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Sample-Adaptive Product Quantization: Asymptotic
Analysis and Examples

Dong Sik Kim, Member, IEEEand Ness B. ShroffMember, IEEE

Abstract—Vector quantization (VQ) is an efficient data based ormwvector excitation codingvhere an adaptive VQ is em-
compression technique for low bit rate applications. However, ployed [18], [45]. From the filterbank analysis or the linear pre-
the major disadvantage of VQ is that its encoding complexity i tive coding analysis, the characteristics of speech signals are

increases dramatically with bit rate and vector dimension. Even . .
though one can use a modified VQ, such as the tree-structured represented by a series of spectral vectors. Hence, VQ is very

VQ, to reduce the encoding complexity, it is practically infeasible €fficient in reducing or representing the spectral data. Because
to implement such a VQ at a high bit rate or for large vector of this efficiency, in addition to VQ's applicability in speech
dimensions because of the huge memory requirement for its qata compression, most speech recognition/speaker identifica-

codebook and for the very large training sequence requirement. _. S ]
To overcome this difficulty, a structurally constrained VQ called tion systems also employ VQ to compare spectral similarity be

the sample-adaptive product quantizéSAPQ) has recently been tween a pair of vectors [14], [20], [48], [52]. Different clustering
proposed. In this paper, we extensively study the SAPQ that is techniques are also employed in learning the speech recogni-

based on scalar quantizers in order to exploit the simplicity of tion/speaker identification systems [24], [44].

scalar quantization. Through an asymptotic distortion result, we The major problem with VQ is its encoding complexity and
discuss the achievable performance and the relationship between . L .
distortion and encoding complexity. We illustrate that even when Storage required for the codebook, which increase dramatically

SAPQ is based on scalar quantizers, it can provide VQ-level with the vector dimension and bit rate. This is especially
performance. We also provide numerical results that show a 2-3 problematic in quantizing given spectral vectors to yield a low
dB improvem_ent over the Lloyd—Max quantizers for data rates quantization error. Hence, applying VQ to this low-quantiza-
above 4 bipoint. tion-error application has the requirement of large storage and
Index Terms—tattice vector quantizer, product quantizer, hjgh encoding complexity. In order to circumvent this problem,
sample-adaptive product quantizer (SAPQ), vector quantizer. - rjos modified VQ techniques have been proposed [17], e.g.,
tree-structured VQ(TSVQ) [33], classified VQ and lattice
I. INTRODUCTION VQ [8]. However, since such schemes are still based on a VQ

ECTOR quantization (VQ) is an efficient technique forc,truc_ture, .an.d hence, the application areas of these sphemes are
) . ) .. _relatively limited. More recently, thigellis-coded quantization
data compression systems with low bit rate applicatio . . .
. . e CQ) schemes [38], [49] have gained popularity for their
and for speech recognition/speaker identification systems [17],.". : ) .
aliility to provide high performance for lower complexity (than

[42]. By employing VQ, we can achieve high compression_ . : .
. . . . raditional VQ schemes). Unfortunately, since TCQ requires
gains, especially for image and speech/audio data. Image gr?(gcial techniques such as the trellis encoder and the Viterbi

) - S
speech/audio data are highly correlated and cannot be decpr- : . . -
P : = high'y Oﬁ%coder, implementing the TCQ-based coding scheme is still
related using conventional linear transforms, such as the |s-ite complex

crete cosine transform. Depending on the input sources, usthe . .
ecently, we have proposed a feedforward adaptive quantizer

a combination of a scalar quantizer and an entropy coder, it is : : .
possible to obtain performance up to 1.53 dB worse than tﬁ%”ed theﬁample-adapnvg product qu.’?mtlz(S‘APQ) in order .
reduce both the encoding complexity and memory require-

theoretical bound in an asymptotic sense for large codeboo‘?s. ) . . .
However, using VQ, one can further improve this performan ents [29]. The SAPQ in [29] is based érdimensional VQs

and come closer to achieving the theoretical lower bound [4 i.r mtran?orr}lvectorst, vyhe;a a(;dk are mtelgi;ars.lThsiiAPQ
It is VQ’s ability to improve on scalar quantization that haf> @ Structurally constrainedm-gimensiona Q. In Q2

lead to the development of several data coders, especially in Hﬁ%d“"‘ quantize(PQ) [17, p. 430] is selected from a set of

. . . : : didate PQs. (A block diagram of SAPQ is shown in Fig. 1,
speech/audio coding areas. The prevailing coding algorithms where the best quantizer is selected for an input that has a block

length ofm.) In [29], we also suggested several performance
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SIDE INFORMATION Il. SAMPLE-ADAPTIVE PRODUCT QUANTIZER
x1(h) ... xm(h) ¥s A > In this section, we briefly review SAPQ, focus on the case
Qouti(h) out(h) L . . .
» Q1 -»| B4 when it is described in terms of scalar quantizers, and lay the
[rg';gg's'; di(h) foundation for the asymptotic analysis conducted in Section Il
o3 M We consider a sequence of random variabtas -- -, X,
A1 Bout(h) taking values iR as the discrete-time source to be quantized.
or |U _QUA’NTIZER Here;mistheblocklengthSupposethadt{X?} < cofori =1,
Al X |moex .-, m. LetC, denqte the class of sets that tak@oints from
_l" (miog, n bits) R, and let the sets i@,, be called %:-level codebooks,” where
S a dz(h) each such codebook has codewords. The quantization of
2 Qourz(h) » B2 X; is the mapping of a sequence of observationsXpfto a

sequence of points &f(e C,,) according to a mapping called
Fig. 1. Block diagram of SAPQ in Example 1 (Lattié®" ). the quantizer. The average distortion achieved when a random
variableX; is quantized by a codebod@k(e C,,) is given by

VQs and nonuniform SAPQs. We will illustrate that even whef {minycc(Xi — »)?}. In this quantization scheme, if fixed
SAPQ is based on SQs, we can obtain VOQ-level performan&%’.‘gth binary codesare usedtorepresentthe quantizeroutputs, the

Further, for high bit rates (greater than 1 b/point), we will opRit rate (defined as bits per source poinijrequired idog; 7.

tain high gains while maintaining the low encoding complexit ote 'ghat sinceX; € R andC C R, the quantizer is acalar
ggnhzerLet anobservationaX, ---, X,, bedenoted by,

of SQ. This is an important achievement since, as mentioned ;
fore, obtaining VQ-level performance for high bit rates is usu- "’ *™ Suppose that the codebodksareC; € Cy,, fori = 1,

ally quite difficult due to the high encoding complexity and huge .2 "™ wheren; are positive integers. If we quantize this obser-

codebook requirements. (Note that SAPQ can be extendeoyj ?ékodnebéiggmngtﬁgil\%?alﬂ:,“ezrgrseu dsilsr;gr%%debig@ﬁrt?zch
the low bit rate cases as well by employikglimensional VQs ™* P Y. 9 o159 y

instead of SQs [29].) Further, we will show that SAPQ needs Do B W X ) 1
a relatively smaltraining sequencéTS) compared with tradi- rQ = m Z ;rélc{l( i—y) (1)
tional VQs. =

call this quantization scheme theduct VQ or PQ, since

The quantization procedure of SAPQ seems similar to that o . .
the quantizer is a mapping froRi™ to the Cartesian product set

theadapti di henie[19, p. 371] andini I ; . m
eadaptive coding schene (19, p Jandiniversal source Cy x - -+ x Cy,. Thebitrate ofthe PQisl /m) >_7" | log, n;.If

coding schemén [11], [12], [13] in some ways. However, it . ) .
is important to note that SAPQ is very different from the trat-he random variables are independent (or uncorrelated), then this

. ) ) . : independence appears to motivate quantizing each random vari-
ditional adaptive coding and universal source coding schemeB X . ) .
able independently, as shown in (1). However, even if the input

The adaptive coding scheme produces increased gains byigqhdependent, independently quantizing each of the random

placir_lg_the quantizer, dgpending on the varying statisticgl che riables o\, - - -, X, isjustone ofthe many possible coding
acteristics of a nonstationary source [40], [43]. The univers hemes and could be improved upon by appealing tbltk
source coding scheme treats the problems of source coder g ce coding theorefd9]. If C'is a subset dR™ with |C| = »

sign for applications where the source statistics are unkroWiyherey, is a positive integer, then the average distortion yielded

priori [7], [51], [53]. Since the main purpose of the pmposegyusingavectorquantizerfafl, D T

SAPQ is reducing the encoding complexity of VQ, we can .

in fact apply SAPQ to problems in the adaptive coding and Dyo=FE {Inin 1 Z(Xi _ yi)Q} )
universal source coding schemes by simply substituting their yeC m

quantizer portions with SAPQ. Note that the problem Statﬁiherey — (41, -+, ym)(€ R™), and the bit rate for SAPQ is

ment in this paper is quite similar to that of tkealar-vector ap/m) log, .

quantizer(SVQ), which has been proposed by Laroia and Far-\on we introduce a feedforward adaptive quantization
vardin [31], [32]. However, SAPQ can also implement larg&cheme, which is based on a new concept of adaptation to
codebooks (or high bit rates) and achieve even better resWlizh opservation ofX;, -- -, X,.. Let C; ;(C R) denote
than SVQ [15]. Further, SAPQ has a better channel noise cha{g th codebook for eachX;, where j c {1,2, -, 27},

of SAPQ is that the main idea is quite intuitive and Simp|Qquantizes each observation, - - -, x,, using the codebooks
compared with TCQ or SVQ. In a coding scheme that dog*;l’jj .-, C,, ; to form the2” candidates of distances

not employ the entropy coder for the quantizer output, the m

SAPQ quantizer can provide a 2—-3 dB improvement over the L Z min (z; —y)?, forj=1,2-.-,27 (3)
Lloyd—Max quantizers [35], [39]. m = veli;

This paper is organized as follows. In Section II, we mathyng choose the smallest distance. Hence, the average distortion
ematically define the SQ-based SAPQ and analyze the asyrgpsapQ is given by

totic performance of the SAPQ in Section Ill. In Section IV, we ™
introduce several design examples and simulation results with Dsapq = E {mm 1 Z . 2} . @
i om

' ’ ' _ min (X; —y)
discussions. We then conclude the paper in the last section. Y yeCi
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Here, we suppose thak; ; € C,»,forj =1, 2, ---, 27, where and the asymptotic result is obtained for an arbitrary fixed code-
n; € N. We call this guantization scheme, themple-adaptive book of sizen’. In the theorem, we will assume that ; € Cov
product quantizersince the quantization scheme is selectinggndCsapq = U?Ll(cl,j x -+ x C,, ;) for afixed codebook
PQ from a set 02" candidate PQs. For each sample, SAPQ preize /.
duces the bit streams for a codebook index andrtgriantized Theorem 1: Suppose thaX has a joint density functiorf
element indices, in the form of a feed-forward adaptive codingjth E{||X]||?t} < oo for somee > 0, andf is bounded on
scheme [17, p. 602]. This makes it possible to replace differggt: Then
codebooks for each sampleXf, ---, X,,. Therefore, the total ) Nmomi2/m
bit rate is given by(1/m) 327 | log, n)-+n/m, wheren are the Limsup[(n')™27]7™ inf Dsapq < G(La)llfll,  (7)
additional bits (side information) required in our scheme toin- " Sare
dicate which codebook is employed. Note that throughout thigiere the functiona| - ||, is given by
paper, we will suppose thabg, »n; andlog, »n; can be non- . 1/p
integers for the quantizer performance comparisons. Although fll, = [/ ff(x) dx} . (8)
our discussion in this paper will focus @n random variables,
we can also consider. k-dimensional random vectors as the  Proof of Theorem 1:In [29, App. C], the relationships
input to the SAPQ. This generalization of SAPQ is describg€1) and (C2) are also satisfied for an arbitrary fixed codebook
in [29]. As discussed in [29], the SAPQ in (4) istructurally — sizen, = »/(€ N). Hence, for the SQ case, i.é¢.= 1in [29,
constrained VQn m dimensions. Hence, the average distortioth. 1], we obtain (7). O
of SAPQ is between those of the scalar quantizer (or PQ) andcfrom Theorem 1, we can obtain the asymptotic re-
full search VQ. However, SAPQ can asymptotically achieve thglt  lim Supnﬂoo[(ﬂ’)mT’]Q/m infeg, ., Dsarq <
full search VQ distortion. Jallfllpn where J,, = infz G(L). It is clear fro

[26] that the optimal m-dimensional VQ is such that

lll. PERFORMANCE OFSAPQ limsup,_ ., v¥™infec Dvg < Julfll,, where|C| = v.
In this section, through asymptotic analysis, we will formall>'/:_rom [6] and [50], we know that tbe sequence on the left-hand

study the performance of SAPQ. side converges. F_urther, Gersho_s conject_ure tells us that the

asymptotically optimal quantizer is a function gf, [16]. In

A. Asymptotic Analysis other words

To simplify the notation, leX := (X;, ---, X,,,) denote an lim v¥™inf Dyg = Joml|f|l,- 9)
m-dimensional random vector. We assume an absolutely con- vme € o
tinuous distribution function foX . Now, consider root lattices 1 herefore, if this conjecture were true (as is typically assumed),
[21]. Let the points of am:-dimensional latticet,.,(C R™) be the_n from (7_) and _(9), SAPQ would achieve the asymptotically
denoted byy,,, wherev € Z. The closure of thesth Voronoi  OPtimalm-dimensional VQ performancé, | f|,, [36]. Hence,
region of the latticeC,,, is the convex polytoped.,, which is the advantages of SAPQ over PQ are thelsame as the VQ_case
defined as over the scalar quantizer [36], [37]. We will now try to obtain

more insight by studying the performance of SAPQ based on
H, ={z e R™: ||z —y,|* < ||z -y, | forallv’ € Z}  the two factors7(L,,) (or .J,,) and|| f||,.-

forv ez ®) B. Voronoi Region Shapé&i(L,,) (or J,,,)
wherel|z|| = /2% +--- + 22, andz = (21, - -, zp) € R™. From (6) and Theorem 1, we can conclude that the fagtpr
In (5), we lety, = (0, -+, 0); thus,H; includes the origiry;. s concerned with the shape of the Voronoi region of a quan-
Now, G(£L,), which is thenormalized second moment&f,, tizer. The gain achieved by this factor is called space-filling
is defined as advantagd36]. SinceJ; = 1/12 andinf J,, = 1/2xe¢, the
y achievable maximal gain through the shape of the Voronoi re-
1 / e — y,[|* dz gion is less than or equal t® log(.J;/ inf .J,,) = 1.53 dB.
G(Ly) == — = (6)  Infact, in the literature, lattice VQs have been used to exploit

V(H,)/r . . . .
mn (Ho) this space-filling advantage. Several important lattices can be

wherep := m/(m + 2), andV(H,) = fHU dx is the volume described as the union of the cosets of a set [8]. Based on this
of H, [16]. Note that alld.,, wherev € 7, have the same shape fact, various encoding/decoding algorithms for lattice VQs have
Thus, the normalized second moments and the volumés,of been proposed [9, eg. (8)]. Such lattice VQs can be described by
are all the same. The quanti€/( L,,,) is the normalized quan- SAPQ. For example, the hexagonal lattitg, which yields the
tizer distortion per codeword having the Voronoi region for unminimum J, = G(Az) = 0.0802 in 2-D, can be defined as

formly distributed data [9]. Conway and Sloane have conducted 9

extensive research on various lattices [8]-{10]. For the definiy, .— U <T'j+Z x { o, =3, _@7 0, @7 V3, }) )

tions of the lattices and discussions, see [8] and [29]. In order et 2 2

to explain the achievable performance from SAPQ in an asymp- (20)

totic aspect, we now use a variation of a result derived from thtere, the coset representativgsandr, arer; = (0, 0) and
asymptotic result in [29, Th. 1]. In this variation, which is sums, = (—1/2, v/3/2). Since a coset of a product set is also a
marized in the following theorem, the SAPQ is based on SQ®oduct setd; is a union of two product sets. Hence, atruncated
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lattice of A, has the same structure as the SAPQ codebook@ Distribution Shape] f||,
m-dimensions 2 = 2). Therefore, a truncated lattice s
can be implemented by SAPQ with= 1 since we have two
representatives.

An important lattice listed in [47] is th®:: lattice. Form >
2, D~ is the dual of the latticé,,,, which is defined as

The factor| f||,, which is defined in (8), is concerned with the
joint density functionf. From this factor, we could potentially
obtain a large gain in SAPQ based on tlenstrained-distor-
tion quantizef25]. From Holder’s inequality [4](|| f]|,)m IS &
nonincreasing sequence. Hence, dependinfy, @e can expect
some gain by increasing:. Suppose that an i.i.d. input has a
L. 7m 1 1 1 m
Dy =1 U((i’ 3 ) H LT, (A1) yniform density functiory; then|| f||, = 1202, whereo? is the
i simlar mamner a 0 (10,15 st tat SAPO can cof1ETe T HPLL Herce i oy St o
struct a truncated lattice dP:, for m = 1, 2, -- -, with only ' P Y9 9 ) '

1 = 1. Hence, SAPQ withy — 1 can construct the optimal lat- suppose thaf is a joint Gaussian density function given by

tice in 3-D since theDs lattice (or equivalently the latticds-) 1 —'S g

is a body-centered cubic lattice and optimal in 3-D [3]. The min- flz)= (27)™/2(det S)1/2 exp < 2 )

imum value ofG(D:) is about 0.0747 at» = 9 [8]. Hence, the heres is the aut . trix &F. Th

maximum gain is asymptoticallyo log(.J; /G(Dg)) = 0.475 Wwhereo s the aufo-covariance matrix of. Then

dB if we use latticeD;. I£1l, = 27p~ (m+D/2(det §)H/™, (16)
Now, we consider the latticd’s. The lattice £y can be ) ) ] )

rewritten asEs = {z|x = Ug,p, p € Z5}, wherep is written It is well known that if there is correlation between

as a column vector, aridg, is the generator matrix dfs given X1, -+, Xpn, then we can reduce the distortion through
by the factor(det S)/™ since(det S)'/™ < (trS)/m [5]. The

gain from this factor is known as thmemory advantagf36].

The well-known example that exploits this advantage is the
Karhunen-Loéve transform and the discrete cosine transform
[19]. (Note that the ternfdet S)/™ can be derived for other
type of density function if we employ} - ||? as a distortion
measure [28].)

Now, focus on the factop~(™*2)/2 in (16), which is de-
pendent on the shape ¢t This factorp=(m+2)/2 is equal to
3%/2 = 520 for m = 1 and monotonically decreasesdc
. 2.72 asm — oo. Hence, the achievable gain through the factor
Define £3, ; as the set p~(m+2)/2 {510 log(3%/2 /e) = 2.81 dB. Furthermore, for the
Laplacian density case, since

1f]l, = 20~ (det §)/™ 17)

(15)

Ugp, = (12)

S

OO O OO OO NN
OO O OO OoONO
SO oo NOO
OCOCOoO oI OOO
O OO R O ==
OO, O =Pk O
O R O R REFE—~ OO
e e

E&j = {.’L’|.’L’ € UF]SPI
P = (po, p1, P2, P3, 2pa + Jo, 2ps
+ J1, 2p6 + J2, 2p7 + ja) the potential improvement is about 5.63 dB. The gain from the
po, -+, pr €L}, (13) shape of the density function is called Steape advantagi@6].
From the space-filling advantage and the shape advantage,
Here,jo, - - -, js € {0, 1} are given byj = 1 + j02° + j;2* + evenwhenthe inpuXy, ---, X,, isi.i.d. (or uncorrelated), we
jo2%2 4 4323, forj = 1,2, ---, 2% Then have the potential for an improvement of up to about 4.35 dB
over PQ and up to about 7.16 dB over PQ for the Gaussian and
the Laplacian density cases, respectivblgte that these max-
By = U Es,j imum gains are the same as those obtainable from the corre-
- sponding theoretical bounds in an asymptotic sense for large
codebook$46].

16

[
an

[
o3}

= [UFJg (Oa Oa Oa Oa jOa jla an J3)

.,
Il
-

IV. EXAMPLES IN DESIGNING SAPQ

+ {-1"|-1" = UES (p07 P1, P2, P3, 2]747 2]757 2]767 2]77) . o . .
Pos -, pr € Z}] From the asymptotic analysis in Section Ill, we can estimate
the achievable performance of SAPQ whgs large. However,
= Jor; +7% (14) the asymptotic analysis does not provide any explicit vglue of
7 that yields good performance. This appropriate valug f
quite dependent on the SAPQ codebook design method. In order
wherer; := Ug, (0, 0, 0, 0, jo, j1, j2, j3) forj =1, ---, 16. to provide an appropriate rangemfor SAPQs, in this section,
Hence, a truncated lattice dfs can be implemented by thewe provide several different SAPQ design examples based on
SAPQ withn = 4. Note that in this case, the gain will bethe theoretical observations made in Section Ill. Through sev-
10 log(.J1/G(Eg)) = 0.654 dB. We can construct examples oferal examples, we explicitly demonstrate the performance of
SAPQ for several other types of lattices, suchdas D,,, and SAPQ and its encoding complexity in conjunction with code-
E- in a similar manner. book sizes and.

=
=3}

J

Il
-
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A. Uniform SAPQ Based on Lattices TABLE |
- . SAPQ BASED ONLATTICE D2 IN (22) (EXAMPLE 1). DISTORTIONS (IN
In order to demonstrate the space-filling advantage gained  DecigeLs) FOrR THEUNIFORM I.I.D. (18), m = 8, AND 7 = 1

from SAPQ, we now consider a uniformly distributed input

as follows. Suppose thak,, ---, X,, are ii.d. andX; Bit Rates: R | PQ (SQ) | SAPQ
has a uniform distribution. In other words, we suppose that 1125 -6.77 | -6.07
X = (X4, ---, X,») has a uniform density functiofigiven by 2125 -12.79 | -12.69
3.125 -18.81 | -19.00
1/a™, =z € ([-a/2, a/2])™ 4.125 2484 | -25.18

— ) . ) 18
/(=) {0, otherwise (18) 5.125 -30.86 | -31.26
whereq is a positive constant. As shown in Theorem 1, for this ng :zggg Z;gi
uniform density function, the gain comes only from the space- 8125 4592 | -49.38

filling advantage. Hence, using the uniform density function,
we can numerically observe the achievable gain from SAPQ by
changing the shape of the Voronoi region. by a fixed lengthlog, n bits in inputh, andd;(h) = (1/m)

If we use the samen Lloyd—Max scalar quantizers for the>_;—; mingc 1, ... o3 (@i (h) — y¢, ;)*. The comparatorGOM)
guantization ofX based on the PQ in (1), then the Lloyd—Masthen compares the two valués(k) andd.(h) and selects the
quantizer is the uniform quantizer given by output points  index that has the lowest value. The outgiyt,.(7) has 1 bit to

indicate Q or Q; for the multiplexeMUX .

—3(at+b) 4oL forl=1---.n (19) In Table I, we compare the nonadaptive product quantizer
whereb = a/n is the step size. Hence, the average distortion With the adaptive quantizer of (22) for a uniform input with the
(1) can be rewritten as variances? = 1. In this table,D p(, is calculated from the non-
adaptive quantizer in (20). As shown in Table I, at low bit rates,

Dpq =o*27" (20)  pp, is lower thanD due to the codewords of the sides
rQ SAPQ
wheres? = a?/12 is the variance of\; with bit rate R = of the uniform pdf. However, as the bit rate increages,prq
log, n. Note that Shannon’s lower bound (SLB) for the unifornis lower thanD p¢ [as was discussed in Section Il below the
density input is given by D+ lattice in (11)]. Note that we should expect a gain (from
6 our asymptotic analysis) to ke log(.J, /G(Dg)) = 0.47 dB,
Dsip = — o2 2R (21) which appears to be consistent with the results in Table I.

which is less tharD g of (20) by 10 log(re/6) = 1.53 dB. Ecxa;n?;? f:(Lftt.'??E;)é n"dj.t g%f -_--{yfézaje’note’ g]"égége_

Hence, there is a potential of about 1.53 dB improvement, Whié%c)':é of an SAP’Q where is a constant such thiats,, n’ € N.

is the same as the gail0 log(/,/inf J,,) from the space- | ot e codewords, based on the latti€g be defineé as

filling advantage. For a finite dimension, VQ can achieve a

fraction of this potential improvement (i.e., better thiRg). Yo i = 1 <a+ 3—b>+b-£+b< ;. foralli, j, and¢ (24)

It will be shown that SAPQ can also obtain this gain (without™ "’ 2 2 n e

resorting to the complexities involved in the other schemes)., 1o af, — a/n’, b; ; := b ., ands. . are given by the coset
Now, for the uniform density function in (18), we provide Lo N "

) : representatives; (¢ R®) as follows. Letr; ; be defined as
several SAPQ design examples and numerical results based on ’

different lattices in Section Ill as follows. Note thais depen- r; =Ug, (0,0, 0, 0, jo, j1, 2, Ja)
dent on the lattice _type. = (1, s T8 ) (25)

Example 1 (LatticeDL): Let C; = {y1,j, -, yw, ;}(€
C,) for j = 1 and 2, denote the codebooks of an SAPQ, whevéere Ug, is given in (12),jo, ---, j3 € {0, 1}, andj =
n' is a constant such thiatg, n’ € N. Let the codewords basedl + j02° + j12' + j22* + j32° for j = 1, ---, 16 from (14).
on the latticeD;., be defined as Thenr’, == (v{ ;, -+, rg ;) is defined as

!
Ye,j = _% <a + %) +b-£+0b;, foralli,j, and/ (22) URES R N (26)

) ) where|c|, ¢ € R is the largest integer less than or equatto
1 ] .

is the SAPQ witly = 1. Therefore, the average distortion in (4)
can be rewritten as 1 =(0,0,0,0,0,0,0, 0)

o _ , rh=1/2(1,1,1,0,1,0, 0, 0)
Dsapq = Eq min = z_; 46{{1}.1.‘.%,}()(2‘ N r, =1/2(0,1,1,1,0, 1, 0, 0)
. (23) v, =1/2(1,0,0,1,1,1, 0, 0)
Here, the bit rate isR = log, n' + 1/m. In Fig. 1, a r, =1/2(0,0,1,1,1,0, 1, 0)
block diagram of the SAPQ of this example is depicted. We v =1/2(1,1,0, 1,0,0, 1, 0)
have two different quantizers, (Qand Q) for ; = 1 and 6 T T
2, respectively. Each quantizer has two outputs; in Fig. 1, r7=1/2(0,1,0,0,1,1,1,0)
Qout; (k) implies m quantizer outputs, which is represented s =1/2(1,0,1,0,0,1, 1, 0)
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TABLE I 1, ---, L, and zero otherwise. In the case of high entropies of
SAPSE?BSEEES)OFNOLRAE'ECSﬁSO'FTM(IZﬂD(%’;“)"FfFE_Z)é EZ'ETD‘?RTLOZS('N Hy;, the PQ that employs the uniform quantizer will yield the
S = A A = minimum entropy, and this minimum is higher than the rate dis-
Bit Rates: R | PQ (SQ) | SAPQ tortion bound by only about one fourth of a bit, which corre-
15 003 | -9.05 sponds to about 1.53 dB. The next example will show that using
25 11505 | -15.42 SAPQ can reduce this 1.53 dB gap.
35 21.07 | 21.58 Example 3 (SAPQ Based on Latti¢e- and Output En-
4.5 -27.09 | -27.67 tropy): Suppose that; = (5/40) - i(e R) for¢ =0, -- -, 20.
5.5 -33.11 | -33.73 For a giveni, consider two coset€’; = r; + Cy and
6.5 -39.13 | -39.77 Cy = —7; +Cy; as the codebooks in an SAPQ wijh= 1. Note
& 4515 | -45.78 that if i = 0, thenC; is a midtread codebook, ar@y = Cs;
85 5118 | -51.83 if ¢ = 20, thenC; is a midrise codebook and; = C,, and if

1+ = 10, then the se€ = C; x C is a lattice that is equivalent

r=1/2(1,1,1,1,1,1,1,1) to D;-. For thei > 21 case, the sel' is equal to one of the
o =1/2(0,0,0,1,0,1, 1, 1) cases foi = 0, -- -, 20. Hence, we will consider only the cases
/10 - P S fori =0, -, 20,i.e.,0 <r; <b/2. Let Hsapq denote an
11 =1/2(1,0,0,0, 1,0, 1, 1) entropy of the SAPQ using as a codebook im-dimensions,
5, =1/2(0,1,1,0,0,0,1, 1) whereHsapq is defined as
T€L3 = 1/2(1’ 1,0,0,0, 1,0, 1) Hsapg = — Pr{Cl used fOfX}
v, =1/2(0,0,1,0,1,1,0,1) L
. =1/2(1,0,1,1,0,0,0, 1) =Y Pi ¢ logy P — Pr{C; used forX }
¥ =1/200,1,0,1,1,0,0,1). (27) o )
Therefore this quantizer is an SAPQ with = 4, and the bit Z Py ¢ logy P o+ m (31)
rate islog n’ 4+ 1/2. (Note that the quantizer in Example 1 has =1
only 7} and+}.) The SAPQ distortion of this example is giverHere,1/m is the side information given by the SAPQ with=
by 1
138 P; ; = Pr{output= ¢th codeword inC;|C; used forX}
- - 2 . .
DSAPQ =F { inlll1 g Z ‘ Fllll , (Xi—yg7 i,j) } . (32)
JE{L 16} © oy et ') 28) and itis assumed th&; , # 0for£ =1, ---, L; and zero oth-

. . erwise. Several numerical results are summarized in Tables Il
The results are summarized in Table Il. Note that from o%

. . . . Ind IV for Gaussian and Laplacian density functions, respec-
asymptotic analysis, we would expect a gain of approximat ely. In these tables, the step size of the SAPQ codelfdok
0.65 dB on latticeE’s, which is consistent with our results in. s

_ . is denoted bybsapg. Note that the rates of both the PQ and
Table II. In a similar manner, we can design an SAPQ bas Wsarq Q

. . - . PQ satisfyH;; < R andHsapg < R, respectively. In
on the latticeE’; with » = 3. Furthermore, some experlme/ntakhis simulation, we conducted the SAPQ for the 21 values of
results for the cases of = 2 and3, by choosing severat;

f 57 din 130 r; and foundr; that yields the minimum distortion. (Variation
rom (27), are compared in [30]. of Hgapq is very small for the various values ef, especially
. for the high entropy case.) For the Gaussian density function
B. Uniform SAPQ and Output Entropy case (see Table IIl), most of the results show the minimum dis-
If we do not use the entropy coder for the quantized outpygyrtion atr;, = bsaprq/4. SinceDgrp = 22728, where the
then we can obtain a large gain using SAPQ, as shown in B)rriances? = 1, the distortion of PQ aH; = 4.170 has about
ample 5. However, if we employ the entropy coder, then we1 53-dB difference from the SLB as shown in Table I1. In this
still achieve a nontrivial gain from SAPQ, albeit one that iéase, SAPQ achieves about 0.49 dB gain over the PQ, as ex-
not as large. The next example shows an entropy-constrainggted from the discussion following (11). However, this gain
SAPQ.-ConS|der a midtread uniform quantlzeﬂlﬂ\llth code- decreases as the entro@SAPQ decreases. This fact can be
book given by explained in a similar manner to Example 1. Table IV shows
o the numerical result for a Laplacian density function A =
Cui=H0, £b, 20, -} (29) 4 073, the difference betweeR pg and the SLB is about 1.56
Here’b(> 0) is the Step size. L&IU, which is the entropy of dB, and the gain from the SAPQ is about 0.46 dB. (NOte that
the quantizer, be defined as Dsip = 02@/7r2*2R:) For the Laplacian case, we again note
that for large step sizes; is less than1y = bsapq/4, and
. ) the performance of SAPQ can even be worse than that of the
Hy = Z Py logy I (30) PQ. However, in both the cases, if the step size is smaller than
=1 or equal to the standard deviation (in these cases, 1), then, as
where F; is the nonzero probability that the quantizer outpwghown in Tables Il and IV, there is a reasonable gain. Note that
is the /th codeword inC;;, and suppose thdt, # 0 for £ = these gains come from the space-filling advantage.

L



KIM AND SHROFF: SAMPLE-ADAPTIVE PRODUCT QUANTIZATION: ASYMPTOTIC ANALYSIS AND EXAMPLES 2943

. TABLE Il of the algorithm updates the codebooks using the partitioned
SAPQ BASED ON D, AND OUTPUT ENTROPY (EXAMPLE 3). DISTORTIONS(IN. T3 jn the quantization process of the first part. (Regarding the
DECIBELS) FOR GAUSSIAN .I.D. WITH VARIANCE 1,m = 8, AND 1 = 1 . .
second part, see the Appendix.) These two parts are then itera-

Step Size: bgapq | Hsarq (Hy) | PQ (SQ) | SAPQ tively applied to the given TS. The clustering algorithm is de-

0.25 4170 2358 | -24.07 scribed below.

0.5 3.179 -17.56 | -18.04 Clustering Algorithm (SAPQ):

1 2213 -11.55 | -12.01 0) Initialization ¢¢ = 0): Given codebook sizes:,

2 1.331 -5.44 | -6.01 i = 1,---,m, sample sizem, side bitsz, distor-

4 0.458 106 | 11 tion thresholde > 0, initial codebookCo, and TS

(1,6, Tm, 0))0Ly, SetD 1=
TABLE IV 1) Given codebooC = U (O]L j X ><Om i), Where

SAPQ BASED ON D= AND OUTPUT ENTROPY (EXAMPLE 3). DISTORTIONS(IN Cz ; € Cn’a find 27 E;n L n partltlons of each tralnlng

DECIBELS) FORLAPLACIAN |.1.D. WITH VARIANCE 1,m = 8,AND p = 1
) " g points in the TS for the correspondlfzgz " | n’ code-

Step Size: bsapq | Hsarg (Hu) | PQ (5Q) | SAPQ words, where each training point's codeword is deter-
025 4073 2359 | 2405 mined by the following quantization:

0.5 3.088 -17.62 | -18.03 ™

1 2.134 -11.77 | -12.05 d¢ := min — Z min (z; ¢ — y)?, foré=1,..., M.

2 1.255 643 | -6.41 Joomoi= el

4 0.509 -2.38 | -2.23 (33)

Next, we compute the average distortibn for theyth

_ ) ) iteration, which is given by
Suppose that an entropy coding scheme is employed in the

SAPQ of Example 6, and lek denote the resultant bit rate.
The optimal entropy coding, whei@ = Hsapq, can only be Dy= M Z de. (34)
reached if the probability’; , satisfies the Shannon—Fano inte- =
gral constraint. Otherwise, the bit rafethat results from en-  2) If (D,_, — D.,)/D., < ¢, stop.C, is the final codebook.
tropy coding will be slightly higher thalfsapq. It is useful to Otherwise, continue.
use entropy coding on vector (rather than on single outputs) in3) Compute centroids for each of thg>"""  »/ partmons
order to reduce the difference betweBrandHSApQ For ex- and replace the codewords@h, by the newgn S
ample, a 3-D variable-length coding scheme is employed forthe  centroids. Increase by 1. Go to Step 1.
DCT coefficient coding in ITU-T, H.263 [22]. It can be shown using similar techniques as in the case of
We can also use a nonuniform quantizer with entropy codifge Lloyd—Max algorithm (Lloyd’s Method 11) [34], [35] or the
in order to obtain a h|gher ga|n than does the uniform quan“zgr means a|g0r|thm [2] thw |S a decreas|ng Sequence Thus
with entropy coding. For example, an application of SAPQ tp)_ converges to a (local) minimum, which depends on the ini-
the quantizers for the very low bit rate video coding schemg codebookC. The next example shows an effect of the ini-
based on H.263 is studied in [30]. tial codebook in the clustering algorithm.
) Example 4 (Initial Guess in Clustering Algorithm)he
C. Nonuniform SAPQ clustering algorithm can be used to effectively design the SAPQ
We now introduce several examples to demonstrate the gasdebook using the TS that has an underlying distribution func-
from the space-filling and shape-advantages for nonunifoion. However, the performance of the designed SAPQ is quite
sources for different codebook sizes apth conjunction with dependent on choosing the initial codeba@k. An example
the encoding complexity. of the different choices of the initial guess is illustrated in Fig.
The design problem of SAPQ is to find an optimal codebodk by plotting the codebook of the SAPQ in-dimensions,
that achieves the distortianfc, ., Dsarq, for afixed rateR. wherem = 2. (Note that in Fig. 2, each figure has a codebook
However, finding such an optimal codebook is not easy for th@ that is the union of two product codebook® (= 2), and
nonuniformly distributed inputs. In order to find (sub)optimaéach product codebook has four codewords ™ = 4, and
codebooks, we have developed a clustering algorithm that usgs; = C-_;]. Fig. 2(a) and (b) show the converged codebooks
alarge number of samples as a TS for given values,of,, and in the clustering algorithm. However, the corresponding initial
7, but this TS size is still substantially less than thatoftradltlonabdebooks also have similar arrangements to the converged
VQ or modified schemes since the total number of codewordedebooks. This factimplies that the designed SAPQ codebook
to be designed is smaller than those of VQ. tgt, ---, ., ¢ is quite dependent on the initial codeboBk. Furthermore, if
denote the/th training sample in a given TS that hd$ sam- =} andn are large, then we have many choices of the initial
ples, where a sample hastraining points The clustering algo- codebooks. Hence, finding a globally optimal codebook for
rithm has two parts, which are from two necessary conditioren input is quite difficult, except for several trivial cases. In
respectively, for an optimal SAPQ. The first part of our algoFig. 2(a), we have employed a sim@plit method which will
rithm quantizesn training points in each sample usig dif- be introduced in this example [17], to determine the initial
ferent codebooks and then selects a codebook that yields theebookC,. The split method doubles the number of the
minimal distance [given in (3)] for the sample. The second pgrtoduct codebooks by adding and subtracting a small constant
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Fig. 2. Codebooks of SAPQ im-dimensions for different initial guesses Fig. 3. Codebooks of SAPQ im-dimensions for different initial guesses
(Gaussian i.i.d. input with the variancerl = 2, m = 2, andy = 1. Note that  (Gaussian Markov-1 source with the variance 1 and the correlation coefficient

each codebook’ is the union of two product codebooks.). (a) Initial guess .9, = 2, m = 2, andy = 1). (a) Split method witke = 0.01 (distortion:
(distortion:—6.93 dB). (b) Initial guess 2 (distortior:6.14 dB). —8.07 dB). (b) Spllt method with = 1 (distortion: —8.73 dB).
e(€ R). For the generation of an initial codebodk, from other words,C; ; are set equal fof = 1, ---, m. We can

the split method, we need a start codebook that is denotedard this scheme asadebook-constrained SAPEhd in
by C{ in R™. The start codebook) = C?, x --- x C9, | this case, the average distortion is given as
contains codebooks? ; that belong taC,.; ,WhereCZ L is the m
1
Lonq_ Max quantizer that is op_tlmal fak;. Dsapq = E { min — Z min (X; —y)? b (37)
Initial Codebook Guess (Split Method for SAPQ): i m = ved;
0) Initialization ¢y = 0): Given codebook size,, sample

. : ! : Here, the index is omitted in the codebook notation, i.€;.
sizem, side bitsy, split constant > 0, start codebook

C° - k™ and TS Y Note that the number of required codebooks is reducetf to
o CR™, and TS((z1,¢, -+, 2, 0))isr- and the bit rate is given lyg, n' +n/m, if C; € C,/, forall j.
1) If v > n, stop.C} is the initial codeboolCj, for the : g : . ! :
. . . . As shown in the asymptotic analysis of Section I, increasing
clustering algorithm. Otherwise continue. ) ) ) .
for a fixed value of yields more gain over PQ in the SAPQ of
2) Increase v by 1. Construct a new codebook . S .
o — UQ'A/ (€7 xx O, ) by doubling the number (4). However, for the SAPQ in (37), the decrease in distortion
0 J=1A "L can be seen to diminish for large valuesrof and the distor-

m]

—1 1
of codebooks fronCa’ = Uj:l (CF % x O J) tion will eventually increase and converge to that of thdevel
as follows. quantizer [29, Prop. 2]. Therefore, to obtain gains in the SAPQ,
o , .
Cy ;= —c+ C?T andCy,, . =e+ ngl (35) it is |mp0rta}nt to use as Iarge avalue fnr(and@ ) as_p055|bl'e
’ ’ * J ' while keeping the ration/»’ small (note that since increasing

fori=1,---,m andJ =1,2 -, 2L n' increases the total bit rate, this implies that for a given bit
3) G.\,en(jg, f|nd 203"l partmons of training points rate, the side information should be accordingly decreased).

according the quant|zat|on Furthermore, if we employ the split method as an initial guess

" in the clustering algorithm, the distortion of the SAPQ in (37) is
 min 1 Z min (zi¢ —y)%, forf=1, -, M. nearlly the same as that of the _SAPQ in (4) [29]. T_herefore, fora
JELL, 2,27 = yeC] relatively largen’ (compared withy) and a fixed ratio ofn/n/,

(36) itis advantageous to use the SAPQ in (37) since its performance
Compute the centroids for each of th# "™ »; will closely approximate that of SAPQ, and the number of re-
partitions, and replace the codewords(ifj by the new quired codebooks i8".
2737, n} centroids. Go to Step 1. Since the SAPQ in (37) has a scalar quantizer structure, i.e.,
Fig. 3 illustrates an example of the constanin the split the codewords of SAPQ belong® we can easily apply to the
method for a correlated input. We note that depending,ave  current quantization schemes. For example, we can implement
can obtain different converged SAPQs as shown in Fig. 3(a) aBAPQ based on lookup tables, and apply SAPQ taiifieren-
(b), respectively. In this split method, we will set= 0.001 tial PCM schemes [23] that use traditional scalar quantizers and
during the simulation. predictors [30].
) _ i Example 5 (Encoding Complexity and Asymptotic Distor-
D. Comparison of SAPQ with Other Quantizers tion): In full-search VQ, suppose that denotes the size
Note that the SAPQ in (4) requires at masp” different of codebook. The number of multiplications required for
codebooks. Hence, ifz is large, the decoder needs a largencoding are thew and 27! log, n’ for the full-search VQ
memory for the codebooks, and the codebook design coamd the codebook-constrained SAPQ, respectively. If the bit
plexity may be high. In order to reduce the required numbeates of VQ and SAPQ are the same, ile= (n')™2", then
of codebooks, one possibility is to use the same codebooks/in> 27+ log, n’ from 2 log, n’ < (n')™ form = 3,4, - --
calculating the distance of (3) under an assumption that tikis implies that the number of multiplications for VQ is
random variablesXy, ---, X,,, are identically distributed. In always greater than that of the SAPQ. Hencesfor> 3, the
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TABLE V -5
COMPARISON OFSAPQ (EXAMPLE 6). DISTORTIONS (IN DECIBELS) AT G\
BIT RATE 4.5 -10
vqQ | TsvQ MSVQ SAPQ 5 \ vaQ(Vvs)
Block Length (m) 2 2 2 1 2 1 8 ~ \ K
Codebook Size v =512 n'=8 n'=64|n'=16 n' =16 =’ =16 19}
Breadth (b) 220 ,f LN S
Depth (d) 9 5 SAP \ﬁ \S
£ Q (VS)
Stages (g) 3 3 5 o5
Side Bits () 1 2 4 "Z,‘ /
Multiplications 512 18 24 192 16 32 128 s} LY
Memory 1024 2044 48 768 32 64 256 30 7 3 ( o
Gaussian iid -23.8 -23.3 -19.0 -21.1 -23.7 -24.2 -24.7 \
Laplacian ii.d -22.9 =221 | -167 -19.9 -22.0 -23.0 -23.9 35 SAPQ (TS) VQ (TS)
encoding complexity of SAPQ is always less than that of VQ. -40

Further, since SAPQ has a structurally constraint codebook 10 1$?aimn 13100“6”0:222 100000
compared with the arbitrary codebooks of full-search VQs, the 9

distortion of the SAPQ is always less than or equal to that Bly. 4. SAPQ and VQ trained on finite TS’s (V@ = 2, v = 512, and
the full-search VQ. In a similar manner for the memory SiZ%ASPQ:m = 2,n’ = 16, n = 1 for Gaussian i.i.d. with variance 1 at bit rate

case, we havew > 2"/ at the same bit rates. Hence, we can

design an SAPQ, which requires a smaller codebook than the TABLE VI
traditional VQ. COMPARISON OFSAPQ TRAINED FINITE IN TS (EXAMPLE 7). DISTORTIONS(IN
We now increase the block length of SAPQ framto m’(> DECIBELS) FORGAUSSIAN L.I.D., VS SIZE: 65 536AT BIT RATE 4.5
m) and keep the l.)it rates the same, ibel'/’.m, - ()27, TS Size 128 1,024 8,192 65536 | > 5,242,880
Then, there is an integér such thaty > 6 implies thaty > == ——,& 15 190 223 234 235
27+ log, n’, i.e., the encoding complexity ef’-dimensional  1svQ (m=2b6=2d=9) |-106 -176 -21.7 -23.0 -23.3
SAPQ is less than that of full-searefrdimensional VQ. From SAPQ (m=2,n'=16,7=1) | -194 -231 -235 -23.6 -23.7
Section I-C,|| f|l,» < ||f|l,» wherep’ := m//(m/ + 2). Fur- ~ SAPQ(m=4,n"=16,n=2) | -192 284 -239 241 242
ther, from [10], since there is a lower bound fly;, and for ap- —2EQm=8n=16n=4 | 168 229 M1 A4 | 27

propriate values aof: andm’, we have arelationshig,,, < J,,
[9], [10, Fig. 1]. Therefore, from Theorem 1, there exist blockmall (and hence implementable) parameters:’, ands. For
lengthsm andm’ such that correlated sources, such as the Markov-1 sequences [23, p. 62],
several numerical results for various quantization schemes, in-
cluding predictive VQ, are also shown in [30].
(38) Example 7 (SAPQ Trained on Finite TSRince VQs are usu-

In other words, we can design a better SAPQ than the traditiomdlly designed by clustering training sequences, the average dis-
VQ in an asymptotic sense while obtaining a lower encodirtgrtion of VQ is dependent on the choice of the TS and its size.
complexity. A numerical result on this fact will be introduced ifThe size of the TS is especially important in designing a good
Example 6. codebook for an underlying distribution function. In general, the

Example 6 (Numerical Comparison of SAP(QAn extensive training ratio, which is defined as the ratio of the TS size to
comparison on SAPQ in terms of the average distortion, etie codebook size [17, p. 364], indicates how close the trained
coding complexity, and memory requirement is shown in owodebook is to an optimal one for the distribution function [26],
early work [29], where the SAPQ is based brdimensional [27]. From [1] and [41], it is known that a large TS ensures a
vector quantizers. More results on the SAPQ of (37), where tgeod codebook for the distribution function. However, the size
SAPQ is based on scalar quantizers, are summarized in Tadfl@ TS could be quite different, depending on the quantization
V. Note that in this simulation, the full-search VQ was designesthemes. For a similar bit rate and quantizer distortion, a quanti-
by the generalized Lloyd algorithm (GLA) [17, p. 362]. We als@ation scheme, which requires a smaller TS, is obviously better.
compared the SAPQ with the multistage VQ (MSVQ) [17, dn Fig. 4, the distortions of trained codebooks of VQ and SAPQ
451] since MSVQ is one of the quantization schemes that care tested on a validating sequence (VS). (In testing a codebook
reduce both the encoding complexity and memory requiremeunsing a VS, there is no need to use a large VS [27]. In this sim-
However, as we can see in Table V, the average distortionwdétion, we used 65 536 elements for the VS.) As we can see
MSVQ is significantly worse than the average distortion of the Fig. 4, SAPQ requires much smaller TS sizes, and SAPQ
other quantizers. As discussed in Example 5, we can design(for VS) always shows better performance than the VQ cases.
SAPQ whose distortion and complexities in terms of encodirig other words, for the TS sizes as in Fig. 4, SAPQ is even better
and memory requirement are better than the full-search VQ,taan the full-search VQ. Further, in Table VI, the trained code-
shown in the SAPQ cases of = 4 andm = 8 in Table V). books of several quantization schemes on finite TS’s are com-
This fact implies that even though the asymptotic analysis pared. Through this table, we can infer that the SAPQ yields less
Section Ill only shows the converged results without any resulisstortion than the full-search VQ if the codebooks are designed
about the convergence speed, we can design a good SAPQbfpusing finite TS's.

limmsupl(n')™ 27" _inf  Dsarq < v llflly <l
SAPQ

o0
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7 7 7 7
n 3 3 n
V. CONCLUSION wheres; () := Uzl=1 "'Ua_1=1Ua+1=1 "'Uzm=1

In this paper, we have studied our newly introduced samplgt:. - ¢:—1.6¢:41,+4.. (7). In other words, the necessary condi-

adaptive product quantizer (SAPQ) [29] from an asymptotic a40n IS given by
pect and with several examples. The SAPQ scheme thatis con-
sidered in this paper is basedwarscalar quantizers. This SAPQ i, e(J) = / T dF'(z / ' dr’,
is, hence, very appealing from a practical implementation point Sie() Sie(d)
of view. Through an asymptotic analysis based on lattices, we
have designed lattice VQs by applying SAPQ and numerically (A5)
compared their performance. We have also shown that SAPQ
can achieve better performance than the full-search VQ in an
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