
Specification of Business Components

Peter Fettke and Peter Loos

Johannes Gutenberg-University Mainz, Chair of Information Systems & Management,
 Jakob Welder-Weg 9, D-55099 Mainz, Germany, Phone: +49/6131/39-22734, Fax: -22185,

E-Mail: {fettke|loos}@wiwi.uni-mainz.de, WWW: http://wi.bwl.uni-mainz.de/

Abstract. Component-based software development is a potential reuse para-
digm for the future. While the required technologies for a component-style sys-
tem development are widely available, for instance Sun’s Enterprise Java
Beans, a problem inhibits the breakthrough of the component paradigm in busi-
ness application domains: compared to traditional engineering disciplines there
is a lack of standardized methods to describe business components. Such a de-
scription has to address several aspects: What services are offered and requested
by a business component? How can these services be used? Are there any inter-
dependencies between the services of a set of business components? What qual-
ity characteristics do the offered services fulfill? And so on. In this paper, we
present a holistic approach to specify a business component. This approach
consists of seven specification levels which address both technical and business
aspects. Furthermore, we show the application of this method by specifying a
simple business component that deals with German bank codes.

1 Component-based Business Applications

Enterprise systems are either large standardized off-the-shelf applications, e. g. SAP
R/3, Oracle Applications, or BAAN IV, or consist of individual software develop-
ments. In contrast, the idea of component-based development (CBD) is to assemble an
individual enterprise system from a set of components which are traded on software
markets [9; 16; 18]. This approach promises to combine the advantages of standard-
ized off-the-shelf applications and proprietary developments.

CBD can be characterized as a mixture of buying standardized software applica-
tions and individual software development. In a CBD scenario, an enterprise that
needs a specific business functionality, e. g. an inventory system, can buy required
components from different component vendors. The integration of the components can
be realized with little effort. The component-based development style offers a great
opportunity for small and medium sized enterprises (SME). SMEs normally cannot
afford to purchase or even maintain large packaged application systems [19, p. 131].

According to [1; 6, p. 3], the terms component and business components can be de-
fined as:

A component is made up of several (software) artifacts. It is reusable,
self-contained, marketable, provides services through a well-defined

interface, hides its implementation, and can be deployed in configura-
tions with other components that are unknown at development time.

The term ‘(software) artifacts’ embraces executable code and its documentation
(e. g. comments, diagrams, etc.), an initial description of the component’s state (e. g.
parameters, initial database setup), specification documents, user documents and test
cases. A component is ‘reusable’ if its integration can be realized easily and without
modification of its containing (software) artifacts. Therefore, a customization of a
component that is intended by the developer of the component is not considered as a
modification. In other words, the customization of components is consistent with the
CBD approach. A component is ‘self-contained’ if its (software) artifacts belong ex-
plicitly to the component, so that it can be distinctly differentiated from other compo-
nents of a component system. This property is a prerequisite for the component’s
marketability. The characteristic ‘marketability’ means that components can be traded
on component market places. Such a market place can be either an enterprise-wide
component repository or an open market place for software components.

A business component is a component that provides a certain set of
services of a business application domain. Typical business applica-
tion domains are banking, insurance, retail or manufacturing industry.

Hardware

Operating system

Middleware

Component system framework

Application system

Component application framework

(Graphical) user interface
Business

Component
Business

Component
Business

Component

Fig. 1: General architecture of a component-based application system [6, p. 5]

A general architecture of a component-based application system is shown in figure
1 [6, p. 5]. Besides hardware, operating system, and middleware, the architecture
consists of a component system framework, a component application framework, and

several business components. The component system framework is part of the mid-
dleware and provides application domain independent services such as network com-
munication, transaction processing, object life-cycle management etc. Typical compo-
nent system frameworks are the Common Object Request Broker Architecture
(CORBA), Sun’s Enterprise Java Beans, or Microsoft’s Distributed Component Ob-
ject Model (DCOM). The application system framework enables the integration and
interoperability of a set of business components on the business level. For instance, it
encompasses conflict-solving mechanisms for redundant business functions.

To establish the CBD approach it is necessary to standardize components. A com-
ponent standard includes both domain standards and methodological standards. A part
of a methodological standard is a method to describe components precisely. Such a
method is called a specification. A specification of a business component is a com-
plete, consistent, and precise description of its outer view.

In this paper we present a specification method for business components. The main
contribution of the presented approach is to tie together different well-known and
preferably standardized specification notations which are need to specify a business
component. So this work provides a means to implement the theory in practice. The
proposed specification method distinguishes seven specification levels. We give an
overview of the different specification levels in paragraph 2. Paragraphs 3 to 9 discuss
each specification level in detail. Therefore, each of these paragraphs describes the
purpose and the proposed notation of the corresponding specification level. Further-
more, we discuss in these paragraphs an example specification of a business compo-
nent that deals with German bank codes [8]. A single bank code is simply a piece of
data, e. g. the string or integer “87070000” is the bank code for “Deutsche Bank
Chemnitz, Germany”. This component can provide responses to queries such as “to
which bank does this bank code correspond?” or “is a given bank code valid?”. Para-
graph 10 summarizes the paper and gives an outlook on further research activities.

The specification method for business components which we present in this paper
is the result of the work of the research group “Component-based Development of
Business Applications”. This research group is a subgroup of the “Gesellschaft für
Informatik” (German Informatics Society). A comprehensive description of the speci-
fication method is given in [1]. Further information about the research group can be
found at the web site “www.fachkomponenten.de” (“Fachkomponenten” is the Ger-
man term for “business components”).

2 Overview of the Specification Levels

According to [4; 20; 21], it is useful to specify a business component on different
levels. Each level focuses on a specific aspect of a business component specification
and addresses different development roles such as reuse librarian, reuse manager,
component developer etc. [2, pp. 337-340]. The proposed method divides the specifi-
cation of a business component into seven levels (figure 2).

Various notations are used on all specification layers. We prefer a formal notation
as a primary notation because of its precision and consistency. Furthermore, we also

introduce on some specification levels a secondary notation which may be semi-
formal or informal. The secondary specification improves the specification compre-
hensibility and can be considered as a supplementary specification for people not used
to formal specifications.

Task Level

Terminology Level

Quality Level

Interaction Level

Behavior Level

Marketing Level

Interface Level

Business
Component

Specification Aspects

� business and organizational characteristics
� technical boundary conditions

� supported business tasks of application
domain

� puporse

� identifiers for business components, services,
parameters, data types, and exceptions

� signatures of services

� pre- and post-conditions
� invariants

� sequence dependencies among services of
the same business component

� sequence dependencies among services of
different business components

� quality criteria
� measurement categories and procedure
� service levels

� definition of the concepts of the application
domain

� definition of other used terms

Fig. 2: Specification levels and specification aspects [1, p. 4]

3 Interface Level

The interface level describes the services that are offered by a business component on
a technical level. For that purpose the services, public attributes, public variables or
constants, and public data types are named, the signature of every service is defined,
and possible error states and exceptions are declared. Not only the offered services,
but also the services required by the business component to fulfill a smooth operating
of the business component are specified. In other words, a business component can be

logically considered both as a server that offers services and as a client that requests
services.

The OMG Interface Definition Language (IDL) [13] is proposed as a notation for
the interface level. This notation is suitable for describing the mentioned specification
aspects. Moreover, it is a widely used and well-known notation in industry and re-
search.

interface BankCodes
{

typedef integer BankCode;

struct Bank
{

BankCode bankCode;
string bankName;
string city;

}

sequence <Bank> ListOfBanks;

exception UndefinedBank();

boolean isValidBankCode(in BankCode bankCode);
boolean isValidBankName(in string bankName);
boolean isValidBank (in BankCode bankCode,

in string bankName);
string searchBankCode (in string bankName) raises

(UndefinedBank);
string searchBankName (in BankCode bankCode) raises

(UndefinedBank);
ListOfBanks searchBanksWithWildcard(

in string bankName);
ListOfBanks searchBanksWithWildcardAndCityWildcard(

in string bankNameWildcard,
in string cityWildcard);

};

interface extern
{
};

Fig. 3: Example specification of the interface level

The interface specification of the business component “BankCodes” is given in fig-
ure 3. This business component offers seven services. Furthermore, some public data
types (BankCode, Bank, and ListOfBanks), and an exception (UndefinedBank) are
declared. This business component does not require services of other business compo-
nents. Therefore, its extern interface is empty.

4 Behavior Level

This level describes the behavior of the services which are offered by a business com-
ponent. This improves the level of confidence of using the business component.
Whereas the interface level primarily addresses syntactic issues of using a business
component, the behavior level specifies the behavior of services of business compo-
nents in general and especially in worst case scenarios. For that purpose pre- and post-
conditions of using a service and possibly invariants are defined.

The Object Constraint Language (OCL) is proposed as a notation for the behavior
level. Formerly, this notation was not part of the Unified Modeling Language (UML),
but in the meantime the OMG added the OCL to the UML standard [14]. As a secon-
dary notation on the behavior level, each OCL expression may be annotated with
comments.

Figure 4 shows the specification of a business component on the behavior level.
First, the context of the specification must be defined. The context is declared by an
underline. For instance, the context of the first expression is the whole business com-
ponent “BankCodes”. The second expression refers to the service “searchBankCode”
of the business component “BankCodes”.

The first expression specifies that each bank which is managed by the business
component must have a bank code greater than zero. Furthermore, the name of each
bank must not be empty. The second expression specifies that the service
“searchBankCode” may only be called if a bank with the given name exists. Similar
expressions may be defined for the other services of the business component.

(1)
BankCodes

self.ListOfBanks->forAll(b:Bank | b.bankCode > 0)
self.ListOfBanks->forAll(b:Bank | b.bankName <> ’’)

(2)
BankCodes::searchBankCode(name : bankname): bankCode

pre : self.ListOfBanks->exists(b:Bank | b.bankName =
bankname)

Fig. 4: Example specification of the behavior level

5 Interaction Level

Sometimes it is necessary to define sequences in which services of a business compo-
nent are allowed to be used. For instance, the service “send reminder of payment” may
only be called after the service “charge to the customer’s account”. The interaction
level aims to specify these dependencies among the services of business components.
A specific dependency can exist among the services which belong to the same busi-

ness component (intra-component dependency) or between different business compo-
nents (inter-component dependency).

A temporal logic may be used to express such dependencies. The authors of [5]
propose an extension of the OCL with temporal operators. This proposal is used as a
notation for the interaction level. Because the proposed notation is just an extension of
the OCL, its advantage is a smooth integration of the behavior and interaction levels.

The following temporal operators can be used (A, B are Boolean terms):
- sometime_past A: A was true at one point in the past.
- always_past A: A was always true in the past.
- A sometime_since_last B: A was true sometime in the past since the last time

B was true.
- A always_since_last B: A was always true since the last time B was true.
- sometime A: A will be true sometime in the future.
- always A: A will be true always in the future.
- A until B: A is true until B will be true in the future.
- A before B: A will be true sometime in the future before B will be true in the

future.
- initially A: At the initial state A is true.

As a secondary notation on the interaction level, every OCL expression may be an-
notated with comments.

The business component “BankCodes” is rather simple, its services have no de-
pendencies on other services (cf. paragraph 3). But its services may be used by other
business components, for instance a business component “BankTransfer” offers a
service to execute a payment order. This service may only be called after it is verified
that the recipient’s bank details are valid. The first constraint in figure 5 specifies this
dependency. Alternatively, this verification may be assured after the payment order is
accepted. This dependency is specified by the second constraint in figure 5.

(1)
BankTransfer::ExecutePayment(order : PaymentOrder)

pre : sometime_past
(BankCodes::isValidBank(order.recipientBank))

(2)
BankTransfer::AcceptPayment(order : PaymentOrder)

post : sometime
(BankCodes::isValidBank(order.recipientBank))

Fig. 5: Example specification of the interaction level

6 Quality Level

The specification levels mentioned above focus on the functional characteristics of
business components. In addition, it is necessary to define non-functional qualities of
a business component. This is the purpose of the specification of the quality level.

Such characteristics include availability, error recovery time, throughput time, re-
sponse time etc. and can be classified as static or dynamic characteristics. Static char-
acteristics, e. g. size of a component, can be measured at the build-time of a business
component; dynamic characteristics, e. g. the response time of a called service, can
only be measured during the run-time.

Various quality parameters depend on the boundary conditions of the runtime envi-
ronment (e. g. main memory size, processor type, database management system
(DBMS) etc.). Therefore, it is essential to define these boundary conditions accu-
rately. If the boundary conditions are only fuzzy, then it is impossible to measure
objective quality criteria. It must be pointed out, that there is a wide range of possible
boundary conditions. Some business components may rely on network capacity, others
on the DBMS or the processor type etc. Consequently, no universally valid boundary
conditions can be defined.

Instead, a general procedure to define and specify quality criteria is introduced. The
procedure consists of four steps (figure 6).

(1) Define quality
framework

(3) Identify required
quality criteria

(2) Determine meas-
urement procedure

(4) Specify quality
citeria

e.
 g

. I
SO

 9
12

6

e.
 g

. G
Q

M

e.
 g

. p
er

fo
rm

an
ce

an
al

ys
is

sp
ec

ifi
ca

tio
n

� portability
� applicability
� efficiency
� functionality
� reliability
� maintainability

� reponse time
� throughput time
� CPU workload
� network load

� expertise
� conclusion by

analogy
� estimation
� analysis model
� benchmark
� original

� formula notation
� UML diagrams

Fig. 6: General procedure to define and specify quality criteria [1, p. 13]

(1) Define quality framework: The term quality of a business component can be
defined in various ways. To that effect, a quality framework has to be intro-
duced to define the concept quality. For this so-called “Factor Criteria Met-
rics” models such as the ISO 9126 may be used [3, pp. 255-276].

(2) Identify required quality criteria: At the next step, the specific quality criteria
will be stated. For instance, the Goal/Question/Metric Method may be used
for this [17].

(3) Determine measurement methods: The identified quality criteria have to be
quantified by a specific measurement method. Typical methods are expertise,
conclusion by analogy, benchmark, estimation, analysis model, and original.

(4) Specify quality criteria: As the last step, the specific quality criteria of a
business component can be defined. For this, no specific notation is pro-
posed. Possible notations are formula notation, or UML diagrams.

Because of the mentioned problems, it is rather difficulty to depict a simple exam-
ple of a quality specification. Nevertheless, a specification of the quality level is
sketched out. Starting point of the measurement is the following reference environ-
ment:

- processor type: Intel Pentium III 866 MHz
- main memory: 1 GB RAM
- operation system: Windows NT 4.0
- database management system: Oracle 8i
- component system framework: Brokat Twister 2.3.5

The quality of the service “isValidBankCode” is specified in figure 7. The service
is called with randomly numbers with uniform distribution which lie in the interval
“10000000” to “99999999”.

Quality criteria Specification

throughput 1.8 s (workload: 1000 re-
quests)

response time 18 ms
response time distribution 0.0324 ms

availability not available
error recovery time not available

Fig. 7: Example specification of quality the level

7 Terminology Level

Every specification level uses various concepts that have a specific, usually not stan-
dardized denotation, e. g. identifiers on the interface, behavior, and interaction level,
or tasks on the task level. Therefore, it is necessary to define each concept explicitly.
This is the purpose of the terminology level. The terminology level can be viewed as a
glossary of every concept that is needed to understand the business component speci-
fication.

The requirements of the terminology level can be fulfilled by so-called standard-
ized business languages (SBLs) [10; 15]. SBLs use explicitly defined patterns to build
sentences, and their vocabulary is based on a reconstructed colloquial language. Thus,
it is possible to clarify the use of synonyms, homonyms, and other language defects.

SBLs use various definition methods:
- explicit definition of a term based on already defined terms,
- definition of relationships between concepts such as is-broader, is-narrower,

is-related etc., and
- introduction of new concepts by examples and counter-examples (to over-

come the problem of the beginning of the definition process).

In the following, some sample patterns for building sentences are described (A, B
are objects in a general meaning):

- abstract relationship: A is B
- component relationship: A compounds / is part of B
- sequence relationship: A happens before / after / concurrent B

A specification of the terminology level is shown in figure 8. This simple example
uses just the abstract relationship pattern.

Concept Definition

bank code

A bank code is an eight-digit number that identifies a German finan-
cial institution. It is also used for transactions between a financial
institution and the “Deutsche Bundesbank” (Central Bank of the
Federal Republic of Germany). Examples: “87070000”,
“12345678”, counter-examples “1234567”, “Deutsche Bank”
Synonyms: BC, bank number

bank name

A bank name is an identifier of a financial institution according to
the field “brief description of a financial institution office” in the file
“SATZ188.doc” (source: Deutsche Bundesbank,
www.bundesbank.de). Example “Deutsche Bank Chemnitz, Ger-
many”, counter-example: “87070000”

Response
time

The response time is the time period between the call of a business
component’s service and its termination.

Fig. 8: Example specification of the terminology level

8 Task Level

By definition, a business component supports the execution of a set of various busi-
ness tasks. The purpose of the task level is to specify which business tasks are sup-
ported by the business component. This information in combination with the market-
ing layer describes the application domain of a business component.

In contrast to the technical-oriented interface level, the task level provides a con-
ceptual description of a business component. Therefore, as on the terminology level, a
SBL is proposed as a specification notation (cf. paragraph 7).

The specification of the task level of the business component “BankCodes” is
shown in figure 9.

Task Description

verify bank code This task verifies if a given bank code is valid or if a given
bank code corresponds to a given bank name.

look up bank code This task looks up the bank code for a given bank name.

look up bank This task looks up the bank name for a given bank code.

Fig. 9: Example specification of the task level

9 Marketing Level

The purpose of the marketing level is to ensure the efficient handling of business
components from a business or organizational perspective. The specification of the
marketing level is especially needed to trade a component on a component market
place. It covers three groups of characteristics:

- business and organization characteristics,
- technical boundary conditions, and
- miscellaneous characteristics.

As a notation a tabular form is proposed (figure 10). These conventions are used:
- Each table entry names one attribute which is typed in bold letters.
- If the attribute is optional, it is enclosed in square brackets. Example: [op-

tional attribute]
- If the attribute may be specified more than once, it is enclosed in curly

brackets. Example: {repeatable attribute}
The authors of [7] proposed an alternative approach to specify this level that is

based on the Extensible Markup Language (XML).
Figure 11 shows the specification of the marketing level of the business component

“BankCodes”.
Name
The name of the business component.
Identifier
A unique identifier to identify the business component.
Version
This attribute defines version and release of the business component.
Branch of Economic Activity
This attribute describes the application domain of the business component from an
economical perspective. The International Standard Industrial Classification of All
Economic Activities [22] is used, e. g.: manufacturing, retail trade, or financial inter-
mediation.
{Domain}
This attribute describes the application domain of the business component from a
functional perspective. Possible values are: research and development, sales, pro-
curement, inventory, production, delivery, after sales services, finance, accounting,
human resource, facility management [11; 12].
Scope of Supply
This attribute specifies all (software) artifacts which belong to the business compo-
nent.
{Component Technology}
This attribute specifies the component technology.

Fig. 10: Specification notation for the marketing level (part 1 of 2)

{System Requirements}
This attribute specifies the system environment that is needed by the business compo-
nent, e. g. processor type, memory size, secondary memory size, operating system and
its version, component system and application framework and their versions, etc.
 [Manufacturer]
This attribute describes the manufacturer of the business component.
[Contact Person]
This attribute names a contact person.
[Contractual Basis]
This attributes describes modalities to buy the component, e. g. costs per license,
terms of license, terms of payment etc.
[Miscellaneous]
This attribute allows definition of further characteristics of a business component that
may be relevant to a potential user.

Fig. 10: Specification notation for the marketing level (part 2 of 2)

Name
BankCodes
Version
V 1.0
Branch of Economic Activity
Independent
Domain
Accounting
Scope of Supply
bankcodes.jar: implemented Java-Classes
bankcodes.tws: IDL specification of the component
create_db.sql: SQL script to setup the database
blz0010pc.txt: original source of bank codes data offered by the “Deutsche Bundes-
bank” (source: http://www.bundesbank.de/)
script_sampledata.pl: Perl script to convert the original source of bank codes to a file
containing SQL statements
bankcodestests.jar: implemented test cases for the business component
Component Technology
Brokat Twister 2.3.5
System Requirements
processor type: x86
main memory size: 512 MB
operating system: Windows NT 4.0, SP 3
database management system: Oracle 8i
component system framework: Brokat Twister 2.3.5
Manufacturer
Chemnitz University of Technology, Information Systems & Management, D-09107
Chemnitz

Fig. 11: Example specification of the marketing level

10 Summary and Further Work

This paper proposes a method for specifying business components. According to this
approach a business component is described on seven levels which cover both techni-
cal and business aspects. Thus, this approach can be characterized as a holistic speci-
fication of business components.

In the near future, we will gain more experience with applying this method to vari-
ous application domains. This may lead to domain standards in the long-term. Fur-
thermore we have to point out that this proposed approach is primarily a notation
standard. To establish this standard it is necessary – among other tasks – to develop a
procedure model for component specification that is based on this notation standard.

References

1. Ackermann, J.; Brinkop, F.; Conrad, S.; Fettke, P.; Frick, A.; Glistau, E.; Jaekel, H.; Kotlar,
O.; Loos, P.; Mrech, H.; Raape, U.; Ortner, E.; Overhage, S.; Sahm, S.; Schmietendorf, A.;
Teschke, T.; Turowski, K.: Vereinheitlichte Spezifikation von Fachkomponenten - Memo-
randum des Arbeitskreises 5.10.3 Komponentenorientierte betriebliche Anwendungssys-
teme. http://wi2.wiso.uni-augsburg.de/gi-memorandum.php.htm, access date: 2002-
05-10. Augsburg 2002.

2. Allen, P.; Frost, S.: Component-Based Development for Enterprise Systems - Applying the
Select Perspective. Cambridge 1998.

3. Balzert, H.: Lehrbuch der Software-Technik - Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung. Heidelberg, Berlin 1998.

4. Beugnard, A.; Jézéquel, J.-M.; Plouzeau, N.; Watkins, D.: Making Components Contract
Aware. In: IEEE Computer 32 (1999) 7, pp. 38-45.

5. Conrad, S.; Turowski, K.: Vereinheitlichung der Spezifikation von Fachkomponenten auf
der Basis eines Notationsstandards. In: J. Ebert; U. Frank (Eds.): Modelle und Modellie-
rungssprachen in Informatik und Wirtschaftsinformatik - Beiträge des Workshops "Model-
lierung 2000", St. Goar, 5.-7. April 2000. Koblenz 2000, pp. 179-194.

6. Fellner, K. J.; Turowski, K.: Classification Framework for Business Components. In: R. H.
Sprague (Eds.): Proceedings of the 33rd Hawaii International Conference on System Sci-
ences. Maui, Hawaii 2000

7. Fettke, P.; Loos, P.: Ein Vorschlag zur Spezifikation von Fachkomponenten auf der Admi-
nistrations-Ebene. In: K. Turowski (Eds.): Modellierung und Spezifikation von Fachkom-
ponenten: 2. Workshop im Rahmen der vertIS (verteilte Informationssysteme auf der
Grundlage von Objekten, Komponenten und Agenten) 2001, Bamberg, Deutschland, 05.
Oktober 2001. Bamberg 2001, pp. 95-104.

8. Fettke, P.; Loos, P.; Tann von der, M.: Eine Fallstudie zur Spezifikation von Fachkompo-
nenten eines Informationssystems für Virtuelle Finanzdienstleister - Beschreibung und
Schlussfolgerungen. In: K. Turowski (Eds.): Modellierung und Spezifikation von Fach-
komponenten: 2. Workshop im Rahmen der vertIS (verteilte Informationssysteme auf der
Grundlage von Objekten, Komponenten und Agenten) 2001, Bamberg, Deutschland, 05.
Oktober 2001. Bamberg 2001, pp. 75-94.

9. Griffel, F.: Componentware - Konzepte und Techniken eines Softwareparadigmas. Heidel-
berg 1998.

10. Lehmann, F. R.: Normsprache. In: Informatik Spektrum 21 (1998) 6, pp. 366-367.

http://wi2.wiso.uni-augsburg.de/gi-memorandum.php.htm

11. Mertens, P.: Integrierte Informationsverarbeitung 1 - Operative Systeme in der Industrie.
13. ed., Wiesbaden 2001.

12. Mertens, P.; Griese, J.: Integrierte Informationsverarbeitung 2 - Planungs- und Kontrollsys-
teme in der Industrie. 8. ed., Wiesbaden 2000.

13. OMG: The Common Object Request Broker: Architecture and Specification: Version 2.5.
Framingham 2001.

14. OMG: Unified Modeling Language Specification: Version 1.4. Needham 2001.
15. Ortner, E.: Methodenneutraler Fachentwurf - Zu den Grundlagen einer anwendungsorien-

tierten Informatik. Stuttgart, Leipzig 1997.
16. Sametinger, J.: Software Engineering with Reusable Components. Berlin et al. 1997.
17. Solingen, R. v.; Berghout, E.: The Goal/Question/Metric Method - A Practical Guide for

Quality Improvement of Software Development. London et al. 1999.
18. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. Harlow,

England, et al. 1999.
19. Turowski, K.: Establishing Standards for Business Components. In: K. Jakobs (Eds.):

Information Technology Standards and Standardisation: A Global Perspective. Hershey
2000, pp. 131-151.

20. Turowski, K.: Fachkomponenten - Komponentenbasierte betriebliche Anwendungssysteme.
Habil.-Schr., Magdeburg 2001.

21. Turowski, K.: Spezifikation und Standardisierung von Fachkomponenten. In: Wirtschafts-
informatik 43 (2001) 3, pp. 269-281.

22. United Nations (Eds.): International Standard Industrial Classification of All Economic
Activities, Third Revision, (ISIC, Rev.3). http://unstats.un.org/unsd/cr/family2.asp?Cl
=2, access date: 2002-07-01. 1989.

http://unstats.un.org/unsd/cr/family2.asp?Cl=2
http://unstats.un.org/unsd/cr/family2.asp?Cl=2

