
 An Enhanced Short Text Compression Scheme
for Smart Devices

Md. Rafiqul Islam

Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh.
Email: dmri1978@yahoo.com

S. A. Ahsan Rajon

Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh.
Email: ahsan.rajon@gmail.com

Abstract — Short Text Compression is a great concern
for data engineering and management. The rapid use of
small devices especially, mobile phones and wireless sensors
have turned short text compression into a demand-of-the-
time. In this paper, we propose an approach of compressing
short English text for smart devices. The prime objective of
this proposed technique is to establish a low-complexity
lossless compression scheme suitable for smart devices like
cellular phones and PDAs (Personal Digital Assistants)
having small memory and relatively low processing speed.
The main target is to compress short messages up to an
optimal level, which requires optimal space, consumes less
time and low overhead. Here a new static-statistical context
model has been proposed to obtain the compression. We use
character masking with space integration, syllable based
dictionary matching and static coding in hierarchical steps
to achieve low complexity lossless compression of short
English text for low-powered electronic devices. We also
propose an efficient probabilistic distribution based
content-ranking scheme for training the statistical model.
We analyze the performance of the proposed scheme as well
as the other similar existing schemes with respect to
compression ratio, computational complexity and
compression-decompression time. The analysis shows that,
the required number of operations for the proposed scheme
is less than that of other existing systems. The experimental
results of the implemented model give better compression
for small text files using optimum resources. The obtained
compression ratio indicates a satisfactory performance in
terms of compression parameters including better
compression ratio, lower compression and decompression
time with reduced memory requirements and lower
complexity. The compression time is also lower because of
computational simplicity. In overall analysis, the simplicity
of computational requirement encompasses the compression
effective and efficient.

Index Terms — Short Text Compression, Syllable,
Statistical Model, Text-ranking, Static Coding, Smart
Devices.

I. INTRODUCTION

Twenty-First century is the age of information and
communication technology. Science through its

marvelous achievements has converted this world into
information and communication based global village.
The prime aspect of present technology is to ensure a
better way of communication throughout the world in a
more convenient, easy and cost-effective way. With the
aspects of cost, facility and reliability a new trend of
introducing small sized devices with some sorts of
computing and communicating power have established
its place in the arena of research. With the voyage of
introducing smart devices, the challenge of adorning
them with greater and effective use has come into
question. It is now a great concern to embed maximum
applications within these smart devices where it is an
extreme problem to provide a low-complex and low-
memory consuming version for smart devices of some
prime necessary applications like data compression,
which generally requires large memory and greater
processing speed. Mobile communication that is a great
gift of modern technology introducing the era of digital
communication also suffers from the same limitation.
Though crossing the boundary of voice communication,
short messages communication has established its robust
place in the arena of digital communication, Short
Message Service (SMS) providers (usually
Telecommunication Companies) have a constraint that
each message should be not more than of 160 characters.
This constraint is really a great limitation for frequent
communication using SMS. In order to overcome this
limitation, compression of the short message is a well
policy. That is why; our aim is to make “short” messages
“shorter”, expressing “larger” feelings in “smaller”
expenses.

Here we introduce a scheme of compressing short
English text for smart devices like cellular phones and
wireless sensors having small memory and relatively low
processing speed communicating with lower bandwidth
i.e. channel capacity. We have employed a new statistical
model with a novel approach of integrating text ranking
or component categorization scheme for building the
model. Modified syllable based dictionary matching and
static coding is used to obtain the compression.
Moreover, we have employed a new theoretical concept

Contact Author: S. A. Ahsan Rajon
E-Mail: ahsan.rajon@gmail.com

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 49

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.1.49-58

of choosing the multi-grams, which has facilitated us to
obtain mentionable compression ratio using a small
number of knowledgebase entries than other methods,
consuming less resource. Besides of experimental results
we have provided a comprehensive theoretical analysis
of compression ratio of proposed scheme with similar
existing scheme.

II. RELATED LITERATURE

Though a number of researches have been performed
regarding large-scale data compression, in the specific
field of short text compression, the number of available
research work is small. Business issue of mobile phone
service providers may be indicated as a reason behind the
unavailability of research material. The following
sections give a glimpse of the most recent research
developments on short text compression issues for small
devices.

A. Compression of Short Text on Embedded Systems

The recent literature regarding short text compression
titled “Compression of Short Text on Embedded
Systems” by Rein et al. [1] proposes a low-complexity
version of PPM (Prediction by Partial Matching). A hash
table technique with one-at-a-time hash function is
employed in this method to design the data structure for
data and context model. They use statistical models with
hash table lengths of 16384, 32768, 65536 and 131072
elements requiring two bytes for each element, which
result an allocation of 32, 64, 128 and 256 Kbytes of
RAM respectively. If this memory requirement may be
substantially decreased, we may achieve more efficient
compression and hence may make the scheme usable to
even very low-quality cellular phones. Another
concerned approach by Rein et al. is “Low Complexity
Compression of Short Message” [2] with Low Complex
and Power Efficient Text Compressor for Cellular and
Sensor Networks [3] are variations of [1].

B. Compression of Small Text Files Using Syllables

“Compression of Small Text Files Using Syllables”
proposed by Lansky et al. [4, 5] concerns on
compressing small text files using syllables. To
implement their concept they created database of
frequent syllables. Here, condition for adding syllable to
database is that, its frequency is greater than 1:65000. In
this scheme, the primary knowledge-base size is more
than 4000 entries initially. For low memory devices, it is
obviously difficult to afford this amount of storage as
well as to facilitate a well suited mechanism of searching;
which leads our proposed scheme to redefine the
knowledge-base span as short as possible and hence to
reduce the scope of loosely choosing the syllables or n-
grams. Moreover, in formation of the syllables, space is
not considered with any special concern. But, as in any
text document, it is a common assumption that, at least
20% of the total characters may be spaces, it may be a

good idea to have specific consideration of syllable
involving spaces. In [4, 5], all the training syllable entries
are stored without any categorization. This often results
for coding redundancy, which can be handled by
integrating text ranking or component categorization
scheme with syllable selection.

C. Modified Greedy Sequential Grammar Transform
based Lossless data Compression

The model proposed by M. R. Islam et al. [6] uses the
advantages of greedy sequential grammar transform with
block sorting to compress data. However, this scheme is
highly expensive in terms of memory consumption and
thus not suitable for low memory devices.

D. Two-Level Directory Based Compression

Dictionary based text compression techniques are an
important and mostly adapted data compression schemes.
A dictionary based text preprocessing scheme titled
TWRT (Two-level Word Replacing Transformation) has
been proposed by P. Skibinski [7]. They use several
dictionaries and divide files into various kinds, which
improve the compression performance.

TWRT can use up to two dictionaries, which are
dynamically selected before the actual preprocessing
starts. For some types of data like programming
languages, references etc. first level dictionaries (small
dictionaries) are specified whereas second level
dictionaries (large dictionaries) are specific for natural
languages (e.g., English, Russian, French). While
concerned with any source text, if no appropriate first
level dictionary is found, then it is not used. Selection of
the second level dictionary is analogous. When TWRT
has selected only the one (the first or the second level)
dictionary, it works like WRT (Word Replacing
Transformation) [7]. If TWRT has selected both the
first and the second level dictionaries, then the
second level dictionary is appended after the first
level dictionary. That is, the dictionaries are
automatically merged. If the same word exists in the first
and the second level dictionaries, then the second
appearance of word is ignored to minimize length of
code-words. Only the names of the dictionaries are
written in the output file, so the decoder can use
the same combination of the dictionaries.

TWRT preprocesses the input file step by step with all
dictionaries and finally to choose the smallest output file.
Nevertheless, this idea is very slow. They propose to
read only the first f (e.g., 250) words from each of n
dictionaries (small and large) and create one joined
dictionary which is completely impossible to afford for
low-memory devices. If there are same words in different
dictionaries, then all occurrences of this words are
skipped which is too an extremely infeasible technique
for smart device platform-aware compression. The main
problem for TWRT is selection of the dictionaries before
preprocessing, which hampers the processing time for
concerned devices [3]. Moreover the dictionary length is

50 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

too huge to be used for small memory devices. For small
text compression it is also not feasible and to some extent
efficient to have field-specific dictionary. Above all,
being the code words are determined on the fly, it is great
doubt to cope with the memory and energy constraints as
well as time consumptions of the low-memory devices.

E. Other Schemes

H. Kruse and A. Mukherjee [8, 9] proposed a
dictionary based compression scheme named star
encoding. According to this scheme, words are replaced
with sequence of * symbol accompanied with reference
to an external dictionary. The dictionary is arranged
according to the length of words and is known to both
sender and receiver. Proper sub-dictionary is selected by
the length of the sequence of * symbols. Length Index
Preserving Transformation (LIPT) is a variation of the
star encoding by the same authors. This algorithm
improves the PPM, BWCA and LZ based compression
schemes [9]. Another related literature known StarNT
works with ternary search tree and is faster than the
previous. The first 312 words of the dictionary are the
most frequently used words of the English language. The
remaining part of the dictionary is filled up by words
sorted by their lengths first and then by their frequencies.
This scheme also does not take the use of substring
weighting approach. Moreover, the scheme requires that,
the dictionary should be transmitted first in order to set
up the knowledge-base. It is completely in-feasible to be
used for compressing small texts for low-powered and
small memory devices.

Prediction by partial matching (PPM) is a major
lossless data compression scheme, where each symbol is
coded by taking account of the previous symbols [9]. A
context model is employed that gives statistical
information about the symbol with its context. In order to
signal the decoder on the context, specific symbols are
used by the encoder. The model order in PPM is a vital
parameter of compression performance. However, PPM
is computationally more complex and the overhead too is
greater [1, 9, 12].

In [1] the compression starts for text sequences larger
than 75 Bytes, and in [10] the starting point is 50 Bytes.
If it is possible to make the lower threshold value into
less than ten characters, the compression may really be a
“very small text file” supported one that may place a new
milestone in very small text file compression ensuring
“short text gets shortest”. Our prime aim is to design
such an effective and efficient “very short text
compression” scheme.

III. SHORT TEXT COMPRESSION FOR SMART DEVICES

The prime concern of this paper is to implement a
lossless compression of short English text for smart
devices in a low complexity scheme. The idea behind this
is to make it possible to communicate more efficiently by

making utilization of minimum required bandwidth of
wireless and sensor networks for small and embedded
devices. More precisely saying, the main concern is to
develop a low-complexity compression technique
suitable for low-power consuming smart devices with
small-memory; especially for wireless sensors and
mobile phones. The proposed scheme is concerned with
two parts. The first one consists of training the statistical
model and the second provides a compression-
decompression technique. Specifically, in analyzing step
we count the frequency of represent-able ASCII
characters. Then, the proposed scheme proceeds by
identifying the syllables of length two, three, four and
five. We consider <space> as a distinct vowel and
include this while counting the frequency of syllables,
that is, searches for <space> either at the beginning or
ending of syllable. In the step of boosting the statistical
model, the substrings (which were not grabbed in the
phase concerning syllables) with length two to five are
considered and the frequency of each are counted. In the
second step, we employ the provided text-ranking
scheme for each entry and calculate the entry index. For
entries with same index, we simply sort them. In the
phase of choosing entries, emphasis is give on
probability distribution based text ranking, which is
computed with the help of its neighbor characteristics.

As in most cases, it is unusual to have frequent match
of substrings with length more than four characters,
maximum of five (extra one for <space>) levels has been
considered to train the statistical model. In each level,
multiple entries with same weightage are simply sorted
over. Resultant entries are assigned with non-conflicting
binary stream. When we are to compress any text, the
input text is successively compared with the statistical
model and for any match, the binary stream is returned as
output and for mismatch in any level, the level below it is
forwarded.

The compression and decompression are expected to
be performed in the following manner.

A. Compression Process

In the first step, we plan to employ Modified Multi-
grams or syllable matching proposed by Lansky et al. [4,
5]. A static dictionary based compression scheme uses
approximately the same concept as that of character
masking. It reads input data and searches for symbols or
groups of symbols that are previously coded or indexed
in the dictionary. If a match is found, a pointer or index
into the dictionary can be output instead of the code for
the symbol. Compression occurs if the pointers or index
requires lower space (in terms of memory usage) than the
corresponding fragments [1, 12, 15]. Though it is the
basic idea behind multi-grams, we use it in a slightly
modified fashion. The Knowledgebase for the multi-
grams is constructed with the help of the statistics
obtained by analyzing the corpuses.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 51

© 2010 ACADEMY PUBLISHER

In the second step of compression process, static
coding has been used. However, here the modification is
made in such a way that, in spite of calculating on-stage
codes predefined codes are employed in order to reduce
the space and time complexity. The codes for dictionary
entries are also predefined. The total message is encoded
by a comparatively small number of bits and hence, we
get a compressed outcome. The prime fact of static
coding is that, in case of dynamic coding we are to
calculate the frequencies in an elegant manner.
Moreover, as the dynamic codes are determined and the
lengths are varied through the frequencies of the symbols
it is a must to submit the codes along with the
compressed data. This is a limitation of dynamic coding
if the total arena of compression is low spanned and the
total number of symbols is not huge. Compression of
short message also suffers in this context while using
other similar semi-dynamic coding. Consequently, it
motives to move towards static coding scheme to obtain
compression of short messages. For this concerned study,
we have analyzed the corpora- Bib, Book1, Book2,
News, Paper1, Paper2, Paper4 and Paper5 from Calgary
Corpus and Canterbury Corpus [16]. We have also
analyzed 124 collections of small text for the same. A
detail overview of the texts is presented in [10, 15].

B. Decompression Process

The decompression process is performed through the
following steps:

Step 1: Grab the bit representation of the message,
Step 2: Identify the character representation,
Step 3: Display the decoded message.

As all the symbols are to be coded in such a fashion that,
by looking ahead several symbols (Typically the
maximum length of the code) we can distinguish each
character (with the attribute of Static Coding). In step 1,
the bit representation of the modified message is
performed. It is simply analyzing the bitmaps. The
second step involves recognition of each separate bit-
patterns and indication of the characters or symbols
indicated by each bit pattern. This recognition is
performed on the basis of the information from fixed
encoding table used at the time of encoding. The final
step involves simply representing i.e. display of the
characters recognized through decoding the received
encoded message.

IV. THEORETICAL ASPECT OF TRAINING THE PROPOSED
STATISTICAL MODEL

The proposed scheme achieves better compression
ratio with relatively low complexity by means of
computational simplicity and effective expert model,
which is used to train the statistical context. Firstly, the
prime modification is performed in the syllable selection
section of [4, 5] proposed by Lansky et al. In their
papers, only syllables were considered by defining
maximal subsequence of vowels including pseudo-vowel

‘y’. Here our proposal is to consider <blank space> as a
Prime Syllable. Using <space> as a prime syllable may
dramatically reduce the total number of characters
needed to represent the message through sophisticated
encoding. Secondly, the paper [4, 5] does not clearly
express the criteria of choosing the training syllables for
the model. The term used in [4, 5] to define the criteria of
choosing syllables was simply “frequentness”. However,
we employ a new theoretical perspective on “Text
Ranking or Component Ranking” method to choose the
syllables for training our proposed model. We, in the first
step count the frequency of each vowel from the standard
Text Calgary Corpora. In the second step, we count the
number of vowels having space either at (i - 1) or (i +
1) position with itself at position (i). The reason of
adding the with-space vowels is simply to increase the
weightage of the corresponding vowels. These entries
having vowels are also inserted in the knowledgebase as
separate entity. In this step, we also count the statistics of
consonants in order to build the dictionary or multi-
grams entries. In the step of extending primary
knowledgebase, proposed in papers [4, 5] the criteria was
that, the frequency would be 1:65000, which results a
knowledgebase size of more than 4000 entries initially.
For low memory devices, it is obviously difficult to
afford this amount of storage as well as to facilitate a
well suited mechanism of searching, which leads our
proposed scheme to redefine the knowledge base span as
short as possible and hence to reduce the scope of loosely
choosing the multi-grams. In the phase of choosing
multi-grams, we give emphasis on Probability
Distribution, which is computed with the help of its
neighbor characteristics.

A new text weighting or component ranking scheme
has been employed to select the multi-grams that
facilitates us to efficiently construct the knowledgebase
[11, 15]. This developed novel text weighting scheme is
employed with an aim to get the knowledgebase. The
proposed text weighting or component ranking is
obtained through the following equation:
Suppose we choose a multi-grams D consisting of
characters C1 C2 C3… Cn of length n. Thus,

∑
=

+
−

∂∂

=∂

n

1i n,C,.........3,C2,C1C λ) ,1n,C,.........3,C2,C1C(D1) -) -
iC(D(

),n,C,.........3,C2,C1C(D

for i > 1 and,

)(iCD∂ = λ(Ci) for i = 1, where λ(Ci) is the frequency
of the character Ci with assumption that each character of
the alphabet must exist in the training data. And the value
of ∂(Dφ) indicates the multi-grams index of character
Dφ.. Here, we refer the multi-gram index obtained from

)(D ,,C,.........,C,CC n321
∂ as the resultant text-weightage

for the text C1 C2 C3… Cn .

52 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

For example, we want to have the probability distribution
of multi-grams “and”.
The steps will be:
Let ∂ (a) = x1 ,
 ∂ (n) = x2 ,
∂(d) = x3 ,
 ∂(an) = x4 and,
λ(Cand) = Frequency of ‘and’ in the training document = x5.
Therefore, ∂(and) = (∂(a) -1) + (∂(n) -1) + (∂ (d) -1)
— ∂ (an) + λ (Cand) = x1+ x2 + x3 — x4 + x5

Static coding is defined as a set S = {B1, B2, B3 ….., Bn-1 ,
Bn } of binary streams, where each element of the set B1,
B2, B3 ….., Bn-1 , Bn are uniquely identifiable providing that,
B1, B2, B3 ….., Bn-1 ,Bn are not necessarily to be of equal bit
lengths. As all the elements of the sets supports our three
basic points of concern- identifiability, uniqueness and
variability of any encoding scheme, we are interested to
use static coding. This theoretical aspect let us do not
consider updating the model throughout the compression,
because, firstly, updating a larger knowledgebase using a
very short data is not computationally affordable and
effective, secondly, a larger portion of the source code
may be saved if the update is avoided resulting faster
execution [1, 3, 11] and finally, if the training statistical
data are not permitted to be updated as well as to be
expanded, a constant and consistent memory
optimization for the overall compression process may
ensured. That is, there is no possibility to expand the
knowledgebase arbitrarily and thus there is no risk of
arising the overloaded memory problem or out-of-
memory problem. As the knowledgebase is not updated,
the use of static coding is also perfect for the same.

V. PERFORMANCE ANALYSIS

Though it is a general idea that compression and
decompression time should have an inter-relation, the
proposed scheme demonstrated a little exception. The
points behind that may be summarized through the
following discussions.

A. Performance Analysis of Compression Process

Let the total number of training entries for the
statistical model be Ng , where Ng is a non-negative
integer and the maximum level for statistical modeling is
L. The first level of the statistical model must contain the
single characters, where the total number of distinct
character is l1. For levels 1, 2, 3, …., n-1, n the total
number of distinct multi-gram entries are l1, l2, l3, ……,
ln-1, ln respectively.

When any text is to be compressed, it is hierarchically
compared with each level of statistical model starting
from the highest order. If there is any match, the
corresponding static coding for multi-gram entry is
assigned for the text. If the multi-gram entry is not found
throughout the level, it is forwarded to the next level.
This assignment uses efficient searching procedures. Let
the code m is found at the i-th level with offset k

resulting a search cost of Sm (l j) + km , where km < li
and, j=L, L-1,……, i-1 with respect to search space.
Here j limits from L to (i-1) instead of i because, as we
find the code in somewhere of i-th level not requiring to
search the whole element-space of the i-th level, rather
searching through an offset value k for i-th level, the
overall search-space is L to (i-1). That is why, for the
above consequences, the total searching appears: search
overhead for (i-1) number of levels with additional
search overhead of k elements. Here the term “search
overhead” stands for the search space complexity as well
as other related computational requirements like time and
power consumptions. When the code matches, it is
placed in output stream as character representation. This
step requires padding the bit-stream and then conversion
into character stream. Assume that, the process of overall
conversion for each successful entry occurs with the
overhead B. That is, for any multi-gram matching, the
required overhead is,

 ∑
−

=

++=
1i

 Lj
11j11 B k)) (l(S C

Similarly, ∑
−

=
++=

1i

 Lj
j B k)) (l(S C 2222

, and

∑
−

=
++=

1i

 Lj
nnjn B k)) (l(S C n

In such a way if n multi-grams are identified and then
encoded, the required resultant number of operations in
compression process is:

 ∑ ∑∑∑∑
−

= ====
++==

1i

 Lj
y

n

1y
y

n

1y
jy

n

1y

n

 1y
y B k)) (l(SCT (1)

B. Performance Analysis of Decompression Process

For the decompression process, the text to be
decompressed is converted into binary stream. If the
largest code is of length cmax and the smallest code is of
length cmin then the decompression process will start the
searching with the cmax number of bits and search through
the codes up to cmin bits by reducing one bit in each step
for unsuccessful match. It is necessary to mention that,
the codes with same bit length do not essentially
comprise any specific level. So, to reveal the character
representation for each entry d if a switch of h levels are
required, where cmin ≤ h ≤ cmax where the maximum level
is p, with the matching offset for corresponding level kd,
and the assignment of the code with character
representation for each successful match requires an
overhead of Bd, then the overall requirement for
comparing through the each level settings results (=
overhead of searching through level + overhead for
searching through offset + overhead of representation).
For detecting first character the overhead is,

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 53

© 2010 ACADEMY PUBLISHER

 ∑
=

′+′+′′=
h

 pq
11q1 B k)) l(S(E 1

.

Similarly, for detecting the second character, the level-
wise overhead will be:

∑
=

′+′+′′=
h

 pq
q B k)) l(S(E 2222

 .

Hence,

∑
=

′+′+′′=
h

 pq
nnqnn B k))l(S(E (2)

Here, p = maximum level, and S/ is a function that
denotes the search-overhead for searching in element
space provided as parameter of the function and h =
minimum level. The computation progresses through p,
p-1, p-2,……, h+2, h+1, h . Here the subscript n is used
to denote the level-wise overhead for detecting one
character representation with respect to level.
In order to detect a single multi-grams f, the total search-
overhead with respect to search space for level-wise
calculation is,

 ∑
=

′+′′
h

 pq
fqf k))l(S(because, we are to

start with maximum level p and then proceed
decreasingly towards the downward levels h (as
explained above). If S/ is the search-overhead function,
then searching from level p to h will result

∑
=

′′
h

pq
qf)) l(S(where f is the multi-grams,

which is being revealed. For the matching level, as only a
partial number of elements are to be searched, the offset
k is used to denote the offset.
After checking through the levels, the procedure follows
searching through the bit-wise statistics for any
unsuccessful match in level-wise statistics. If there are a
total of u bit-phases, we are to perform searching through
the search-space consisting of starting from the
maximum bit phase to the minimum bit phase in
descending order. Because of any unsuccessful match in
any bit-phase, a bit switch is performed and level wise
calculation for that level is forwarded. That is, an

overhead of ∑
=

g

db
b)(E is incurred for each level-wise

analysis. Consequently, the overhead of unit step will be,

∑
=

=′
g

db
b1)(E C where d and g are maximum and

minimum bit phases respectively and d ≥ g.
Substituting the value of Eb, we get,

∑ ∑∑∑
= ===

′+′+′′=′
h

 pq
1,b

g

db
1,b

g

db
q1,b

g

db
1 B k)) l(S(C

Similarly, we get,

∑ ∑∑∑
= ===

′+′+′′=′
h

 pq
,b

g

db
,b

g

db
qb

g

db
Bk)) l(S(C 22,22

And,

∑ ∑∑∑
= ===

′+′+′′=′
h

 pq
n,b

g

db
n,b

g

db
qbn

g

db
n Bk)) l(S(C ,

Here, we use the subscript 1 with k and B in order to
denote that, the calculations are for detecting unit code
only where the calculation is performed starting from d
to g in decreasing order, that is, in the order of d, (d-1),
(d-2), …… , (g+2), (g+1), g. If we are to reveal n number
of codes, then the total overhead becomes:

∑
=

′=′
n

1y
y CT .

As for each bit wise overhead calculation, level-wise
calculations would must be included; we may omit the
subscript notation for search overhead function for
simplicity,

∑ ∑∑∑∑∑∑
= === ===

′+′+′′=′
h

 pq
y,b

g

db

n

y

n

y
y,b

g

db
qby

g

db

n

y
Bk)) l(S(T

11
,

1

 (3)

 TABLE 1:

COMPLEXITIES OF COMPRESSION AND DECOMPRESSION PROCESSES

Compression Complexity of Proposed Scheme

∑∑
−

==
++=

1i

 Lj
yyjy

n

1y
) B k)) (l(S(T

Decompression Complexity of Proposed Scheme

)Bk)) l(S((T
h

 pq
y,b

g

db
y,b

g

db
qy,b

g

db

n

1y
∑ ∑∑∑∑
= ====

′+′+′′=′

C. Performance Analysis with respect to Compression
Ratio

Compression ratio may be defined as the ratio of total
number of bits to represent the compressed information
and the total number of bits in original text.

Let the training knowledgebase contains n items. The
items may contain any of the total s symbols of the
source language. Again, the knowledgebase items vary
from one to c characters. For traditional encoding,
required overhead (i.e. total number of required bits) to
represent each character of knowledgebase entries is
log(s) in average. Therefore, if we categorize the
knowledgebase items into kn categories, (where the
categorization aspect is total number of characters in
each knowledgebase entry) and there are e1, e2, e3, …, en
elements in k1, k2, k3, …, kn categories respectively, then

54 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

we may easily calculate the overhead for coding the total
knowledgebase.

For category k1, we need a total of log(s) * k1 bits is
needed to code each knowledgebase items.

As there are a total of e1 elements, total bit requirement
for coding all the elements of category k1 is,

log(s) * k1 * e1.

Here, log(s) , k1 and e1 are non-negative integer values.

That is,

Ok1 = log(s) * k1 * e1

Ok1 = k1 e1 log(s)
Where Ok1 indicates the total bit requirement for

coding all the elements of category k1 .

For category k2, we need a total of log(s) * k2 bits to
code each knowledgebase entries.

As there are e2 elements, total bit requirement for
coding all the elements of category k2 is, log(s) * k2 * e2.
Here, log(s) , k2 and e2 too are non-negative integer
values.

That is, Ok2 = log(s) * k2 * e2

Ok2 = k2 e2 log(s)
Where Ok2 indicates the total bit requirement for

coding all the elements of category k2 .

Similarly, For category kn, we can write ,

Okn = log(s) * kn * en

Okn = kn en log(s)
Where Okn indicates the total bit requirement for

coding all the elements of category k2 .

Symbolically, the total bit requirement for
representation of the knowledgebase entries is:

Ot = Ok1 + Ok2 + Ok3 + + Okn

 = log(s)* k1 * e1 + log(s)* k2 * e2 + . . . + log(s)* kn * en

 = k1 e1 log(s) + k2 e2 log(s) + . . . + kn en log(s)

 = log(s) (k1 e1 + k2 e2 + . . . + kn en)

(4)isThat ∑
=

=
n

1i
)ie.ik(log(s)tO,

Since, 1 ≤ ei ≤ log(n) , and s being the total number of
symbol unit in source language, in worst case,

(5)∑
=

=
n

1i
)ik(nlog.n.log(s)tO

Now let us consider our proposed scheme, where
components of knowledgebase entries are grouped into

several levels and each entry in the level is chosen by
means of effective statistical entity. Because of using
hierarchical statistics, any element of certain level
possess greater probability of occurrence than the
element placed at any position below that. However the
levels are placed in descending order to facilitate that,
higher-gram texts or knowledgebase components are
coded in advance to any lower-gram texts irrespective of
probability distribution [11]. Here, it is noteworthy that,
though the probability distribution or statistical context
was not taken into consideration to organize the levels,
the total structure resulted an automatic statistical
distribution, because, the text-ranking scheme used to
build the knowledgebase followed hierarchical steps that
inherently inferred statistics from lower groups.
Consequently, whenever we are formulating the
statistical entries, any subgroup from its upper group will
have lower values and specific coding schemes may be
employed taking this criteria into consideration.

As we are using static coding in order to encode the
total knowledgebase and the knowledgebase is
hierarchically grouped, the resultant outcome leads our
proposed scheme into a low-bit consuming one. In our
proposed scheme, symbolically, any knowledgebase
entry varies from 1 to r characters. That is, the levels are
r, (r - 1), (r - 2), ………, 2, 1. Formation of levels start
from single characters and proceed incrementally. Any
entry in the knowledgebase containing any substring
from its successor level will have greater multi-gram
index because of being inferred from the previously
encountered entry. This aspect results in a sustainable
knowledgebase architecture if we sort the knowledgebase
in any order considering multi-gram index as the primary
criteria. Since we are calculating the multi-gram-index or
multi-gram-weight through a comprehensive text ranking
scheme we may consider the underlying text elements as
a single unit. Even though, we are considering the overall
knowledgebase a single unit, it has been clarified earlier
that, the architecture of the knowledgebase will provide
us elementary grouping facilities. This coherence model
provides us the opportunity to use static coding. If we
have a total of m entries in the knowledgebase, coding of
those values using binary stream may vary from 1 to
log(m) bits. Let it be y in an average, where 1 ≤ y ≤
log(m).

Again, as we are using multi-grams as single
component, if the multi-gram consists of even k
characters where 1 ≤ k ≤ r, it will be turned into a single
one. Consequently, the average requirement may be
specified as

 ny............. 3y 2y 1ypO ++++=

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 55

© 2010 ACADEMY PUBLISHER

(6)∑
=

=
n

1i
 iypO

where, 1≤ yi ≤ log(m) for 1≤ i ≤ n .

(7) caseFor worst log(n)npO =

.niforlog(n)iywhere ≤≤= 1

Even if, the total number of components n is same for
both the cases, since 1 ≤ y ≤ log(n) (because here m=n,
both indicating the total number of elements) and 1 ≤ ei ≤
log(n) multiplying any value (category index k) with ei
will definitely result much more than that of yi.
Consequently, we may deduce that,

Op ≤ Ot

Here, n is total number of elements in the
knowledgebase and y (1 ≤ y ≤ log(m)) refers the total
bits needed to code component i. It is inherently clear
that, Op ≤ Ot . That is, the total number of bits needed to
encode the same source symbols using our proposed
scheme is less than that of the traditional schemes. As,
compression ratio (R) is the ratio of compressed bit and
source bits, we get that,

Rt = Ot / nt

and,

Rp = Op / nt

As, Op ≤ Ot we get that,

Rp ≤ Rt.

Even for the worst case, we get that,

∑
=

=
n

1i
)ik(nlog.n.log(s)tO

)(
n

1i
)ik(O.log(s)tO p 8∑

=
=

Hence we may deduce that, even for worst case,

Op ≤ Ot

The lower the value of compression ratio, the better
the compression. Consequently ,we may conclude that,
the compression efficiency of proposed scheme is better
than that of traditional dictionary based compression
schemes.

Our proposed scheme requires less space because we
have constrained the growth of the knowledgebase. The
facility to use a couple of levels will ensure greater
flexibility in memory management. As, the search space
is minimized, the computational complexity will also be
reduced. It is of no doubt that, lower computational
complexity will ensure faster performance.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

The performance evaluation is performed on the basis
of the file “book1”, “book2”, “paper4”, “paper5” and
“paper6” from “Calgary Corpus”. As the prime aspect of
our proposed Compression Scheme is not to compress
huge amount of text rather to compress texts with limited
size affordable by the mobile devices i.e. embedded
systems, we took blocks of texts less than five hundred
characters chosen randomly from those files ignoring
binary files and other non-text files and performed the
efficiency evaluation.

The most recent study involving compression of text
data are:

1. “Low Complex and Power Efficient Text
Compressor for Cellular and Sensor Networks” (Mode 1)
by Rein et al. [1, 2, 3] and,

2. “A modification Of Greedy Sequential Grammar
Transform based data Compression" by Islam et al [4]

We denote the above two methods as DCM-1 and

DCM-2 respectively, where DCM stands for Data
Compression Method.

The simulation was performed in a 2.0 GHz Personal
Computer with 112 MB of RAM with the object oriented
programming language Java. The average compression
ratio for three random execution results for different size
of blocks of text is as follows

TABLE 2

COMPRESSION RATIO

Corpus Number of
Characters
Considered

Compressi
on Ratio
(%) for
DCM-1

Compressi
on Ratio
(%) for
DCM-2

Compressi
on Ratio
(%) for

proposed
scheme

paper 4 108 44.01 44.03 42.94

paper 5 061 44.98 45.51 44.02

paper 6 032 45.22 45.96 44.30

book 1 191 46.84 48.11 45.97

book 2 104 43.95 46.69 45.27

The compression ratio is a metric to describe how
many compressed units are required to describe one unit
of data. The lower the presented value shows better
compression. A general observation is that higher modes
lead to better compression ratios even if the difference
with higher orders becomes smaller.

The Performance of any dictionary based or
knowledge-inferred compression scheme greatly varies
with the architecture of dictionary construction and
knowledge inference. When the test bed is considered as

56 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

the same of the knowledgebase inferring one or
dictionary forming one, the performance gain will be
higher because of the greater match with the dictionary
entries or knowledgebase components. Our proposed
scheme has worse performance because, the training
scheme that we have provided makes an effective use of
text ranking scheme for several corpora and choice of the
knowledgebase entries are unbiased towards any specific
corpus. It is the novelty of our approach which ensures a
greater distribution of ranking and makes the developed
scheme uniformly usable for text data compression. But,
other schemes which are trained with specific files of any
corpora, there are greater matching with the
knowledgebase and the hence performance evaluation
demonstrates better performance for that corpus or that
specific file than that of our proposed scheme.

The prime achievement of our proposed scheme is, it is
even capable to compress source texts consisting with an
average of only five characters. Though the compression
ratio is deteriorated for that case, it is an evolutionary
step for small text compression. This achievement may
be greatly helpful for compression of sensor network
concerned data and even in asynchronous data
transmission management for web applications having
the glimpse of real time computation.

Besides of the evaluation scheme that has been
presented earlier in this section, we analyze the
performance of the proposed scheme in terms of
compression ratio with respect to the text presented in
[3].

TITLE TEXT

TEST_A

The international system of units consists of a
set of the units together with a set of the
prefixes. The units of the SI can be divided into
two subsets. There are seven base units. Each
of these base units are dimensionally
independent. From the seven base units all
other units are derived.

TEST_B

However, few believed that SMS would be
used as the means of sending text messages
from a mobile to the another. One factor in the
takeup of the SMS was that operators were
slow to eliminate billing fraud which was
possibly by changing SMSC setting on
individual handsets to the SMSC's of other
operators.

TEST_C

Alice is a fictional character in the books of the
Alice’s adventures in the Wonderland and its
sequel through the Looking-Glass, which were
written by Charles Dodgson under the pen
name Lewis Caroll. The character is based on
Alice Liddel, a child friend of Dodgson's. The
pictures, however do not depict Alice Liddel,
as the illustrator never met her. She is seen as a
logical girl, sometimes being pedantic,
especially with Humpty Dumpty in the second
book.

The performance of proposed compression scheme (in

terms of compression ratio) for the above texts in
comparison with [3] (indicated as DCM-1) is given
below.

40

42

44

46

48

50

52

54

C
om

pr
es

si
on

 R
at

io
 in

 p
er

ce
nt

ag
e

(L
ow

er
 V

al
ue

s
in

di
ca

te
 b

et
te

r p
er

fo
rm

an
ce

)

TEST_A TEST_B TEST_C

DCM- 1 PROPOSED SCHEME

Figure 1. Performance Comparison for example text.

From the figure we find that the compression ratio is
lower for all the cases for the text presented in [11].

It is necessary to mention here that In order to
implement our proposed scheme no additional hardware
is necessary. Rather it is possible to use even in any low-
powered and low-memory devices. Basically the aspect
of ensuring an affordable text compression scheme for a
greater variety of smart devices we emphasis on static
coding in lieu of on-the-fly coding. Besides the results
presented in this section, detailed theoretical analysis on
the space and time requirements, computational
complexity i.e. overall computational overhead is already
presented in section V.

VII. CONCLUSION AND RECOMMENDATION

We have presented an effective and efficient approach
of compressing short English text message for low-
powered embedded devices. Here modified syllable
based dictionary matching and static coding have been
employed to obtain the compression. Moreover, a new
theoretical concept of choosing the multi-grams is used,
which has facilitated us to obtain mentionable

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 57

© 2010 ACADEMY PUBLISHER

compression ratio using a small number of
knowledgebase entries than other methods consuming
less resource. The overall strategy of computational
simplicity has also ensured the reduced time complexity
for the proposed compression and decompression
process. The main aspect of our proposed scheme resides
in the text ranking based knowledge-base construction
with space integration that initiates a new arena of text
compression methodology. A consistent and relevant
mathematical analysis of the overall performance also
establishes a strong technical basis of the proposed
scheme. Moreover, the prime achievement is in the scale
of starting threshold of text compression; that we have
reduced to less than five characters. With limited
knowledge-base size, the achieved compression is of no
doubt efficient and effective. As the knowledge base is
not accepted to be grown through the continuous
applications, we may keep out the low-memory system
from the risk of expanding its knowledgebase crossing
optimal memory size and thus, the applicability of the
proposed system even in any very low memory devices is
ensured.

REFERENCES

[1] Stephan Rein, Clemens Guhmann, Frank H. P. Fitzek:
“Compression of Short Text on Embedded Systems”,
Journal of Computers : Volume 1, No: 06, September
2006.

[2] S. Rein, C. Guhmann, and F. Fitzek , “Low Complexity
Compression of Short Messages,” Proceedings of the
IEEE Data Compression Conference (DCC’06), March
2006, pp.123–132.

[3] Stephan. Rein, F. Fitzek, M. P. G. Perucci, T. Schneider
and C. Guhmann, “Low Complex and Power Efficient
Text Compressor for Cellular And Sensor Networks”, In
15th IST Mobile and Wireless Communication Summit,
June 2006.

[4] J. Lansky , M. Zemlicka , “Compression Of Small Text
Files Using Syllables”. Proceedings of Data Compression
Conference (DCC’06) , Los Alamitos, CA, USA, 2006.

[5] J. Lansky and M. Zemlicka. “Text Compression:
Syllables”. In Annual International Workshop on
DAtabases, TExts, Specifications and Objects (DATESO),
Volume 129 of CEUR Workshop Proceedings, pp. 32–45.
2005.. CEUR-WS.

[6] Md. Rafiqul Islam, Sajib Kumar Saha, Mrinal Kanti
Baowaly. “A modification of Greedy Sequential Grammar
Transform based Universal Lossless data Compression”.
Proceedings of 9th International Conference on Computer
and Information Technology (ICCIT 06), 28-30 December,
2006, Dhaka, Bangladesh.

[7] Przemysław Skibiński, “Two-Level Dictionary Based
Compression”, Proceedings of the IEEE Data
Compression Conference (DCC’05), page 481.

[8] F. Awan and A. Mukherjee, "LIPT: A Lossless Text
Transform to improve compression", Proceedings of
International Conference on Information and Theory:
Coding and Computing, IEEE Computer Society, Las
Vegas Nevada, 2001.

[9] H. Kruse and A. Mukherjee, “Preprocessing Text to
Improve Compression Ratios”, Proceedings of Data

Compression Conference, IEEE Computer Society,
Snowbird Utah, 1998, pp. 556.

 [10] S. A. Ahsan Rajon, “A Study on Text Corpora for
Evaluating Data Compression Schemes: Summary of
Findings and Recommendations”, Research Report,
Computer Science and Engineering Discipline, Khulna
University, Khulna, Bangladesh, December, 2008.

[11] Md. Rafiqul Islam, S. A. Ahsan Rajon and Anonda Podder,
“Short Text Compression for Smart Devices", Proceedings
of 11th International Conference on Computer and
Information Technology (ICCIT 2008), 25-27 December,
2008, Khulna, Bangladesh, pp. 453-558.

[12] S. Rein and C. Guhmann, “Arithmetic Coding–A Short
Tutorial”, Wavelet Application Group, Technical Report,
April 2005.

[13] David Hertz: “Secure Text Communication for the Tiger
XS”. Master of Science Thesis, Department of Electrical
Engineering, Linköpings University, Linköping, Sweden.

[14] S. A. Ahsan Rajon and Anonda Podder, “Lossless
Compression of Short English Text for Low-Powered
Devices”- Undergraduate thesis, CSE Discipline, Khulna
University, Khulna, Bangladesh, March, 2008.

[15] Md. Rafiqul Islam, S. A. Ahsan Rajon, Anonda Podder,
“Lossless Compression of Short English Text for Low-
Powered Deices”, in the proceedings of International
Conference on Data Engineering and Management
(ICDEM 2008) Tiruchirappalli, Tamil Nadu, India.
February 9, 2008.

[16] Ross Arnold, and Tim Bell, “A Corpus for the evaluation
pf lossless compression algorithms”, Data Compression
Conference, pp. 201-210, IEEE Computer Society Press,
1997.

Md. Rafiqul Islam obtained Master of Science (M. S.) in

Engineering (Computers) from Azerbaijan Polytechnic Institute
(Azerbaijan Technical University at present) in 1987 and Ph.D.
in Computer Science from Universiti Teknologi Malaysia
(UTM) in 1999. His research areas include design and analysis
of algorithms and Information Security. Dr. Islam has got a
number of papers related to these areas published in national
and international journals as well as in referred conference
proceedings.

He is currently working as the Head of Computer Science
and Engineering Discipline, Khulna University, Bangladesh.

S. A. Ahsan Rajon received his B.Sc. Engineering degree

from Computer Science and Engineering Discipline, Khulna
University, Khulna in April 2008. He is now a postgraduate
student of Business Administration Discipline under
Management and Business Administration School of same
university. Rajon is also working as an Adjunct Faculty of
Computer Science and Engineering Discipline, Khulna
University, Bangladesh. Rajon has made several publications in
International conferences. His research interests include data
engineering and management, electronic commerce and
ubiquitous computing. Currently he is working on robotics.

He is a member of Institute of Engineers, Bangladesh (IEB).

58 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

