
Journal of Strategic Information Systems xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Journal of Strategic Information Systems

journal homepage: www.elsevier .com/ locate/ js is
The attraction of contributors in free and open source software projects

Carlos Santos a,⇑, George Kuk b, Fabio Kon c,1, John Pearson d,2

a University of Brasilia, Department of Management, Caixa-Postal: 4320, 70910-900 Brasilia, DF, Brazil
b Nottingham University Business School, Nottingham, UK
c Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, 207-C, Rua do Matão, 1010, Cidade Universitária,
05508-090 São Paulo, SP, Brazil
d Department of Management Information Systems, College of Business, Rehn Hall, Southern Illinois University at Carbondale, Rehn 210-A, Mail Code
4627, Carbondale, IL 62901, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 October 2010
Received in revised form 11 July 2012
Accepted 31 July 2012
Available online xxxx

Keywords:
Attractiveness
Open source
Free software
Preferential attachment
Contributors
Contributions
Software development
0963-8687/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.jsis.2012.07.004

⇑ Corresponding author. Address: Universidade d
Caixa-Postal 4320, 70910-900 Brasilia, DF, Brazil. Te

E-mail addresses: carlosdenner@unb.br (C. Sant
Pearson).

1 Tel.: +55 11 3091 6135.
2 Tel.: +1 618 453 7802.

Please cite this article in press as: Santos, C.,
Inform. Syst. (2012), http://dx.doi.org/10.101
As firms increasingly sanction an open sourcing strategy, the question of which open
source project to undertake remains tentative. The lack of established metrics makes it dif-
ficult to formulate such strategy. While many projects have been formed and created, only
a few managed to remain active. With the majority of these projects failing, firms need a
reliable set of criteria to assess what makes a project appealing not only to developers
but also to visitors, users and commercial sponsors. In this paper, we develop a theoretical
model to explore the contextual and causal factors of project attractiveness in inducing
activities such as source code contribution, software maintenance, and usage. We test
our model with data derived from more than 4000 projects spanning 4 years. Our main
findings include that projects’ set of conditions such as license restrictiveness and their
available resources provide the context that directly influence the amount of work activi-
ties observed in the projects. It was also found that indirect and unintended contributions
such as recommending software, despite of being non-technical, cannot be ignored for pro-
ject activeness, diffusion and sustainability. Finally, our analysis provide evidence that
higher attractiveness leads to more code-related activities with the downside of slowing
down responsiveness to address projects’ tasks, such as the implementation of new fea-
tures and bug fixes. Our model underscores the significance of the reinforcing effects of
attractiveness and work activities in open source projects, giving us the opportunity to dis-
cuss strategies to manage common traps such as the liability of newness. We conclude by
discussing the applicability of the research model to other user-led initiatives.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Free and open source software projects (FOSPs) comprise groups of developers and users geographically dispersed but
connected together through shared values and the Internet (Herbsleb and Mockus, 2003; Stewart and Gosain, 2006). Open
source developers have traditionally developed software as a hobby but are increasingly being paid and sponsored by com-
mercial and public organizations (Fitzgerald, 2006). To facilitate the development process and promote widespread adop-
tion, the application and its source code are made available on a website, which provides all the information and tools
. All rights reserved.

e Brasília, Campus Darcy Ribeiro, Departamento de Administração, Asa Norte – ICC Norte – 1� Andar,
l.: +55 61 82126224.

os), george.kuk@nottingham.ac.uk (G. Kuk), kon@ime.usp.br (F. Kon), jpearson@business.siuc.edu (J.

et al. The attraction of contributors in free and open source software projects. J. Strateg.
6/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004
mailto:carlosdenner@unb.br
mailto:george.kuk@nottingham.ac.uk
mailto:kon@ime.usp.br
mailto:jpearson@business.siuc.edu
http://dx.doi.org/10.1016/j.jsis.2012.07.004
http://www.sciencedirect.com/science/journal/09638687
http://www.elsevier.com/locate/jsis
http://dx.doi.org/10.1016/j.jsis.2012.07.004


2 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
needed for the software to be used, adapted and improved by the public. Over the years, several projects, such as the Web
server Apache, the operating system GNU/Linux, and the browser Firefox, have become widely adopted, demonstrating the
viability of the open source production model and its capacity to create high-quality applications. Consequently, corpora-
tions have started opensourcing their software assets, aiming to create and capture new business value from this alternative
to a more traditional way of developing software (Agerfalk and Fitzgerald, 2008).

The significance of attracting users and developers has been frequently highlighted in the open source literature (Arakji
and Lang, 2007; Koch, 2004; Krishnamurthy, 2002; Sen et al., 2008; von Krogh et al., 2003). Each group of users and devel-
opers contributes a unique set of complementary resources to FOSP: users provide inputs including bug reports, suggestions
of new features, and translation of documentation; and developers implement new features, fix bugs, and deal with spon-
sors. These roles are reflected in the ways the success of FOSP has been measured (Crowston et al., 2005; Long, 2006), includ-
ing developers’ contribution to source code modularity (Shaikh and Cornford, 2003), number of lines of code generated
(Mockus et al., 2000), velocity of closing bugs (Herbsleb and Mockus, 2003), and the number of downloads (Crowston
et al., 2004; Krishnamurthy, 2002; Grewal et al., 2006).

Raja and Tretter (2006), Crowston and Scozzi (2002), and Comino et al. (2007) viewed success as the ability of a project to
advance through development phases (e.g., from alpha to beta, and from beta to stable). Koch (2004) and Crowston and
Howison (2006) suggested the use of community size (i.e., number of members) as a proxy for success. Additionally, Stewart
and Gosain (2006) adopted a dependent variable labelled ‘‘effectiveness’’, composed by the abilities to receive inputs and
produce related outputs such as fixing bugs and adding new features to the software. These various measures reflect the
roles of both input (e.g., bug reports) and output (e.g., bug fixes) producers in open source software development and suc-
cess. In short, contributions to FOSP come from various groups; developers need users to inform their practices, and users
need developers to implement their requests (von Krogh and von Hippel, 2006). Yet, the literature primarily singles out
developers as the main contributor to the success of FOSP (Bagozzi and Dholakia, 2006).

The eye-ball metaphor, underpinning the Linus law, underscores two sources of contributions for the success of FOSP. Be-
sides reviewing each others’ source code (co-developers), it highlights the role of users as beta-testers in reporting bugs
(Raymond, 1999). Bagozzi and Dholakia (2006) noted that experienced users provide support to less experienced individuals,
and Bevan (2006) pointed out that users’ input is frequently responsible for usability improvements. Users play an important
role in the innovation process of FOSP. Although not generally acknowledged in empirical research, users’ contributions are
critical to FOSP success (Crowston et al., 2003; von Hippel, 2005; Grewal et al., 2006; Bagozzi and Dholakia, 2006), and their
contributions have been observed in related industries (Arakji and Lang, 2007).

Another source of contribution is the role of the visitor to FOSP’s Web pages. We suspect that this type of contribution is
less frequent, but visitors contribute to FOSP through various activities such as reporting broken links or installation prob-
lems, and requesting a version not yet available for a particular operating system (or a missing feature that they wish to
have). There is also the possibility of a technically-inclined visitor inspecting the source code and posting a suggestion or
referring people to the project. Hence, visitors can contribute to FOSP success, even though they may never use or get directly
involved in developing the software.

Ye and Kishida (2003) discuss the roles of passive users, readers, bug reporters, bug fixers, peripheral developers, active
developers, core members, and project leaders. Though fairly comprehensive, their model implicitly assumes that the con-
tributing roles can only be performed by users and developers, excluding the visitors as a key actor. We expand this view by
stating that visitors, users and developers are key resources to FOSP, and that attracting, retaining and inducing them to con-
tribute are core challenges for success. Yet how their roles are interrelated in open source development is relatively
unexplored.

To address this limitation, we introduce a theoretical framework around the construct of ‘‘attractiveness’’, which is de-
fined as an array of project values perceived by its potential and actual visitors, users and developers. Our motivation to de-
fine and focus on this construct is based on prior research, which has suggested ‘‘the need for the company to market the
attractiveness of the project and improve its visibility’’ (Agerfalk and Fitzgerald, 2008, p. 394). This definition implies that
attractiveness is a core construct in obtaining the critical resources brought along by different actors, whose motivations,
capabilities and likelihood to contribute are influenced by their perceptions of project values and the available resources
to the project. In turn, their contributions may increase project values (such as attractiveness) and perpetuate software
development as a virtuous cycle. We argue that contributors, including visitors, users and developers contribute in different
ways to the shared-innovation process, and that as a collective promotes wide adoption and software development and
maintenance. In developing our model, we seek to identify factors that affect the distribution of these resources and ulti-
mately the relative success among FOSP.

This paper presents a model to examine what attracts contributors, creating an environment likely to improve and pro-
mote the project sustainably. We attribute the success of FOSP to a user-driven process, involving complementary contribu-
tions from various user groups. Overall, our intent is threefold: to understand what makes certain open source projects
preferable for usage and improvement; to tease out the rich-get-richer effect; and notably to provide managers the insights
into formulating a strategy to compete for external collaborators and complementors. We organize the rest of the paper as
follows. First, we use the extant literature of FOSP to frame and develop our model of attractiveness. Next, we describe the
methods and present the empirical testing of our model, which is followed by the results and the implications for theory and
practice. Finally, our view on future research and the broader conclusions close the paper.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 3
2. Literature review and model development

What makes certain FOSP preferable to others? Prior research concerns the general appeal of a specific project to devel-
opers but relatively less to other user groups. As commercial organizations increasingly sanction an open source strategy
(Agerfalk and Fitzgerald, 2008; Fitzgerald, 2006), the user uptake will determine the level of sponsorships (Stewart et al.,
2006; West and O’Mahony, 2005), and the sustainability of FOSP. This reflects in the strategic thinking of several large open
source coalitions such as the Open Source Initiative and the Linux Foundation. One of their core goals is to encourage the
development process to be more liberal, by being less restrictive in the terms of use and commercialization potentials of
the derivatives, and attract commercial contributions and exploitation. This highlights the significance of bringing develop-
ers and different user groups closer together as a collective rather than a collection of disparate entities.

To release the source code to the public creates opportunities for independent and enterprise developers to co-develop
with peers and users. This open approach has proved to be successful and exerted a profound effect on the software industry.
Yet, despite the highly cited use cases such as GNU/Linux, only few hundreds FOSP have managed to succeed
(Krishnamurthy, 2002; Xu and Madey, 2004; Koch, 2004). With the vast majority failing, it seems that the action of releasing
source code alone is insufficient to attract and sustain contribution. This uneven distribution of contributors conforms to the
behavioural phenomenon of preferential attachment commonly observed in online communities including open source (Xu
and Madey, 2004).

Preferential attachment has been used to explain uneven distribution of resources among objects of systems as diverse
and complex as those associated with the Internet, neural networks and academic authorships. It is often used synony-
mously with the rich-get-richer effect, a characteristic of the Pareto or heavy-tailed distribution (Price, 1976; Clauset
et al., 2009; Papadakis and Tsionas, 2010). The tendency of overly concentrating on a few gives rise to a general scale-free,
power-law distribution of resources to objects (Simon, 1955), which partially defines the growth mechanism of how such
systems develop over time (Barabási and Albert, 1999; Barabási, 2005).

Although the parsimonious and general description offered by preferential attachment is intuitively appealing, it is not
clear which set of conditions instigate such distribution. Although prior studies have shown that new nodes tend to connect
to highly-connected ones, the underlying reasons (including the contextual conditions) of why certain nodes become estab-
lished as preferential among other nodes are unexplored. The underlying mechanisms of preferential attachment are mark-
edly different across social and physical systems (e.g., Lee et al., 2006; Newman, 2002). The reasons leading to the
concentration of contributors on a few projects are not the same nor directly comparable to physiological systems. In phys-
iological systems, the chemistry guides the interaction among proteins and the attraction is often determined at the molec-
ular level, whereas in social systems the attraction is wired to perceptions and intentions. In relation to open source software
development, a patch of code is being reused by developers because of its perceived quality and usefulness. This raises fur-
ther questions of whether the attachment of new resources to a particular object is solely based on the object’s ‘‘popularity’’
and/or its unique set of attributes or characteristics. Additionally, little is known of the underlying change process that can
elevate the status of a less preferred object. This paper seeks to examine the set of project conditions and the underlying
dynamics of what makes an open source project attractive, aiming to inform practice and generate a theory designed to
the open source ecosystem, a kind of theory that, being specific, has been overlooked (Keller, 2005).

The success of open source software has been attributed to many developers working under the Bazaar paradigm. How-
ever, only a few FOSP managed to build virtuous and productive Bazaar ecosystems (Krishnamurthy, 2002), giving rise to a
scale-free network (Xu and Madey, 2004). Researchers have been trying to understand what motivates FOSP developers and
drives user-interest, highlighting the importance of trust, knowledge sharing, employment prospects, sponsorship, coordi-
nation mechanisms and communication patterns within the communities (von Krogh, 2002; Crowston and Scozzi, 2002;
Stewart et al., 2006; Stewart and Gosain, 2006; Crowston and Howison, 2006; Fershtman and Gandal, 2007; Fang and
Neufeld, 2009). Nevertheless, most of the prior research has focused on developers to explain projects’ activities and success,
and less on the role of users and visitors as contributors to the use-value of FOSP.

Users provide relevant problems to be solved such as bug reports and enable the network externalities that not only in-
crease the popularity of the project but also attract new users and sustain developers’ contribution. Similarly, visitors of a
project Web page, representing ‘‘brand’’ exposure and commercial success (Grewal et al., 2006), can contribute to the net-
work externalities by enhancing the ranking of the visited project (Muffato, 2006). Moreover, visitors may indirectly contrib-
ute to the improvement of FOSP by reporting broken links or engaging in R&D activities. Visitors, users and developers are
valuable resources to FOSP as they all are, directly or indirectly, contributing to the projects in terms of R&D, marketing, and
technology adoption, improvement and diffusion. Yet their conjoint role in open source software development has been
overlooked.
2.1. Project activities: the sources of improvement, software maintenance

We have stated that visitors, users and developers are critical resources to FOSP because they are responsible for contribu-
tions, which in turn, are the sources of open source software development, improvement and diffusion (Ye and Kishida, 2003).
These contributions can be observed through FOSP activities that take place over supporting online tools, such as forums and
bug tracks. We refer to project work activities as the inputs as well as outputs that the community provides to the project.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


4 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
FOSP attractiveness influences work activities in a variety of ways. First, from the perspective that every problem is obvi-
ous to someone in software development (Raymond, 1999; Sharma et al., 2002), a straight forward implication of having
more visitors, users and developers is that the probability of receiving contributions (inputs and outputs) increases as more
people gravitate around the project. Second, from a theoretical point of view, we argue that project attractiveness influences
the community motivation, at the individual level, to contribute to the project. Attractiveness is related to popularity and
visibility of a project, which increases the motivation of individuals to showcase their abilities (signalling), and improving
their reputation within both developers and business communities (Lerner and Tirole, 2002; Roberts et al., 2006). In short,
the development community may expect a higher impact from their contributions, as well as higher returns, and is more
inclined to contribute to projects they perceive as highly attractive.

Free software projects, as creative enterprises, have agents embedded in an open ecosystem that can inspire and evaluate
their contributions and resulting products (Guimera et al., 2005). This ‘‘large social milieu’’, as Nonneke and Preece (2000, p.
6) put, is a source of motivation to contributors and ‘‘has far-reaching consequences’’, affecting people’s posting behaviour.
The richer this ecosystem, or larger the social milieu, the better for the project, as it becomes more diverse, fostering inno-
vation (von Hippel and von Krogh, 2003; O’Mahony, 2007). A highly-attractive project that brings a sufficient number of
developers and users/visitors together has a higher chance of forming a virtuous, cooperative relationship with the users
and visitors sourcing a relevant set of problems for the developers to solve. Higher user-interest leads to more development
activity (Stewart et al., 2006). In contrast, the use-value of a project without visitors and users is limited to a few developers
and has a lesser appeal to the wider public, particularly affecting community intention to contribute.

To explore these theorised benefits of attractiveness on FOSP activities, we focused on four complementary, yet different,
measures. First, intending to capture the amount of any direct activity observed in the projects, we gathered and summed
the numbers of bug reports, feature and support requests, and patches submitted, under the label of project ‘‘activeness’’.
This measure focuses on the volume of ideas and opportunities for project improvement and maintenance that were sug-
gested by its resources. Then from this total sum, we excluded any requests that the project was unable to address, main-
taining only those that were properly taken care of (‘‘closed’’). We labelled this second measure ‘‘effectiveness’’, and believe
it is key for the long-term success of a project, as its absence would condemn an open source software to an outdated state,
progressively distant from market’s changing interests and demands.

Further, we calculated the ratio of effectiveness over activeness to explore the effects of attractiveness on the likelihood of
a contributor input being properly addressed. This represents a project’s overall responsiveness to tasks originated in the
community. We also computed the average time projects take to address the inputs they have received. The importance
of development speed is practical and generates some level of urgency among developers, in that, ‘‘[t]he more readily devel-
opers can recognize the needs and problems addressed by the project, the more successful the project’’ (Crowston and Scozzi,
2002, p.10). Details of the construction and acquisition of these measures are discussed in the methods and results sections.

Having discussed the main project activities related to software maintenance and improvement, we argue that there is a
cyclical influence between project activities and attractiveness. Resources, influenced by attractiveness, are recruited and act
to maintain and improve software, and their recruiting and actions influence project attractiveness. At an empirical level, we
will first assess whether there is a direct influence from attractiveness to project activities, a necessary condition to support
our theoretical claim of cyclicality. To do that, we formulate our first four propositions, linking attractiveness to project activ-
ities. Accordingly, we have:

Proposition 1: FOSP attractiveness significantly influences activeness.
Proposition 2: FOSP attractiveness significantly influences effectiveness.
Proposition 3: FOSP attractiveness significantly influences likelihood of task completion.
Proposition 4: FOSP attractiveness significantly influences time for task completion.

2.2. The causes of attractiveness

As we have discussed, visitors, users and developers tend ‘‘to attach’’ to few ‘‘attractive’’ open source projects, creating a
rich gets richer effect (Krishnamurthy, 2002; Xu and Madey, 2004; Koch, 2004). In the following sections, we focus on spe-
cific characteristics of FOSP, which define their ‘‘condition’’ that impacts attractiveness, and relate them later onto the pref-
erential attachment mechanism.
2.3. Set of conditions: FOSP characteristics

To explain involvement in open source development, prior research has focused on contributors’ intrinsic and extrinsic
motivations, like signalling to potential employees (Crowston and Scozzi, 2002; Stewart and Gosain, 2006). We do not chal-
lenge this explanation, but intend to expand it, using project as our unit of analysis (Colazo and Fang, 2009). The focus on
project allows the examination of which project set of conditions (a set of contextual factors), influences the likelihood of
that project being chosen by potential contributors. Project characteristics have been shown in the past to be linked to con-
tributors’ motivations and perceived usefulness, impacting development activities and adoption rates (Comino et al., 2007;
Crowston and Scozzi, 2002; Fang and Neufeld, 2009; Sen et al., 2008).
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 5
The project set of conditions, including license type and application domain, affect their attractiveness throughout their
life-cycles. This in turn influences contributor recruitment and contribution generation, which take place as people browse
for and find out about software, as well as consider contributing to a project after they have become ‘‘a resource of’’. Some
people may report a failed-attempt to download or install the software; others may post bugs or develop features for appli-
cations in initial stages. Moreover, open source advocates might prefer to use, be associated with, and/or refer people to GPL-
licensed applications. FOSP’s application domain helps define the target population size, benefiting those in larger domains.
For example, it is highly likely that there is a smaller demand for compilers in comparison to office suites. Accordingly, we
expect that, all other things being equal, compilers are less likely to attract contributors than office suites, impacting the
recruitment of contributors, project’s activity level and its probability of receiving other indirect contributions. Similarly,
application domain relates to contributors’ profile, as users of compilers tend to be technically-inclined software developers,
and thus are more capable of contributing or inspecting source code than office suite users.

A project’s set of conditions affects its ability to attract resources and activity levels via different mechanisms. First, these
conditions offer an opportunity for people to prefer a specific application context when choosing what to adopt and contrib-
ute to. Second, they specify the boundaries of competition for recruiting a limited amount of resources available in the mar-
ketplace. Finally, FOSP set of conditions influences their visitors, users and developers likelihood of contributing, as their
community profile (e.g., computer skills) depends on who they target (programmers or end-users). These project conditions
work together to influence people’s perception of FOSP attractiveness, which affects recruitment of resources and generation
of contributions.

Several distinctive and empirically observable elements constitute the project set of conditions, working in tandem with
each other as a set to influence people’s perceptions of project attractiveness in a cyclical and dynamic manner. As such, the
task to hypothesize in advance the direction of influence of all their combinations on our variables of interest would be
unmanageably complex. Accordingly, we opted to theorize in an exploratory manner, stating that each project condition
has an influence, which is not independent of the state of another condition as they act together as ‘‘the context’’, on project’s
resource availability and the amount of activity observed. Next, we present our propositions relating each FOSP character-
istics to attractiveness and work activities, and then elaborate on how feedback works within the preferential attachment
mechanism along with project conditions.

2.4. Type of license

What allows the classification of a project as open source and/or free software is the license. FOSP licenses regulate what
can and cannot be done with the software, its source code and derivative works, influencing its range of use and distribution,
and notably its intellectual property (Agerfalk and Fitzgerald, 2008; Santos et al., 2011). Under the General Public License
(GPL) the source code of the new derivatives have to remain open and are not allowed to be redistributed as proprietary soft-
ware. Whereas the Mozilla Public License and the Eclipse Public License permit greater interaction with proprietary software
and provide greater commercial freedom (Fershtman and Gandal, 2007).

In the literature, open source software licenses are commonly grouped based on their restrictiveness (Fershtman and
Gandal, 2007; Lerner and Tirole, 2005; Sen et al., 2008; Stewart et al., 2006). In general, there are three levels of restrictive-
ness: (1) do not allow combined compilation with proprietary software and force a derivative work to have the same license
as the original (Strong-Copyleft); (2) force derivative works to have the same license but allow combined compilation with
proprietary software (Weak-Copyleft); and (3) do not impose any of these restrictions (Non-Copyleft). The influence of type
of license on FOSP has appeared in different ways. Lerner and Tirole (2005) have examined how license choice is associated
with a project’s audience, developers or end-users. It has been reported that license choice is associated with the amount of
developer activity, user interest, and individual intention to contribute (Fershtman and Gandal, 2007; Stewart et al., 2006;
Santos et al., 2011). Sen et al. (2008) pointed out that license restrictions impact perceived usefulness and the visibility of
software. Colazo and Fang (2009), using social movement theory, argued that license type, FOSP size, and development speed
are linked. These findings together suggest that license type affects project work activities and thus attractiveness of open
source software. That is, the attraction of resources is influenced by the license a project adopts. For instance, whilst open
source advocates tend to use GPL applications, for-profit organizations tend not to combine their proprietary codes with
open source ones because this will effectively give away their property rights. Thus, we have:

Proposition 5.1: Type of license significantly influences FOSP attractiveness.
Proposition 5.2: Type of license significantly influences FOSP activeness.
Proposition 5.3: Type of license significantly influences FOSP effectiveness.
Proposition 5.4: Type of license significantly influences FOSP likelihood of task completion.
Proposition 5.5: Type of license significantly influences FOSP time to complete tasks.

2.5. Type of user

Software aid processes that are managed by different types of users. These types of users can be end-users (e.g., browsing
the web), advanced end-users (e.g., developing a database), system administrators (e.g., creating backups), and developers
(e.g., writing software). The influence of type of user, or audience, on FOSP activities has been discussed in the literature
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


6 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
(Crowston and Scozzi, 2002; Stewart et al., 2006; Fershtman and Gandal, 2007). FOSP aiming at technically inclined users are
more likely to find contributors among their users, and FOSP for less technically inclined users have a larger audience and,
thus, more chances of finding users and developers (Comino et al., 2007; Crowston and Scozzi, 2002). Some FOSP ‘‘have a
greater number of potential developers in the community than others do’’, says Johnson (2002, p. 664). Additionally, Stewart
et al. (2006, p. 136) hypothesized the influence of type of user on both user-interest and development activities, stating that
‘‘[t]hose targeted at a developer audience may attract greater development activity or be less appealing to users’’. Similarly,
projects targeted at developers have been found to be more active than those targeted at system administrators, which out-
perform projects for end-users (Crowston and Scozzi, 2002). Finally, the number of software developed for different types of
users are not equal, influencing the amount of available resources in the market and competitiveness for contributors and
their contributions.

Although the literature suggests that recruitment and project work activities are affected by type of user, it is not clear
how these will affect the conjoint attraction and role of visitors, users and developers in FOSP, nor in the presence of and
interacting with the other FOSP characteristics. We formulate the following:

Proposition 6.1: Type of user significantly influences FOSP attractiveness.
Proposition 6.2: Type of user significantly influences FOSP activeness.
Proposition 6.3: Type of user significantly influences FOSP effectiveness.
Proposition 6.4: Type of user significantly influences FOSP likelihood of task completion.
Proposition 6.5: Type of user significantly influences FOSP time to complete tasks.

2.6. Application domain

An application supports certain processes for its users. To cover these processes, FOSP applications are classified accord-
ing to domains, or project categories, such as genealogy, payroll, chat, browser and games (Crowston and Scozzi, 2002). The
application domain restricts, where a software competes for contributors and their contributions; it is the software industry
or niche (Jaisingh et al., 2008). For example, Firefox generally does not compete for users with R, as they operate in distinct
arenas. Potential contributors typically look for projects to work on in a specific domain (Johnson, 2002), and so it is likely
that they will first select one over the others. Raymond (1999) uses email client projects to illustrate how self-selection
works in practice, underlining how FOSP are competing among themselves for contributors and contributions within each
application domain.

Additionally, the application domain has been discussed in the context of ‘‘technical sophistication’’ (Comino et al., 2007).
As such, more technically sophisticated domains like ‘‘compilers’’ are more likely to receive substantial contributions from its
users, as they are developers and thus have the required technical skills (Crowston et al., 2005; Crowston and Scozzi, 2002).
In this line of reasoning, there is an overlapping with the effects of the type of user condition we discussed previously. How-
ever, it is still important to control for the application domain in addition to the type of user as projects of the same appli-
cation domain can still target different types of users. For example, one software can provide an intuitive graphical user
interface, whereas a different application may require the user to write algorithms and be familiar with a particular language
to perform the same tasks through a command-line interface. The software application domain has been hypothesized to be
associated with both user-interest and development activity (Stewart et al., 2006). Therefore, FOSP attractiveness and work
activities should be affected by their application domain as well as by the characteristics of the other projects operating
within that domain. Thus, in the context of our model, we have:

Proposition 7.1: Application domain significantly influences FOSP attractiveness.
Proposition 7.2: Application domain significantly influences FOSP activeness.
Proposition 7.3: Application domain significantly influences FOSP effectiveness.
Proposition 7.4: Application domain significantly influences FOSP likelihood of task completion.
Proposition 7.5: Application domain significantly influences FOSP time to complete tasks.

2.7. Stage of development

Software engineers generally classify applications according to their stage of development, in a life-cycle fashion. These
stages in the life-cycle are planning, pre-alpha, alpha, beta, production and mature. FOSP make their software stage available
to the public, informing their maturity level condition and influencing decisions to adopt and contribute (Crowston and
Scozzi, 2002; Raja and Tretter, 2006), as well as the level of development activity (Stewart et al., 2006).

There are known links between stage of development, project size and contributors’ technical skills (Comino et al., 2007).
Furthermore, stage of development can be used as a strategy by project managers, for a beta release may be seen as an invi-
tation for contributions from the community, as well as for users to try a ‘‘new’’ application. At the same time, it is probable
that users prefer mature software over applications at the alpha level. Accordingly, these observations together suggest that
the stage of development condition has to be incorporated in our model, influencing how attractive FOSP are and their level
of work activities. Thus, we have:
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 7
Proposition 8.1: Stage of development significantly influences FOSP attractiveness.
Proposition 8.2: Stage of development significantly influences FOSP activeness.
Proposition 8.3: Stage of development significantly influences FOSP effectiveness.
Proposition 8.4: Stage of development significantly influences FOSP likelihood of task completion.
Proposition 8.5: Stage of development significantly influences FOSP time to complete tasks.

2.8. The feedback effect of project activities, software maintenance

FOSP change their contributor-base and the amount of contributions received over time, distinguishing between initial
and sustained contribution. Fang and Neufeld (2009) demonstrated how important is for contributors to learn and construct
a shared identity with the project to sustain their motivation to participate over time. Roberts et al. (2006) showed how past
performance rankings of developers influence their future motivation to contribute. Ye and Kishida (2003) pointed out that
there is a co-evolution in FOSP, with contributors’ motivations being affected by their contributions to the project, which can
result in status promotion. Yet, this stream of research has been mostly restricted to the contributor (developer) as the unit
of analysis, not the project. Adding to this literature, we propose a mechanism through which contributions are sustained at
the project level. Specifically, we differentiate direct (project activities) from indirect contributions (attractiveness self-rein-
forcing effect).

One source of FOSP improvement and software maintenance is through the work activities carried out by developers.
These activities, which are direct contributions, can translate into changing project attractiveness. For example, visitors,
users and developers might have requested a series of new features that were later implemented, directly affecting the per-
ceived usefulness of the software and the potential benefits to new participants in the long-run (Stewart et al., 2006). In con-
trast, a ‘‘buggy’’ software, with many unreported and thus not addressed problems, will adversely affect project
attractiveness. When a community crowds around a project, direct participation and improvements will be visible to the
public. This visibility will enhance the value of the project/software, attracting more visitors, users and developers. Notwith-
standing, the effects of a project conditions on attractiveness and work activities do not cease to operate, influencing the like-
lihood of receiving a contribution in any case.

Our perspective on the relationships of project conditions, attractiveness and work activities over time can be summa-
rized illustratively as follows. To begin with, a recently created project has low attractiveness as it is only in the planning
stage of development. The only contributors are the project creators and a few of their colleagues, who could test the appli-
cation after a release. Knowing that, the creators work by themselves, designing the source code structure and defining the
application features, writing code and implementing functionalities, developing the user-interface and managing all other
project tasks. By doing that and performing what we are calling here project work activities, they release an alpha version
of their application, which then improves the attractiveness of the project via changing the initial set of project conditions.
Now, the creators can send an email to their colleagues saying that there is a new software for them to test and give feed-
back. The colleagues download the application and start using it, spotting many problems and realizing that there is a lot
more that the application should do in order to be professionally adopted by them. As the colleagues report their impres-
sions, increasing the project index of activeness, the creators have the opportunity to address these relevant issues and im-
prove the project attractiveness even further based on their communication with the users (work activities). If they are able
to do so, the application will advance again into the next stage of development, their colleagues will become actual users and
feel motivated to report more desired features and/or potential problems. This forms a virtuous cycle, where attractiveness is
enhanced both by the maturing application condition, which positions it better against similar applications, and the address-
ing of users’ demands, which affects software quality and project attractiveness, fostering diffusion.

In short, FOSP attractiveness is enhanced through direct contributions to the project, but their set of conditions have an
independent influence on attractiveness as well. This proposition is a core assumption of the open source movement and
takes the form of a loop-mediation in our model, from attractiveness to project activities and, then, back to attractiveness,
controlling for the set of conditions. More formally, we have:

Proposition 9: Past project work activities significantly influence future FOSP attractiveness above and beyond the effects
of projects’ set of conditions.

2.9. Attractiveness self-reinforcing effect, indirect and unintended contributions

However important, the role of visitors, users and developers in enhancing their projects attractiveness is not restricted to
contributing to its software source code or related material, such as website content, support provision and documentation.
Contributions to FOSP occur in a variety of ways, including indirect, and even unintended, ones. Stewart et al. (2006), for
example, highlighted the contributing role of users via word-of-mouth recommendations, influencing future user-base size
and, potentially, developers’ intention to contribute, configuring an important indirect contribution. By extension, we expect
a similar behaviour from visitors and developers.

To understand the motivations for this behaviour, Nonnecke and Preece (2003, p.126), studying online groups, pointed
out that lurkers, people who do not actively contribute (post), by reading daily messages, develop a strong sense of
community. This sense of community leads to the dissemination of information, such as ‘‘contacting individuals [. . .] and
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


P10 

P9 

P2 

P3 

P4 

P1 

Agents: 
Sources of 

Contributions 

Project Activities: 
Software Maintenance 

and Improvement 

P8.x 

P7.x 

P6.x 

P5.x 

Attractiveness 

Likelihood of 
Task Completion 

Time for Task 
Completion

Effectiveness 

Activeness 

Set of Conditions: 
FOSP 

Characteristics 

P7.1 

Visitors Users Developers 

Stage of 
Development 

P8.1 

P5.1 

Application 
Domain 

Type of 
License 

P6.1 

Type of 
User 

Legend: x = 2, 3, 4 and 5. 

Fig. 1. Theoretical model for the attraction of contributors in FOSP.

8 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
introducing others to a group’’. We find it likely that a similar mechanism takes place in open source projects, as the effort of
their contributors have been found to be influenced by common values, beliefs and norms (Stewart and Gosain, 2006). In
support to that, Mozilla Firefox’s users once contributed their own money to advertise the browser in The New York Times
(Bagozzi and Dholakia, 2006). Similarly, users may freely create public online content related to open source projects, rec-
ommend them to their employers or employees, and wear supporting apparel; visitors can share a project website with their
friends on social networks, recommend it to someone by email, donate money, write reviews and rate the project on its
repository; and, finally, developers can organize workshops, mentoring programs and ‘‘install fests’’. These represent impor-
tant, however indirect, contributions to project attractiveness, as they help to build a reputation in the marketplace.

Additionally, there is a more discrete and perhaps unintended type of contribution the community performs. We refer to
this as the project density effect, or the silent contribution in Nonneke and Preece’s (2000) terms, and its causal chain goes as
follows. A visitor, by visiting, and a user, by downloading, enhance a project position in online ranks, increasing its visibility
and, thereby, influencing its attractiveness. Especially visitors, by representing website traffic, can help a project find busi-
ness sponsors, which can bring new developers, and raise money through the sale of ads, which can then be used to publicize
the project or hire new developers and sustain work.

All these things together suggest that attractiveness, by affecting the number of available visitors, users and developers
and their likelihood of performing indirect contributions, will influence the amount of these sources of contributions in the
future, via an effect on attractiveness itself. Again, it is noteworthy that these relationships take place in the presence of pro-
jects’ set of conditions, which continue to affect attractiveness regardless of an increasing visibility. For example, an organi-
zation intending to adopt an open source software may attend a workshop and find out that its license does not allow it to be
merged with the organization proprietary applications already in place. Thus, in the context of our model, we formally have:

Proposition 10: FOSP past attractiveness significantly influences future attractiveness above and beyond its effect via pro-
ject work activities, controlling for projects’ set of conditions.

Together, Propositions 9 and 10 represent the specific mechanism through which we claim preferential attachment takes
place in open source projects, making the attractive projects even more attractive and leaving the new and unattended pro-
ject in an difficult situation, struggling to evolve and survive (i.e., liability of newness). With these propositions, we can pres-
ent of our theoretical model, depicted in Fig. 1, and are now able to move to the discussion of the methods required to
evaluate its plausibility, empirically.
3. Methods

The characteristics of our propositions, such as the variety of relationships proposed and the presence of a latent con-
struct, led us to evaluate variables’ effects using structural equation modelling (SEM). SEM is a technique that allows
researchers to test complex models with simultaneous equations (Chin, 1998; Kelloway, 1998). The structural model
developed by us represents a cross-sectional evaluation of variables’ theorised influence on the ones that do not represent
themselves at a different period in time, effectively testing Propositions 1–8.5 with the data. This model test variables’
observed associations at a point in time, a necessary condition for our propositions to find support in the empirical analysis.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 9
As Propositions 9 and 10 predict an association of attractiveness from the past with its future value, we decided to develop
an independent test of their plausibility. We discuss the methods for testing these propositions later.

The structural model was tested with data from the largest FOSP repository, SourceForge.net. Data about SourceForge.net
projects was readily available at the University of Notre Dame, which allowed us to collect three samples (4693 projects in
January of 2006, 4500 in 2007, and 4507 in 2008) to compare and improve our confidence in the results. Data was separated
into files by period, and projects were filtered out according to the criteria of: (1) not having inadmissible values on the vari-
ables, e.g. negative date of creation; (2) having more than one download and member (to increase confidence that the project
contains software and source code posted); and (3) not having ‘‘inactive’’ flagged, which indicates that the project is no long-
er active, or perhaps has never been.

To capture the amount of available resources to a project at a point in time, we used three specific variables: number of
hits the project website had as a proxy for number of visitors; the number of times its application was downloaded as a
proxy for the number of users; and the number of registered members the project has as a proxy for developers. Next, a fac-
tor or component can be extracted from these three measures, which have been found to be significantly and positively cor-
related with each other in previous studies (Krishnamurthy, 2002). This factor offers a single and straightforward measure of
resources’ availability to the project.

Nevertheless, these proxies as a composite measure of available resources of a project are not without drawbacks. The use
of number of visits as a proxy for visitors, downloads for users, and members for developers is not perfect. The proxies for
visitors and developers tend to be biased upward, as a visitor may ‘‘hit’’ a website more than once and a member may never
directly develop source code, being in charge of an administrative role such as the assignment of tasks to developers, for
example. In its turn, number of downloads tend to bias its representation in a more complex way, as software may be down-
loaded but never used (upward-bias), or a user may acquire the software through some other form, such as from a GNU/Li-
nux distribution, or even download it more than once (downward-bias). However, one cannot be a visitor without visiting,
one of the main ways of becoming a user of open source is downloading the software, and most members are source code
developers. And given that we are interested in understanding the distributions of these measures rather than their absolute
values, we consider them useful for research purposes. In defence of their usefulness, researchers have used downloads to
count users and user-interest (Stewart et al., 2006; Wiggins et al., 2009), and members to represent developers (Fershtman
and Gandal, 2011). The FOSP literature frequently adopts these measures (e.g., Crowston et al., 2005; Raja and Tretter, 2006;
Stewart and Gosain, 2006; Sauer, 2007).

To explore the role of project work activities and software maintenance, we observed activeness as the sum of (1) bug
reports, (2) support requests, (3) feature requests, and (4) patches submitted; effectiveness as the sum of (1)–(4) that were
closed (resolved/approved); likelihood of task completion as effectiveness divided by activeness; and time for task comple-
tion as the average time a project took to close its tasks.

In accordance with the discussion on the skewed-distribution of resources to objects and previous research on FOSP, hits,
downloads and members were found to have skewness values outside the range of normality, and standard deviations much
greater than their averages (see Table 1, for the 2008 sample characteristics). Activeness, effectiveness and time for task com-
pletion were found to have a similar pattern. Likelihood of task completion was not, but we decided to transform it along
with the others that were log-transformed for linearisation to keep the results interpretation consistent. Likelihood was
transformed into its inverse-sine-square-root, which tends to render more normally distributed data from variables in the
form of proportion (effectiveness divided by activeness) (Crowston and Scozzi, 2002). These transformations for linearisation
Table 1
Descriptive statistics.

Minimum Maximum Mean Std. deviation Skewness

Statistic Std. error

Hits 1 1423193 3196.07 32693.98 29.15 .04
Ln.hits .00 14.17 4.9918 2.32 .16 .04
Downloads 7 160385573 230484.93 2884297.85 41.36 .04
Ln.downloads 1.95 18.89 9.35 2.11 .35 .04
Members 2 374 6.43 9.81 14.89 .04
Ln.members .69 5.92 1.49 .762 1.01 .04
Activeness 1.00 122375.00 146.38 1874.71 61.67 .04
Ln.activeness .00 11.71 3.13 1.72 .35 .04
Effectiveness 1 119282 112.02 1811.48 63.29 .04
Ln.effectiveness .00 11.69 2.49 1.83 .57 .04
Likelihood .01 1.00 .61 .27 �.24 .04
Arc.likelihood .01 1.57 .74 .42 .56 .04
Average 21.00 165888141.00 11373856.98 15286540.08 3.40 .04
Ln.average 3.04 18.93 15.30 1.93 �2.2 .04
Life.span 1118.90 3010.00 2111.16 500.50 �.059 .04
Ln.life 7.02 8.01 7.62 .25 �.45 .04
N (listwise) 4507

Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


10 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
are frequently reported in open source research (e.g., Comino et al., 2007; Crowston and Scozzi, 2002). We measured the
categorical variables, FOSP’s set of conditions or characteristics, as dummies.

Sets of dummy variables were created to represent each FOSP condition/characteristic (that is, type of license, type of
user, application domain and stage of development). For type of license, we used four dummies, based on Lerner and Tirole
(2005): (1) no restriction or non-copyleft; (2) restriction of modification or weak-copyleft; (3) restriction of modification and
use or strong-copyleft; and (4) dual-licensing, when a software is licensed on different types of licenses. Type of user re-
quired five dummies, application domain required 18, and stage of development 6 (see Table 3). Finally, a control variable
was included, life-span measured in days, for its effects on various variables related to FOSP success have been previously
reported (Crowston and Scozzi, 2002; Crowston et al., 2005; Stewart et al., 2006; Fershtman and Gandal, 2007).

To generate the results, we used the multisample-SEM capability of EQS 6.1 (Byrne, 2006). Data was entered in its raw
form. For the fitting criterion (coefficient estimation), priority should be given to maximum likelihood (ML) when sample
size is large (Bentler, 1989; Kline, 1998). Accordingly, we adopted ML, the most common method used by structural mod-
ellers (Anderson and Gerbing, 1998; Hair et al., 2006). The results of this statistical analysis are presented after we describe
the methods for testing Propositions 9 and 10.

The propositions related to preferential attachment were tested using the process described by Preacher and Hayes
(2008) to establish mediation in a single model with multiple mediators and control variables. Their procedure is based
on the well-known conceptual description of Judd and Kenny (1981) and Baron and Kenny (1986). However, Preacher
and Hayes’ procedure has the advantages of testing whether the mediators have an effect as a set and their individual effects
in the presence of the other mediators and controls, reducing the likelihood of parameter bias due to the omission of vari-
ables (2008). Of course, one should make sure that the mediators included in the model are not conceptually overlapping and
highly-correlated. Moreover, Preacher and Hayes’ (2008) procedure includes bootstrapping to generate confidence intervals
and does not assume normality of the sampling distribution of the indirect effects. According to Preacher and Hayes, these
features make the procedure ‘‘far superior’’ to the traditional Sobel test.

To test Propositions 9 and 10, we used data from the Notre Dame 2008 sample and collected additional data of the ‘‘future’’
directly from the SourceForge.net website through a Web crawler our team developed. This new data allowed us to embed
some measurement independence in using data of the same variables over time. The final content of the variables in the medi-
ational model is as follows. First, we have the independent variables hits, downloads and members up to 2008. From these
three, we calculated one independent variable using the regression weights extracted from the principal component analysis
(Mardia et al., 1980) using the statistical package SPSS. Second, the mediators selected for inclusion were effectiveness, like-
lihood and time for task completion (from the Notre Dame sample). Activeness was left out as it shares a great deal of con-
ceptual overlap with effectiveness, which represents what the community has indeed addressed (source code included, bugs
fixed, etc.) and is therefore more interesting to evaluate its effects on attractiveness. Third, there are the dependent variables
hits, downloads and members related to the period of January, 2008–December, 2009. Finally, we included all dummies,
which represent the projects’ set of conditions, and life-span as control variables (covariates). Having gathered all data
needed, we used Preacher and Hayes’ script (http://www.afhayes.com/public/indirect.sbs) to generate the results, using
5000 bootstrapping resamples to calculate intervals as per their recommendation (Preacher and Hayes, 2008).
4. Results of the structural model

4.1. Descriptive statistics

The Notre Dame SourceForge.net sample is of 149,542 projects in January/2006, 179,867 in 2007, and 143,591 in 2008.
After filtering, these numbers were reduced to 4693, 4500 and 4507, respectively. The average project in the 2008 sample
received 3196 hits, 230,484 downloads, had six members, and was over 5 years old. Also, the average project produced
146 tasks (inputs received), closing or addressing 112 of them (61%) in an average of 132 days. In their raw form, every var-
iable but life-span and likelihood has a standard deviation greater than the average, and Skewness statistic outside the inter-
val commonly accepted as normal [�1,1]. The log-transformations were effective on substantially reducing skewness and
returning standard deviations smaller than averages (see Table 1). To illustrate the FOSP characteristics (set of conditions),
we noted that the 2008 sample has 1279 projects with licenses that do not impose any restriction to the source code; 2632
are aimed at end-users; 222 were listed under the database application domain; and 1972 projects had their software in the
beta stage of development.
4.2. Latent construct reliability

The amount of resources available to FOSP was measured using three variables or indicators and, therefore, its internal
consistency had to be assessed. We did so via Cronbach’s alpha. The construct scored 0.705 in 2006, 0.711 in 2007, and
0.714 in 2008 (Table 2). Alpha values greater than 0.7 are considered acceptable (Hair et al., 2006; Peterson, 1994; Rutner
et al., 2008). Nevertheless, the use of alpha to assess reliability of latent variables is questionable as it requires unrealistically
stringent assumptions (Byrne, 2006). Accordingly, we took into consideration EQS reliability coefficient Rho for the overall
model as well, which were all above 0.9 and, therefore, indicated appropriate reliability. These results support our claim that
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://www.afhayes.com/public/indirect.sbs
http://dx.doi.org/10.1016/j.jsis.2012.07.004


Table 2
Model-to-data fit indices for model selection.

Model with equality constraints Model without equality constraints Comparison

2006 2007 2008 2006 2007 2008

Sample size 4693 4500 4507 4693 4500 4507
Cronbach’s alpha 0.705 0.711 0.714 0.705 0.711 0.714
EQS Reliability coefficient rho 0.952 0.955 0.954 0.952 0.955 0.954

Chi-Square 3042.7 (585 Degrees of Freedom) 2849.4 (237 Degrees of Freedom) 193.3 (348 d.f.)
P-value for chi-square <0.01 <0.01 Same
Model Fit (CFI) 0.979 0.978 0.001
B–B Normed fit index 0.974 0.976 �0.002
Root mean square residual 0.021 0.020 0.001
RMSEA 0.018 – (90% C.I.: 0.017, 0.018) 0.028 – (90% C.I.: 0.027,0.029) 0.010

Chi-square critical value (0.05; 348 d.f.): 392.501
Decision (given 193.3 < 92.5): Favour model with constraints

C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 11
hits, downloads, and members are likely to have common causes, or are empirical expressions of, at least, one single con-
struct (e.g., attractiveness).

4.3. Overall model-to-data fit

The equation coefficients were calculated both (1) independently, sample by sample and (2) forced to be equal across
samples 2006, 2007 and 2008. This strategy was utilized to reduce sampling fluctuations that may obscure effects and bias
results (Maitland et al., 2001). The difference in chi-square between the models is 193 (DF = 348; p > 0.9). Therefore, the null
hypothesis is not rejected, indicating that the more restrictive model (2) produces at least as good a fit as model (1). Also, the
two models have similar model-to-data fit indices (Table 2). Thus, the restrictive model (2) is preferable as it is more par-
simonious (Mulaik, 2005). Fit tests and indices check if the pattern of covariances are consistent between the specified model
and the data (Dow et al., 2008). A ‘‘good’’ fit is a necessary condition to analyse SEM models, that is, CFI greater than 0.95,
RMSEA smaller than 0.05, and insignificant chi-square. The constrained model (2) with RMSEA of 0.018, CFI of 0.979 and chi-
square of 3042.7 (DF = 585; p < 0.01) is acceptable and has good fit except for the chi-square. Nevertheless, the chi-square
test is known for its sensitivity to sample size and number of parameters modelled (Kaplan, 2008). Among available fit indi-
ces, ‘‘RMSEA is relatively [the] most stable’’ and insensitive to sample size (Yuan, 2005, p. 141). Therefore, we consider the
constrained model proper for further analysis.

4.4. Testing the independent effects of variables

The framework developed and coded in EQS for empirical evaluation of Propositions 1–8.5 requires the analysis of five
equations. In regression terms, the first equation has attractiveness (F1) as the dependent variable, explained by 33 dummy
variables plus life-span (Table 3). As it turned out, life-span is a positive and statistically significant predictor of attractive-
ness. Thus, the importance of including life-span in FOSP analysis is supported. Also, out of four dummies used to study type
of license, one (dual_licensing) was found to influence attractiveness significantly. To register software under licenses with
different restrictions has been popular in FOSP with commercial intentions (Santos, 2008; Watson et al., 2008), affecting
attractiveness positively. Therefore, we fail to reject P5.1. In general, our rationale to decide whether to reject propositions
was that if at least one dummy (e.g., dual_licensing) of a set (e.g., type of license) was significant, then the effect of type of
license would have been detected, supporting the proposition.

In relation to type of user, projects for end-users and developers have higher attractiveness, whereas those aiming at oth-
ers have lower (fail to reject 6.1). Projects listed as multimedia, printing, security and system (application domain) have
higher attractiveness, whereas those in database, education, other, scientific and sociology have lower (fail to reject 7.1). Spe-
cifically, projects should avoid being listed as others as it hinders attractiveness the most.

Stage of development significantly influences attractiveness in all its six possibilities (fail to reject 8.1). Results indicate
that the initial stages of projects (planning, pre-alpha, and alpha) affect attractiveness negatively, whereas advanced stages
(beta, production, and mature) enhance attractiveness increasingly, respectively. So, mature projects are more attractive, and
to release software in initial stages tend to be ineffective. This first equation explained 22.4% (in 2006), 17.3% (2007), and
15.2% (2008) of attractiveness’ variance.

The other four equations indicate how attractiveness influences FOSP work activities. Namely, activeness (F2), effective-
ness (F3), likelihood of task completion (F4), and time for task completion (F5). Attractiveness is a significant, and the most
important, predictor of the four variables and thus we fail to reject Propositions 1–4. It positively influences activeness and
effectiveness, just as Raymond (1999) predicted and many others followed (e.g., Stewart and Gosain, 2006). However, higher
attractiveness is associated with smaller likelihood to complete tasks and greater time to complete them. The impact of type
of license (both_restrictions) is significant and negative on activeness and effectiveness. Moreover, licenses with both restric-
tions influence likelihood of task completion positively, suggesting that projects under GPL are more likely to address the
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


Table 3
Structural equations results.

Exogenous variables F1-Attractiveness F2-Activeness F3-Effectiveness F4-Likelihood of task completion F5-Time for task completion
2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008 2006, 2007, and 2008

Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic Coef. T-Statistic

Endogenous variables
F1-Attractivenessa – – 3.699 43.586* 3.568 41.946* �0.208 �14.36* 1.586 25.056*

F2-Activenessa – – – – – – – – – –
F3-Effectivenessa – – – – – – – – – –
F4-Likelihood of Task Completiona – – – – – – – – – –
F5-Time for Task Completiona – – – – – – – – – –
F6-Life-Spana 0.172 19.078* 0.006 .161 0.049 1.196 0.031 2.645* 0.72 14.546*

F7-Type of License(No-Restriction) �0.013 �1.183 0.028 .609 0.065 1.297 0.023 1.557 0.048 0.784
F8-Type of License(Mod-Restriction) 0.01 1.2 �0.041 �1.165 �0.023 �0.593 0.02 1.777 0.02 0.415
F9-Type of License(Both-Restrictions) 0.014 1.622 �0.136 �3.562* �0.085 �2.036* 0.028 2.254* �0.026 �0.505
F10-Type of License(Dual-Licensing) 0.027 2.363* �0.013 �0.254 �0.052 �0.952 �0.028 �1.788 �0.065 �0.983
F11-Type of User(End-Users) 0.093 14.8* �0.057 �2.179* �0.092 �3.239* �0.011 �1.287 �0.036 �1.027
F12-Type of User(Developers) 0.025 3.982* 0.008 0.294 0.025 0.847 0.009 1.082 0.143 3.918*

F13-Type of User(System-Admins) �0.01 �1.499 0.024 0.858 0.006 0.191 �0.015 �1.708 0.017 0.436
F14�Type of User(Others) �0.019 �2.227* 0.048 1.336 0.049 1.24 0.011 0.929 �0.145 �3.010*

F15-Type of User(Advanced-End-Users) 0.007 .667 �0.039 �0.944 0.004 0.088 0.054 4.053* �0.044 �0.783
F16-Application Domain(Communications) 0.001 .109 0.046 1.081 0.004 0.095 �0.039 �2.862* �0.022 �0.38
F17-Application Domain(Database) �0.056 �4.898* 0.083 1.693 0.071 1.314 �0.013 �0.842 0.036 0.546
F18-Application Domain(Desktop) 0.019 1.294 �0.129 �2.067* �0.113 �1.645 �0.013 �0.652 �0.055 �0.652
F19-Application Domain(Education) �0.059 �4.015* 0.212 3.388* 0.28 4.067* 0.037 1.83 0.158 1.873
F20�Application Domain(Games) 0.003 0.273 �0.157 �3.49* �0.146 �2.971* 0.017 1.194 �0.027 �0.453
F21-Application Domain(Internet) 0.011 1.323 �0.042 �1.126 �0.018 �0.431 0.034 2.837* �0.011 �0.216
F22-Application Domain(Multimedia) 0.061 5.124* �0.234 �4.437* �0.283 �4.914* �0.03 �1.817 0.132 1.879
F23-Application Domain(Office) 0.016 1.224 0.256 4.519* 0.232 3.726* �0.035 �1.914 0.08 1.055
F24-Application Domain(Other) 0.083 �5.437* 0.022 0.334 0.036 0.505 0.006 0.294 0.238 2.731*

F25-Application Domain(Printing) 0.092 3.262* �0.227 �1.887 �0.181 �1.364 0.041 1.066 �0.138 �0.85
F26-Application Domain(Religion) 0.025 0.644 0.293 1.754 0.328 1.783 0.048 0.894 0.739 3.284*

F27-Application Domain(Scientific) �0.039 �3.418* 0.043 0.855 0.099 1.783 0.003 0.201 0.109 1.619
F28-Application Domain(Security) 0.066 4.209* �0.148 �1.088 �0.038 �0.518 0.002 0.084 �0.005 �.054
F29-Application Domain(Sociology) �0.131 �3.234* 0.585 3.338* 0.537 2.792* �0.124 �2.222* 0.536 2.278*

F30-Application Domain(Software-Dev) 0.008 1.034 0.02 0.576 0.027 0.718 �0.007 �0.651 �0.036 �0.782
F31-Application Domain(System) 0.035 3.203* �0.268 �5.544* �0.33 �6.268* �0.034 �2.224* �0.012 �0.184
F32-Application Domain(Terminals) �0.003 �0.077 �0.148 �.867 �0.213 �1.138 �0.045 �0.822 0.456 1.997*

F33-Application Domain(Text-Editors) 0.025 1.456 0.053 0.684 �0.078 �0.926 �0.062 �2.549* 0.024 0.236
F34-Stage of Development(Planning) �0.036 �4.181* 0.02 0.556 �0.005 �0.135 �0.027 �2.311* �0.024 �0.495
F35-Stage of Development(Pre-Alpha) �0.084 �8.978* 0.034 0.864 0.077 1.772 0.033 2.592* �0.265 �4.994*

F36-Stage of Development(Alpha) �0.024 �3.106* �0.023 �0.694 �0.015 �0.4 0.009 0.802 �0.152 �3.397*

F37-Stage of Development(Beta) 0.03 4.512* 0.12 4.210* 0.16 5.106* 0.007 0.737 �0.048 �1.242
F38-Stage of Development(Production) 0.162 21.72* 0.12 4.026* 0.231 7.053* 0.05 5.248* 0.161 4.031*

F39-Stage of Development(Mature) 0.186 13.961* 0.097 1.746 0.195 3.194* 0.071 3.979* 0.152 2.037*

Variance explained per sample
R-Squared 2006; 2007; 2008 2006; 2007; 2008 2006; 2007; 2008 2006; 2007; 2008 2006; 2007; 2008

0.224; 0.173; 0.152 0.448; 0.476; 0.49 0.394; 0.414; 0.416 0.028; 0.025; 0.03 0.136; 0.12; 0.112

a Variable log-transformed.
* Significant at 0.05 level; T-value >1.96.

12
C.Santos

et
al./Journal

of
Strategic

Inform
ation

System
s

xxx
(2012)

xxx–
xxx

Please
cite

this
article

in
press

as:
Santos,

C.,
et

al.
The

attraction
of

contributors
in

free
and

open
source

softw
are

projects.
J.

Strateg.
Inform

.
Syst.

(2012),
http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 13
tasks they received. Finally, no impact of type of license on time for task completion was detected. Thus, we fail to reject
P5.2–P5.4, but reject 5.5. Type of user (end-users), which ‘‘require extensive and costly usability testing’’ (Johnson, 2002,
p. 656), impacts activeness and effectiveness negatively. Likelihood of task completion is positively influenced by type of
user (advanced end-users). And time for task completion is negatively affected by type of user (others) and positively by
developers. Thus, we fail to reject Propositions 6.2–6.5.

Application domain affects activeness and effectiveness similarly (positively by education, office, and sociology; and neg-
atively by games, multimedia, and system). However, application domain (desktop) affects activeness negatively, but does
not affect effectiveness at all. Application domain (communications, sociology, system, and text-editor) affects likelihood of
task completion negatively; whereas Internet do so positively. Finally, the domains religion, sociology, other and terminals
tend to take longer to complete tasks. Consequently, we fail to reject P7.2–P7.5. Stage of development (beta and production)
influences activeness positively, and beta, production and mature influence effectiveness positively. Moreover, the planning
stage influences likelihood of task completion negatively, whereas pre-alpha, production, and mature do so positively. Final-
ly, software in pre-alpha and alpha tend to close tasks faster, and those in production and mature tend to do so slower. All
that being consistent with the model proposed, we fail to reject P8.2–P8.5.

Altogether, the results of F2’s and F3’s equations (activeness and effectiveness) have a very similar pattern when it comes
to the significant variables. Among the most interesting results, we found that projects licensed under GPL (strong-copyleft),
the most common and restrictive license, tend to be less active as well as less effective than projects that do not adopt GPL.
This finding is consistent with previous studies that pointed out that GPL restrictions are seen negatively, decreasing people’s
intention to contribute (Comino et al., 2007; Fershtman and Gandal, 2007; Lerner and Tirole, 2005), and provides a counter-
argument to those who suggested that the fear of open source software being ‘‘hijacked’’ into proprietary applications, max-
imized by non-restrictive licenses, would drive the community away from contributing (Sauer, 2007; Colazo and Fang, 2009).

A few other comments on the structural model results are worth making. First, software targeted at end-users affects
activeness and effectiveness negatively (attractiveness positively), but applications of domains such as education, sociology
and office, which are supposedly aimed at end-users too, tend to score higher on activeness and effectiveness (lower on
attractiveness). This finding can only be sorted out with a specific study of the interactions between these categories, which
can freely vary, the team compositions of these projects, and their user-interfaces. But one way to interpret it is with the
logic that these projects have a significant learning curve and thus are not targeted at end-users as we have assumed
(e.g., LaTeX). As a matter of fact, 65% of the sociology projects in 2008 were aimed at developers, and only 12% were aimed
at end-users solely. The specific purpose of these projects and their characteristics would have to be understood in depth to
be sure. Additionally, as the number of projects in sociology, for example, is rather small (17 in 2008), our sample could be
biased towards another project condition that is prevalent in the statistical analysis (e.g., out of the 17, 12 are GPL and none
is mature).

A second comment on the structural model is that life-span is not a significant influencer of activeness and effectiveness,
indicating that the number of inputs and outputs do not increase simply because projects are available for a longer period of
time. Likely, the community does not take ‘‘seniority’’ into account to decide whether to contribute to the project, but mainly
its attractiveness. Third, the results suggest that more attractive projects have smaller likelihood to complete their tasks,
indicating that an overload might occur as more tasks are requested in more attractive projects. In a similar pattern, projects
under the GPL license are more likely to complete their tasks, as these projects tend to be less active. However, the variance
of likelihood of task completion explained by the model is so low (3%) that, from a practical point of view, its interpretation is
limited.

Further, we found that higher attractiveness is associated with more time for task completion, suggesting another side-
effect of a higher number of requests, reports and posts (activeness). Having more tasks to deal with and a larger community
gathered around these tasks, projects tend to slow down their work-pace, creating a positive chain of influences from attrac-
tiveness to activeness to time for task completion. Additionally, higher time to complete tasks may be associated with the
type of tasks that are being generated by the community. Projects with more contributors are likely to generate more com-
plex and important tasks to deal with, requiring more time but also being more rewarding. Furthermore, stage of develop-
ment has an interesting pattern of influence on time for task completion. Projects tend to work faster at pre-alpha and alpha
and slower at production and mature. This decrease in activities that accompanies project matureness was predicted by
Stewart et al. (2006), and fits well with the logic we discussed before that it is ‘‘easier’’ to contribute in the earlier stages
of software development.

The structural model explained 45% of activeness variance in 2006, 47.6% in 2007, and 49% in 2008; 39.4% of effectiveness
in 2006, 41.4% in 2007, and 41.6% in 2008; 2.8% of likelihood of task completion in 2006, 2.5% in 2007, and 3% in 2008; and
13.6% of time for task completion in 2006, 12% in 2007, and 11.2% in 2008 (see Table 3). In summary, we failed to reject 23 of
24 propositions, explaining a significant part of FOSP work activities and demonstrating how powerful an understanding of
attractiveness can be to manage open software development activities.
5. Results of the mediational model

The final sample used in the mediational model was of 4328 open source projects. The Notre Dame 2008 sample was
of 4507, but several projects became inactive from January, 2008 to December, 2009 and, therefore, were excluded. The
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


14 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
overlapping sample between the Notre Dame database and the SourceForge.net website, obtained via Web crawler, after
applying our filter, was of 4328.
5.1. Principal component analysis: conjoint role of resources

We performed a principal component analysis (PCA) to extract factors from hits, downloads and members from the past
(2008) and future (2009). This is a necessary step to perform the mediation analysis based on Preacher and Hayes (2008),
which is made using one independent, and one dependent, variable, not a latent construct with three indicators. The param-
eter we adopted to retain factors from variables was the Kaiser criterion of Eigenvalues greater than one (Stevens, 1986).
According to this criterion, both sets of three variables, 2008 and 2009, formed only one factor. The first component extracted
from the set of the past had Eigenvalue of 1.97, explaining 65.8% of their variance. Similarly, the set of the future had Eigen-
value of 1.85 with 61.5% of variance explained. No other factor had an Eigenvalue greater than 1. Using the weights of the
components extracted, we calculated one variable for each set in a multiple regression fashion.
5.2. The self-reinforcing effects

As it should be consistent with the structural model, in the mediational model (Fig. 2), past attractiveness, controlling for
projects’ set of conditions, significantly influences effectiveness, likelihood and time for task completion, which, as a set of
mediators, affect future attractiveness significantly as well, not allowing the rejection of Proposition 9. The signs of the ef-
fects from past attractiveness to each construct related to project activities were also consistent with the structural model
results. The total indirect, mediating, effect of past attractiveness through activities on future attractiveness was significant
and was calculated by summing the product of their coefficients (i.e., past attractiveness on project activities times project
activities on future attractiveness). The bootstrapping resamples provided the intervals to decide for significance. Notewor-
thy is that although the set of mediators significantly affects future attractiveness indirectly, the direct effect of likelihood of
task completion was not found significant in the presence of effectiveness and time for task completion. That is, the interval
calculated via bootstrapping for the coefficient of likelihood on future attractiveness includes zero.

To be able to retain Proposition 10 and not reject it, the total effect of past attractiveness on future attractiveness would
have to be reduced when controlling for project work activities and set of conditions, but not so much as to bring it to zero.
Being reduced to zero would mean that the effect of past attractiveness on future attractiveness is fully mediated by project
activities and, therefore, would lead us to the decision of rejecting Proposition 10. The results, in contrast, show that the ef-
fect of past attractiveness on future attractiveness is only partially reduced with the inclusion of project activities in the
model (from .87 to .8). This means that there is a lot more besides work activities that visitors, users and developers, con-
jointly, do or represent that affects project attractiveness. The influence of contributors is not restricted to the activities per-
formed via the tools adopted by the project that are publicly available in their repositories.

It is interesting to observe in the mediational model that likelihood of task completion does not affect attractiveness as
much as attractiveness influences it. These results suggest that the number of contributors reduces the likelihood of tasks
being addressed, but that this operational behaviour does not influence how attractive a project is. Most likely, people
are not aware of this before they engage in the project’s activities or decide to use it. In addition to that, projects with more
contributors take more time to complete tasks and that behaviour does affect attractiveness back in the same direction. A
possible explanation for this unexpected finding is that projects that take longer to close their tasks are more careful in doing
so or may be working on more substantive issues, which require complex coordination mechanisms and take more time but
also reward the project more with future value.
Project Activities 

Summary for DV: 

R-squared (adj): .757 (.755) 
F-value (df1; df2): 351.88 (38; 4289) 

* Significant at .01 
- 5000 bootstrapping resamples were used to calculate indirect effects intervals (99%). 

Prop. 10

Prop. 9.07*

.8*

.01

.02*

.06*

.47*

1.09*

-.05*Attractiveness 
(past) 

Likelihood 

Time for Tasks 

Effectiveness 

Set of Conditions: 
FOSP 

Characteristics 

Attractiveness 
(future) 

Fig. 2. Results of the mediational model.

Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 15
These results are consistent with our discussion on preferential attachment and the independent and unique self-rein-
forcing effect of attractiveness, which happens on top of project work activities after controlling for its set of conditions (con-
textual factors). The mediational model explains about 75% of the variance of future attractiveness.
6. Discussion: Implications for theory and practice

While prior studies have only indirectly stated the importance of attractiveness to FOSP (Agerfalk and Fitzgerald, 2008;
Fang and Neufeld, 2009; Sen et al., 2008), this paper seeks to define, further develop and model the attractiveness construct
in relation to its causes, contextual factors and impacts, both theoretically and empirically. By arguing that groups of visitors,
users and developers provide FOSP with varying and unique sets of development resources that together promote and im-
prove the project towards the sustainability of recruiting new resources and generating more work activities and other indi-
rect contributions, our findings are important to theory and practice in several ways.

Our model elaborates the observed behavioural aspects of preferential attachment specific to open source projects, pro-
viding an explanation for how the highly-skewed distribution of resources among them is generated and sustained. Most
visitors, users and developers gravitate around only a few projects because of their tendency to select the ‘‘attractive’’ project
to visit, use, join and contribute, which constitute the key actions on improving a project attractiveness. As this mechanism
repeats, a reinforcing cycle is sustained, to the benefit of the already preferred. These selection processes are influenced by
FOSP’s set of conditions, which not only influences decisions of adopting (directly affecting attractiveness) and contributing
(indirectly influencing attractiveness), but also defines projects’ competition space for resources, limiting their achievable
level of attractiveness. In a hypothetical world, where the population of projects and their set of conditions are stable, re-
sources’ stream of actions would be concentrated at predictable levels. However, new projects are created all the time,
and old ones change their conditions constantly, disturbing the system of projects to influence resources’ decisions and mak-
ing the task of prediction complex. This dynamic and turbulent environment is what creates opportunities for the new to
emerge, and threats for the successful to succumb.

As the results suggest, resources’ perception of attractiveness is formed based on: certain contextual factors or character-
istics of the project, that is, the identity of an object in comparison to the others; its visibility, which is conditioned by the
amount of resources that project has and their indirect contributions; and the work activities performed by their resources
towards software maintenance and improvement. Together, project conditions and its members’ activities interact to form a
dynamic and market-wide reputation.

The tendency to act towards ‘‘the same’’ projects set forth their momentum in a reinforcing loop that recursively deter-
mines an extreme concentration of resources (making the rich richer). Alternatively, projects can be excluded from re-
sources’ decision space for lacking attractiveness and thereby spiral down, making the poor poorer. This process of
disturbance could be triggered by a change of sponsors that reconfigures the industry (e.g., OpenOffice in the Sun-Oracle
deal), or by a license change (see Santos et al., 2011). This process that FOSP follow to accumulate resources, together with
the limited availability of resources in the market and the high competition for them, generates a disparate ecosystem with
the scale-free characteristic observed (Xu and Madey, 2004). Nevertheless, as FOSP are social products, there are ways in
which project leaders can act to influence how attractive their projects are to the resources they are interested in attracting
and motivating.

The findings suggest that new users, visitors and developers are likely to choose the more attractive project in comparison
to the others. Yet, new projects can be better positioned, such as by choosing an appropriate license to increase their like-
lihood of being chosen. Project leaders should be mindful of how certain decisions affect visitors, users and developers per-
ceptions similarly, easing their task of managing the community and software evolution.

New and undifferentiated projects stand a small chance to succeed in a populous and competitive environment, as the
influence of project characteristics is relatively modest when comparing to the self-reinforcing force of attractiveness. Nev-
ertheless, there are ways to overcome this ‘‘liability of newness’’. For example, one may reuse available open source code and
create derivative projects (forking), or opensource a proprietary software with an established user-base and good reputation,
carefully choosing which characteristics to give to the new project (e.g., avoiding being listed in the application domain ‘‘oth-
ers’’ or choosing a license strategy that differentiates the project from its competitors).

Some of the project conditions affect attractiveness and work activities in opposite directions, such as the GPL license and
the dual-licensing strategy. This creates opportunities for the project manager to operate strategically. For example, one may
decide to have dual-licensing first, focusing on recruiting resources for the new project to build critical mass, and later on
change to non-restrictive licenses, focusing on the generation of work activities, which would improve attractiveness indi-
rectly through other means such as software maintenance. Additionally, project managers should invest higher amounts of
their private resources in the initial stages of a software release, as ‘‘young’’ applications (up to alpha) tend not to attract
resources from the community. This means that a higher effort on work activities and other indirect contributions such
as running ads on key channels is required to overcome the challenge to emerge, until the thresholds of critical mass and
‘‘mature application’’ are reached.

On a theoretical side, our findings suggest that variables such as website hits, downloads and members should be treated
as causes of each other or as final dependent variables on studies of FOSP only in restricted and well justified situations. We
have shown that these variables are highly correlated not because they cause each other, but due to the existence of causes
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


16 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
which lead to their occurrence. One decides to visit a website based on reasons similar to those one considers to download
and use, or even to become a member and contribute to open source software. The process may occur in sequence, from vis-
iting to using to developing, but it is people’s perception of software value (i.e., how attractive they perceive the project to
be) that influences their moving from one step to another (von Krogh and Spaeth, 2007). It is the perception of the project at
consideration that impacts people’s behaviour. Moreover, the presence of visitors, users and developers alone, or in combi-
nation, cannot improve a project. These agents are sources of improvements, but their presence is not improvement and
could only sustain a project attractiveness in satisfactory levels temporarily. Therefore, to treat them as independent vari-
ables (or mediators) is vital to accurately represent how user-driven innovations can be stimulated by sponsors and social
planners in general (Arakji and Lang, 2007).

Our findings shed new light into a dilemma in the Information Systems literature, where one stream claims that the quan-
tity of people increases diversity, which fosters problem-solving and innovation (Raymond, 1999; West and O’Mahony, 2005),
whereas the other argues via empirical evidence that the relationships between the number of developers and software quality
and project effectiveness and efficiency are not significant (Balijepally et al., 2009; Stewart and Gosain, 2006). Without claim-
ing to close the debate, our results can conciliate these two streams by presenting effects and side-effects of increasing the
number of contributors. More people tend to locate and fix more bugs, request and develop more features, creating an envi-
ronment, where innovations are more likely to occur and higher-quality software generated. However, more people reduce the
likelihood to solve an increasing number of bugs reported and features requested at the same time that more time becomes
necessary to solve tasks, possibly due to coordination difficulties (Comino et al., 2007). Therefore, with positive and negative
effects of an increasing number of contributors, both streams raise valid points and should not be seen as contradictory.

On a related note to the number of contributors in projects, our research provides a new perspective to the free-riding
‘‘problem’’, which is commonly reported as something that threatens the open source model (Baldwin and Clark, 2006).
The traditional idea is that private agents are not expected to invest enough of their resources to produce a public good, they
would rather free-ride. However, as we have shown, users and visitors, which would qualify as free-riders in the traditional
sense, are actually contributing to the project as well, helping it build a critical mass and raising developers’ intention to con-
tribute. So, there is nothing open source project creators and managers should do about preventing free-riders, for besides
contributing indirectly or unintentionally, they have chosen not to go to the competition and, thereby, improve project’s
attractiveness instead of competition’s. There is no pressing need to worry about attracting free-riders, said to be reducers
of the probability of success (Bessen, 2005), as FOSP can actually benefit from them in various ways. Johnson’s prediction
that ‘‘when more individuals are present, the incentive to free-ride is raised’’ (2002, p. 644), so that contributions become
less likely to occur, has no support from our perspective.

Moreover, frequently, members of FOSP communities are developers and users of the software, which broadens their per-
spectives on software quality to contain technical, functional, and business domain dimensions. This creates an environment,
where many are likely to contribute because one’s contribution as a developer benefits oneself as a user. That is a recipe for
success, giving these communities an advantage over software produced by an organization, where developers and users are
independent entities, requiring extra effort to align needs and priorities. Accordingly, more available resources, of any kind,
should indeed create an environment favourable to software quality and project success in open source. From this perspec-
tive, there is no need to manage what type of resources a project is attracting, as one type helps bring the others, and the
various types of contributions come for similar reasons.

Having established the need for organizations involved in FOSP to improve their projects’ attractiveness and visibility
along with prior research (e.g., Agerfalk and Fitzgerald, 2008), this study is informative for the strategic software develop-
ment practice. Our study can guide organizations on matters to be faced when opensourcing software, or deciding which
one to sponsor, by providing insights on how attractive a software would be, and how to influence it (e.g., through the selec-
tion of an specific combination of licenses or spending more on advertising towards the beginning). Specifically, organiza-
tions may use the results strategically: (1) to identify among their software, according to application domain and type of
user, the ones more likely to succeed if opensourced; (2) as a guide to design and position a project more effectively, man-
aging its attractiveness to attain desired goals; (3) to help decide on when to release source code (stage of development),
adding objectivity to the subjective advices previously discussed that software should be released in ‘‘later stages’’ (Johnson,
2002; Raymond, 1999); (4) to plan on what to expect from the community as the software evolves, managing better the evo-
lution process by adjusting coordination methods and marketing efforts accordingly; and (5) and to judge which project is
preferable and more appealing to developers, visitors and users, both to adopt and get involved, and thus strategically
choose, where to place sponsorship resources.

Finally, as the open source model of user-driven innovation resembles the knowledge production in science and has been
adopted in other fields (von Krogh and Spaeth, 2007), the research model proposed here can be adapted to help us
understand other public projects of collective production as well, especially those that fit into the category of open innova-
tion. One particular evident case outside the software industry is the production and improvement of knowledge that takes
place in the public encyclopedia Wikipedia.org. By analogy, we can associate a page or article in the encyclopedia with an
open source software project, and say that articles have readers (visitors), content users (e.g., those who cite), and writers
(developers). As far as the distribution of these resources to articles, we expect it to be highly skewed as well, towards
the popular culture and topics in fashion, for example (contextual factors). Accordingly, we can begin to construct a similar
model, considering articles’ set of conditions that influence resources behaviour (e.g., stage of development, language, type of
content, etc.), gathering different types of contributions to articles such as orthographic corrections, addition of paragraphs,
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 17
usage by citing the article in academic papers, so on and so forth. Probably, this model of collective production would gen-
erate new insights on how to design articles that are more likely to attract an independent and voluntary community of con-
tributors around them, sustaining knowledge production and dissemination by and to public. A similar theoretical exercise
could be performed to generate models for blogs, social networks’ profiles, open innovation problem solving, email list
threads, etc. In conjunction, these various models would create a body of knowledge useful for organizations and individuals
to operate strategically and so more effectively in their Internet-based strategic endeavours of communicating and collab-
orating with peers and customers.
7. Limitations

Research limitations can be divided into internal and external. Internal limitations are related to how the data was col-
lected and the analysis performed. First, on capturing the effects of license, we could not classify all licenses available to FOSP
according to their restrictiveness. We ignored licenses not classified by Lerner and Tirole (2005) and thus lost their effects.
Second, although we collected data over time, it was analysed in the structural model using a cross-sectional approach. In
doing so, we were not able to control for auto-correlations. However, this limitation is a cost of using a public secondary data
in need of validation. To some extent, this limitation was addressed by our mediational model, which provided further sup-
port for the claims that FOSP characteristics and the number of contributors influence together how a project grows, changes,
and gains momentum over time.

Amid the external limitations, a variety of potentially important variables were omitted from the analysis. There are other
candidate explanations for attractiveness that were not included in our model. Namely, we identified: (a) members’ techni-
cal knowledge, directly affecting the types of tasks generated and addressed; (b) level of community trust on the project and
its sponsors, affecting people’s willingness to contribute (Agerfalk and Fitzgerald, 2008); (c) existence of sponsored develop-
ers, who would keep a project active on a regular basis, having a formal commitment to address tasks; (d) the possibility of
an open source project be included in official GNU/Linux distributions, influencing directly its accessibility; (e) the effects of
the programming language adopted as the availability of developers depends on that (Stewart et al., 2006); and (f) the role of
usability and source code metrics on project attractiveness (Rajanen and Iivari, 2010; Meirelles et al., 2010). This list of
causes is exemplary and many other possible influencers exist, but given that empirical research is constrained by mundane
restrictions, we believe that our model is useful for it communicates the message and provides ground for further verifica-
tions and refinements.

Additionally, we believe that the ‘‘self’’ effect of attractiveness is a proxy for many mediators, which could not be mea-
sured. For example, when users spend their money and time promoting the project, the actual chain of causality is from
attractiveness, to finding a user, to receiving a contribution (money and time) and, finally, to attractiveness. The attractive-
ness to attractiveness proposition is simply a shortcut, useful for empirically verifying the theoretical argument and for pre-
diction purposes. Future research should measure these unobserved mediators.

Moreover, there is the fact that a project may change its characteristics over time, which our empirical model assumed to
be stable. However, we believe that in such case, the theoretical model we laid out would still be valid. When a project
changes its conditions, for example, its type of license, we expect that the change would trigger an effect on the project
attractiveness and activities in the terms we have already discussed. Previous empirical research supports this claim, show-
ing that the decision to change license alters project attractiveness (Santos et al., 2011).

As a final limitation, we admit that ‘‘a volunteer-based community [. . .] may not behave strategically’’, as Jaisingh et al.
(2008, p. 260) stated. In that case, our study would lose some of its explanatory power in exchange to strengthening its pre-
scriptive nature. Nevertheless, with higher prescriptions, this study demonstrates how opportunities to operate strategically
in the (open source) software market exist and may be used to maximize social welfare (Jaisingh et al., 2008). For the latter,
governments may reduce software development costs by effectively opensourcing their applications and choosing the most
attractive ones to adopt, and countries with less capability to develop software would have easier access to the knowledge
embedded in the source code and thus be better equipped to provide services to their populations by relying on what others
have made available on the Web.
8. Future work

The best way to address research limitations is with follow-up studies. A wide variety of studies can be derived from our
results and conclusions, covering topics related to both content and method. On the content side, as the phenomenon of
dual-licensing was just recently identified and discussed (Jiang and Sarkar, 2009; Watson et al., 2008), and, to the best of
our knowledge, this is the first study to empirically assess the impacts of this choice, replications would be beneficial. More-
over, Agerfalk and Fitzgerald (2008) pointed out that the recruitment of developers from an open source project by sponsors
could erode the ‘‘unknown’’ aspect of the project, affecting trust levels and innovation rates. Their proposition relates to the
limitation of not statistically controlling for sponsored-contributors and reinforces the need to add it in future studies.

Additionally, we encourage the development of competing models of attractiveness to be compared with this one, which
is exploratory in nature. For example, we have stated that project activities, as well as users and developers, are
consequences of attractiveness and decided to group visitors, users and developers because they are the contributors. Thus,
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://dx.doi.org/10.1016/j.jsis.2012.07.004


18 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
a competing model with all of them as indicators of one latent construct should also be evaluated. However, we have per-
formed preliminary analysis and found that the addition of the variables related to project activities generates a principal
component analysis solution with two factors (1-Eigenvalue = 3.38, variance explained = 48%, 2-Eigenvalue = 1.08, vari-
ance = 15%). The complete solution has seven components and thus supports our original proposition that only the sources
of contributions, and not their contributions, should be grouped together.

Similar to prior research in code reuse (Maillart et al., 2008), our paper addresses attractiveness from the preferential
attachment perspective. But this does not preclude other plausible mechanisms including the ‘like attracts like’, especially dur-
ing the earlier stage of project formation. It is likely that the like attracts like mechanism (as predicted in script theory and
social status hierarchy) presents a critical resource at the initial stage, in that a small number of highly resourceful developers
of similar status will work together initially (Kuk, 2006). Once the critical mass is reached, the rich-gets-richer effect takes over
(Lee et al., 2006) as the emergent networks characterized by peripheral contribution will be less costly to maintain (Hu and
Wang, 2009). Future research can seek to map out these longitudinal changes of what explains the preferable projects.

Furthermore, as previously shown, the concept of attractiveness can be adapted and used in other fields of research, being
useful to any user-centric effort or collaborative work performed on the Web (e.g., see Comino et al., 2007; Wagner and
Majchrzak, 2007). In addition, the relative strategic value of opensourcing software, when compared to the traditional out-
sourcing and insourcing approaches (Qu et al., 2010), should also be studied. Finally, the theoretical framework developed in
this paper can be extended by incorporating results of previous research, such as the explanation of what determines license
choices (Sen et al., 2008). In doing that, we can visualize a more complete model that explains what determines the license
choices, which impacts user adoption and contributor recruitment, project activities, and, ultimately, software maintenance
and improvement, all of that under the perspective of FOSP attractiveness.

On the method side, variables’ effect-sizes were not calculated by us. Accordingly, we do not know how strongly a specific
project activity variable influences project attractiveness, for example. Also, the results reported here could be further eval-
uated in an attempt to predict projects’ future attractiveness at various distances in time (lags). Thus, without future re-
search, we will not know for how long a state of attractiveness lasts or is capable of sustaining recruitment, participation
and engagement.
9. Conclusions

Given the increasingly common model of developing software by dissolving organizational boundaries and decentralizing
the work activities to interact with globally distributed workers and users, this paper started by identifying and describing
the distributional characteristics of FOSP key-resources in order to build a theoretical explanation for their behaviour. That is,
we relied on the existent literature that demonstrated that most users and developers of open source are concentrated in a
few projects for reasons yet unidentified but that conform with the preferential attachment phenomenon. We proposed that
FOSP attractiveness is the fundamental reason for this observed behaviour, and provided an explanation for how the major-
ity of visitors, users and developers come to select only a few projects to adopt and contribute, ignoring the rest (Xu and
Madey, 2004).

Additionally, we stated that the notion of contributor and contribution so far adopted in the FOSP literature has been
mostly restricted to source code developers and, only rarely, users or visitors. In doing so, many types of contributions have
been neglected along with their role in project improvement and software maintenance via project activities and other less
direct, or even unintended, modes of contributing.

After developing the theoretical framework, this paper empirically analysed data on thousands of projects from different
sources to unfold patterns in their internal activities, which are consistent with the framework developed, according to com-
plementary and independent statistical techniques. In summary, the results inform us about FOSP on a variety of areas. In the
model background, there is a pool of FOSP created as a result of opensourcing initiatives, sometimes utilized ‘‘as a marketing
technique’’ (Jiang and Sarkar, 2009, p. 208); and there is a community interested in using, studying and contributing to these
projects. Thus, our concerns were to explore what drives people to specific projects, or what types of projects are more attrac-
tive to people, understanding how that impacts project activities and, consequently, attractiveness, cyclically and continuously.

We found out that attractiveness may indeed be a strong driving force of FOSP dynamics, working as magnetic core that
influences how several relevant variables are related to each other in a systemic, reinforcing, way. In a nutshell, the conclu-
sion is that the influx of resources and contributions in FOSP depends on project attractiveness, which is a product of con-
tributions of many kinds that come more frequently and with higher intensity depending on projects’ set of conditions.
Accordingly, the theme of highest value to organizations interested in releasing or sponsoring open source software as a stra-
tegic choice is how to set up and manage a project to influence its attractiveness, selecting, designing and coordinating it to
that end.
Acknowledgments

This research was funded by FAPESP (www.fapesp.br, process: 2009/02046-2), and the Horizon Digital Economy Research
Institute at the University of Nottingham (http://www.horizon.ac.uk/). The sponsors had no influence on the decision to pub-
lish or in the content of the paper.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://www.horizon.ac.uk/
http://dx.doi.org/10.1016/j.jsis.2012.07.004


C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx 19
References

Agerfalk, P.J., Fitzgerald, B., 2008. Outsourcing to an unknown workforce: exploring opensourcing as a global sourcing strategy. MIS Quarterly 32, 385–409.
Anderson, J.C., Gerbing, D.W., 1998. Structural equation modeling in practice: a review and recommended two-step approach. Psychological Bulletin 103,

411–423.
Arakji, R., Lang, K., 2007. Digital consumer networks and producer–consumer collaboration: innovation and product development in the video game

industry. Journal of Management Information Systems 24 (2), 195–219.
Bagozzi, Richard P., Dholakia, Utpal M., 2006. Open source software user communities: a study of participation in Linux user groups. Management Science

52 (7), 1099–1115.
Baldwin, C.Y., Clark, K.B., 2006. The architecture of participation: does code architecture mitigate free riding in the open source development model?

Management Science 52 (7), 1116–1127.
Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H., 2009. Are two heads better than one for software development? The productivity paradox of pair

programming. MIS Quarterly 33, 91–118.
Barabási, A.L., 2005. Network theory – the emergence of creative enterprise. Science 308, 639.
Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286, 509–512.
Baron, R.M., Kenny, D.A., 1986. The moderator–mediator variable distinction in social psychological research: conceptual, strategic and statistical

considerations. Journal of Personality and Social Psychology 51, 1173–1182.
Bentler, P.M., 1989. EQS Structural Equations Program Manual. BMDP Statistical Software Inc., Los Angeles, CA.
Bessen, J.E., 2005. Open Source Software: Free Provision Of Complex Public Goods. Technical Report. <http://ssrn.com/abstract=588763>.
Bevan, N., 2006. Practical issues in usability measurement. Interactions 13 (6), 42–43.
Byrne, B., 2006. Structural Equation Modeling With EQS: Basic Concepts, Applications, and Programming, Multivariate Applications Series. Lawrence

Erlbaum Associates.
Chin, W., 1998. Issues and opinion on structural equation modeling. MIS Quarterly 22.
Clauset, A., Shalizi, C.R., Newman, M.E.J., 2009. Power-law distributions in empirical data. SIAM Review 51, 661–703.
Colazo, J., Fang, Y., 2009. The impact of license choice on open source software development activities. Journal of the American Society for Information

Science and Technology 60 (5), 997–1011.
Comino, S., Manenti, F.M., Parisi, M.L., 2007. From planning to mature: on the success of open source projects. Research Policy 36 (10), 1575–1586.
Crowston, K., Howison, J., 2006. Hierarchy and centralization in free and open source software team communications. Knowledge, Technology, and Policy

18, 65–85.
Crowston, K., Scozzi, B., 2002. Open source software projects as virtual organizations: competency rallying for software development. IEE Proceedings

Software Engineering 149, 3–17.
Crowston, K., Annabi, H., Howison, J., 2003. Defining open source software project success. In: 24th International Conference on Information Systems (ICIS),

Seattle, WA.
Crowston, K., Annabi, H., Howison, J., Masango, C., 2004. Effective Work Practices for Software Engineering: Free/Libre Open Source Software Development.

WISER Workshop on Interdisciplinary Software Engineering Research, SIGSOFT, Newport Beach, CA.
Crowston, K., Annabi, H., Howison, J., Masango, C., 2005. Towards a portfolio of FLOSS project success measures. In: 26th International Conference on

Software Engineering, Edinburgh, UK.
Dow, K.E., Jackson, C., Wong, J., Leitch, R.A., 2008. A comparison of structural equation modeling approaches: the case of user acceptance of information

systems. Journal of Computer Information Systems 48, 106–114.
Fang, Y., Neufeld, D., 2009. Understanding sustained participation in open source software projects. Journal of Management Information Systems 24 (4), 9–

50.
Fershtman, C., Gandal, N., 2007. Open source software: motivation and restrictive licensing. International Economics and Economic Policy 4, 209–225.
Fershtman, C., Gandal, N., 2011. Direct and indirect knowledge spillovers: the ‘‘social network’’ of open-source projects. The RAND Journal of Economics 42,

70–91.
Fitzgerald, B., 2006. The transformation of open source software. MIS Quarterly 30, 587–598.
Grewal, R., Lilien, G.L., Mallapragada, G., 2006. Location, location, location: how network embeddedness affects project success in open source systems.

Management Science 52, 1043–1056.
Guimera, R., Uzzi, B., Spiro, J., Amaral, L.A., 2005. Team assembly mechanisms determine collaboration network structure and team performance. Science

308 (5722), 697–702.
Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., 2006. Multivariate Data Analysis. Pearson Education Inc., Upper Saddle River, NJ.
Herbsleb, J., Mockus, A., 2003. An empirical study of speed and communication in globally distributed software development. IEEE Transactions on Software

Engineering 29, 481–494.
Hu, H., Wang, X., 2009. Disassortative mixing in online social networks. A letter. Journal Exploring the Frontiers of Physics 86.
Jaisingh, J., See-To, E., Tam, K., 2008. The impact of open source software on the strategic choices of firms developing proprietary software. Journal of

Management Information Systems 25 (3), 241–275.
Jiang, Z., Sarkar, S., 2009. Speed matters: the role of free software offer in software diffusion. Journal of Management Information Systems 26 (3), 207–239.
Johnson, J.P., 2002. Open source software: private provision of a public good. Journal of Economics & Management Strategy 11, 637–662.
Judd, C.M., Kenny, D.A., 1981. Process analysis: estimating mediation in treatment evaluations. Evaluation Review 5, 602–619.
Kaplan, D., 2008. Structural Equation Modeling: Foundations and Extensions. Sage, London.
Keller, E.F., 2005. Revisiting ‘‘scale-free’’ networks. BioEssays 27, 1060–1068.
Kelloway, E.K., 1998. Using Lisrel for Structural Equation Modeling. International Educational and Professional Publisher, SAGE Publications, CA.
Kline, R.B., 1998. Principles and Practice of Structural Equation Modeling. The Guilford Press, New York, NY.
Koch, S., 2004. Profiling an open source project ecology and its programmers. Electronics Markets, Special Section: Open Source Software, 14.
Krishnamurthy, S., 2002. Cave or Community? An Empirical Examination of 100 Mature Open Source Projects. First Monday, 7 (6). <http://firstmonday.org/

htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881>.
Kuk, G., 2006. Strategic interaction and knowledge sharing in the KDE developer mailing list. Management Science 52, 1031–1042.
Lee, S.H., Kim, P.J., Jeong, H., 2006. Statistical properties of sampled networks. Physical Review Letters 73.
Lerner, J., Tirole, J., 2002. Some simple economics of open source. Journal of Industrial Economics 50 (2), 197–234.
Lerner, J., Tirole, J., 2005. The scope of open source licensing. Journal of Law, Economics and Organization 21, 20–56.
Long, J., 2006. Understanding the role of core developers in open source software development. Journal of Information, Information Technology, and

Organizations 1.
Maillart, T., Sornette, D., Spaeth, S., von Krogh, G., 2008. Empirical tests of Zipf’s law mechanism in open source Linux distribution. Physical Review Letters

101.
Maitland, S.B., Dixon, R.A., Hultsch, D.F., Hertzog, C., 2001. Well-being as a moving target: measurement equivalence of the Bradburn affect balance scale.

Journal of Gerontology: Psychological Sciences 56 (2), 69–77.
Mardia, K., Kent, J., Bibby, J., 1980. Multivariate Analysis. Academic Press, NewYork.
Meirelles, P., Santos Jr., C., Terceiro, A., Miranda, J., Chavez, C., Kon, F., 2010. A study of the relationships between source code metrics and attractiveness in

free software projects. In: Brazilian Symposium on Software Engineering (SBES), Salvador, Brazil.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://ssrn.com/abstract=588763
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
http://dx.doi.org/10.1016/j.jsis.2012.07.004


20 C. Santos et al. / Journal of Strategic Information Systems xxx (2012) xxx–xxx
Mockus, A., Fielding, R.T., Herbsleb, J., 2000. A case study of open source software development: the Apache server. In: Proceedings of the 22nd International
Conference on Software Engineering.

Muffato, M., 2006. Open Source: A Multidisciplinary Approach. Imperial College Press, London, UK.
Mulaik, S.A., 2005. Parsimony/Occham’s Razor. Encyclopedia of Statistics in Behavioral Science.
Newman, M.E.J., 2002. Assortative mixing in networks. Physical Review Letters 89, 34–234.
Nonnecke, B., Preece, J., 2003. Silent participants: getting to know lurkers better. In: Lueg, C., Fisher, D. (Eds.), From Usenet to CoWebs: Interacting with

Social Information Spaces. Springer Verlag.
Nonneke, B., Preece., J., 2000. Lurker demographics: counting the silent. In: Proc. SIGCHI Conf. Human Factors Comput. Systems (ACM), New York, pp. 73–80.
O’Mahony, S., 2007. The governance of open source initiatives: what does it mean to be community managed? Journal of Management & Governance 11,

139–150.
Papadakis, E.N., Tsionas, E.G., 2010. Multivariate Pareto distributions: inference and financial applications. Communications in Statistics – Theory and

Methods 39 (6), 1013–1025.
Peterson, R.A., 1994. A meta-analysis of Cronbach’s coefficient alpha. Journal of Consumer Research 21, 381–391.
Preacher, K.J., Hayes, A.F., 2008. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior

Research Methods 40, 879–891.
Price, D.J.de S., 1976. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science 27,

292–306.
Qu, W.G., Oh, W., Pinsonneault, A., 2010. The strategic value of IT in sourcing: an IT-enabled business process perspective. Journal of Strategic Information

Systems 19 (2), 96–108.
Raja, U., Tretter, M., 2006. Investigating open source project success: a data mining approach to model formulation, validation and testing. In: Proceedings of

SUGI 31, San Francisco, California.
Rajanen, M., Iivari, N., 2010. Traditional usability costs and benefits - fitting them into open source software development. In: 18th European Conference on

Information Systems (ECIS), Pretoria, SA.
Raymond, E.S., 1999. The Cathedral and the Bazaar. O’Reilly, Sebastopol, CA.
Roberts, Jeffrey A., Hann, Il-Horn, Slaughter, Sandra A., 2006. Understanding the motivations, participation, and performance of open source software

developers: a longitudinal study of the apache projects. Management Science 52, 984–999.
Rutner, P.S., Hardgrave, B.C., McKnight, D.H., 2008. Emotional dissonance and the information technology professional. MIS Quarterly 32, 635–652.
Santos Jr., C., Cavalca, M., Kon, F., Singer, J., Ritter, V., Regina, D., Tsujimoto, T., 2011. Intellectual Property Policy and Attractiveness: A Longitudinal Study of

Free and Open Source Software Projects. ACM Computer Supported Cooperative Work (CSCW), Hangzhou, China.
Santos Jr., C., 2008. Understanding partnerships between corporations and the open source community: a research gap. IEEE Software 25.
Sauer, R.M., 2007. Why develop open-source software? The role of non-pecuniary benefits, monetary rewards, and open-source licence type. Oxford Review

of Economic Policy 23, 605–619.
Sen, R., Subramaniam, C., Nelson, M., 2008. Determinants of the choice of open source software license. Journal of Management Information Systems 25 (3),

207–239.
Shaikh, M., Cornford, T., 2003. Version Management Tools: CVS to BK in the Linux Kernel. COSPA Knowledge Base. <http://pascal.case.unibz.it/retrieve/2770/

shaikhcornford.pdf>.
Sharma, S., Sugumaran, V., Rajagopalan, B., 2002. A framework for creating hybrid-open source software communities. Information Systems Journal 12, 7–

25.
Simon, H.A., 1955. On a class of skew distribution functions. Biometrika 42, 425–440.
Stevens, J., 1986. Applied Multivariate Statistics for the Social Sciences. Hillsdale, NJ.
Stewart, K., Gosain, S., 2006. The impact of ideology on effectiveness in open source software development teams. MIS Quarterly 30, 291–314.
Stewart, K., Ammeter, A., Maruping, L., 2006. Impact of license choice and organizational sponsorship on success in open source software development

projects. Information Systems Research 17 (2), 136–144.
von Hippel, E., 2005. Democratizing Innovation. MIT Press, Boston, MA.
von Hippel, E., von Krogh, G., 2003. Open source software and the ‘‘Private-Collective’’ innovation model: issues for organization science. Organization

Science 14.
von Krogh, G., 2002. The communal resource and information systems. Journal of Strategic Information Systems 11 (2), 85–107.
von Krogh, G., Spaeth, S., 2007. The open source software phenomenon: characteristics that promote research. Journal of Strategic Information Systems 16,

236–253.
von Krogh, G., von Hippel, E., 2006. The promise of research on open source software. Management Science 52, 975–983.
von Krogh, G., Spaeth, S., Lakhani, K.R., 2003. Community, joining, and specialization in open source software innovation: a case study. Research Policy 32,

1217–1241.
Wagner, C., Majchrzak, A., 2007. Enabling customer-centricity using Wikis and the Wiki way. Journal of Management Information Systems 23 (3), 17–43.
Watson, R.T., Boudreau, M.-C., York, P.T., Greiner, M.E., Wynn Jr., D., 2008. The business of open source. Communications of the ACM 51, 41–46.
West, J., O’Mahony, S., 2005. Contrasting community building in sponsored and community founded open source projects. In: Proceedings of the 38th

Annual Hawai International Conference on System Sciences, Waikoloa, Hawaii.
Wiggins, A., Howison, J., Crowston, K., 2009. Heartbeat: measuring active user base and potential user interest in FLOSS projects. In: Proceedings of the Fifth

International Conference on Open Source Systems (OSS), pp. 94–104.
Xu, J., Madey, G., 2004. Exploration of the open source software community. In: Proceedings of North American Association for Computational Social and

Organizational Science (NAACSOS), Pittsburgh, PA, USA.
Ye, Y., Kishida, K., 2003. Toward an understanding of the motivation Open Source Software developers. In: Proceedings of the 25th International Conference

on Software Engineering. Portland, Oregon, pp. 419–429.
Yuan, K.-H., 2005. Fit indices versus test statistics. Multivariate Behavioral Research 40, 115–148.
Please cite this article in press as: Santos, C., et al. The attraction of contributors in free and open source software projects. J. Strateg.
Inform. Syst. (2012), http://dx.doi.org/10.1016/j.jsis.2012.07.004

http://pascal.case.unibz.it/retrieve/2770/shaikhcornford.pdf
http://pascal.case.unibz.it/retrieve/2770/shaikhcornford.pdf
http://dx.doi.org/10.1016/j.jsis.2012.07.004

	The attraction of contributors in free and open source software projects
	1 Introduction
	2 Literature review and model development
	2.1 Project activities: the sources of improvement, software maintenance
	2.2 The causes of attractiveness
	2.3 Set of conditions: FOSP characteristics
	2.4 Type of license
	2.5 Type of user
	2.6 Application domain
	2.7 Stage of development
	2.8 The feedback effect of project activities, software maintenance
	2.9 Attractiveness self-reinforcing effect, indirect and unintended contributions

	3 Methods
	4 Results of the structural model
	4.1 Descriptive statistics
	4.2 Latent construct reliability
	4.3 Overall model-to-data fit
	4.4 Testing the independent effects of variables

	5 Results of the mediational model
	5.1 Principal component analysis: conjoint role of resources
	5.2 The self-reinforcing effects

	6 Discussion: Implications for theory and practice
	7 Limitations
	8 Future work
	9 Conclusions
	Acknowledgments
	References


