prover chooses a well-formed public key for the trapdoor permutation and
will therefore use an NIZK proof (`well, Pwell, Vwell) for well-formedness. This NIZK proof could
for instance be Kilian and Petrank’s original NIZK proof [KP98], which would have a cost of
poly(k) bits. Alternatively, we could assume the existence of certifiable trapdoor permutations
where the well-formedness of the public key is directly verifiable. Or we could use Bellare and
Yung’s [BY92] method of sampling preimages to show that the public key describes a function
close to a trapdoor permutation and then give a more careful probability analysis that deals
with the small statistical bias this might introduce in the hidden bits. We will in the following
let N ′ = O(N logN) = n polylog(n) be the number of bits needed in the hidden bits model for
circuits with n gates.

Common reference string: σ = (σ1,1, . . . , σ2N ′+2∆′,2, σwell)← {0, 1}k(4N
′+4∆′)+`well(k).

Proof:

1. Generate keys for the trapdoor permutation (pk, sk)← KT(1k).

2. Compute an NIZK proof πwell for pk being a valid public trapdoor permutation key.

3. Compute the hardcore bits h1,1, h1,2, . . . , h2N ′+2∆′,1, h2N ′+2∆′,2 as hi,j = B(F−1sk (σi,j)).

4. If there are less than N ′ pairs or more than N ′ + 2∆′ pairs where hi,1 = hi,2 return the
proof (pk, πwell, F

−1
sk (σ1,1), . . . , F

−1
sk (σ2N ′+2∆′,2) and halt.

5. For each pair hi,1 6= hi,2 include preimages πi,1 = F−1sk (σi,1) and πi,2 = F−1sk (σi,2) in the
proof.

6. Let ρ = (ρ1, . . . , ρN ′) be the values of the first N ′ remaining pairs of hardcore bits.

7. Run the hidden bit string proof on ρ to get πH ← PH(ρ, f(C), fw(w)).

8. For all revealed bits ρi in the hidden bits proof πH corresponding to hardcore bits hj,1 =
hj,2 choose at random to include either πj,1 = F−1sk (σj,1) or πj,2 = F−1sk (σj,2) in the proof.

The proof is of the form (pk, πwell, πi1,j1 , . . . , πit,jt).

Verification:

1. Verify the NIZK proof πwell for pk being a correctly generated public trapdoor permuta-
tion key.

2. Verify the correctness of all the preimages σi,j = Fpk(πi,j).

3. Compute the corresponding hardcore bits hi,j = B(πi,j).

4. If all hardcore bits have been revealed, verify that there are less than N ′ or more than
N ′ + 2∆′ pairs hi,1 = hi,2 and accept if all verifications have succeeded.

5. Verify that all revealed pairs of hardcore bits have hi,1 6= hi,2 and that there are between
N ′ and N ′ + 2∆′ pairs left in which at most one hardcore bit has been revealed.

6. Interpret the remaining hardcore bits as indices and revealed bits (i1, ρi1 , . . . , it, ρit) in a
hidden bits proof and accept if all verifications have succeeded and VH(f(C), i1, ρi1 , . . . , it, ρit) =
1.



Theorem 2. Assuming the existence of trapdoor permutations on {0, 1}k with k-bit keys there
is an NIZK proof for circuit satisfiability with perfect completeness, statistical soundness and
computational zero-knowledge. The size of the common reference string and the NIZK proof is
|C| polylog |C| · k + poly(k) bits.

Proof. Perfect completeness follows from the perfect completeness of the NIZK proof for well-
formedness and the perfect completeness of the hidden bits proof.

Let us now describe the zero-knowledge simulator. The common reference string simulator
S1 chooses a trapdoor permutation (pk, sk) ← KT(1k) and picks σ ∈ {0, 1}k(4N ′+4∆′)+`well(k)

such that all the hidden bits are soft and simulates a proof πwell for pk being well-formed. The
simulation trapdoor is τ = (pk, sk, πwell). The proof simulator S2 when given a circuit C uses
the public key pk and the proof πwell in the simulated proof. It flips a coin for all the hidden
bits as to whether they should be revealed as soft. With overwhelming probability the remaining
number of hidden soft bits will be between N ′ and N ′ + 2∆′ so the simulation does not run
into trouble. The simulator then runs (i1, ρi1 , . . . , it, ρit)← SH(f(C)) to get a hidden bits model
proof and opens the soft hidden bits accordingly.

A real common reference string with a real proof is indistinguishable from a real proof where
we simulate the proof πwell for well-formedness. This makes it computationally indistinguishable
from choosing the hardcore bits so all hidden bits are soft. With soft hidden hardcore bits the
hidden bits simulation is perfectly indistinguishable from a real hidden bits proof, so we conclude
that our NIZK proof for circuit satisfiability has computational zero-knowledge.

It remains to prove that we have statistical soundness. The common reference string is
uniformly random, but the adversarial prover has some influence over the hidden bit string: it
can choose pk ∈ {0, 1}k and if there are more than N ′ soft hidden bits it may opt to let some of
them go undisclosed and later open them freely as 0 or 1. The NIZK proof for well-formedness
gives the adversary negligible probability for using a malformed pk but there may be up to 2k

choices of well-formed public keys each yielding a different set of hardcore bits. Even with 2k

different sets of hardcore bits a Chernoff-bound gives negligible probability of having less than
N ′ hard bits so for each possible public key there can be at most 2∆′ soft hidden bits. Assuming
the worst case, where the adversary could place the soft hidden bits anywhere among the hard

hidden bits there would for a fixed public key be up to
(
N ′+2∆′

2∆′

)
< 2

1
2
(N ′)

3
4 log(N ′) possible choices

of hidden bit strings.

Consider now a fixed public key pk and a fixed placement of the up to 2∆′ soft bits among
the hard hidden bits. The uniformly random choice of the common reference string induces a
uniformly ranbdom distribution of hidden hard bits leaving up to 2∆′ soft bits in fixed positions
to be chosen as 0s or 1s by the adversary. The hidden bits proof has a soundness error of εH(N)
leaving the adversary with at most εH(N)22∆

′
chance of being able to cheat. Since there are

at most 2k well-formed public keys and less than 2
1
2
(N ′)

3
4 log(N ′) possible placements of soft bits

for any given public key this means the soundness error is less than εH(N)22∆
′
2k2

1
2
(N ′)

3
4 logN ′ <

εH(N)2(N
′)

3
4 logN ′ . With εH(N) = 2

− N
6 log3 N and N ′ = O(N logN) we therefore get a negligible

soundness error. �

6 Implementing the Hidden Bits Proof with Naccache-Stern Encryption

Naccache-Stern encryption. The Naccache-Stern cryptosystem based on higher residues
[NS98] has message space ZP where P is a product of small primes. We will show how to
reveal the plaintext modulo a small prime factor pi without revealing the rest of the plaintext.



Interpreting even numbers as 0, odd numbers as 1, and pi − 1 as “ignore” we get a uniform
distribution of hardcore bits modulo pi assuming the Naccache-Stern encryption is semantically
secure. With Naccache-Stern’s cryptosystem having constant expansion rate and each prime
factor of the message space being of logarithmic size in the security parameter we can construct
a hidden random bits implementation that is quasi-linear in the number of hidden bits.

In the Naccache-Stern cryptosystem the public key is of the form pk = (M,P, g), where M
is a k-bit RSA modulus, P is a product of small odd primes p1, . . . , pd so gcd(8P 2, ϕ(M)) = 4P ,

and g ∈ Z∗M is a group element with ord(g) = ϕ(M)
4 . The secret key is sk = ϕ(M). Encrypting

a message m ∈ ZP with randomness r ← Z∗M yields the ciphertext

c = gmrP mod M.

To decrypt a ciphertext c, compute c
ϕ(M)
P = (g

ϕ(M)
P )m and use the Pohlig-Hellman algorithm for

finding discrete logarithms in groups with a smooth order to compute m mod P .
The cryptographic assumption underlying our NIZK proof is that there is a probabilistic

polynomial time key generator KNS for generating Naccache-Stern keys (pk, sk) such that the
cryptosystem is IND-CPA secure and the number of small prime factors in P is larger than β k

log k
for some constant β > 0. We refer to Naccache and Stern [NS98] for concrete key generator sug-
gestions and a proof that the resulting cryptosystem is IND-CPA secure under a computational
intractability assumption related to higher residues.

Opening and simulating openings of hardcore bits. In the implementation of the Naccache-
Stern cryptosystem, the prover will generate Naccache-Stern keys pk = (M,P, g) and sk =
ϕ(M). The random string is interpreted as a series of k-bit integers where those outside Z∗M are
ignored. An integer in Z∗M can be interpreted as a ciphertext encrypting some message m mod P

where P =
∏t
i=1 pi. Since there are d = d βklog ke prime factors in P , this gives the prover d residues

{m mod pi}di=1, each of which is translated into a hardcore bit. The prover will use the first N ′

hardcore bits as the hidden bit string and since she gets Θ( k
log k ) bits per element in Z∗M she

only looses a logarithmic factor in implementing the hidden bit string.
The key observation needed for using Naccache-Stern encryption in this way is that the

prover may verifiably disclose mi = m mod pi without revealing the other parts of the message.
Consider a particular k-bit block c ∈ Z∗M , which the prover can decrypt to get the plaintext
m ∈ ZP . All c ∈ Z∗M are valid ciphertexts but there are P different r ∈ Z∗M so c = rP gm so we
will for notational convenience fix an arbitrary such r in the following. To prove mi = m mod pi
is indeed part of the plaintext the prover gives a proof π satisfying

πP = (cg−mi)
P
pi .

Raising both sides to the power φ(M)
P shows

1 = (πP )
φ(M)
P = (rP gm−mi)

P
pi

φ(M)
P = (g

φ(M)
pi )m−mi

telling the verifier that mi = m mod pi since P |ord(g). The prover with the secret key φ(M) can
compute a random π satisfying the equation by choosing s ∈ Z∗M at random and setting

π = (cg−mi)
(P−1 mod

ϕ(M)
P

) P
pi s

φ(M)
P .

In the NIZK proof, we will generalize this idea to verifiably disclose m mod PI for arbitrary
PI =

∏
i∈I pi. This makes it possible for the prover to reveal many values {m mod pi}i∈I simul-

taneously.



There is a little variation in how many hardcore bits the prover gets out of a common
reference string since not all k-bit integers will belong to Z∗M and some hardcore bits are ignored
but we can use Chernoff bounds to get a good estimate of how many hardcore bits the prover
can extract and tune the proof accordingly. Since the verifier obtains proofs π for the correctness
of the opened hardcore bits the soundness of the hidden bit proof system implies soundness of
the full NIZK proof for circuit satisfiability.

The zero-knowledge property will come from using a different type of public key. Instead
of using g that has order φ(M)

4 the simulator will pick g with order φ(M)
4P . As we shall see in

the security proof, the semantic security of the Naccache-Stern cryptosystem implies that the
two types of public keys are computationally indistinguishable. With the latter choice of public
key ord(g) = φ(M)

4P we can write g = (g′)P and now a ciphertext is no longer binding since

c = rP gm = rP (g′)mP = (r(g′)m−m
′
)P gm

′
is at the same time an “encryption” of m and m′. The

simulator sets up the common reference string so it contains ciphertexts that can be opened to
any hardcore bits it chooses thereby allowing it to simulate the hidden bits proof.

NIZK proof based on Naccache-Stern encryption. We will now give the full NIZK proof
for circuit satisfiability. The statement is a circuit C and the prover will have a satisfying witness
w so C(w) = 1. Naccache-Stern keys are not directly verifiable, so we let (`well, Pwell, Vwell) be an
NIZK proof system for well-formedness of a Naccache-Stern public key. This NIZK proof could
for instance be Kilian and Petrank’s original NIZK proof [KP98], which would have a cost of
poly(k) bits. We will in the following let N ′ = O(N logN) = n polylog(n) be the number of bits

needed in the hidden bits model for circuits with n gates and let ∆′ = Θ((N ′)
3
4 ). For notational

simplicity, we will assume d|N ′ and N ′+∆′

δ ∈ Z, where d = d βklog ke for a constant β > 0 and δ is
defined in the protocol.

Common reference string: σ = (σ1, . . . , σ 3N′
d

, σwell)← {0, 1}k
3N′
d

+`well(k).

Proof:
1. Generate Naccache-Stern keys (pk, sk) = ((M,P, g), φ(M))← KNS(1k) with P =

∏d
i=1 pi.

2. Compute an NIZK proof πwell for the well-formedness of pk = (M,P, g).
3. Define δ = d −

∑d
i=1

1
pi

and let c1, . . . , cN′+∆′
δ

be the first N ′+∆′

δ of σ1, . . . , σ 3N′
d

∈ Z∗M .2

If there are less than N ′+∆′

δ of them return the proof π = (pk, sk).
4. Decrypt c1, . . . , cN′+∆′

δ

to get plaintexts m1, . . . ,mN′+∆′
δ

. Define mi,j = mj mod pi.

5. Define h1,1, . . . , hd,N′+∆′
δ

as hi,j = ⊥ if mi,j = −1 and otherwise hi,j = 0 if mi,j is even

and hi,j = 1 if mi,j is odd. If there are less than N ′ or more than N ′+ 2∆′ hardcore bits
hi,j ∈ {0, 1} return the proof π = (pk, sk).

6. Define ρ = (ρ1, . . . , ρN ′) as the first N ′ hardcore bits hi,j .
7. Run the hidden bit string proof on ρ to get πH ← PH(ρ, f(C), fw(w)).
8. Define mi,j as revealed if the hardcore bit hi,j is revealed in πH or hi,j = ⊥.
9. Let for all j the set Ij ⊂ {1, . . . , d} be the indices i for which mi,j is revealed. Define

mIj = mj mod PIj where PIj =
∏
i∈Ij pi. Compute πj = (cg

−mIj )
(P−1 mod

φ(M)
P

) P
PIj s

φ(M)
P

j

for a randomly chosen sj ← Z∗M .
The proof is either π = (pk, sk) or π = (pk, πwell, I1,mI1 , π1, . . . , IN′+∆′

δ

,mIN′+∆′
δ

, πN′+∆′
δ

).

Verification:
1. If the proof is of the form π = (pk, sk) accept it if and only if the key is well-formed (the

secret key can be of a form so this can be verified) and there are less than N ′+∆′

δ values
in Z∗M or the number of valid hardcore bits hi,j ∈ {0, 1} is less than N ′ or higher than
N ′ + 2∆′.

2 We represent elements of Z∗M as integers in the range {1, . . . ,M − 1}.



2. Verify the NIZK proof πwell for pk = (M,P, g) being a correctly generated public Naccache-
Stern key with d small odd primes p1, . . . , pd.

3. Identify the first N ′+∆′

δ values c1, . . . , cN′+∆′
δ

∈ Z∗M . Reject if there are less than N ′+∆′

δ

of them.

4. Verify the proofs πPj = (cg
−mIj )

P
PIj mod M and compute the hardcore bits hi,j ∈ {0, 1}

corresponding to mI1 , . . . ,mIN′+∆′
δ

. Reject if the number of unopened hardcore bits plus

opened valid hardcore bits hi,j is less than N ′ or more than N ′ + 2∆′.
5. Interpret the hi,j ∈ {0, 1} as a hidden bits proof (i1, ρi1 , . . . , it, ρit). Accept the proof if

and only if all the verifications succeeded and VH(f(C), i1, ρi1 , . . . , it, ρit) = 1.

Theorem 3. Assuming the Naccache-Stern cryptosystem is IND-CPA secure, there is an NIZK
proof for circuit satisfiability with perfect completeness, statistical soundness and computational
zero-knowledge. The size of the common random string and the proof is |C| polylog |C|+poly(k)
bits.

Proof. The NIZK proof for well-formedness can be set up with perfect completeness and the
hidden bits proof has perfect completeness. Straightforward verification now gives us perfect
completeness.

We will now show that the NIZK proof is statistically sound. If (pk, sk) is revealed, we can
use the secret key to check that the Naccache-Stern key pk is well-formed. For a well-formed
key, Chernoff bounds give negligible probability of having less than N ′+∆′

δ values σj ∈ Z∗M or
having less than N ′ hardcore bits hi,j ∈ {0, 1} or more than N ′+ 2∆′ hardcore bits hi,j ∈ {0, 1}.
So there is negligible probability of accepting a proof of the form (pk, sk).

Consider now a proof of the form (pk, πwell, I1,mI1 , π1, . . . , IN′+∆′
δ

,mIN′+∆′
δ

, πN′+∆′
δ

). By the

statistical soundness of the NIZK proof for well-formedness of the key, we may assume the
public key pk = (M,P, g) is well-formed. For each cj = rPj g

mj consider now the verification of

the proofs πPj = (cg
−mIj )

P
PIj , which after raising to the power φ(M)

P gives us

1 = (πPj )
φ(M)
P = ((rPj g

mj−mIj )
P
PIj )

φ(M)
P = (g

φ(M)
PIj )

mj−mIj .

The order of g
φ(M)
PIj is PIj so mIj = mj mod PIj and therefore the partial plaintext mIj is correct.

There are less than 23k valid public keys. Using appropriate Chernoff bounds (taking into
account the different probabilities 1

pi
for a hardcore bit being hi,j = ⊥) we get negligible proba-

bility for there being less than N ′ or more than N ′ + 2∆′ valid hardcore bits hi,j ∈ {0, 1} with
any of the possible public keys. Assume the worst case scenario with up to N ′ + 2∆′ hardcore
bits hi,j ∈ {0, 1} leaving the prover with the choice of

(
N ′+2∆′

2∆′

)
< 2∆

′ logN ′ possible hidden

bit strings. The prover then has less than 23k · 2∆′ logN ′ possible hidden bit strings and with a

soundness error of εH(N) = 2
− N

6 log3 N and N ′ = O(N logN) this path also leaves the prover with
negligible soundness error.

Let us now describe the zero-knowledge simulator (S1, S2). The common reference string
simulator S1 chooses ((M,P, g′), φ(M)) ← KNS(1k), sets g = (g′)P and defines pk = (M,P, g).
It simulates an NIZK proof for pk being a valid public key. It chooses c1, . . . , cN′+∆′

δ

so cj = rPj .

It chooses σ1, . . . , σ 3N′
d

∈ {0, 1}k at random substituting the first N ′+∆′

δ values that belongs to

Z∗M with c1, . . . , cN′+∆′
δ

. It returns the simulated common reference string σ together with the

trapdoor τ = (pk, g′, πwell, r1, . . . , rN′+∆′
δ

).



When S2 is given a circuit C it simulates an NIZK proof as follows: It selects pk, πwell
as the public key and the proof of well-formedness. It simulates a hidden bits proof πH =
(i1, ρi1 , . . . , it, ρit) ← SH(f(C)). It picks mI1 , . . . ,mIN′+∆′

δ

∈ ZP conditioned on getting the

hidden bits proof πH and defines the sets and messages I1,mI1 , . . . , IN′+∆′
δ

,mIN′+∆′
δ

accord-

ingly. It computes the proofs πIj = (r

P
PIj

j (g′)
−mIj )

P
PIj and returns the simulated proof π =

(pk, πwell, I1,mI1 , π1, . . . , IN′+∆′
δ

,mIN′+∆′
δ

, πIN′+∆′
δ

).

We cannot distinguish a real proof from a hybrid real proof where we simulate the well-
formedness proof πwell. Given a real public key (M,P, g) we can instead of using the de-
cryption key, set up the system so the relevant cj ’s are of the form cj = rPj g

mj for random

rj ,mj and compute the corresponding proofs as πj = r

P
PIj

j g

mj−mIj
Pi . The verification is ok, since

πPj = (r

P
PIj

j g

mj−mIj
PIj )P = (rP g

mj−mIj )
P
PIj . Due to the randomness of rj this gives a randomly

distributed proof πj satisfying the verification condition just like the proofs computed with the
decryption key do. Now we are not using the decryption key at all, so by the IND-CPA security
of Naccache-Stern encryption we may choose g = (g′)P of order φ(M)

4P instead of having g of

order φ(M)
4 . To see this is implied by the IND-CPA security, observe that g = (g′)4 = (rP )2 for

some r, whereas a random element of order φ(M)
4 can be written as g = (rP (g′)m)2 for some

m ∈ Z∗P , i.e., they are the squares of ciphertexts containing 0 and m ∈ Z∗P . With g = (g′)P the
plaintexts are perfectly hidden and the perfect zero-knowledge property of the hidden bits proof
gives us equivalence with a simulated proof. �

7 Conclusion

We have suggested the shortest known NIZK proofs based on standard intractability assump-
tions. Based on trapdoor permutations we get an NIZK proof and common reference string
of size |C|k polylogk bits (where we use that polylog|C| = polylogk). This is a factor k

polylogk
improvement over Kilian and Petrank’s construction [KP98].

Based on a specific number-theoretic assumption related to factoring, we get a very efficient
implementation of a hidden bit string and an even shorter NIZK proof with a complexity of
|C| polylogk bits. This is asymptotically a factor k3

polylogk more efficient than the pairing-based
constructions by Groth, Ostrovsky and Sahai [GOS06b,GOS06a] (assuming the group elements

have size k3

polylogk ) although it remains an open problem to reduce the polylogarithmic factor to
make our construction practical.
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