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Sample-Adaptive Product Quantization: Asymptotic
Analysis and Examples
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Abstract—Vector quantization (VQ) is an efficient data
compression technique for low bit rate applications. However,
the major disadvantage of VQ is that its encoding complexity
increases dramatically with bit rate and vector dimension. Even
though one can use a modified VQ, such as the tree-structured
VQ, to reduce the encoding complexity, it is practically infeasible
to implement such a VQ at a high bit rate or for large vector
dimensions because of the huge memory requirement for its
codebook and for the very large training sequence requirement.
To overcome this difficulty, a structurally constrained VQ called
the sample-adaptive product quantizer(SAPQ) has recently been
proposed. In this paper, we extensively study the SAPQ that is
based on scalar quantizers in order to exploit the simplicity of
scalar quantization. Through an asymptotic distortion result, we
discuss the achievable performance and the relationship between
distortion and encoding complexity. We illustrate that even when
SAPQ is based on scalar quantizers, it can provide VQ-level
performance. We also provide numerical results that show a 2–3
dB improvement over the Lloyd–Max quantizers for data rates
above 4 b/point.

Index Terms—Lattice vector quantizer, product quantizer,
sample-adaptive product quantizer (SAPQ), vector quantizer.

I. INTRODUCTION

V ECTOR quantization (VQ) is an efficient technique for
data compression systems with low bit rate applications

and for speech recognition/speaker identification systems [17],
[42]. By employing VQ, we can achieve high compression
gains, especially for image and speech/audio data. Image and
speech/audio data are highly correlated and cannot be decor-
related using conventional linear transforms, such as the dis-
crete cosine transform. Depending on the input sources, using
a combination of a scalar quantizer and an entropy coder, it is
possible to obtain performance up to 1.53 dB worse than the
theoretical bound in an asymptotic sense for large codebooks.
However, using VQ, one can further improve this performance
and come closer to achieving the theoretical lower bound [49].

It is VQ’s ability to improve on scalar quantization that has
lead to the development of several data coders, especially in the
speech/audio coding areas. The prevailing coding algorithms are
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based onvector excitation coding, where an adaptive VQ is em-
ployed [18], [45]. From the filterbank analysis or the linear pre-
dictive coding analysis, the characteristics of speech signals are
represented by a series of spectral vectors. Hence, VQ is very
efficient in reducing or representing the spectral data. Because
of this efficiency, in addition to VQ’s applicability in speech
data compression, most speech recognition/speaker identifica-
tion systems also employ VQ to compare spectral similarity be-
tween a pair of vectors [14], [20], [48], [52]. Different clustering
techniques are also employed in learning the speech recogni-
tion/speaker identification systems [24], [44].

The major problem with VQ is its encoding complexity and
storage required for the codebook, which increase dramatically
with the vector dimension and bit rate. This is especially
problematic in quantizing given spectral vectors to yield a low
quantization error. Hence, applying VQ to this low-quantiza-
tion-error application has the requirement of large storage and
high encoding complexity. In order to circumvent this problem,
various modified VQ techniques have been proposed [17], e.g.,
tree-structured VQ(TSVQ) [33], classified VQ, and lattice
VQ [8]. However, since such schemes are still based on a VQ
structure, and hence, the application areas of these schemes are
relatively limited. More recently, thetrellis-coded quantization
(TCQ) schemes [38], [49] have gained popularity for their
ability to provide high performance for lower complexity (than
traditional VQ schemes). Unfortunately, since TCQ requires
special techniques such as the trellis encoder and the Viterbi
decoder, implementing the TCQ-based coding scheme is still
quite complex.

Recently, we have proposed a feedforward adaptive quantizer
called thesample-adaptive product quantizer(SAPQ) in order
to reduce both the encoding complexity and memory require-
ments [29]. The SAPQ in [29] is based on-dimensional VQs
for random vectors, where and are integers. This SAPQ
is a structurally constrained, -dimensional VQ. In SAPQ, a
product quantizer(PQ) [17, p. 430] is selected from a set of
candidate PQs. (A block diagram of SAPQ is shown in Fig. 1,
where the best quantizer is selected for an input that has a block
length of .) In [29], we also suggested several performance
bounds and provided extensive comparisons.

In this paper, however, we will study a special type of SAPQ
that accepts random variables as inputs based onscalar quan-
tizers (SQs). Through an asymptotic analytical result on the
SQ-based SAPQ, we will describe the achievable gain of SAPQ
and discuss the relationship between the distortion and encoding
complexity in an asymptotic sense. By introducing several ex-
amples, we will show different SAPQ design methods for lattice
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Fig. 1. Block diagram of SAPQ in Example 1 (LatticeD ).

VQs and nonuniform SAPQs. We will illustrate that even when
SAPQ is based on SQs, we can obtain VQ-level performance.
Further, for high bit rates (greater than 1 b/point), we will ob-
tain high gains while maintaining the low encoding complexity
of SQ. This is an important achievement since, as mentioned be-
fore, obtaining VQ-level performance for high bit rates is usu-
ally quite difficult due to the high encoding complexity and huge
codebook requirements. (Note that SAPQ can be extended to
the low bit rate cases as well by employing-dimensional VQs
instead of SQs [29].) Further, we will show that SAPQ needs
a relatively smalltraining sequence(TS) compared with tradi-
tional VQs.

The quantization procedure of SAPQ seems similar to that of
theadaptive coding schemein [19, p. 371] anduniversal source
coding schemein [11], [12], [13] in some ways. However, it
is important to note that SAPQ is very different from the tra-
ditional adaptive coding and universal source coding schemes.
The adaptive coding scheme produces increased gains by re-
placing the quantizer, depending on the varying statistical char-
acteristics of a nonstationary source [40], [43]. The universal
source coding scheme treats the problems of source coder de-
sign for applications where the source statistics are unknowna
priori [7], [51], [53]. Since the main purpose of the proposed
SAPQ is reducing the encoding complexity of VQ, we can
in fact apply SAPQ to problems in the adaptive coding and
universal source coding schemes by simply substituting their
quantizer portions with SAPQ. Note that the problem state-
ment in this paper is quite similar to that of thescalar-vector
quantizer(SVQ), which has been proposed by Laroia and Far-
vardin [31], [32]. However, SAPQ can also implement large
codebooks (or high bit rates) and achieve even better results
than SVQ [15]. Further, SAPQ has a better channel noise char-
acteristics than the SVQ case [30]. Another appealing quality
of SAPQ is that the main idea is quite intuitive and simple,
compared with TCQ or SVQ. In a coding scheme that does
not employ the entropy coder for the quantizer output, the
SAPQ quantizer can provide a 2–3 dB improvement over the
Lloyd–Max quantizers [35], [39].

This paper is organized as follows. In Section II, we math-
ematically define the SQ-based SAPQ and analyze the asymp-
totic performance of the SAPQ in Section III. In Section IV, we
introduce several design examples and simulation results with
discussions. We then conclude the paper in the last section.

II. SAMPLE-ADAPTIVE PRODUCT QUANTIZER

In this section, we briefly review SAPQ, focus on the case
when it is described in terms of scalar quantizers, and lay the
foundation for the asymptotic analysis conducted in Section III.

We consider a sequence of random variables
taking values in as the discrete-time source to be quantized.
Here, is theblock length.Supposethat for

Let denote the class of sets that takepoints from
, and let the sets in be called “ -level codebooks,” where

each such codebook has codewords. The quantization of
is the mapping of a sequence of observations ofto a

sequence of points of according to a mapping called
the quantizer. The average distortion achieved when a random
variable is quantized by a codebook is given by

. In this quantization scheme, if fixed
lengthbinarycodesareusedtorepresent thequantizeroutputs, the
bit rate (defined as bits per source point in) required is .
Note that since and , the quantizer is ascalar
quantizer. Let an observation of be denoted by

. Suppose that the codebooksare for
, where are positive integers. If we quantize this obser-

vation by applying scalar quantizers using codebooksto each
independently, theoverall averagedistortion isgivenby

(1)

We call this quantization scheme theproduct VQ, or PQ, since
the quantizer is a mapping from to the Cartesian product set

.Thebit rateof thePQis . If
the random variables are independent (or uncorrelated), then this
independence appears to motivate quantizing each random vari-
able independently, as shown in (1). However, even if the input
is independent, independently quantizing each of the random
variables of is just one of the many possible coding
schemes and could be improved upon by appealing to theblock
source coding theorem[49]. If is a subset of with ,
where is a positive integer, then the average distortion yielded
by using a vector quantizer for is

(2)

where , and the bit rate for SAPQ is
.

Now, we introduce a feedforward adaptive quantization
scheme, which is based on a new concept of adaptation to
each observation of . Let denote
the th codebook for each , where ,
and is a non-negative integer. The sample adaptive scheme
quantizes each observation using the codebooks

to form the candidates of distances

for (3)

and choose the smallest distance. Hence, the average distortion
of SAPQ is given by

(4)



KIM AND SHROFF: SAMPLE-ADAPTIVE PRODUCT QUANTIZATION: ASYMPTOTIC ANALYSIS AND EXAMPLES 2939

Here, we suppose that , for , where
. We call this quantization scheme, thesample-adaptive

product quantizer, since the quantization scheme is selecting a
PQ from a set of candidate PQs. For each sample, SAPQ pro-
duces the bit streams for a codebook index and thequantized
element indices, in the form of a feed-forward adaptive coding
scheme [17, p. 602]. This makes it possible to replace different
codebooks for each sample of . Therefore, the total
bit rate is given by , where are the
additional bits (side information) required in our scheme to in-
dicate which codebook is employed. Note that throughout this
paper, we will suppose that and can be non-
integers for the quantizer performance comparisons. Although
our discussion in this paper will focus on random variables,
we can also consider -dimensional random vectors as the
input to the SAPQ. This generalization of SAPQ is described
in [29]. As discussed in [29], the SAPQ in (4) is astructurally
constrained VQin dimensions. Hence, the average distortion
of SAPQ is between those of the scalar quantizer (or PQ) and
full search VQ. However, SAPQ can asymptotically achieve the
full search VQ distortion.

III. PERFORMANCE OFSAPQ

In this section, through asymptotic analysis, we will formally
study the performance of SAPQ.

A. Asymptotic Analysis

To simplify the notation, let denote an
-dimensional random vector. We assume an absolutely con-

tinuous distribution function for . Now, consider root lattices
[21]. Let the points of an -dimensional lattice be
denoted by , where . The closure of the th Voronoi
region of the lattice is the convex polytope , which is
defined as

for all

for (5)

where , and .
In (5), we let ; thus, includes the origin .
Now, , which is thenormalized second moment of ,
is defined as

(6)

where , and is the volume
of [16]. Note that all , where , have the same shape.
Thus, the normalized second moments and the volumes of
are all the same. The quantity is the normalized quan-
tizer distortion per codeword having the Voronoi region for uni-
formly distributed data [9]. Conway and Sloane have conducted
extensive research on various lattices [8]–[10]. For the defini-
tions of the lattices and discussions, see [8] and [29]. In order
to explain the achievable performance from SAPQ in an asymp-
totic aspect, we now use a variation of a result derived from the
asymptotic result in [29, Th. 1]. In this variation, which is sum-
marized in the following theorem, the SAPQ is based on SQs,

and the asymptotic result is obtained for an arbitrary fixed code-
book of size . In the theorem, we will assume that
and for a fixed codebook
size .

Theorem 1: Suppose that has a joint density function
with for some , and is bounded on

. Then

(7)

where the functional is given by

(8)

Proof of Theorem 1:In [29, App. C], the relationships
(C1) and (C2) are also satisfied for an arbitrary fixed codebook
size . Hence, for the SQ case, i.e., in [29,
th. 1], we obtain (7).

From Theorem 1, we can obtain the asymptotic re-
sult

, where . It is clear from
[26] that the optimal -dimensional VQ is such that

, where .
From [6] and [50], we know that the sequence on the left-hand
side converges. Further, Gersho’s conjecture tells us that the
asymptotically optimal quantizer is a function of [16]. In
other words

(9)

Therefore, if this conjecture were true (as is typically assumed),
then from (7) and (9), SAPQ would achieve the asymptotically
optimal -dimensional VQ performance [36]. Hence,
the advantages of SAPQ over PQ are the same as the VQ case
over the scalar quantizer [36], [37]. We will now try to obtain
more insight by studying the performance of SAPQ based on
the two factors (or ) and .

B. Voronoi Region Shape: (or )

From (6) and Theorem 1, we can conclude that the factor
is concerned with the shape of the Voronoi region of a quan-
tizer. The gain achieved by this factor is called thespace-filling
advantage[36]. Since and , the
achievable maximal gain through the shape of the Voronoi re-
gion is less than or equal to dB.

In fact, in the literature, lattice VQs have been used to exploit
this space-filling advantage. Several important lattices can be
described as the union of the cosets of a set [8]. Based on this
fact, various encoding/decoding algorithms for lattice VQs have
been proposed [9, eq. (8)]. Such lattice VQs can be described by
SAPQ. For example, the hexagonal lattice, which yields the
minimum in 2-D, can be defined as

(10)
Here, the coset representativesand are and

. Since a coset of a product set is also a
product set, is a union of two product sets. Hence, a truncated
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lattice of has the same structure as the SAPQ codebook in
-dimensions ( ). Therefore, a truncated lattice of

can be implemented by SAPQ with since we have two
representatives.

An important lattice listed in [47] is the lattice. For
, is the dual of the lattice , which is defined as

(11)

In a similar manner as in (10), it is clear that SAPQ can con-
struct a truncated lattice of , for , with only

. Hence, SAPQ with can construct the optimal lat-
tice in 3-D since the lattice (or equivalently the lattice )
is a body-centered cubic lattice and optimal in 3-D [3]. The min-
imum value of is about 0.0747 at [8]. Hence, the
maximum gain is asymptotically
dB if we use lattice .

Now, we consider the lattice . The lattice can be
rewritten as , where is written
as a column vector, and is the generator matrix of given
by

(12)

Define as the set

(13)

Here, are given by
, for . Then

(14)

where for .
Hence, a truncated lattice of can be implemented by the
SAPQ with . Note that in this case, the gain will be

dB. We can construct examples of
SAPQ for several other types of lattices, such as, , and

in a similar manner.

C. Distribution Shape:

The factor , which is defined in (8), is concerned with the
joint density function . From this factor, we could potentially
obtain a large gain in SAPQ based on theconstrained-distor-
tion quantizer[25]. From Hölder’s inequality [4], is a
nonincreasing sequence. Hence, depending on, we can expect
some gain by increasing . Suppose that an i.i.d. input has a
uniform density function ; then , where is the
variance of the input. Hence, for the uniformly distributed input
case, we cannot expect any gain through this factor. However,
suppose that is a joint Gaussian density function given by

(15)

where is the auto-covariance matrix of . Then

(16)

It is well known that if there is correlation between
, then we can reduce the distortion through

the factor since tr [5]. The
gain from this factor is known as thememory advantage[36].
The well-known example that exploits this advantage is the
Karhunen–Loéve transform and the discrete cosine transform
[19]. (Note that the term can be derived for other
type of density function if we employ as a distortion
measure [28].)

Now, focus on the factor in (16), which is de-
pendent on the shape of. This factor is equal to

for and monotonically decreases to
as . Hence, the achievable gain through the factor

is dB. Furthermore, for the
Laplacian density case, since

(17)

the potential improvement is about 5.63 dB. The gain from the
shape of the density function is called theshape advantage[36].

From the space-filling advantage and the shape advantage,
even when the input is i.i.d. (or uncorrelated), we
have the potential for an improvement of up to about 4.35 dB
over PQ and up to about 7.16 dB over PQ for the Gaussian and
the Laplacian density cases, respectively.Note that these max-
imum gains are the same as those obtainable from the corre-
sponding theoretical bounds in an asymptotic sense for large
codebooks[46].

IV. EXAMPLES IN DESIGNING SAPQ

From the asymptotic analysis in Section III, we can estimate
the achievable performance of SAPQ whenis large. However,
the asymptotic analysis does not provide any explicit value of

that yields good performance. This appropriate value ofis
quite dependent on the SAPQ codebook design method. In order
to provide an appropriate range offor SAPQs, in this section,
we provide several different SAPQ design examples based on
the theoretical observations made in Section III. Through sev-
eral examples, we explicitly demonstrate the performance of
SAPQ and its encoding complexity in conjunction with code-
book sizes and.
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A. Uniform SAPQ Based on Lattices

In order to demonstrate the space-filling advantage gained
from SAPQ, we now consider a uniformly distributed input
as follows. Suppose that are i.i.d. and
has a uniform distribution. In other words, we suppose that

has a uniform density functiongiven by

otherwise
(18)

where is a positive constant. As shown in Theorem 1, for this
uniform density function, the gain comes only from the space-
filling advantage. Hence, using the uniform density function,
we can numerically observe the achievable gain from SAPQ by
changing the shape of the Voronoi region.

If we use the same Lloyd–Max scalar quantizers for the
quantization of based on the PQ in (1), then the Lloyd–Max
quantizer is the uniform quantizer given by output points

for (19)

where is the step size. Hence, the average distortion in
(1) can be rewritten as

(20)

where is the variance of with bit rate
. Note that Shannon’s lower bound (SLB) for the uniform

density input is given by

(21)

which is less than of (20) by dB.
Hence, there is a potential of about 1.53 dB improvement, which
is the same as the gain from the space-
filling advantage. For a finite dimension, VQ can achieve a
fraction of this potential improvement (i.e., better than ).
It will be shown that SAPQ can also obtain this gain (without
resorting to the complexities involved in the other schemes).

Now, for the uniform density function in (18), we provide
several SAPQ design examples and numerical results based on
different lattices in Section III as follows. Note thatis depen-
dent on the lattice type.

Example 1 (Lattice ): Let
for 1 and 2, denote the codebooks of an SAPQ, where

is a constant such that . Let the codewords based
on the lattice be defined as

for all and (22)

where , , and . Note thatthis quantizer
is the SAPQ with . Therefore, the average distortion in (4)
can be rewritten as

(23)
Here, the bit rate is . In Fig. 1, a
block diagram of the SAPQ of this example is depicted. We
have two different quantizers, (Qand Q ) for and
, respectively. Each quantizer has two outputs; in Fig. 1,

Q implies quantizer outputs, which is represented

TABLE I
SAPQ BASED ON LATTICE D IN (22) (EXAMPLE 1). DISTORTIONS(IN

DECIBELS) FOR THEUNIFORM I.I.D. (18),m = 8, AND � = 1

by a fixed length bits in input , and
. The comparator (COM )

then compares the two values and and selects the
index that has the lowest value. The output has 1 bit to
indicate Q or Q for the multiplexerMUX .

In Table I, we compare the nonadaptive product quantizer
with the adaptive quantizer of (22) for a uniform input with the
variance . In this table, is calculated from the non-
adaptive quantizer in (20). As shown in Table I, at low bit rates,

is lower than due to the codewords of the sides
of the uniform pdf. However, as the bit rate increases,
is lower than [as was discussed in Section III below the

lattice in (11)]. Note that we should expect a gain (from
our asymptotic analysis) to be dB,
which appears to be consistent with the results in Table I.

Example 2 (Lattice ): Let
for and denote the code-

books of an SAPQ, where is a constant such that .
Let the codewords based on the latticebe defined as

for all and (24)

where , , and are given by the coset
representatives as follows. Let be defined as

(25)

where is given in (12), , and
for from (14).

Then is defined as

(26)

where , is the largest integer less than or equal to.
Hence, the are given as follows.
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TABLE II
SAPQ BASED ON LATTICE E IN (24) (EXAMPLE 2). DISTORTIONS(IN

DECIBELS) FOR THEUNIFORM I.I.D. (18),m = 8, AND � = 4

(27)

Therefore,this quantizer is an SAPQ with , and the bit
rate is . (Note that the quantizer in Example 1 has
only and .) The SAPQ distortion of this example is given
by

(28)
The results are summarized in Table II. Note that from our
asymptotic analysis, we would expect a gain of approximately
0.65 dB on lattice , which is consistent with our results in
Table II. In a similar manner, we can design an SAPQ based
on the lattice with . Furthermore, some experimental
results for the cases of and , by choosing several
from (27), are compared in [30].

B. Uniform SAPQ and Output Entropy

If we do not use the entropy coder for the quantized output,
then we can obtain a large gain using SAPQ, as shown in Ex-
ample 5. However, if we employ the entropy coder, then we
still achieve a nontrivial gain from SAPQ, albeit one that is
not as large. The next example shows an entropy-constrained
SAPQ. Consider a midtread uniform quantizer inwith code-
book given by

(29)

Here, is the step size. Let , which is the entropy of
the quantizer, be defined as

(30)

where is the nonzero probability that the quantizer output
is the th codeword in , and suppose that for

, and zero otherwise. In the case of high entropies of
, the PQ that employs the uniform quantizer will yield the

minimum entropy, and this minimum is higher than the rate dis-
tortion bound by only about one fourth of a bit, which corre-
sponds to about 1.53 dB. The next example will show that using
SAPQ can reduce this 1.53 dB gap.

Example 3 (SAPQ Based on Lattice and Output En-
tropy): Suppose that for .
For a given , consider two cosets and

as the codebooks in an SAPQ with . Note
that if , then is a midtread codebook, and ;
if , then is a midrise codebook and , and if

, then the set is a lattice that is equivalent
to . For the case, the set is equal to one of the
cases for . Hence, we will consider only the cases
for , i.e., . Let denote an
entropy of the SAPQ using as a codebook in -dimensions,
where is defined as

used for

used for

(31)

Here, is the side information given by the SAPQ with

output th codeword in used for
(32)

and it is assumed that for and zero oth-
erwise. Several numerical results are summarized in Tables III
and IV for Gaussian and Laplacian density functions, respec-
tively. In these tables, the step size of the SAPQ codebook
is denoted by . Note that the rates of both the PQ and
SAPQ satisfy and , respectively. In
this simulation, we conducted the SAPQ for the 21 values of

and found that yields the minimum distortion. (Variation
of is very small for the various values of, especially
for the high entropy case.) For the Gaussian density function
case (see Table III), most of the results show the minimum dis-
tortion at . Since , where the
variance , the distortion of PQ at has about
a 1.53-dB difference from the SLB as shown in Table III. In this
case, SAPQ achieves about 0.49 dB gain over the PQ, as ex-
pected from the discussion following (11). However, this gain
decreases as the entropy decreases. This fact can be
explained in a similar manner to Example 1. Table IV shows
the numerical result for a Laplacian density function. At

, the difference between and the SLB is about 1.56
dB, and the gain from the SAPQ is about 0.46 dB. (Note that

.) For the Laplacian case, we again note
that for large step sizes, is less than , and
the performance of SAPQ can even be worse than that of the
PQ. However, in both the cases, if the step size is smaller than
or equal to the standard deviation (in these cases, 1), then, as
shown in Tables III and IV, there is a reasonable gain. Note that
these gains come from the space-filling advantage.
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TABLE III
SAPQ BASED OND AND OUTPUT ENTROPY(EXAMPLE 3). DISTORTIONS(IN

DECIBELS) FORGAUSSIAN I.I.D. WITH VARIANCE 1,m = 8, AND � = 1

TABLE IV
SAPQ BASED OND AND OUTPUT ENTROPY(EXAMPLE 3). DISTORTIONS(IN

DECIBELS) FORLAPLACIAN I.I.D. WITH VARIANCE 1,m = 8, AND � = 1

Suppose that an entropy coding scheme is employed in the
SAPQ of Example 6, and let denote the resultant bit rate.
The optimal entropy coding, where , can only be
reached if the probability satisfies the Shannon–Fano inte-
gral constraint. Otherwise, the bit ratethat results from en-
tropy coding will be slightly higher than . It is useful to
use entropy coding on vector (rather than on single outputs) in
order to reduce the difference betweenand . For ex-
ample, a 3-D variable-length coding scheme is employed for the
DCT coefficient coding in ITU-T, H.263 [22].

We can also use a nonuniform quantizer with entropy coding
in order to obtain a higher gain than does the uniform quantizer
with entropy coding. For example, an application of SAPQ to
the quantizers for the very low bit rate video coding scheme
based on H.263 is studied in [30].

C. Nonuniform SAPQ

We now introduce several examples to demonstrate the gain
from the space-filling and shape-advantages for nonuniform
sources for different codebook sizes andin conjunction with
the encoding complexity.

The design problem of SAPQ is to find an optimal codebook
that achieves the distortion for a fixed rate .
However, finding such an optimal codebook is not easy for the
nonuniformly distributed inputs. In order to find (sub)optimal
codebooks, we have developed a clustering algorithm that uses
a large number of samples as a TS for given values of, , and
, but this TS size is still substantially less than that of traditional

VQ or modified schemes since the total number of codewords
to be designed is smaller than those of VQ. Let
denote the th training sample in a given TS that has sam-
ples, where a sample hastraining points. The clustering algo-
rithm has two parts, which are from two necessary conditions,
respectively, for an optimal SAPQ. The first part of our algo-
rithm quantizes training points in each sample using dif-
ferent codebooks and then selects a codebook that yields the
minimal distance [given in (3)] for the sample. The second part

of the algorithm updates the codebooks using the partitioned
TS in the quantization process of the first part. (Regarding the
second part, see the Appendix.) These two parts are then itera-
tively applied to the given TS. The clustering algorithm is de-
scribed below.

Clustering Algorithm (SAPQ):

0) Initialization ( ): Given codebook sizes ,
, sample size , side bits , distor-

tion threshold , initial codebook , and TS
, set .

1) Given codebook , where
, find partitions of each training

points in the TS for the corresponding code-
words, where each training point’s codeword is deter-
mined by the following quantization:

for

(33)
Next, we compute the average distortion for the th
iteration, which is given by

(34)

2) If , stop. is the final codebook.
Otherwise, continue.

3) Compute centroids for each of the partitions
and replace the codewords in by the new
centroids. Increase by 1. Go to Step 1.

It can be shown using similar techniques as in the case of
the Lloyd–Max algorithm (Lloyd’s Method II) [34], [35] or the

-means algorithm [2] that is a decreasing sequence. Thus,
converges to a (local) minimum, which depends on the ini-

tial codebook . The next example shows an effect of the ini-
tial codebook in the clustering algorithm.

Example 4 (Initial Guess in Clustering Algorithm):The
clustering algorithm can be used to effectively design the SAPQ
codebook using the TS that has an underlying distribution func-
tion. However, the performance of the designed SAPQ is quite
dependent on choosing the initial codebook. An example
of the different choices of the initial guess is illustrated in Fig.
2 by plotting the codebook of the SAPQ in-dimensions,
where . (Note that in Fig. 2, each figure has a codebook

that is the union of two product codebooks ( ), and
each product codebook has four codewords [ , and

]. Fig. 2(a) and (b) show the converged codebooks
in the clustering algorithm. However, the corresponding initial
codebooks also have similar arrangements to the converged
codebooks. This fact implies that the designed SAPQ codebook
is quite dependent on the initial codebook. Furthermore, if

and are large, then we have many choices of the initial
codebooks. Hence, finding a globally optimal codebook for
an input is quite difficult, except for several trivial cases. In
Fig. 2(a), we have employed a simplesplit method, which will
be introduced in this example [17], to determine the initial
codebook . The split method doubles the number of the
product codebooks by adding and subtracting a small constant
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Fig. 2. Codebooks of SAPQ inm-dimensions for different initial guesses
(Gaussian i.i.d. input with the variance 1,n = 2,m = 2, and� = 1. Note that
each codebookCCC is the union of two product codebooks.). (a) Initial guess 1
(distortion:�6.93 dB). (b) Initial guess 2 (distortion:�6.14 dB).

. For the generation of an initial codebook from
the split method, we need a start codebook that is denoted
by in . The start codebook
contains codebooks that belong to , where is the
Lloyd–Max quantizer that is optimal for .

Initial Codebook Guess (Split Method for SAPQ):

0) Initialization ( ): Given codebook size , sample
size , side bits , split constant , start codebook

, and TS .
1) If , stop. is the initial codebook for the

clustering algorithm. Otherwise continue.
2) Increase by 1. Construct a new codebook

by doubling the number

of codebooks from
as follows.

and (35)

for and .
3) Given , find partitions of training points

according the quantization

for

(36)
Compute the centroids for each of the
partitions, and replace the codewords in by the new

centroids. Go to Step 1.
Fig. 3 illustrates an example of the constantin the split

method for a correlated input. We note that depending on, we
can obtain different converged SAPQs as shown in Fig. 3(a) and
(b), respectively. In this split method, we will set
during the simulation.

D. Comparison of SAPQ with Other Quantizers

Note that the SAPQ in (4) requires at most different
codebooks. Hence, if is large, the decoder needs a large
memory for the codebooks, and the codebook design com-
plexity may be high. In order to reduce the required number
of codebooks, one possibility is to use the same codebooks in
calculating the distance of (3) under an assumption that the
random variables are identically distributed. In

Fig. 3. Codebooks of SAPQ inm-dimensions for different initial guesses
(Gaussian Markov-1 source with the variance 1 and the correlation coefficient
0.9,n = 2, m = 2, and� = 1). (a) Split method with" = 0:01 (distortion:
�8.07 dB). (b) Split method with" = 1 (distortion:�8.73 dB).

other words, are set equal for . We can
regard this scheme as acodebook-constrained SAPQand in
this case, the average distortion is given as

(37)

Here, the index is omitted in the codebook notation, i.e., .
Note that the number of required codebooks is reduced to,
and the bit rate is given by , if , for all .
As shown in the asymptotic analysis of Section III, increasing
for a fixed value of yields more gain over PQ in the SAPQ of
(4). However, for the SAPQ in (37), the decrease in distortion
can be seen to diminish for large values of, and the distor-
tion will eventually increase and converge to that of the-level
quantizer [29, Prop. 2]. Therefore, to obtain gains in the SAPQ,
it is important to use as large a value for(and ) as possible
while keeping the ratio small (note that since increasing

increases the total bit rate, this implies that for a given bit
rate, the side information should be accordingly decreased).
Furthermore, if we employ the split method as an initial guess
in the clustering algorithm, the distortion of the SAPQ in (37) is
nearly the same as that of the SAPQ in (4) [29]. Therefore, for a
relatively large (compared with ) and a fixed ratio of ,
it is advantageous to use the SAPQ in (37) since its performance
will closely approximate that of SAPQ, and the number of re-
quired codebooks is .

Since the SAPQ in (37) has a scalar quantizer structure, i.e.,
the codewords of SAPQ belong to, we can easily apply to the
current quantization schemes. For example, we can implement
SAPQ based on lookup tables, and apply SAPQ to thedifferen-
tial PCM schemes [23] that use traditional scalar quantizers and
predictors [30].

Example 5 (Encoding Complexity and Asymptotic Distor-
tion): In full-search VQ, suppose that denotes the size
of codebook. The number of multiplications required for
encoding are then and for the full-search VQ
and the codebook-constrained SAPQ, respectively. If the bit
rates of VQ and SAPQ are the same, i.e., , then

from for .
This implies that the number of multiplications for VQ is
always greater than that of the SAPQ. Hence, for , the
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TABLE V
COMPARISON OFSAPQ (EXAMPLE 6). DISTORTIONS(IN DECIBELS) AT

BIT RATE 4.5

encoding complexity of SAPQ is always less than that of VQ.
Further, since SAPQ has a structurally constraint codebook
compared with the arbitrary codebooks of full-search VQs, the
distortion of the SAPQ is always less than or equal to that of
the full-search VQ. In a similar manner for the memory size
case, we have at the same bit rates. Hence, we can
design an SAPQ, which requires a smaller codebook than the
traditional VQ.

We now increase the block length of SAPQ fromto
and keep the bit rates the same, i.e., .

Then, there is an integersuch that implies that
, i.e., the encoding complexity of -dimensional

SAPQ is less than that of full-search-dimensional VQ. From
Section III-C, , where . Fur-
ther, from [10], since there is a lower bound for , and for ap-
propriate values of and , we have a relationship
[9], [10, Fig. 1]. Therefore, from Theorem 1, there exist block
lengths and such that

(38)
In other words, we can design a better SAPQ than the traditional
VQ in an asymptotic sense while obtaining a lower encoding
complexity. A numerical result on this fact will be introduced in
Example 6.

Example 6 (Numerical Comparison of SAPQ):An extensive
comparison on SAPQ in terms of the average distortion, en-
coding complexity, and memory requirement is shown in our
early work [29], where the SAPQ is based on-dimensional
vector quantizers. More results on the SAPQ of (37), where the
SAPQ is based on scalar quantizers, are summarized in Table
V. Note that in this simulation, the full-search VQ was designed
by the generalized Lloyd algorithm (GLA) [17, p. 362]. We also
compared the SAPQ with the multistage VQ (MSVQ) [17, p.
451] since MSVQ is one of the quantization schemes that can
reduce both the encoding complexity and memory requirement.
However, as we can see in Table V, the average distortion of
MSVQ is significantly worse than the average distortion of the
other quantizers. As discussed in Example 5, we can design an
SAPQ whose distortion and complexities in terms of encoding
and memory requirement are better than the full-search VQ, as
shown in the SAPQ cases of and in Table V).
This fact implies that even though the asymptotic analysis in
Section III only shows the converged results without any results
about the convergence speed, we can design a good SAPQ for

Fig. 4. SAPQ and VQ trained on finite TS’s (VQ:m = 2, � = 512, and
SAPQ:m = 2, n = 16, � = 1 for Gaussian i.i.d. with variance 1 at bit rate
4.5).

TABLE VI
COMPARISON OFSAPQ TRAINED FINITE IN TS (EXAMPLE 7). DISTORTIONS(IN

DECIBELS) FORGAUSSIAN I.I.D., VS SIZE: 65 536,AT BIT RATE 4.5

small (and hence implementable) parameters, , and . For
correlated sources, such as the Markov-1 sequences [23, p. 62],
several numerical results for various quantization schemes, in-
cluding predictive VQ, are also shown in [30].

Example 7 (SAPQ Trained on Finite TS):Since VQs are usu-
ally designed by clustering training sequences, the average dis-
tortion of VQ is dependent on the choice of the TS and its size.
The size of the TS is especially important in designing a good
codebook for an underlying distribution function. In general, the
training ratio, which is defined as the ratio of the TS size to
the codebook size [17, p. 364], indicates how close the trained
codebook is to an optimal one for the distribution function [26],
[27]. From [1] and [41], it is known that a large TS ensures a
good codebook for the distribution function. However, the size
of a TS could be quite different, depending on the quantization
schemes. For a similar bit rate and quantizer distortion, a quanti-
zation scheme, which requires a smaller TS, is obviously better.
In Fig. 4, the distortions of trained codebooks of VQ and SAPQ
are tested on a validating sequence (VS). (In testing a codebook
using a VS, there is no need to use a large VS [27]. In this sim-
ulation, we used 65 536 elements for the VS.) As we can see
in Fig. 4, SAPQ requires much smaller TS sizes, and SAPQ
(for VS) always shows better performance than the VQ cases.
In other words, for the TS sizes as in Fig. 4, SAPQ is even better
than the full-search VQ. Further, in Table VI, the trained code-
books of several quantization schemes on finite TS’s are com-
pared. Through this table, we can infer that the SAPQ yields less
distortion than the full-search VQ if the codebooks are designed
by using finite TS’s.
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V. CONCLUSION

In this paper, we have studied our newly introduced sample-
adaptive product quantizer (SAPQ) [29] from an asymptotic as-
pect and with several examples. The SAPQ scheme that is con-
sidered in this paper is based onscalar quantizers. This SAPQ
is, hence, very appealing from a practical implementation point
of view. Through an asymptotic analysis based on lattices, we
have designed lattice VQs by applying SAPQ and numerically
compared their performance. We have also shown that SAPQ
can achieve better performance than the full-search VQ in an
asymptotic sense, while maintaining lower encoding complex-
ities and memory requirement than the full-search VQ. This
asymptotic result is also numerically observed in this paper. In
designing regular VQ by clustering a TS since the size of TS is
limited to some finite values, the trained codebook performance
is quite dependent on TS sizes. However, for relatively small
sizes of TSs, we show that the average distortion of SAPQ is
better than full-search VQs. Further, SAPQ can even be applied
for high bit rates, where conventional VQ (or even modified VQ)
techniques are very difficult to use. The scalar quantizer struc-
ture of SAPQ also allows us to easily apply it to current coding
systems and generate VQ-level performance.

APPENDIX

SECOND NECESSARYCONDITION

For an SAPQ codebook , denote a
codebook as

(A1)

where . For a fixed , the product
codebook is given by

(A2)

Note that the SAPQ codebook is the unions of such product
codebooks (A2) for . Hence, the SAPQ code-
book has codewords in . Let
denote the quantizer region corresponding to the code-
word for

. The SAPQ average distortion
in (4) can be rewritten as

(A3)

where , and is the distribution
function of the input. We now obtain the second necessary con-
dition by differentiating with respect to the s and
setting derivatives equal to zero:

for (A4)

where
. In other words, the necessary condi-

tion is given by

for

(A5)
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