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ABSTRACT

Over the past 50 years, China’s ancient agricultural

village landscapes have been transformed by

unprecedented social, technological, and ecological

changes. Although these dense anthropogenic

mosaics of croplands, settlements, and other used

lands cover more than 2 million square kilometers

across China, the nature of these changes and their

environmental impacts remain poorly understood

because their spatial scale is generally too small to

measure accurately using conventional land-

change methods. Here, we investigate the regional

consequences of fine-scale landscape changes

across China’s village regions from 1945 to 2002

using high-resolution, field-validated ecological

mapping of a regionally stratified sample of village

landscapes at five sites across China, with uncer-

tainties estimated using model-based resampling

and Monte Carlo methods. From 1945 to 2002,

built surface areas increased by about 7% (90%

credible interval = 2–17%) across China’s village

regions, an increase equivalent to about three times

the total urban area of China in 2000. Although

this striking result is explained by a near doubling

of already large village populations and by lower

housing density per capita in rural areas, two

unexpected changes were also observed: a 9% net

increase (-4% to +21%) in regional cover by

closed canopy trees and an 11% net decline (-30%

to +3%) in annual crops. These major regional

changes were driven primarily by intensive fine-

scale land-transformation processes including tree

planting and regrowth around new buildings,

cropland abandonment, and by the adoption of

perennial crops and improved forestry practices.

Moreover, the fragmentation, heterogeneity, and

complexity of village landscapes increased over

time. By coupling regional sampling and upscaling

with observations in the field, this study revealed

that fine-scale land-change processes in anthropo-
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genic landscapes have the potential for globally

significant environmental consequences that are

not anticipated, measured, or explained by con-

ventional coarser resolution approaches to global

and regional change measurement or modeling.

Key words: human dominated ecosystems; land-

use and land-cover change; China; anthropogenic

biomes; ecological history; landscape ecology; up-

scaling; regional change; ecotope mapping; agri-

culture.

INTRODUCTION

Changes in land use and land cover are a major

cause of global changes in biodiversity, biogeo-

chemical cycles, and climate (Vitousek and others

1997; Foley and others 2005; Gibbard and others

2005). Usually considered in terms of deforestation,

urban expansion, and other extensive land-trans-

formation processes, the global and regional im-

pacts of intensive fine-scale (<30 m) land

transformations are less well understood, even

though these tend to be the dominant form of

landscape change within densely populated rural,

urban, and suburban landscapes (Ellis and others

2006). One reason for this is the challenge in

measuring fine-scale landscape changes using the

relatively coarse resolution remote sensing plat-

forms that underpin most regional land-change

measurements (for example, Landsat, ‡30 m; Ellis

and others 2006; Ozdogan and Woodcock 2006).

This study will demonstrate that the agricultural

village landscapes of China have changed very

substantially at fine spatial scales since 1945, with

the potential for ecologically significant impacts not

only within China but also globally. In so doing, we

also demonstrate and assess a new sampling-based

methodology for investigating the long-term re-

gional and global changes caused by fine-scale

land-transformation processes within densely pop-

ulated anthropogenic landscapes.

Agricultural village landscapes cover about

8 9 106 km2 globally, or about 6% of Earth’s ice-

free land; a global extent several times that of ur-

ban landscapes (Ellis and Ramankutty 2008).

Occurring predominantly in Asia, these ‘‘village

biomes’’ are densely populated (‡100 persons km-2)

agricultural landscape mosaics that combine crop-

lands with settlements, trees, and a host of other

ecologically distinct managed and unmanaged

landscape features (Ellis 2004; Ellis and Rama-

nkutty 2008). China’s village regions are among

the most extensive on Earth, covering about

2 9 106 km2 across China’s eastern plains and

central and southern hilly regions (Ellis 2004).

Over the past half century, these ancient anthro-

pogenic ecosystems have been transformed by

profound social, economic, and technological

changes including a near doubling of rural popu-

lations, the introduction of industrial inputs for

agriculture, and the intensive restructuring of rural

landscapes to provide growing populations with

improved housing, roads, irrigation, aquaculture,

orchards, and rural industry (Han 1989; Heilig

1997; Ellis and others 2000). Although improving

rural economic conditions, the ecological impacts

of this transition away from traditional village

lifestyles and management practices have been se-

vere in many areas, including the pollution of

water, soil and air, soil erosion, habitat loss, and the

depletion of water and other local resources (Han

1989; Liu and Diamond 2005).

There is no doubt that long-term changes in

China’s land use and land cover have signifi-

cantly impacted global biogeochemical cycles and

climate (Houghton and Hackler 2003; Zhang and

others 2005; Liu and Diamond 2005). However,

existing estimates of these impacts are based on

coarse-resolution remote sensing, census data,

and model-based approximations. Precise esti-

mates of the global contribution of long-term

ecological changes within the densely populated

village landscapes of China are lacking, even

though these landscapes cover approximately

20% of China’s total area (Ellis 2004). This is

because these studies have focused on recent

changes in land cover observable by regional and

global remote sensing and on measuring exten-

sive land-change processes such as urbanization,

large-scale deforestation, and national afforesta-

tion projects (for example, Houghton 2002; Liu

and others 2003, 2005a; Seto and Fragkias 2005).

As a result, the intensive, fine-scale, landscape-

transformation processes that predominate within

China’s densely populated village regions remain

poorly understood (Ellis and others 2000; Ellis

2004).

High-resolution mapping of fine-scale landscape

change is too resource-intensive to be practical

across large regions and the same is true of field-

based ecological measurements and local land

management surveys. Yet all of these are neces-

sary to measure and understand the long-term

causes and consequences of fine-scale ecological

changes within anthropogenic landscapes (Ellis
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and others 2000; Grimm and others 2000;

Binford and others 2004; Ellis 2004; Rindfuss and

others 2004; Wulder and others 2004; Liu and

others 2007; Turner and others 2007; Wu and oth-

ers 2009). Fortunately, stratified sampling tech-

niques can leverage regional data from remote

sensing, census statistics, and other extensive data

sources to make upscaled regional estimates from

relatively small samples of costly fine-scale obser-

vations (Gallego and others 1994; Achard and others

2002; Binford and others 2004). Indeed, regional

sampling and upscaling has already been used to

improve current estimates of China’s land use and

land cover, and has proved especially effective in its

densely populated rural areas where estimates of

cropland and other areas have long been suspect

(Frolking and others 1999; Zhang and others 2000;

Zhao and others 2003).

Unfortunately, sampling long-term ecological

changes within China’s village landscapes is far

more complex. First and foremost, historical

landscapes cannot be sampled using spatially

random or systematic sampling designs because

the spatial extent of historical imagery needed to

map them is both nonrandom and spatially re-

stricted (Ellis 2004). Moreover, the costs of field

observations in China and other developing rural

regions are strongly related to travel distances

between samples (Ellis 2004). Given the same

resources for fieldwork, this means that random

and spatially uniform sampling designs must have

smaller sample sizes than spatially clustered

designs that restrict sampling to a smaller set of

field research sites.

We therefore used a regionally stratified land-

scape sampling design (Brewer 1999; Schreuder

and others 2001) to allocate high-resolution field-

validated long-term ecological change measure-

ments to within five 100 km2 field research sites in

environmentally distinct village regions across

China (Ellis 2004). We then make regional esti-

mates of long-term landscape changes by coupling

measurements from samples with spatially explicit

regional datasets for population, land cover, and

terrain using two independent regional upscaling

and uncertainty analysis procedures. By this ap-

proach, we will reveal a variety of ecologically

significant and unexpected long-term regional

changes within and across the village landscapes of

China.

METHODS

Regions, Sites, Samples, and Mapping

Regional estimates of long-term changes in China’s

village landscapes were obtained using a multistage

procedure designed to constrain fieldwork, histor-

ical and current high-resolution imagery, and

other resource-intensive observations within five

100 km2 field sites across China (Figure 1; Ellis

2004). The methods we used for selecting regions,

sites, and samples are detailed in Ellis (2004),

preparation of current and historical imagery is

described in Wang and Ellis (2005), and our pro-

cedures for high-resolution ecological mapping

are in Ellis and others (2006). We therefore sum-

marize these methods below and in Figure 1, with

Figure 1. Map of China’s village regions and research sites (left, site = ‘‘+’’; Table 1) and procedures for regional change

estimation from site-based landscape samples (right; Supplementary material—Appendix 1).
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additional details in supplementary material—

Appendix 1.

First, China’s village regions were stratified into

five environmentally distinct regions using a

coarse-resolution biophysical cluster analysis (Ellis

2004). A 100 km2 field site was then selected

within each region. Site selection was based on

regional data and multiple visits to potential field

sites together with regional experts in an extended

effort to eliminate any obvious bias in site charac-

teristics relative to village regions as a whole (Ellis

2004). Next, Landsat Geocover 2000 imagery was

obtained across a ‘‘subregion’’ covering the site

within each region, land-cover maps were prepared

from these, and then used to estimate percent land

cover within 500 9 500 m square grid cells across

the subregions (a single grid system was used across

China; Ellis 2004). Finally, we identified regional

land-cover clusters across the grid cells in each

subregion and used these as the basis for selecting a

regionally stratified sample of twelve 500 9 500 m

grid cells within each site, yielding a total of

60 landscape sample cells across China’s village

regions (Ellis 2004; Supplementary material—

Appendix 1).

High-resolution imagery was acquired across

each site in 2002 (IKONOS imagery) and for circa

1945 (archived aerial photographs; Wang and Ellis

2005). Fine-scale ecological maps for 2002 and

circa 1945 were made for each landscape sample

cell using anthropogenic ecotope mapping, a high-

resolution ecological feature mapping procedure

based on a combination of high-resolution image

interpretation and intensive fieldwork (Figure 2;

Ellis and others 2006). This procedure classifies all

ecologically distinct features (ecotopes) within

landscapes based on a four level a priori classifica-

tion hierarchy, FORM fi USE fi COVER fi
GROUP + TYPE, combining basic landform, land-

use and land-cover classes (FORM, USE, COVER)

with a set of more detailed feature management

and vegetation classes (GROUPs) stratified into

TYPEs (Ellis and others 2006; http://ecotope.org/

aem/classification). Whereas each level of feature

classification, including land USE and land COVER,

is independent, allowing for separate analysis at

each level, full ecotope classification integrates

the four classification levels within each feature.

For example, a forest of closed canopy regrowth

evergreen trees (GROUP + TYPE = en02) on a

gentle slope (FORM = SL = Sloping) managed

for harvest (USE = T = Forestry) with Perennial

COVER (P; >60% woody cover) is classified as the

ecotope ‘‘SLTPen02’’ (FORM + USE + COVER +

GROUP + TYPE).

Region Data

After our landscape samples had been selected and

mapped, regional data for land cover, population,

and terrain became available across all of China.

We therefore made use of these data to improve

our mapping of village regions (Figure 1) and to

evaluate and strengthen our regional upscaling

procedures using complete regional data. Three

datasets were obtained: 1 km gridded percent land

cover for year 2000 (prepared from 30 m land-

cover data: China National Land Cover Dataset; Liu

and others 2003), 1 km gridded 2000 population

density (Tian and others 2005), and 90 m terrain

data (3 arcsecond data from the Shuttle Radar

Topography Mission; National Geospatial-Intelli-

gence Agency 2004). These datasets were registered

to our original 500 m sample selection grid and

interpolated to 500 m using nearest neighbor

interpolation (mean in circle with 500 m radius).

Mean elevation and percent slope were calculated

for 1 km and 500 m grids using GIS (zonal statis-

tics). The 25 land-cover classes were aggregated

into 11 simpler classes (Figure 3; including an ur-

ban class that was excluded from village regions).

The maximum potential extent of village land-

scapes in China (VP; Table 1, Figure 1) was mapped

at 1 km resolution by selecting the extent of 1 km

cells with population between 100 and 2500 per-

sons km-2 (Ellis 2004), extending this by 1 km to

allow for village influence (nearest neighbor anal-

ysis 1 km circle), and then by removing all cells

with (1) any urban cover, (2) without agriculture

or village built-up cover, (3) greater than 75%

barren cover, (4) greater than 0% water cover, or

(5) population density below 10 persons km-2.

Major village regions in Eastern and Central China

(VM; Table 1, Figure 1) were mapped within the

maximum village extent by eliminating areas in the

far West (96� Lon) and North (41� Lat) and patches

smaller than 100 km2 or isolated from larger ex-

tents by more than 20 km. Five improved village

‘‘upscaling regions’’ (VU; Table 1, Figure 1) analo-

gous to the five initial site and sample selection

regions were then mapped within the major village

regions based on the regional constraints in sup-

plementary material—Appendix 2. After regions

were extracted using GIS, they were edited man-

ually using Landsat Geocover 2000 imagery to

identify and eliminate areas without the diagnostic

features of village regions (Supplementary mate-

rial—Appendix 2) or containing large-scale infra-

structure atypical of village landscapes (mostly

larger built-up areas along roads resulting from

town and industrial development).
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Regional Upscaling

We made regional estimates from sample cell

measurements using two different regional

upscaling approaches: regional weighting and

regional model prediction. In the regional weight-

ing approach, regional estimates (RE) were made

by multiplying measurements from each sample

cell (CEi) by ‘‘regional weights’’ (RWi):

Figure 2. Examples of imagery, ecotope maps, and land-cover changes across a single 500 9 500 m landscape sample cell

in each site. Maps follow key at lower left, ecotope maps use ‘‘USE + COVER’’ symbols (bottom center), and land-cover

changes are highlighted using a COVER change index indicating changes in potential for vegetation growth (lower right;

Ellis and others 2006).
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RE ¼
Xn

i

CEi � RWi ð1Þ

Regional ‘‘cluster distance weights’’ (CDW) were

initially derived from the subregional land-cover

cluster data used in sample selection (equation 1 in

Ellis2004).Although thismethodproducedacceptable

regional estimates (Figure 3A; Supplementary mate-

rial—Appendices 3–5; Ellis 2004), we subsequently

developed a more powerful regional weighting pro-

cedure that made use of complete regional datasets for

land cover, population, and terrain. In this procedure,

multivariate regional optimization (MRO), weights

(wi) were calculated using an optimization algorithm

(Excel Solver; Fylstra and others 1998) that minimized

the divergence (D) of sample means (n = 12) from

known regional means across a set of J regional vari-

ables (X; population density, mean elevation, mean

slope, and percent land cover for all classes covering

>0.5% of a region and present in the sample; Sup-

plementary material—Appendices 4 and 5):

D ¼
XJ

j¼1

�Xj �
Pn

i¼1 xj;i � wi

� �

�Xj

����

�����
1

J
ð2Þ

where xj,i is the value of variable j for sample cell i.

D was minimized subject to the constraints that

each set of 12 wis must sum to 1.0 and that wis may

only vary between 0.02 and 0.25, to ensure that all

cells participated in the analysis and that no cell

completely dominated.

Our second regional upscaling approach, B-spline

regional modeling (BRM), was used to predict re-

gional land USE and COVER (Y) from our sampled

measurements of these (y) by modeling their rela-

tionships with variables measured across regions

and also measured for the sample (X; same data as

MRO but using only land covers common across

regions: village builtup, paddy rice, annual crops,

woody cover, tree cover, water, barren). X and y

variables were rescaled (Young and others 1976;

Young 1981) and then regressed using B-spline

expansions (de Boor 1978). Regressions were re-

stricted to regions that had at least one non-zero

value of y; Y predictions for regions with all y values

equal to 0 were set to 0 (for example, 0% rice paddy

in the North China Plain). Supplementary mate-

rial—Appendices 3–5 and Figure 3 present detailed

comparisons between these different types and

Figure 3. Comparisons of land-cover estimates made from complete regional land-cover data (Liu and others 2003) by

different methods. (A) Direct estimates within and across five village regions (‘‘Region’’), for subregions used for regional

stratification of samples (‘‘Subregion’’; Figure 1), for sites (‘‘Site’’), and for sample cells, both before (‘‘Sample’’) and after

upscaling by the CDW and MRO procedures. (B) Direct estimates for Mainland China compared with the maximum

extent of village regions (VP), major village regions in Eastern China (VM), and the combined extent of the five village

upscaling regions (VU; Figure 1, Table 1), and MRO upscaled estimates from samples, including correction for Grassland

missing from the village upscaling regions. Note: ‘‘Region’’ and ‘‘MRO’’ estimates for ‘‘Five Regions’’ in (A) are identical

with VU and MRO in (B), respectively.
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scales of regional predictions based on complete

regional data.

Change and Uncertainty Analysis

Uncertainties in upscaled regional estimates pro-

duced by regional weighting (MRO, CDW) and

regional model prediction (BRM) were quantified

using different methods. For regional weighting,

we combined resampling methods with Monte

Carlo observational uncertainty analysis (Ellis and

others 2000, 2006). Observational uncertainty

models for sampled land class area measurements

were parameterized using a feature-based error

model and normal probability distribution func-

tions (PDFs; Ellis and Wang 2006). Land class areas

were normalized to the total area of each sample

cell, including an omission error PDF, and changes

in each cell were estimated by subtracting past

areas from current areas (a ‘‘zero estimator’’ PDF

was used for classes missing during one time period

or another; Ellis and others 2006). Resampling was

conducted at the beginning of each Monte Carlo

iteration using a random draw of 12 cells with

replacement from the original sample of 12 cells in

each site (similar to bootstrapping; Efron and Tib-

shirani 1991). This was followed by sample weight

calculation (MRO, CDW), Monte Carlo draws from

PDFs, and finally by the calculations of regionally

weighted areas and changes. Frequency distribu-

tions from 10,000 Monte Carlo iterations were

then used to characterize uncertainties in weighted

regional estimates (Supplementary material—

Appendices 4 and 5).

Uncertainties in BRM model predictions (Y) were

quantified by predicting land USE and land COVER

from X across 2500 random samples of 12 grid cells

selected at random within 10 9 10 km ‘‘sites’’

distributed at random across each region (= 30,000

values per region; Supplementary material—

Appendices 3–5). Change predictions were obtained

by subtracting historical from current land USE and

COVER predictions after normalizing them to 100%

across each cell by dividing them by their sum (Ellis

and others 2000). Estimates were then averaged

across each 12 cell sample, yielding a random sam-

ple of 2500 ‘‘site-based’’ regional land-change pre-

dictions in each region. Frequency distributions

across the 2500 samples were then used to charac-

terize uncertainties in BRM regional change esti-

mates.

We present regional change estimates from both

the MRO and BRM upscaling methods, combining

the power of optimized regional estimation from

sample measurements (MRO) with the conservative

regional predictions produced by BRM, which

incorporates the full range of regional variation. To

quantify our single best estimates of regional

change, we average median change estimates by

MRO and BRM, and present this together with 90%

credible intervals (CI) calculated by averaging the 5

and 95 percentile estimates from MRO and BRM.

RESULTS

Regions, Sites, and Samples

The extent and environmental characteristics of

China’s village regions are illustrated in Figure 1

and described in Table 1. All together, village

landscapes covered approximately 2.5 9 106 km2

across China, whereas the major village regions of

Eastern and Central China occupied 2.1 9 106

km2, or about 20% of China’s total area (Table 1).

The major village regions differed substantially and

predictably from China as a whole, incorporating

more than half of China’s total population within

an area containing most of China’s rice paddy

(>80%), annual crops (>57%), and village area

(>71%), but with only 21% of its forests, 37% of

its shrubland, 9% of its grassland, and less than 2%

of its barren areas (Figure 3B). Concentration of

population and productive land was even greater

within the core area of this study, our five village

upscaling regions, which covered 0.91 9 106 km2

within the major village regions (Table 1; Figures 1

and 3). On average, the village upscaling regions

were much warmer, wetter, lower, and flatter than

China as a whole, as were the major village regions

(Table 1). Still, the village upscaling regions re-

tained major variability in climate, terrain, and

land cover, as demonstrated by the substantial

environmental differences evident among the five

upscaling regions (Table 1 and Figure 3A).

In general, differences among regions were much

greater than differences between a region and its

representative site (Table 1, Figure 3A). Moreover,

differences between site and region were without a

clear trend, with the exception of a tendency toward

higher population densities and lower mean slopes

within sites. More importantly, regional land-cover

estimates made by upscaling site-based samples of

regional data using MRO, our most powerful re-

gional upscaling procedure, were in good agreement

with complete regional data, and this agreement

was better than for estimates from entire sites, from

unadjusted samples, or for samples upscaled using

our original upscaling system (CDW; Figure 3A,

Supplementary material—Appendices 4 and 5).

Still, there were some significant disagreements
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between sampled and direct regional land-cover

estimates, especially in the Tropical Hilly Region

(missing Paddy) and Subtropical Hilly Region

(overabundant Barren land), even after MRO

upscaling (Figure 3A, Supplementary material—

Appendices 4 and 5). Population density was also

significantly overestimated in every region even

after MRO upscaling (27% across regions; bias test

from Cochran 1977:14; Supplementary material—

Appendix 4). Still, MRO upscaling reduced the effect

of this and other site-level biases, bringing MRO-

upscaled sample estimates into closer agreement

with known regional values than did our initial

upscaling method, demonstrating the relative

effectiveness of this method (Supplementary mate-

rial—Appendices 4 and 5).

Regional Landforms, Land Uses,
and Land Covers

Though population density was fairly constant

across regions and sites, regional differences in

terrain and climate were associated with major

differences in landform (FORM), land use (USE),

and land cover (COVER; Table 1, Figures 2–4).

Even though a wide diversity of landforms was

observed, regions tended to be dominated by a

single FORM, mostly by Floodplain in plain regions

and by Sloping or Bench Plateau in hilly regions

(Figure 4A). Land use and land cover showed

similar trends, with the North China Plain domi-

nated by irrigated annual crops, the Yangtze Plain

by rice paddy, the Sichuan Hilly Region by rainfed

annual crops; the other regions were a mix of crops

and Forestry of both open-canopy (Mixed) and

closed-canopy (Perennial) trees and woody vege-

tation (Figure 4B, C). All regions had substantial

areas of built structures, ranging from less than

0.5% in the 1940s Tropical Hilly Region to greater

than 15% in the 2002 North China Plain, as indi-

cated by Anthropogenic FORM, Constructed,

Livestock, and Horticulture USE, and Sealed COV-

ER (Figure 4). Herbaceous (Annual) cover was

abundant at all sites due to crop cultivation,

whereas extensive patches of woody vegetation

and tree cover were present only in hilly areas,

where forestry and rainfed orchards were common

(Figures 2–4). The characteristic patterns of land

forms, uses, and covers within each region were

only partially stable between time periods, with

most regions showing an increased diversity of

these classes at the current time, indicating

increasing landscape heterogeneity over time

(Figure 4).

Changes in Land Use and Land Cover

Long-term regional changes in land USE and land

COVER are presented in Figure 5, using estimates

from both the MRO and BRM methods. The most

common and well-supported landscape change

observed across village regions was a long-term net

increase in Sealed land COVER (Figure 5B), a trend

paralleled by a widespread increase in Constructed

land USE (Figure 5A). Across China’s village

regions, this change represents a 7% net increase in

total regional area covered by impervious built

structures (CI = 2–17%), mainly caused by the

construction of new buildings and roads. Over the

same period, there was a universal decline in her-

baceous (Annual) cover, producing an 11% net

decrease across regions (CI = -30% to +3%; Fig-

ure 5B). In general, declines in herbaceous cover

were associated with declines in rainfed crop pro-

duction, despite an apparent increase in rainfed

crops in the Tropical Hilly Region caused by orch-

ard plantings in hilly areas, which displaced for-

estry there (MRO only; Figure 5A). Another

notable change, in which MRO and BRM estimates

disagreed, was a large net increase in aquaculture

in the Yangtze Plain, associated with the only major

landform change observed across regions; the

conversion of floodplains to large ponds (Figures 4

and 5).

The most unexpected long-term change observed

in this study was a 9% net increase in closed can-

opy woody vegetation cover across China’s village

regions (CI = -4% to +21%; Perennial, Fig-

ure 5B). Although part of this change is explained

by a net increase in new cover by trees and woody

vegetation, another part was the result of canopy

closure in existing patches of open canopy woody

vegetation (Mixed COVER, Figure 5B), causing

substantial declines in this COVER in the Hilly

Regions.

Landscape Structure and Change
at the Ecotope Level

Dominant regional patterns of fine-scale landscape

structure are presented in Figure 6, in terms of the

10 most extensive ecotopes in each region and

across regions. From this figure, it is clear that a

single staple grain crop dominated village land-

scapes of the Plain and Sichuan Hilly Regions, but

not in other regions. The relative complexity of

landscapes is also indicated by the degree to which

the 10 largest ecotopes accounted for total region

area, with shorter columns indicating the frag-

mentation of landscapes into greater numbers of
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smaller ecotope classes. Based on this interpreta-

tion, landscape complexity clearly increased over

time in all regions and this is confirmed by long-

term increases in the total number of ecotope fea-

tures and classes, smaller feature areas, and

increasing feature perimeters in Table 2. Although

this complexity led to fairly large numbers of un-

ique ecotope classes within regions (over 100 in

two regions), and especially across all five regions

(311 in 2002), most regional area was occupied by

a much smaller set of larger ecotope classes

(Table 2). More than half of all ecotope classes

within any region were small and insignificant in

area (<0.25% of a region; Table 2; Ellis and Wang

2006).

Statistics in Table 2 demonstrate that all village

regions experienced substantial ecotope-level

landscape change and also that some regions

experienced far more change than others, with

total changed areas ranging from 36% of the North

China Plain to 78% in the Tropical Hilly Region.

The five largest ecotope area increases and

decreases within each region and across regions are

described in Figure 7A, together with the 10 largest

Figure 4. Regional areas of

land FORM (A), USE (B),

and COVER (C) classes.

Areas are MRO-upscaled

regional estimates from

sample measurements.

Only land FORMs covering

greater than 1% of a region

are shown.
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ecotope to ecotope transitions (land transforma-

tions; Figure 7B). Housing was one of the five

largest ecotope area increases in four of five regions

and accounted for a major share of the increased

built surface area in all regions, accompanied by

smaller areas of improved roads (Figure 7A). Fig-

ure 7B also shows that the large net decline in

herbaceous cropland that is apparent in Figure 5

occurred by a variety of pathways that differed

substantially between regions, including housing

and road construction in the Plain Regions (for

example, irrigated medium-scale staple crops to

attached single story houses in the North China

Plain), the conversion of rice paddy to aquaculture

ponds in the Yangtze Plain, forestry plantings and

tree regrowth in the Subtropical Hilly Region (for

example, rainfed medium-scale intensive crops to

harvested planted conifer forests), and the planting

of perennial crops in all regions (orchards, mul-

berry and nurseries, for example, rainfed small-

scale staple crops to rainfed small-scale mandarin

orange orchards in the Sichuan Hilly Region, rice

paddy to irrigated small-scale mulberry in the

Yangtze Plain, and rainfed small-scale staple crops

to rainfed large-scale litchi orchards in the Tropical

Hilly Region). Similar fine-scale ecotope transfor-

mations explained regional gains in closed canopy

woody vegetation and tree cover, which occurred

mostly by perennial crop plantings in annual crop

areas (examples above), by cropland abandonment

and woody regrowth (for example, rainfed med-

ium-scale intensive crops to harvested regrowth

conifer forest in the Subtropical Hilly Region), and

by orchard and forestry plantings and regrowth on

relatively denuded hillsides (for example, har-

vested regrowth open woody vegetation to rainfed

large-scale litchi plantings in the Tropical Hilly

Region).

In all regions, the diversification of land man-

agement and vegetation over time is apparent in

ecotope changes and transformations (Figure 7).

For example, the largest ecotope decreases in each

Figure 5. Regional changes in land USE (A) and land COVER (B) from circa 1945 to 2002. Positive numbers are increases

over time. Estimates by both MRO and BRM upscaling methods are provided. MRO median estimates are wide gray bars,

means are black vertical lines, interquartile ranges are dark gray ovals, and 90 percentile ranges are black whiskers. BRM

medians are black circles, with a gray horizontal line and angled brackets enclosing the 90 percentile range. The degree to

which the median BRM estimate (black circle) falls within the interquartile (gray oval) or 90% credible range of an MRO

estimate (black whisker) is an indicator of confidence in a specific estimate. To the degree that estimates disagree, results

may be considered ambiguous and site-level bias is indicated. Classes appearing in only one region are omitted.
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region were always much larger than the largest

increases (Figure 7A) and this usually represented

the fragmentation of the largest ecotope classes into

a larger number of smaller classes. A good example

of this was the fragmentation of harvested woody

regrowth patches on hillslopes into five different

ecotopes in the Tropical Hilly Region (Figure 7B).

Hundreds of unique ecotope transformation

pathways were observed within each region, and

the 10 largest ecotope transformations accounted

Figure 6. Areas of the 10 largest ecotope classes within and across regions. Ecotopes are sorted by area (largest at bottom),

symbolized by USE class (legend) and labeled using standard ecotope classes described at bottom. Ecotope classes are

composed from land FORM, USE, and COVER classes (Figure 4) combined with more detailed GROUP + TYPE classes as

indicated at the bottom of the figure (details on ecotope classes are online at http://ecotope.org/aem/classification/). Bars

are proportional to total regional area, with 100% indicated by a bracket under each site label. Regionally upscaled

estimates by MRO.
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for less than half of all ecotope change, except in

the Tropical Hilly Region (Table 2). As a result, a

large number of small and poorly measurable eco-

tope transformations (area < 0.25% of a region;

Ellis and Wang 2006; Ellis and others 2006) were

required to explain even 90% of changed ecotope

area, demonstrating the complexity of ecotope-

level change processes and their measurement

(Table 2). Simultaneous ecotope transformations in

both directions only added to this complexity (for

example, the change from cropland to unpaved

roads and back again in the North China Plain;

Figures 2 and 7B).

DISCUSSION

The Regional and Global Impacts
of Fine-Scale Land-Change Processes

Our results confirm that over the past 50 years,

China’s ancient village landscapes were trans-

formed by major changes in land use and land

cover. New buildings, roads, and other anthropo-

genic structures quadrupled the impervious surface

area of village regions, increasing this from 2% in

the 1940s to 9% in 2002 (Figures 4 and 5). At the

same time, herbaceous vegetation declined by

11%, from 59% in the 1940s to 48% in 2002. And

more surprisingly, these changes were accompa-

nied by a 9% net increase in regional cover by

closed-canopy woody vegetation, increasing the

regional area of this cover from 18% in the 1940s

to 28% in 2002 (Figures 4 and 5).

Extending these results across the village regions

of Eastern and Central China, an area of more than

2 9 106 km2, makes it clear that these fine-scale

landscape changes are more than capable of globally

significant alteration of climate and biogeochemical

cycling. For example, a 9% regional increase in

closed canopy woody vegetation amounts to

approximately 0.2 9 106 km2 across China’s

villages (CI = -0.08 to +0.44 9 106 km2), an area

equivalent to the total area of China’s planted for-

ests in 1998 (Fang and others 2001), or about 3

times the global annual rate of tropical deforestation

(Achard and others 2002). Clearly, tree cover

changes of this magnitude have the potential to

alter regional and even global climate by changing

surface albedo, surface heat balance, precipitation

and hydrology (Gibbard and others 2005) and

indirectly by acting as a sink for atmospheric carbon

(Fang and others 2001).

Built surfaces, which tend to have opposite ef-

fects on climate, also increased by a total regional

area of approximately 0.14 9 106 km2 (CI = 0.04

to +0.34 9 106 km2), or more than 4 times the

total urban area of China in 2000 (0.03 9 106 km2;

Liu and others 2003). This striking result is readily

explained by the housing and infrastructure needs

of more than 750 million rural people, especially

given their increasing wealth and the generally

lower density of housing per person in rural areas

when compared with urban areas. Although our

sampling and upscaling procedures significantly

Figure 7. Regional ecotope changes (A) and transfor-

mations (B), circa 1945 to 2002. (A) The top five ecotope

area decreases (negative; top) and top five increases

(positive; below) within each region and across all five

regions are indicated by bars symbolized by USE class,

with 90% confidence intervals. (B) The top 10 ecotope to

ecotope transformations within each region

(past fi present ecotope transitions) are presented as a

percent of region area. Ecotope labels are the same as

Figure 6. Regionally upscaled estimates by MRO.
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overestimated regional population density and may

therefore have overestimated changes in land use

and other parameters related to population density,

adjusting for this bias would only lower our

regional estimates by about one third (Supple-

mentary material—Appendix 4), reducing the

observed village built-up area increase to 3 times,

instead of 4 times China’s urban area, for example.

Fine-Scale Causes and Consequences
of Regional and Global Change

Changes in village land use and land cover might

seem to mirror global changes in land cover by

extensive landscape-transformation processes, such

as urban expansion and forest regrowth (Kauppi

and others 2006). Yet, these changes are not

equivalent in scale, driving processes, environ-

mental impacts or in the methods required to

measure them. Village landscape change is the

cumulative result of intensive landscape-transfor-

mation processes implemented by hundreds of

millions of land managers acting locally at fine

spatial scales (Ellis 2004; Ellis and others 2006). As

a result, the fine-scale land use transformations

that we observed in this study were extremely di-

verse and complex both within and across village

regions (Figure 7, Table 2).

Large regional declines in herbaceous cover

(�9% across regions) resulted mostly from the

conversion of crop plots to housing, roads, and

orchards and by the abandonment of crop plots to

woody regrowth. Increased cover by closed canopy

woody vegetation was caused by orchard plantings,

cropland abandonment, improved forestry prac-

tices on sloping land, and by tree planting and re-

growth around new houses and roads. Yet even

these diverse land-transformation processes are

generalizations. The suite of land-transformation

processes responsible for even the largest regional

changes involved dozens of different transforma-

tion pathways that differed substantially between

regions (Figure 7, Table 2). Moreover, village

landscape structure grew increasingly more heter-

ogeneous and complex over time in all regions,

with greater numbers of smaller features divided

into an increasing number of ecologically distinct

vegetation and land management classes over time

(Table 2). Use of high-resolution field-validated

ecological mapping allowed for detailed analysis of

these land-transformation processes and even for

direct interpretation of these in collaboration with

their causative agents: local land managers (Wu

and others 2009). This should be a fruitful direction

for further research, especially when combined

with local and regional socioeconomic data and

models, offering the potential for even greater

understanding of the causes and consequences of

intensive landscape-transformation processes in

densely populated rural regions (Verburg and Chen

2000).

In global- and even some regional-scale obser-

vations and models, the village regions of China are

classified as cultivated land mixed with trees and

shrubs in hilly areas or as cultivated land mixed

with built-up surfaces in the North China Plain and

with water in the Yangtze Plain. As a result of

this coarse-resolution bias in land-over analysis,

China’s village landscapes appear largely un-

changed in the recent decades for which remotely

sensed estimates are available, except for the

expansion of built-up and water surface areas in

the plain regions, where these changes tend to be

clustered and therefore occur in fairly large pat-

ches. Although the recent shrinkage of village

landscapes by the encroachment of urban areas and

towns is readily captured in regional data (Liu and

others 2003; Seto and Fragkias 2005), very little

reliable regional data exist on long-term landscape

changes within village regions and even less on

the local causes and environmental consequences

of these fine-scale changes, even though villages

cover more than 20% of China (Table 1; Ellis

2004). Even widely reported changes in China’s

forest and agricultural areas (Fang and others 2001;

Houghton 2002; Liu and others 2005b) have little

relation to long-term changes occurring in villages,

because these were almost entirely caused by large-

scale deforestation and afforestation projects out-

side and at the periphery of China’s village regions.

Most importantly, the impacts of fine-scale

changes in landscape structure on climate and

biogeochemistry are poorly understood and may be

entirely different from those observed and modeled

at coarser scales. At the fine spatial scales at which

landscapes vary within village regions, urban heat

islands are replaced by dispersed ‘‘rural heat

mosaics’’ and forests are traded for carefully tended

orchards, hedgerows and small stands of one to a

few trees. Yet the built structures and woody veg-

etation of China’s villages are at least as extensive

as China’s urban and afforested lands. Although it

is possible that the fine-scale intermingling of these

different landscape features moderates their net

environmental impacts, there is no strong evidence

either for or against this hypothesis at present. And

how might these impacts be controlled by local

patterns of housing and road construction, culti-

vation, forestry and land abandonment? Consid-

ering the impacts of landscape fragmentation on
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habitat suitability and biodiversity (Noss 1990), the

ecological consequences of increasing fine-scale

landscape heterogeneity in villages clearly merit

further investigation, even though these regions

have long been densely populated. Fine-scale

landscape heterogeneity might appear to be of only

local consequence. However, this is the general

condition of densely populated anthropogenic

landscapes, which already cover a larger portion of

Earth’s ice-free land than do wild forests (Ellis and

Ramankutty 2008).

On Making Regional Change
Measurements from Landscape Samples

When designing and interpreting the results of this

and other regional studies based on site-based

sampling, the methodological limitations of this

approach must be considered. First of all, robust

statistical procedures must be used to quantify the

substantial uncertainties inherent in this technique.

Resampling methods proved especially useful for

this, as normality, equal variance and independence

of variables cannot be assumed. We also observed

a trade-off between statistical procedures that

emphasize the power of direct observations (for

example, MRO), and model-based procedures that

incorporate the full range of regional variation but

have relatively large uncertainties and weaker

linkage with direct observations (for example,

BRM; Figure 5). Ideally, these approaches should

be combined, with agreements between methods

justifying greater confidence in results (for exam-

ple, Sealed COVER increases in Figure 5). Dis-

agreements between methods, although deflating

confidence in regional estimates, should also be

examined case by case, with emphasis on the results

of direct observations. For example, regional ex-

perts confirmed that both aquaculture and water

surface area increased substantially in the Yangtze

Plain (Wu and others 2009), as predicted by MRO,

whereas BRM estimates showed an increase in

aquaculture and a decrease in water area, a result

both inconsistent and apparently incorrect (Fig-

ure 5). Fortunately, both methods generally agreed

in estimating land COVER changes, especially when

combined across all five regions, although agree-

ment was weaker for land USE estimates, most

likely as a result of its greater number of classes.

Regional upscaling of sample data is based on

relationships between regional and local variables.

Yet these relationships may be weak, or may vary

within regions (non-stationarity). Indeed, variation

of this type likely caused the high variance in

regional estimates by BRM, and may also explain

many of the disagreements between estimates by

BRM versus MRO. Still, this problem is not unique

to site-based methods—it is also a problem for

measurements made by complete coverage remote

sensing. For example, the spectral properties of rice

paddy can vary tremendously within regions

because of local differences in irrigation, planting

dates, and other factors. As a result, the accuracy of

rice paddy classification can vary greatly within

regions—an effect readily observed in the China

national land-cover dataset. Although variability in

relationships between local, fine-scale, land chan-

ges and regional variables can be measured, this

will require much larger regional samples of his-

torical observations than are ever likely to be

available. Fortunately, it is unlikely that spurious

regional upscaling relationships could have pro-

duced consistent regional change estimates across

both of our independent regional upscaling models

(MRO versus BRM).

The use of site-based sampling to make regional

estimates is also influenced by bias in the selection of

sites and samples, such as our limitation to areas

covered by 1940s era aerial photography and sub-

regional land-cover data. Although subregional land

cover later proved similar to that of entire regions

(Figure 3A, Supplementary material—Appendix 4),

1940s aerial photographic coverage clearly favored

more populous areas. Even with systematic efforts to

avoid field sites with any outward indication of being

more densely populated or otherwise anomalous

within a region, our sites and samples were signifi-

cantly biased toward higher population densities

than were typical of their regions (Table 1; Supple-

mentary material—Appendix 4). These biases could

have been avoided if complete regional data were

used for sample selection. Fortunately, we were able

to incorporate complete regional data into our

regional upscaling procedures at a later stage,

thereby reducing both site and sample bias and

incorporating the full range of regional variability

into uncertainty analyses (Appendices 4 and 5).

Finally, the most fundamental limit to making

regional estimates by site-based sampling is its

restriction to measuring fine-scale change pro-

cesses. Urban expansion, large-scale deforestation

and other change processes that occur at larger

scales than sites are poorly measured by site-based

sampling. However, if adequate regional data are

available, the degree to which any set of landscape

samples captures regional variability can be quan-

tified using regional indicators (Appendices 4 and

5) that can also be used to optimize region, site, and

sample configurations toward making specific

regional or global estimates in the future.
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The Need for Regional and Global
Observations of Intensive Land-Change
Processes

Regionally stratified landscape sampling revealed a

variety of ecologically significant long-term changes

across China’s village landscapes that would not

be observable using conventional methods for land-

change measurement (Ellis and others 2006;

Ozdogan and Woodcock 2006). Even at 30 m res-

olution, land-change measurements by remote

sensing tend to produce unreliable results in village

regions due to their fine-scale landscape heteroge-

neity (Zhang and others 2000; Zhao and others

2003; Ozdogan and Woodcock 2006). This limita-

tion was evident when comparing China’s National

land-cover data, which were derived from 30 m

resolution Landsat imagery, with observations at

field sites. The China national land-cover dataset

contained almost no built cover in the Sichuan

and Subtropical Hilly regions (Figure 4A versus

Figure 5) and misclassified almost all rice paddy

in our Tropical Hilly Region site as upland crops

(Figure 3A versus Figure 4B). Failure to detect

housing in hilly regions makes sense given the fine-

scale dispersal of housing and its partial cover by

trees and bamboo in these regions, but the missing

paddy areas are harder to explain, especially given

that many of these were larger than dozens of

Landsat pixels. These observations make clear the

benefits of sampled landscape estimates over com-

plete coverage remote sensing in densely popu-

lated areas, especially in hilly regions with complex

terrain.

By enabling the concentration of resource-

intensive field measurements within relatively

small field sites, regionally stratified site-based

sampling provides a generally useful tool for re-

gional and global investigations by ecologists and

other field-based researchers, as it greatly reduces

logistical costs and thereby facilitates larger sample

sizes and more detailed and accurate field mea-

surements than is feasible across large regions using

spatially random or systematic sampling. More-

over, the concentration of field research within

site-based landscape samples is especially advanta-

geous for investigating the linkages between

human activity and long-term ecological change,

because at this scale of investigation, interviews

with local land managers are readily conducted and

can be linked with direct observations on how and

why these local actors alter specific ecological pat-

terns and processes (Binford and others 2004; Ellis

2004; Rindfuss and others 2004; Liu and others

2007; Turner and others 2007; Wu and others

2009). In essence, by integrating regional upscaling

with site-based sampling, the time-tested interdis-

ciplinary case-study approach to understanding

coupled human-natural systems (Rindfuss and

others 2004; Liu and others 2007; Turner and

others 2007; Wu and others 2009) can be inte-

grated with the regional and global change mea-

surements needed to understand both the causes

and the global consequences of local change pro-

cesses. Finally, resource-efficient measurement

strategies are critical if we are to investigate the

global and regional impacts of long-term ecological

changes within the anthropogenic landscapes that

now cover most of Earth’s ice-free land (Ellis and

Ramankutty 2008), above all because these occur

predominantly within the less-well studied agri-

cultural regions of developing nations in Asia,

Africa, and Latin America (Ellis and Ramankutty

2008).

CONCLUSIONS

China’s village landscapes have changed substan-

tially at fine spatial scales since 1945, driving major

regional increases in built surfaces and closed canopy

tree cover and declines in annual cropped area.

Aggregated across China’s more than 2 million km2

of village landscapes, these intensive landscape-

transformation processes are likely causing sig-

nificant regional and global changes in climate,

biogeochemistry, and biodiversity that are not

anticipated, measured, or explained by conventional

coarser resolution approaches to global and regional

change measurement and modeling. Given the

extent and potential environmental impacts of these

changes, further study of intensive land-change

processes is merited, especially in the densely

populated rural landscapes of developing regions.

Where historical data are rare and the costs of

fieldwork are large, as they are across most devel-

oping regions, regional sampling and upscaling

methods offer a critical way forward in investigating

the causes and consequences of long-term ecological

changes at regional and global scales.
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Online Supplement 
 
Appendix 1. Initial Regionalization, Site Selection, Sampling and Imagery 
 

Initial regionalization and site selection.  China’s village regions were initially identified as 
densely populated (>150 persons km-2) agricultural areas (>5% cultivated land; Ellis 2004) and then 
stratified into five environmentally distinct initial regions for site selection (Figure 2A) using a K-means 
cluster analysis of 32 km gridded data on terrain, climate, and soil fertility (Verburg and others 1999; 
Ellis 2004).  A single 100 km2 rectangular field research site was then selected within each initial region 
(Figure 2D; sites were 7 × 14.25 km, except Gaoyi site = 9 × 11.1 km).  Sites were selected in areas with 
adequate historical aerial photographic coverage, greater than 10 km distance away from any major city, 
and with no evidence of regionally anomalous environmental or socioeconomic conditions, including 
exceptionally high or low soil fertility, wealth, development level, major water bodies, industry or mines, 
as assessed using regional maps and other data after the field reconnaissance of at least three potential 
sites per region together with regional experts (Ellis 2004). 

Regional sample selection within sites.  To maximize the regional-representativeness of the 
small area that we were able to map within each 100 km2 site, we distributed this among twelve 500 m 
square grid cells selected using a regionally stratified balanced sampling design (Ellis 2004).  First, we 
imposed a 500 m square sampling frame across China, thereby obtaining landscape sample units practical 
both for high-resolution mapping and local fieldwork and for the integration of these with regional and 
global remote sensing (Townshend and Justice 1988; Gallego and others 1994; Ellis 2004; Ellis and 
others 2006).  Next, land cover across a “sampling subregion” within each initial region (two adjacent 
Landsat scenes, except for the Yangtze Plain) was obtained by supervised classification of Landsat ETM+ 
Geocover 2000 imagery, the highest quality spatially explicit regional data obtainable at the time of 
sampling (Figure 2C; 8 land cover classes, overall accuracy >84%, κ >0.81; Ellis 2004).  The subregion’s 
grid cells were then stratified into 3 to 4 major land-cover clusters using K-means cluster analysis of grid 
cell land-cover proportions (Ellis 2004).  Finally, a regionally stratified balanced sample of n = 12 grid 
cells was selected within each site by selecting three or more replicate grid cells from each land-cover 
cluster based on its subregional abundance, with priority given to cells with the lowest Euclidean distance 
from cluster means (Ellis 2004).   Only cells with complete coverage by both IKONOS and historical 
imagery were selected, and selection was biased toward non-adjacent replicate cells for each cluster (Ellis 
2004).  This procedure yielded regionally balanced site-based samples (Figure 2D) with Landsat land- 
cover proportions more similar to those for entire subregions than those for entire sites (Ellis 2004).   

Site imagery.  Following site selection, IKONOS 4 band pan-sharpened 1 m resolution GEO 
imagery was acquired across each site (Figure 2E; winter 2001/2002 except Yixing: summer 2002) and 
orthorectified from ground control points obtained by submeter accuracy Global Positioning Systems 
(GPS) and digital elevation models (Wang and Ellis 2005).  Historical aerial photographs for China, circa 
1945, were obtained from the U.S. National Archives and Records Administration (NARA; RG-373, 
www.archives.gov) and orthorectified using tie points from orthorectified IKONOS imagery (Wang and 
Ellis 2005).   

Sample mapping.  The 12 grid cells sampled within each site were mapped using anthropogenic 
ecotope mapping (AEM; Ellis and others 2006), a scale-explicit high-resolution ecological mapping 
procedure designed to recognize all ecologically distinct features (ecotopes) with dimensions of 2 m or 
more in both current and historical high resolution imagery (≤ 1 m).  Ecotope features were mapped by a 
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single trained interpreter at each site using a Geographic Information System (GIS), first by direct 
interpretation of land use and vegetation cover polygons in orthorectified imagery, and then by repeated 
validation, correction, and classification of all ecotope features in the field, assisted by current (2002) and 
historical (1940s) local land managers (Ellis and Wang 2006; Ellis and others 2006).  AEM classification 
accuracy was greater than 85% (κ >0.85) across sites and time periods (Ellis and Wang 2006), and is 
based on a four level a priori classification hierarchy, FORM→ USE→ COVER→ GROUP+TYPE, 
combining basic landform, land-use and land-cover classes (FORM, USE, COVER) with a set of more 
detailed feature management and vegetation classes (GROUPs) stratified into TYPEs (Ellis and others 
2006; http://ecotope.org/aem/classification).  Whereas each level of feature classification, including land 
USE and land COVER, is independent, allowing for separate analysis at each level, full ecotope 
classification integrates the four classification levels within each feature.  For example, a forest of closed 
canopy regrowth evergreen trees (GROUP+TYPE = en02) on a gentle slope (FORM = SL = Sloping) 
managed for harvest (USE = T = Forestry) with Perennial COVER (P; >60% woody cover) is classified 
as the ecotope “SLTPen02” (FORM+USE+COVER+GROUP+TYPE).   

Population density within sampled cells was estimated by enumerating houses in imagery and 
determining each household’s population assisted by village accountants (2002) and elders (1940s).  
Maps of landscape changes and estimates of land transformations were made by intersecting current and 
historical maps using GIS and analyzing ecotope to ecotope transitions (“ecotope transformations”) in the 
“change features” thus created.   
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Appendix 2. Constraints and Diagnostic Features Used in Delineating Village Regions 

 
North 
China 
Plain Yangtze Plain 

Sichuan 
Hilly 

Region 
Subtropical 

Hilly Region 
Tropical Hilly 

Region 
        Constraints 

Mean slope (%) ≤2.5 ≤2.5 >2.5 >2.5 - 
Elevation (m) - <50 <550 <550 <550 

Patch sizes (km2) >100  >10 >25 >100 >25 

Other constraints  

Within the 
North China 
Plain; no rice 
paddy 

South of the 
Huai River; 
within 2 km of 
rice paddy (to 
compensate for 
paddy 
underestimation 
in the CNLCD)  

Within 
the 
Sichuan 
Basin 

North of initial 
Tropical Hilly 
Region; annual 
precipitation 
<1200 mm* 

South of initial 
Subtropical Hilly 
Region, no 
plains >10 
km2; >5 km from 
cities; >2 km 
from coastlines 

 
Diagnostic features 

Terrain Alluvial 
plains 

Alluvial plains 
laced with 
canals 

Narrow 
"brain-
like” 
terraced 
hills and 
valleys 

Mountain 
fringes & 
narrow hills 
with narrow, 
canal-free 
floodplains 

Hills to low 
mountains 
interspersed with 
small plains 

Vegetation & 
agriculture 

Irrigated 
annual 
crops, no 
paddy. 

Paddy-
dominated, 
some mulberry 
& orchards. 

Paddy in 
valleys, 
crops & 
trees on 
hills 

Paddy in plains 
& low terraces, 
hills with trees 
& shrubs (incl. 
tea; annual 
crops rare)  

Hills with trees, 
shrubs & 
orchards & 
without annual 
crops; paddy in 
plains & small 
terraces 

Housing 
Very large 
villages (up 
to 1 km2). 

Small and 
medium 
villages, 
usually along 
canals. 

Disperse
d along 
hill 
edges: no 
large 
villages 

Dispersed 
along hill 
edges: no large 
villages 

Villages in 
plains; dispersed 
housing in hills 

* based on 0.1 degree interpolation of Willmot and Matsuura (2001). 
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Appendix 3. Scales and Types of Regional Estimates   
Code Scale Description 
A0 Region Initial village region (one of five). 
A1 Region Improved village upscaling region (one of five; set of all 500 m × 500 m grid 

cells, Appendix 4). 
A2 Region Random sample of 12 grid cells across a single upscaling region (A1).   
A3 Region Random sample of 12 grid cells selected within randomly located 10 km × 10 

km sites within a single upscaling region (A1). 
A4 Subregion Subset of initial village region (A0) covered by Landsat Geocover 2000 imagery 

used to generate data for sample selection within sites (set of grid cells, 
Appendix 4). 

A5 Site 100 km2 site (all grid cells). 
A6 Sample Sample of 12 grid cells selected within a site. 
A7 Sample > 

Region 
Region estimate from 12 cell sample by CDW method. 

A8 Sample > 
Region 

Region estimate from 12 cell sample by MRO method. 

A9 Sample > 
Region 

Region estimate from 12 cell sample by BRM method. 
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Appendix 4. Data on Regions, Sites, Samples and Effectiveness of Regional Upscaling 

Region 
North China 

Plain 
Yangtze 

Plain 
Sichuan 

Hilly 
Subtropical 

Hilly 
Tropical 

Hilly 
Site Gaoyi Yixing Jintang Yiyang Dianbai 

Province Hebei Jiangsu Sichuan Hunan Guangdong 
Site center (Longitude, 

Latitude) 
114.600, 
37.642 

119.577, 
31.392 

104.748, 
30.567 

112.475, 
28.354 

111.332, 
21.643 

Upscaling Region (A1) 
Weighta 30.4% 9.4% 9.3% 31.3% 19.6% 

Initial Region (A0) Weight 28.2% 8.1% 17.6% 33.5% 12.6% 
 

Cells in region (A1b) 1,079,416  333,934  334,887  1,112,944  688,081  
Cells in sampling subregion 

(A4) 155,832  68,369  73,497  136,359  99,169  
Cells in site (A5) 329 314 354 329 332 

Significant land-cover 
classes not in samplec 

Water 
(1.1%) 

- 

Grassland 
(1.2%), 
Trees 

(3.0%) 

Grassland 
(3.6%), 
Orchard 
(0.9%) 

Grassland 
(4.9%), 
Water 
(1.5%) 

 
Population bias ratiod 

Unadjusted sample (A6) 0.131 0.063 0.069 0.493 0.615 
MRO-adjusted sample (A8) 0.222 0.086 0.054 0.377 0.319 

 
Divergence (D) from the regional meane 

Random cells (A1) 0.47 0.70 0.58 0.78 0.88 
Random samples (A2) 0.36 0.59 0.28 0.28 0.30 

Random site-based samples 
(A3) 0.38 0.60 0.45 0.55 0.63 

Sampling subregion (A4) 0.10 0.37 0.16 0.20 0.22 
Site (A5) 0.52 0.25 0.19 0.54 0.75 

Unadjusted sample (A6) 1.30 0.41 0.30 0.62 1.20 
CDW-adjusted sample (A7) 0.39 0.49 0.31 0.53 0.80 
MRO-adjusted sample (A8) 0.29 0.28 0.24 0.45 0.64 

 
Regional Representativeness (E) relative to random (A2) / random site-based (A3) sampling within each 
regionf 

Sampling subregion (A4) 1.0 / 1.0 0.96 / 0.97 0.94 / 1.0 0.84 / 1.0 0.84 / 1.0 
Site (A5) 0.18 / 0.20 1.0 / 1.0 0.86 / 1.0 0.03 / 0.53 0.0 / 0.29 

Sample (A6) 0.02 / 0.04 0.91 / 0.93 0.42 / 0.91 0.01 / 0.34 0.0 / 0.05 
CDW-adjusted sample (A7) 0.40 / 0.47 0.77 / 0.80 0.40 / 0.90 0.03 / 0.55 0.0 / 0.24 
MRO-adjusted sample (A8) 0.74 / 0.81 0.99 / 1.0 0.67 / 0.97 0.08 / 0.76 0.01 / 0.47 

a Region weights = region area / total area of five regions.  
b Codes in parentheses are described in Appendix 3.  
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c Modified CNLCD land-cover classes covering greater than 0.5% of a region but not present within 
sample. 
d Difference between estimated and correct regional population density divided by the estimate. 
e D calculated by equation 2; smaller values indicate greater similarity to the regional mean.  A1 and A2 
are the median of 10,000 samples, A3 is from 2500 samples, others are direct estimates. 
f E =  1 – percentile(D) in samples by methods A2 and A3. Values near 1 are optimal for the sampling 
method.  
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Appendix 5.  Regional Variation in Population, Terrain and Land Cover Across Regions Compared with 
Regional Estimates from Unadjusted and Upscaled Samples 

 
Frequency distributions for entire regions (A1, Appendix 3), estimates of the regional mean from random 
sampling (A2), site-based random samples (A3), resampling of original samples (A6), CDW-upscaled 
samples (A7) and MRO-upscaled samples (A8).  All data are normalized to the correct regional mean for 
each variable, with perfect agreement indicated by a triangle at 1.0 on each x axis (x axes are scaled 
identically, y axes are scaled to maximum frequency).  Plots incorporate a small black diamond at the 
mean, a horizontal line at the median, shaded interquartile range, and whiskers drawn to the 5th and 95th 
percentiles (95 percentiles >3.0 are enumerated directly). Only land-cover classes covering greater than 
0.5% of a region and present within sample are shown, Appendix 4.  Data for A2 is from 10,000 random 
samples, A3 from 2500 random samples, and data for A6, A7 and A8 represent 10,000 MC iterations with 
resampling. 
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