| Real-Time Systems, 25, 187-205, 2003
‘@ © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Priority-Driven Scheduling of Periodic Task Systems
on Multiprocessors

JOEL GOOSSENS
Department of Computer Science, Universite Libre de Bruxelles, Belgium

SHELBY FUNK
Department of Computer Science, The University of North Carolina at Chapel Hill, USA

SANJOY BARUAH
Department of Computer Science, University of North Carolina, Chapel Hill, USA

Abstract. The scheduling of systems of periodic tasks upon multiprocessor platforms is considered. Utilization-
based conditions are derived for determining whether a periodic task system meets all deadlines when scheduled
using the earliest deadline first scheduling algorithm (EDF) upon a given multiprocessor platform. A new
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1. Introduction

Over the years, the preemptive periodic task model (Liu, 1969; Liu and Layland, 1973)
has proven remarkably useful for the modelling of recurring processes that occur in hard-
real-time computer application systems. In this model, a periodic task 7; = (C;,T;) is
characterized by two parameters—an execution requirement C; and a period 7,—with the
interpretation that the task generates a job at each integer multiple of 7;, and each such
job has an execution requirement of C; execution units, and must complete execution by a
deadline equal to the next integer multiple of T;. A periodic task system consists of
several such periodic tasks that are to execute on a specified processor architecture. The
jobs are assumed to be independent in the sense that each job does not interact in any
manner (accessing shared data, exchanging messages, etc.) with other jobs of the same or
another task. It is also assumed that the model allows for job preemption; i.e., a job
executing on a processor may be preempted prior to completing execution, and its
execution may be resumed later, at no cost or penalty.

The real-time scheduling of periodic task systems has been much studied. In the
uniprocessor context—when there is exactly one shared processor available upon which
to execute all the jobs generated by all the tasks in the system—it is known that the
earliest deadline first scheduling algorithm (Algorithm EDF) (Liu and Layland, 1973;
Dertouzos, 1974), which executes at each instant in time the currently active! job whose
deadline parameter is the smallest, is an optimal scheduling algorithm in the sense that if
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a system can be scheduled such that all deadlines can be met, then Algorithm EDF will
schedule this system to meet all deadlines. The problem of scheduling such periodic task
systems on identical multiprocessor platforms—when there are several identical
processors available upon which the jobs generated by the periodic tasks are to execute
(with the constraint that an individual job may execute on either zero or one processor at
any instant in time)—was first posed by Liu in a seminal paper (Liu, 1969) in 1969. In
this paper, Liu identified a set of properties for periodic task systems which are sufficient
(albeit not necessary) to guarantee feasibility upon an m-processor identical multi-
processor platform; i.e., any periodic task system satisfying these properties can always
be scheduled upon an m-processor identical multiprocessor platform to meet all
deadlines. Several other multiprocessor algorithms for scheduling periodic task systems
have been proposed (see, for example, Leung, 1989; Burchard et al., 1995); however,
none of these algorithms were optimal in the sense of successfully scheduling all feasible
periodic task systems. Then in Baruah et al. (1996) presented necessary and sufficient
feasibility conditions, and an optimal scheduling algorithm, based upon the notion of
pfair scheduling.

1.1. Pfair Scheduling

Pfair scheduling was proposed as a way of optimally and efficiently scheduling periodic
tasks on a multiprocessor system. Pfair scheduling differs from more conventional real-
time scheduling disciplines in that tasks are explicitly required to make progress at steady
rates. In the periodic task model, each task 7; = (C;, P;) executes at an implicit rate given
by C;/P;. However, this notion of a rate is a bit inexact: a job of t; may be allocated C;
time units at the beginning of its period, or at the end of its period, or its computation may
be spread out more evenly. Under pfair scheduling, this implicit notion of a rate is
strengthened to require each task to be executed at a rate that is uniform across each job.
Pfair scheduling algorithms ensure uniform execution rates by breaking jobs into smaller
subjobs. Each subjob must execute within a window of time, the end of which acts as its
pseudodeadline. These windows divide each period of a task into subintervals of
approximately equal length. By breaking tasks into smaller executable units, pfair
scheduling algorithms circumvent many of the bin-packing-like problems that lie at the
heart of intractability results involving multiple-resource real-time scheduling problems.
Intuitively, it is easier to evenly distribute small, uniform items among the available bins
than larger, non-uniform items.

However, this very feature of pfair scheduling algorithms can also prove a
disadvantage in certain implementations—one consequence of ‘‘breaking’’ each job of
each task into subjobs, and making individual scheduling decisions for each subjob, is
that jobs tend to get preempted after each of their constituent sub-jobs completes
execution. As a result, pfair schedules are likely to contain a large number of job
preemptions and context-switches. For some applications, this is not an issue; for others,
however, the overhead resulting from too many preemptions may prove unacceptable.
Pfair scheduling is not the appropriate scheduling approach for such application systems.
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1.2. Priority-Driven Scheduling

Run-time scheduling is essentially the process of determining, during the execution of a
real-time application system, which job[s] should be executed at each instant in time.
Run-time scheduling algorithms are typically implemented as follows: at each time
instant, assign a priority to each active job, and allocate the available processors to the
highest-priority jobs.

Different scheduling algorithms differ from one another in the manner in which
priorities get assigned to individual jobs by the algorithms. Some scheduling algorithms
are observed to have certain desirable features in terms of ease (and efficiency) of
implementation, particularly upon multiprocessor platforms. Some of the important
characteristics of such algorithms were studied by Ha and Liu (1993, 1994) and Ha
(1995), who proposed the following definition:

DEFINITION 1 (Priority-driven algorithms, Ha and Liu 1994). A scheduling algorithm is
said to be a priority driven scheduling algorithm if and only if it satisfies the condition
that for every pair of jobs J; and J;, if J; has higher priority than J; at some instant in
time, then J; always has higher priority than J;.

By this definition, Algorithm EDF is a priority-driven algorithm while Algorithm PF is
not.

From an implementation perspective, there are significant advantages to using priority-
driven algorithms in real-time systems; while it is beyond the scope of this document to
describe in detail all these advantages, some important ones are listed below.

e Very efficient implementations of priority-driven scheduling algorithms have been
designed (see, for example, Mok, 1988).

e It can be shown that when a set of jobs is scheduled using a priority-driven algorithm
then the total number of preemptions is bounded from above by the number of jobs in
the set (and consequently, the total number of context switches is bounded at twice
the number of jobs).

e It can similarly be shown that the total number of interprocessor migrations of
individual jobs is bounded from above by the number of jobs.

1.3. This Research

The earliest deadline first scheduling algorithm (Algorithm EDF) is one of the most
popular scheduling algorithms used in research about real-time systems. In this paper, we
first study the EDF scheduling of periodic task systems upon identical multiprocessors—
we provide tight utilization-based conditions (Theorems 5 and 6) for determining whether
a particular periodic task system can be successfully scheduled by EDF upon a given
multiprocessor platform. More generally, however, we believe that most features of EDF-
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scheduling that make it such a popular scheduling algorithm—efficient implementations,
bounded preemptions and inter-processor migrations, etc.—are not unique to EDF, but
instead hold for all priority-driven scheduling algorithms. Therefore, we propose a
variant of the EDF scheduling algorithm that falls within the framework of priority-
driven algorithms, and which is provably superior to EDF in the sense that it schedules all
periodic task systems that EDF can schedule, and in addition schedules some periodic
task systems for which EDF may miss some deadlines.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2, we review some prior
results from real-time scheduling theory that we will be using in later sections. In Section 3,
we apply resource-augmentation techniques (Kalyanasundaram and Pruhs, 1995; Phillips
etal., 1997) to develop theoretical results that allow us to relate the feasibility (the existence
of schedules) and EDF-schedulability (the ability of EDF to successfully meet all
deadlines) of periodic task systems—while feasibility is equivalent to EDF-schedulability
in uniprocessor systems, this is not the case upon multiprocessors. In Section 4, we apply
the theory developed in Section 3 to obtain utilization-based EDF-schedulability bounds
for periodic task systems upon multiprocessors; furthermore, we prove that these bounds
are tight. In Section 5, we propose and analyze a new priority-driven scheduling algorithm
for scheduling periodic task systems upon multiprocessor platforms which is provably
superior to EDF. In Section 6, we summarize the results presented in this paper.

2. Background

We briefly describe below some results in multiprocessor real-time scheduling theory that
will be used in the remainder of this paper.

2.1. Predictable Scheduling Algorithms

Ha and Liu (1993, 1994; Ha, 1995) have studied the issue of predictability in the
multiprocessor scheduling of real-time systems from the following perspective.

Let us define a job J; = (r,¢;,d;) as being characterized by an arrival time r;, an
execution requirement ¢;, and a deadline d;, with the interpretation that this job needs to
execute for e; units over the interval [r;, d;).

DEFINITION 2 (Predictability) Let A denote a scheduling algorithm, and I =
{1,055 ..o, J, ) any set of n jobs, J; = (rj,e;,d;). Let f; denote the time at which job J;
completes execution when I is scheduled using algorithm A.

Now, consider any setI' = {J1,J5,...,J,} of n jobs obtained from I as follows. Job J;
has an arrival time rj, an execution requirement e_;» <e, and a deadline dj (i.e., job J; has
the same arrival time and deadline as J;, and an execution requirement no larger than
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Ji's). Letfj’ denote the time at which job J; completes execution when I is scheduled using
algorithm A. Scheduling algorithm A is said to be predictable if and only if for any set of
jobs I and for any such I' obtained from 1, it is the case that f; < f; for all j.

Informally, Definition 2 recognizes the fact that the specified execution-requirement
parameters of jobs are typically only upper bounds on the actual execution-requirements
during run-time, rather than the exact values. For a predictable scheduling algorithm, one
may determine an upper bound on the completion-times of jobs by analyzing the situation
under the assumption that each job executes for an amount equal to the upper bound on
its execution requirement; it is guaranteed that the actual completion time of jobs will be
no later than this determined value.

Since a periodic task system generates a set of jobs, Definition 2 may be extended in a
straightforward manner to algorithms for scheduling periodic task systems: an algorithm
for scheduling periodic task systems is predictable iff for any periodic task systems
1= {1,,15,...,7,} it is the case that the completion time of each job when every job of
7; has an execution requirement exactly equal to C; is an upper bound on the completion
time of that job when every job of 7, has an execution requirement of at most C;, for all i,
1<i<n.

The result from the work of Ha and Liu (1993, 1994) and (Ha, 1995) that we will be
using can be stated as follows.

THEOREM 1 (Ha and Liu) Any preemptive priority-driven scheduling algorithm is
predictable.

2.2. Scheduling Periodic Task Systems on Uniform Multiprocessors

Although our goal in this research is to study the scheduling of periodic task systems
upon identical multiprocessor platforms—multiprocessor machines in which all the
processors are identical—we find it useful to introduce a more general model of
multiprocessor machines—the uniform multiprocessor platform.

DEFINITION 3 (Uniform multiprocessors) A uniform multiprocessor platform is com-
prised of several processors. Each processor P is characterized by a single parameter—a
speed (or computing capacity) speed(P), with the interpretation that a job that executes
on processor P for t time units completes speed(P) X t units of execution”.

Let 7 denote a uniform multiprocessor platform. We introduce the following notation:

Sy & max {speed(P)}
Pen

Sy & Z speed(P)

Pen
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That is, s, denotes the computing capacity of the fastest processor in n, and S, the total
computing capacity of all the processors in T.

The problem of determining whether a particular periodic task system is feasible on a
given uniform multiprocessor platform has been studied (see, for example, Funk et al.,
2001). The following theorem was proved in Funk et al. (2001).

THEOREM 2 Let t denote a periodic task system. There is a uniform multiprocessor
platform © upon which t is feasible, which satisfies the following two properties:

o The fastest processor in m has computing capacity equal to the largest utilization of
any task in t, i.e.,

G
Sﬂ?ﬁ{r} )

1

® The cumulative computing capacity of T is equal to the utilization of 1, i.e.,

S=3 o @)

et 1

3. EDF-scheduling on Identical Multiprocessors

In this section, we develop a theoretical framework that permits us to relate the feasibility
of a real-time system upon a particular multiprocessor platform to its EDF-schedulability
upon a different real-time platform. This framework is more general than is needed for
our purposes—while we are interested in periodic task systems only, the results we derive
here hold for any arbitrary collection of jobs (and not just those generated by periodic
tasks); also, these jobs need not all be known beforehand to EDF, but can be revealed on-
line.

In the context of uniprocessor scheduling, a work-conserving scheduling algorithm is
defined to be one that never idles the (single) processor while there is any active job
awaiting execution. This definition extends in a rather straightforward manner to the
identical multiprocessor case:

DEFINITION 4 (Work-conserving scheduling algorithms) An algorithm for scheduling on
identical multiprocessors is defined to be work-conserving if it never leaves any
processor idle while there remain active jobs awaiting execution.

Note that EDF is a work-conserving algorithm by this definition.
Some additional notation:

DEFINITION 5 (W(A,n,1,t)) Let I denote any set of jobs, and m any uniform
multiprocessor platform. For any algorithm A and time instant t >0, let W(A,x,1,1)
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denote the amount of work done by algorithm A on jobs of I over the interval [0,t), while
executing on T.

Lemma 1 below specifies a condition (Condition (3)) upon any uniform multiprocessor
platform 7 and any identical platform 7’ under which any work-conserving algorithm A’
(such as EDF) executing on 7’ is guaranteed to complete at least as much work by each
instant in time ¢ as any other algorithm A (including an optimal algorithm) executing on
7, when both algorithms are executing on any set of jobs /.

Lemma 1 Let 7 denote a uniform multiprocessor platform with cumulative processor-
capacity S, and in which the fastest processor has computing capacity s,, s, <1. Let '
denote an identical multiprocessor platform comprised of m' unit-capacity processors.
Let A denote any uniform multiprocessor scheduling algorithm, and A’ any work-
conserving m'-processor identical multiprocessor scheduling algorithm. If the following
condition is satisfied:

Sn — S

e S 4 3
m_l—s,T 3)

then for any collection of jobs I and any time-instant t > 0,
W(A/an/a17t) 2 W(A,TE,],[) (4)

Proof: The proof is by contradiction. Suppose then that it is not true; i.e., there is some
time-instant by which a work-conserving algorithm A’ executing on 7’ has performed
strictly less work than some other algorithm A executing on 7. Let J; € I denote a job
with the earliest arrival time such that there is some time-instant #, satisfying

WA, 1, 1,) <W(A, 1, 1)

and the amount of work done on job J; by time-instant #, in A" is strictly less than the
amount of work done on J; by time-instant 7, in A.
By our choice of Tjs it must be the case that

W(A' 7' 1,r)) >W(A,n,1,r1;)

Therefore, the amount of work done by A over [r;, ;) is strictly more than the amount of
work done by A’ over the same interval.

Let x denote the cumulative length of time over the interval [r;,,) during which A’ is
executing on all m’ processors; let ydéf ((ty — r;) — x) denote the length of time over this
interval during which A’ idles some processor.

We make the following two observations.

e Since A is a work-conserving scheduling algorithm, job J;, which has not completed
by instant #, in the schedule generated by A’, must have executed for at least y time
units by time f, in the schedule generated by A’; while it could have executed for at
most (x+y) time units in the schedule generated by A; therefore,

(x4y) s, >y (5)
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e The amount of work done by A’ over [r;, 1) is at least
(m'x+y)
while the amount of work done by A over this interval is at most
e (x+)
therefore, it must be the case that
Spt(x+y) > (mx+y) (6)
Adding (m' — 1) times Inequality 5 to Inequality 6, we get
(m' = 1)(x+y) 85+ Sp(x+y) > (m' = 1) =y + (m'x+y)

=((m' = D)5y + ;) - (x+y) > m' - (x +)
=(m — 1)s, +S, >m

=S, — s, >m —m's,
S —s
= T I > m/
1—3s,
which is a contradiction of Condition (3). |

The following theorem applies Lemma 1 to the case where the work-conserving
algorithm A’ of Lemma 1 is Algorithm EDF, and algorithm A of Lemma 1 is an optimal
(offline) scheduler.

THEOREM 3 Let m denote an m-processor uniform multiprocessor platform with
cumulative processor-capacity S,, and in which the fastest processor has computing
capacity s, s, <1. Let I denote an instance of jobs that is feasible on n. Let 7' denote an
identical multiprocessor platform comprised of m' unit-capacity processors. If Condition
(3) of Lemma 1 is satisfied, then I will meet all deadlines when scheduled using the EDF
algorithm executing on 7'.

Proof: As a consequence of 7 and 7’ satisfying Condition (3), it follows from Lemma 1
that the work done at any time-instant z by EDF scheduling / on 7’ is at least as much as
the work done by that time-instant ¢ by an optimal scheduling algorithm executing / on 7:

W(EDF,n',1,t) > W(opr,m,1,¢) forall t >0

where OPT denotes an algorithm that generates a schedule for / which meets all deadlines
on n—since I is assumed feasible on 7, such a schedule exists.

We now prove by induction that / is scheduled by EDF to meet all deadlines on 7’. The
induction is on the number of jobs in /. Specifically, let 7, &f {J1,...,J;} denote the k jobs

of I with the highest EDF-priority.

Base case. Since I, denotes the empty set, /, can clearly be scheduled by EDF to meet
all deadlines on 7'
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Induction step. Assume that EDF can schedule I, on n’ for some k and consider the
EDF-generated schedule of I, ., on n’. Note that I, C I, | and that the J,_, does not
effect the scheduling decisions made by EDF on the jobs {J;,/,,...,J;} while it is
scheduling 7, ,,. That is, the schedule generated by EDF for {/,J,,...,J;} while
scheduling /; |, is identical to the schedule generated by EDF while scheduling /;; hence
by the induction hypothesis, these k highest priority jobs {J,,J/,,...,J;} of I, | all meet
their deadlines. It remains to prove that J; , | also meets its deadline.

Let us now turn our attention to the schedules generated by OPT executing on 7. Since /
is assumed to be feasible on 7, it follows that /; , | is also feasible on 7 and hence OPT will
schedule I, , ; on 7 to meet all deadlines. That is,

K+l
W(oPT, t, I; 1, dj 1) = Zci

i=1
where d, , | denotes the latest deadline of a job in /; , ;. By Lemma 1

k+1
W(EDF, 7', Iy 1, dy 1) > W(OPT, 7, [y 1, iy y) = Zci

i=1

Since the total execution requirement of all the jobs in I , | is Zfi 11 c; it follows that job
Ji .1 meets its deadline.

We have thus shown that EDF successfully schedules all the jobs of /; . ; to meet their
deadlines on 7’. The theorem follows. |

4. EDF-Scheduling of Periodic Task Systems

In this section and the next, we apply the theory developed in Section 3 above to study the
priority-driven scheduling of periodic task systems on identical multiprocessor platforms.
In this section, we study the EDF-scheduling of periodic task systems on multiprocessor
platforms; in Section 5, we consider the problem of scheduling periodic task systems
upon multiprocessor platforms when we are not restricted to using EDF, but rather may
use any priority-driven algorithm.

The results of Section 3 are applicable to on-line scheduling—the characteristics of
jobs need not be known prior to their arrival times. Although scheduling a periodic task
system is not an on-line problem in the sense that all task parameters are assumed known
beforehand, the results in Section 3 nevertheless turn out to be useful towards developing
a framework for scheduling periodic task systems on multiprocessors.

Let 7 = {7, 1,,...,7,} denote a periodic task system. Let uidéf(Ci/Ti) denote the
utilization of task 7; for each i, 1 <i<n, and let U(7) dgE,’«': 1u; denote the utilization of
task system 7. We require that u; < 1 for all i, 1 <i<n. Without loss of generality, we
assume that tasks are indexed according to non-increasing utilization; i.e., u; > u;  ; for
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all i, 1 <i<n. We introduce the notation (/) to refer to the task system comprised of the
(n—14 1) minimum-utilization tasks in 7:

;) def
i) def
(0 ={Ti,Tig1s- -5 Tnt

(According to this notation, t=1(1))

By a direct application of Theorems 2 and 3, we obtain below a sufficient condition for
a periodic task system to be successfully scheduled by EDF. By Theorem 2, periodic task
system t is feasible on some uniform multiprocessor platform n with cumulative
computing capacity S, = U(t), in which the fastest processor has speed s, = u;. Hence
by Theorem 3, we obtain the following theorem:

THEOREM 4 Periodic task system t can be EDF-scheduled upon an identical
multiprocessor platform comprised of m unit-capacity processors, provided

(Note that, as u; — 1, the right-hand side of Inequality 7 approaches co. However, the
number of processors needed for EDF to successfully schedule t cannot exceed the
number of tasks n; hence the right-hand side of Inequality 7 could be replaced by
min(n, [(U(t) — u; /1 — u;)]). For reasons of algebraic simplicity, we do not make this
explicit in the remainder of this paper.)

Theorem 5 follows by algebraic simplification of Equation (7):

THEOREM 5 Periodic task system t can be EDF-scheduled upon m unit-speed identical
processors, provided its cumulative utilization is bounded from above as follows:
UG) <m—uy+(m—1) (8)
It turns out that the bounds of Theorem 4 and 5 are in fact tight:
THEOREM 6 Let m denote any positive integer > 1, u; any real number satisfying
0<u, <1, and ¢ an arbitrarily small positive real number, ¢ << u,. EDF cannot schedule

some periodic task systems with cumulative utilization m — u;(m — 1) + & in which the
largest-utilization task has utilization equal to u,, upon m unit-speed processors.

Proof: Let P denote some positive number. We construct a task set T as follows.
1. Task 7, has execution requirement C; = u, * p and period T| = p.

2. Tasks 15, 1,,...,1, all have period T; = p and execution requirement C; = C for all ,
1 < i< n, satisfying

(n—1)-C=m-(1—uy) p+mo

where 6 = (p - ¢)/m. Furthermore, n is chosen such that n — 1 is a multiple of m, and is
large enough so that C << u; * p.
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The largest-utilization task in 7 is 7,, which has utilization equal to (u, *p)/p = u,. The
cumulative utilization of tasks in 7 is given by
up* c C C
S O B DR
p p p p
(n—1)-C

p

U(r)

13
:141—I—m'(l—ul)—i—ml—7
=m—u-(m—1)+e¢

Now consider the scheduling of the first jobs of each task, and suppose that EDF breaks
ties such that ,’s first job is selected last for execution.’ Then EDF schedules the jobs of
tasks 7,,73,... before scheduling 7,’s job; these jobs of 7,,75,... consume all m
processors over the interval [0, (1 — u;) - p + J), and 7,’s job can only begin execution at
time-instant (1 —u;)-p + 0. Therefore t,’s job’s completion time is ((1 —u;)-
p+0+u -p)=(p+0), and it misses its deadline. Thus, the T we have constructed
above is a periodic task system with utilization U(t) = m — u;(m — 1) + ¢, which EDF
fails to successfully schedule upon m unit-speed processors. The theorem follows. M

Phillips et al. (1997) had proved that any instance of jobs feasible upon m unit-capacity
multiprocessors can be EDF-scheduled upon m processors each of capacity (2 — (1/m)).
For periodic task systems, we see below (Theorem 7) that this follows as a direct
consequence of the results above.

Lemma 2 Any periodic task system © = {1,,75,...,7,} satisfying

. u; <m/(2m—1) for all i, 1 <i<n, and

2. U(t) <m?/(2m—1)

will be scheduled by Algorithm EDF to meet all deadlines on m unit-capacity processors.

Proof sketch: By Theorem 4, t can be EDF-scheduled on [(U(t) — u;)/(1 — u;)] unit-
capacity processors; by substituting for U(t) and u;, we obtain

e N e e N e e

THEOREM 7 Any periodic task system that is feasible upon m unit-capacity processors
will be scheduled by Algorithm EDF to meet all deadlines on m(2 — 1/m)-capacity
processors.



198 GOOSSENS ET AL.

Proof sketch: Suppose that periodic task system t = {1, 1,,...,1,} is feasible upon m
unit-capacity processors. It must be the case that

l. u; <1 for all i, 1<i<n—i.e., no individual task needs more than an entire
processor, and

2. U(r) < m—i.e., the cumulative computing requirement of 7 does not exceed the
capacity of the platform.

The theorem now follows directly from Lemma 2, by scaling all utilizations and
processor-speeds by a factor of (2 — 1/m). |

5. Priority-Driven Scheduling of Periodic Task Systems

If we are not tied to using EDF, but can instead use any priority-driven scheduling
algorithm, we can often schedule a periodic task system t upon fewer than the [(U x
(t) —uy)/(1 — u;)] processors mandated by Theorems 4 and 6. Recall that tasks in T are
indexed according to non-increasing utilization (i.e., u; > u; ¢ for all i, 1i < n), and
consider the following priority-driven scheduling algorithm:

Algorithm EDFW assigns priorities to jobs of tasks in t according to the following rule:
For all i <k, t;’s jobs are assigned highest priority (ties broken arbitrarily)—this is
trivially achieved within an EDF implementation by setting all deadlines of 7, equal to
— 0.
For all i >k, 7,;’s jobs are assigned priorities according to EDF.

That is, Algorithm EDFW assigns highest priority to jobs generated by the k — 1 tasks in t
that have highest utilizations, and assigns priorities according to deadline to jobs
generated by all other tasks in 7. (Thus, ‘‘pure’” EDF is EDF)

THEOREM 8 Periodic task system t will be scheduled to meet all deadlines on m unit-
speed processors by Algorithm EDF<k), where

et )

m:%—U+[1_W

©)

Proof: By Theorem 2, t% is feasible on some uniform multiprocessor platform with
cumulative computing capacity U(t'¥)), in which the fastest processor has speed u.
Hence, by Theorem 3, t®¥ can be EDF-scheduled upon an identical multiprocessor
platform comprised of 71 unit-capacity processors, where

l—uk
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It follows from the definition of m (Equation (9)) that
m=(k—1)+m

Now, consider the task system 7 obtained from 7 by replacing each task in (z \ t®)) by
a task with the same period, but with utilization equal to one:

U@y U

Let us consider the scheduling of 7 by Algorithm EDFY, on m unit-capacity processors
(where m is as defined in Equation (9)). Notice that Algorithm EDF® will assign
identical priorities to corresponding tasks in t and 7 (where the notion of
“‘corresponding’’ is defined in the obvious manner). Also notice that when scheduling
%, Algorithm EDF will devote (k— 1) processors exclusively to the (k— 1) tasks that
generate jobs of highest priority (since each has a utilization equal to unity) and will be
executing EDF on the jobs generated by the remaining tasks (the tasks in 7)) upon the
remaining 7 processors. As we have seen above, Algorithm EDF schedules the tasks in
78 upon 77 processors to meet all deadlines; hence, Algorithm EDF% schedules 7 upon
m processors to meet all deadlines of all jobs.

Finally, notice that an execution of Algorithm EDF*) upon m processors on task
system 7 can be considered to be an instantiation of a run of Algorithm EDF® upon m
processors on task system 7 in which some jobs—the ones generated by tasks whose jobs
are assigned highest priority—do not execute to their full execution requirement. Since
Algorithm EDF® isa predictable scheduling algorithm, it follows by the result of Ha and
Liu (Theorem 1) that each job of each task during the execution of Algorithm EDF® on
task system t completes no later than the corresponding job during the execution of
Algorithm EDF® on task system 7. And, we have already seen above that no deadlines
are missed during the execution of Algorithm EDF® on task system 7. |

By Theorem 4, [(U(t) — u;)/(1 — u;)] unit-capacity processors suffice to guarantee that
all deadlines of periodic task system 7 are met, if 7 is scheduled using EDF. As the
following corollary states, we can often make do with fewer than [(U(t) — u;)/(1 — u;)]
processors if we are not restricted to using the EDF scheduling algorithm, but may instead
choose one of the priority-driven algorithms Algorithm EDF®, for some k, 1 <k < n.

Corollary 1 Periodic task system t will be scheduled to meet all deadlines on
of M U (k+1)
)2 i { = 1)+ |2 (10)

unit-capacity processors by a priority-driven scheduling algorithm.

Proof: Let k.,;,(7) denote the smallest value of & that minimizes the right-hand side of
Equation (10):

U (elbmin(® + 1)
(1) = (k) — 1) + | L)
1 - ukmin(r)
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It follows directly from Theorem 8 that T can be scheduled to meet all deadlines
upon M, (t) unit-speed processors by the priority-driven algorithm Algorithm
EDF (knin (7)), ||

Algorithm PriD. Based upon Corollary 1 above, we propose the following priority-driven
scheduling algorithm for scheduling periodic task systems upon identical multi-
processors: Given a periodic task system 7 = {t,,7,,...,7,} with u; <u; | for all i,
1 <i > n, Algorithm PriD computes m,;, (t) according to Equation (10), and schedules t
by Algorithm EDF ("),

Example 1 Consider a task system t comprised of five tasks:
T =1{(9,10),(14,19),(1,3),(2,7),(1,5)}

for this system, u; =0.9, u, =14/19x0.737, uy =1/3, u, =2/7~0.286, and
us = 0.2; U(t) consequently equals = 2.457.

It may be verified that for this task system, the right-hand side of Equation (10) is
minimized for k = 3; hence, k,,;,(7) = 3 and m,;,(7) equals

0.286 4 0.2
-1 it B
3 )+{1—0.334w

oy 0.486
a 0.667

=3

That is, T can be scheduled to meet all deadlines by Algorithm EDF® on 3 processors.
By contrast, Theorem 4 can only guarantee that all deadlines will be met upon
[(U(t) —uy)/(1 —u,)]~[1.557/0.1] = 16 processors, if © were scheduled using EDF.
It is noteworthy that with respect to runtime complexity (and hence with respect to
scheduling overhead, scalability, etc.) the behavior of Algorithm PriD is identical to that
of EDF; therefore, all the positive characteristics of EDF in these respects continue to
hold for Algorithm PriD as well.

6. Experimental Evaluation

Above, we proposed a new priority-driven scheduling algorithm—Algorithm PriD—and
proved that this algorithm often makes better use of available computing resources than
“‘pure”” EDF. We now experimentally evaluate Algorithm PriD and compare its
performance with that of EDF.

In our experiments we shall study our technique based on randomly chosen systems.
We are cognizant that it is in general very difficult to draw accurate conclusions regarding
the benefits of a proposed technique from °‘‘simulations’’, since these benefits often
depend in a non-obvious way upon the many parameters of the real-time system—in
particular on the (distribution of the) system characteristics (the number of tasks, the load
of the system, etc.). It is of course not possible to consider all distributions of real-time
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systems in our simulations; moreover, it is difficult to determine which distributions are
reasonable, and which are not. For some of our simulation experiments, we have therefore
made use of the pseudo-random task set generator developed by Ripoll et al. (1996) for
evaluating a feasibility-analysis algorithm, which they have very generously made
available to us. Workloads generated by the Ripoll et al. generator have been widely used
for experimentally evaluating real-time scheduling algorithms, and these experiments
have been revealed to the larger research community for several years now. We believe
that using this task generator provides a context for our simulation results, and allows
them to be compared with other results performed by other researchers.

We use the pseudo-random periodic task set generator proposed by Ripoll and
colleagues, with the same parameters as in Ripoll et al. (1996) except the utilization
factor of the system which is uniformly drawn from interval [1,10], the computation
times are uniformly chosen from the interval [1,20], the deadlines from the interval
[2,170], and the periods from the interval [3,670]. Figure 1 shows the average (i.e., the
arithmetic mean) number of processors needed by Algorithms PriD and EDF as a
function of total utilization U(t).

Mixed systems. The experiments described above indicate that Algorithm PriD tends to
require fewer processors than pure EDF in general, in order to schedule a given periodic
task system. The benefits of Algorithm PriD seem to be even more significant if the
utilizations of the tasks are less homogeneous than is the case for task systems generated

. [ I ! J T T T T 7
priD —

pure EDF --------
20 + d
15+
10 -
5+
° I : X ; L 1 1 1 1

Figure 1. Average number of processors needed, as a function of total utilization U(z).
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by the Ripoll et al. generator (Ripoll et al. 1996), but instead tend to be clustered around
two different values; i.e., most tasks in the set of tasks can be classified into two
categories: ‘‘heavy’’ and ‘‘light’’ tasks.

In this set of experiments, we can no longer use the task-generator proposed by Ripoll
and colleagues (which generates systems of a given total utilization). Our task-generation
methodology is instead as follows: we choose values for the average utilization of the
heavy tasks X, and the average utilization of the light tasks X,, and generate task systems
comprised of 50 tasks as follows:

1. n«0;

2. Generate* n, heavy tasks:
u; < normal(x,,0,) i=1,...,n;
3. Generate 50 — n; light tasks:

u;<normal(%,,0,) i=n; +1,...,m

4. Re-order the utilization factors such that u; > u, > --- > u,;

ne

5. mypeming_ {(k— 1)+ [UCED /1T — ]}
200 T T T T T T T L
priD ——
pure EDF -+
180 | 4
160 + -
140 |- -
120 b 1
100 1
80 - .
60 F -
40 ﬂ
20 1 1 1 1 1 1 1 1 L
0 5 10 15 20 25 30 35 40 45 50

Figure 2. Average number of processors needed, as a function of number of heavy tasks (¥, = 0.8; ¥, = 0.4).
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1000 T T T T T T T T

priD
900 L pure EDF - _

800 | |
700 | i

600 L |
400 - .

200 F |

Figure 3. Average number of processors needed, as a function of number of heavy tasks (¥, = 0.95; X, = 0.1).

6. ’/hmin&min{m|m>0/\U(‘5)sz/z.m_l};
7. nmen +1;
8. if n; <50 repeat from step 2.

Figures 2 and 3 show the average number of processors needed by Algorithms PriD
and EDF, as a function of the number of heavy tasks n,. These graphs are obtained by
applying the above algorithm to a large number of randomly chosen utilization factors.
Figure 2 corresponds to the case where x¥; = 0.8 and X, = 0.4. Figure 3 corresponds to
the case where ¥; = 0.95 and X, = 0.1. In both cases, we observe that Algorithm PriD
compares more favorably to EDF, than was the case with task-systems generated
according to the Ripoll et al. task-generator (Ripoll et al., 1996).

7. Summary

Despite the fact that it is provably non-optimal in multiprocessor systems, there is
considerable interest in being able to implement the EDF scheduling algorithm upon
multiprocessor platforms. In this paper, we have provided a comprehensive analysis of
the EDF-scheduling of periodic task systems upon multiprocessor platforms, by proving a
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tight utilization-based feasibility condition which depends upon both the total utilization
of the system and the maximum utilization of any individual task comprising the system.

We believe that many of the properties of EDF that contribute to its popularity among
real-time systems designers—efficient implementations, bounded preemptions and inter-
processor migrations, etc.—are in fact satisfied by all priority-driven scheduling
algorithms. Accordingly, we have proposed and evaluated here Algorithm PriD, a new
priority-driven scheduling algorithm for scheduling periodic task systems upon multiple
processors that is provably superior to EDF in the sense that it schedules all periodic task
systems that EDF can schedule, and in addition schedules some periodic task systems for
which EDF may miss some deadlines.

Notes

1. Informally, a job becomes active at its ready time, and remains so until it has executed for an amount of time
equal to its execution requirement, or until its deadline has elapsed.

2. Observe that identical multiprocessors are a special case of uniform multiprocessors, in which the computing
capacities of all processors are equal and generally assumed equal to unity.

3. Alternatively, 7;’s period can be chosen to be infinitesimally larger than p—this would force EDF to schedule
7;’s job last, without changing the value of m.

4. normal(X, o) represents a pseudo-random number generator which uses the normal distribution (with an
average of X and a standard deviation of ¢) restricted to values in the interval (0, 1).
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