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Preface

The basic idea behind network coding is extraordinarily simple. As it is

defined in this book, network coding amounts to no more than perform-

ing coding operations on the contents of packets—performing arbitrary

mappings on the contents of packets rather than the restricted functions

of replication and forwarding that are typically allowed in conventional,

store-and-forward architectures. But, although simple, network coding

has had little place in the history of networking. This is for good reason:

in the traditional wireline technologies that have dominated networking

history, network coding is not very practical or advantageous.

Today, we see the emergence, not only of new technologies, but also

of new services, and, in designing new network protocols for these new

technologies and services, we must be careful not to simply transplant old

protocols because we are familiar with them. Instead, we must consider

whether other, hitherto unused, ideas may lead to better solutions for

the new situation.

Network coding shows much promise as such an idea. In particular,

various theoretical and empirical studies suggest that significant gains

can be obtained by using network coding in multi-hop wireless networks

and for serving multicast sessions, which are certainly examples of fast-

emerging technologies or services. These studies have, for example, en-

couraged Microsoft to adopt network coding as a core technology of

its Avalanche project—a research project that aims to develop a peer-

to-peer file distribution system—exploiting the advantages offered by

network coding for multicast services. Thus, the time may finally be

ripe for network coding.

Hence the motivation for this book: we feel that network coding may

have a great deal to offer to the future design of packet networks, and

we would like to help this potential be realized. We would like also to

vi
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encourage more research in this burgeoning field. Thus, we have aimed

the book at two (not necessarily distinct) audiences: first, the practi-

tioner, whose main interest is applications; and, second, the theoretician,

whose main interest is developing further understanding of the proper-

ties of network coding. Of these two audiences, we have tended to favor

the first, though the content of the book is nevertheless theoretical. We

have aimed to expound the theory in such a way that it is accessible to

those who would like to implement network coding, serving an important

purpose that was, in our opinion, inadequately served. The theoretician,

in contrast to the practitioner, is spoiled. Besides this book, a survey

of important theoretical results in network coding is provided in Yeung

et al.’s excellent review, Network Coding Theory [149, 150]. Because

of our inclination toward applications, however, our presentation differs

substantially from that of Yeung et al.

Our presentation draws substantially from our doctoral dissertations

[60, 93], and a bias toward work with which we have personally been

involved is shown. We endeavor, however, to ensure that most of the

significant work in network coding is either covered in the text or men-

tioned in summary—a goal aided by the notes and further reading in the

final section of each chapter. There will inevitably be some unintended

omissions, for which we apologize in advance.

Broadly, we intend for the book to be accessible to any reader who

has a background in electrical engineering or computer science. Some

mathematical methods that we use, such as some algebraic methods and

some optimization techniques, may be unfamiliar to readers in this cat-

egory and, though we do not cover these methods, we provide references

to suitable textbooks where relevant.

We have many to thank for their help and support during the develop-

ment of this book. Foremost among them are Muriel Médard and Ralf

Koetter, doctoral and postdoctoral advisers, respectively, to us both,

who have been exemplary personal and professional mentors. We would

also like to thank the wonderful group of collaborators that worked

with us on network coding: Ebad Ahmed, Yu-Han Chang, Supratim

Deb, Michelle Effros, Atilla Eryilmaz, Christina Fragouli, Mario Gerla,

Keesook J. Han, Nick Harvey, Sidharth (Sid) Jaggi, David R. Karger,

Dina Katabi, Sachin Katti, Jörg Kliewer, Michael Langberg, Hyunjoo

Lee, Ben Leong, Petar Maymounkov, Payam Pakzad, Joon-Sang Park,

Niranjan Ratnakar, Siddharth Ray, Jun Shi, Danail Traskov, Sriram

Vishwanath, Harish Viswanathan, and Fang Zhao. In general, the en-

tire network coding community has been a very delightful, friendly, and
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intellectually-stimulating community in which to work, and we would

like to thank all its members for making it so. We would also like to

thank Tao Cui, Theodoros Dikaliotis and Elona Erez for their helpful

suggestions and comments on drafts of this book. There are two further

groups that we would like to thank—without them this book certainly

could not have been produced. The first is the great group of profes-

sionals at Cambridge University Press who saw the book to publication:

we thank, in particular, Phil Meyler, Anna Littlewood, and Daisy Bar-

ton. The second is our families, for their love and support during our

graduate studies and the writing of this book.
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Introduction

Network coding, as a field of study, is young. It was only in 2000 that the

seminal paper by Ahlswede, Cai, Li, and Yeung [4], which is generally

attributed with the “birth” of network coding, was published. As such,

network coding, like many young fields, is characterized by some degree

of confusion, of both excitement about its possibilities and skepticism

about its potential. Clarifying this confusion is one of the principal aims

of this book. Thus, we begin soberly, with a definition of network coding.

1.1 What is network coding?

Defining network coding is not straightforward. There are several defi-

nitions that can be and have been used.

In their seminal paper [4], Ahlswede, Cai, Li, and Yeung say that they

“refer to coding at a node in a network as network coding”, where, by

coding, they mean an arbitrary, causal mapping from inputs to outputs.

This is the most general definition of network coding. But it does not

distinguish the study of network coding from network, or multitermi-

nal, information theory—a much older field with a wealth of difficult

open problems. Since we do not wish to devote this book to network in-

formation theory (good coverage of network information theory already

exists, for example, in [28, Chapter 14]), we seek to go further with our

definition.

A feature of Ahlswede et al.’s paper that distinguishes it from most

network information theory papers is that, rather than looking at general

networks where essentially every node has an arbitrary, probabilistic

effect on every other node, they look specifically at networks consisting

of nodes interconnected by error-free point-to-point links. Thus the

network model of Ahlswede et al. is a special case of those ordinarily

1



2 Introduction

studied in network information theory, albeit one that is very pertinent

to present-day networks—essentially all wireline networks can be cast

into their model once the physical layer has been abstracted into error-

free conduits for carrying bits.

Another possible definition of network coding, then, is coding at a

node in a network with error-free links. This distinguishes the function

of network coding from that of channel coding for noisy links; we can

similarly distinguish the function of network coding from that of source

coding by considering the former in the context of independent incom-

pressible source processes. This definition is frequently used and, under

it, the study of network coding reduces to a special case of network

information theory. This special case has in fact been studied well be-

fore 2000 (see, for example, [52, 133]), which detracts from some of the

novelty of network coding, but we can still go further with our definition.

Much work in network coding has concentrated around a particu-

lar form of network coding: random linear network coding. Random

linear network coding was introduced in [62] as a simple, randomized

coding method that maintains “a vector of coefficients for each of the

source processes,” which is “updated by each coding node”. In other

words, random linear network coding requires messages being commu-

nicated through the network to be accompanied by some degree of extra

information—in this case a vector of coefficients. In today’s communica-

tions networks, there is a type of network that is widely-used, that easily

accommodates such extra information, and that, moreover, consists of

error-free links: packet networks. With packets, such extra information,

or side information, can be placed in packet headers and, certainly, plac-

ing side information in packet headers is common practice today (e.g.,

sequence numbers are often placed in packet headers to keep track of

order).

A third definition of network coding, then, is coding at a node in a

packet network (where data is divided into packets and network coding

is applied to the contents of packets), or more generally, coding above

the physical layer. This is unlike network information theory, which is

generally concerned with coding at the physical layer. We use this defini-

tion in this book. Restricting attention to packet networks does, in some

cases, limit our scope unnecessarily, and some results with implications

beyond packet networks may not be reported as such. Nevertheless,

this definition is useful because it grounds our discussion in a concrete

setting relevant to practice.
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Fig. 1.1. The butterfly network. In this network, every arc represents a di-
rected link that is capable of carrying a single packet reliably. There are two
packets, b1 and b2, present at the source node s, and we wish to communicate
the contents of these two packets to both of the sink nodes, t1 and t2.

1.2 What is network coding good for?

Equipped with a definition, we now proceed to discuss the utility of

network coding. Network coding can improve throughput, robustness,

complexity, and security. We discuss each of these performance factors

in turn.

1.2.1 Throughput

The most well-known utility of network coding—and the easiest to illustrate—

is increase of throughput. This throughput benefit is achieved by using

packet transmissions more efficiently, i.e., by communicating more infor-

mation with fewer packet transmissions. The most famous example of

this benefit was given by Ahlswede et al. [4], who considered the problem

of multicast in a wireline network. Their example, which is commonly

referred to as the butterfly network (see Figure 1.1). features a multi-

cast from a single source to two sinks, or destinations. Both sinks wish

to know, in full, the message at the source node. In the capacitated

network that they consider, the desired multicast connection can be es-

tablished only if one of the intermediate nodes (i.e., a node that is neither

source nor sink) breaks from the traditional routing paradigm of packet

networks, where intermediate nodes are allowed only to make copies of

received packets for output, and performs a coding operation—it takes
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Fig. 1.2. The modified butterfly network. In this network, every arc represents
a directed link that is capable of carrying a single packet reliably. There is one
packet b1 present at source node s1 that we wish to communicate to sink node
t1 and one packet b2 present at source node s2 that we wish to communicate
to sink node t2.

two received packets, forms a new packet by taking the binary sum,

or xor, of the two packets, and outputs the resulting packet. Thus, if

the contents of the two received packets are the vectors b1 and b2, each

comprised of bits, then the packet that is output is b1 ⊕ b2, formed from

the bitwise xor of b1 and b2. The sinks decode by performing further

coding operations on the packets that they each receive. Sink t1 recovers

b2 by taking the xor of b1 and b1 ⊕ b2, and likewise sink t2 recovers b1
by taking the xor of b2 and b1 ⊕ b2. Under routing, we could commu-

nicate, for example, b1 and b2 to t1, but we would then only be able to

communicate one of b1 or b2 to t2.

The butterfly network, while contrived, illustrates an important point:

that network coding can increase throughput for multicast in a wireline

network. The nine packet transmissions that are used in the butter-

fly network communicate the contents of two packets. Without coding,

these nine transmissions cannot used to communicate as much informa-

tion, and they must be supplemented with additional transmissions (for

example, an additional transmission from node 3 to node 4).

While network coding can increase throughput for multicast in a wire-

line network, its throughput benefits are not limited to multicast or to

wireline networks. A simple modification of the butterfly network leads

to an example that involves two unicast connections that, with coding,

can be established and, without coding, cannot (see Figure 1.2). This
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Fig. 1.3. The wireless butterfly network. In this network, every hyperarc
represents a directed link that is capable of carrying a single packet reliably
to one or more nodes. There are two packets, b1 and b2, present at the source
node s, and we wish to communicate the contents of these two packets to both
of the sink nodes, t1 and t2.

example involves two unicast connections. For unicast in the lossless

wireline networks that have been considered so far, a minimum of two

unicast connections is necessary for there to be a throughput gain from

network coding. As we establish more concretely in Section 2.3, network

coding yields no throughput advantage over routing for a single unicast

connection in a lossless wireline network.

Network coding can also be extended to wireless networks and, in

wireless networks, it becomes even easier to find examples where net-

work coding yields a throughput advantage over routing. Indeed, the

wireless counterparts of the butterfly network (Figure 1.3) and the mod-

ified butterfly network (Figure 1.4) involve fewer nodes—six and three

nodes, respectively, as opposed to seven and six. As before, these exam-

ples show instances where the desired communication objective is not

achievable using routing, but is achievable using coding. These wireless

examples differ in that, rather than assuming that packet transmissions

are from a single node to a single other node, they allow for packet

transmissions to originate at a single node and end at more than one

node. Thus, rather than representing transmissions with arcs, we use

hyperarcs—generalizations of arcs that may have more than one end

node.

The examples that we have discussed so far demonstrate that, even

in the absence of losses and errors, network coding can yield a through-
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Fig. 1.4. The modified wireless butterfly network. In this network, every
hyperarc represents a directed link that is capable of carrying a single packet
reliably to one or more nodes. There is one packet b1 present at source node s1

that we wish to communicate to node s2 and one packet b2 present at source
node s2 that we wish to communicate to node s1.

put advantage when it is applied either to one or more simultaneous

multicast connections or two or more simultaneous unicast connections.

This is true both when packets are transmitted only from a single node

to a single other node (wireline networks) and when they are transmit-

ted from a single node to one or more other nodes (wireless networks).

These examples are, however, mere contrived, toy examples, and it is

natural to wonder whether network coding can be generalized and, if

so, to what end. Much of the remainder of this book will be devoted to

generalizing the observations made thus far to network coding in more

general settings.

1.2.2 Robustness

1.2.2.1 Robustness to packet losses

But before we proceed, we address an important issue in packet net-

works, particularly wireless packet networks, that we have thus far ne-

glected: packet loss. Packet loss arises for various reasons in networks,

which include buffer overflow, link outage, and collision. There are a

number of ways to deal with such losses. Perhaps the most straightfor-

ward, which is the mechanism used by the transmission control protocol

(tcp), is to set up a system of acknowledgments, where packets received

by the sink are acknowledged by a message sent back to the source and, if
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21 3

Fig. 1.5. Two-link tandem network. Nodes 1 and 2 are each capable of inject-
ing a single packet per unit time on their respective outgoing links.

the source does not receive the acknowledgment for a particular packet,

it retransmits the packet. An alternative method that is sometimes used

is channel coding or, more specifically, erasure coding. An erasure code,

applied by the source node, introduces a degree of redundancy to the

packets so that the message can be recovered even if only a subset of the

packets sent by the source are received by the sink.

Erasure coding is coding applied by the source node. What about

coding applied by intermediate nodes? That is, what about network

coding? Is network coding useful in combating against packet losses? It

is; and the reason it is can be seen with a very simple example. Con-

sider the simple, two-link tandem network shown in Figure 1.5. In this

network, packets are lost on the link joining nodes 1 and 2 with prob-

ability ε12 and on the link joining nodes 2 and 3 with probability ε23.

An erasure code, applied at node 1, allows us to communicate informa-

tion at a rate of (1− ε12)(1− ε23) packets per unit time. Essentially we

have, between nodes 1 and 3, an erasure channel with erasure probability

1−(1−ε12)(1−ε23), whose capacity, of (1−ε12)(1−ε23), can be achieved

(or approached) with a suitably-designed code. But the true capacity of

the system is greater. If we apply an erasure code over the link joining

nodes 1 and 2 and another over the link joining nodes 2 and 3, i.e., if

we use two stages of erasure coding with full decoding and re-encoding

at node 2, then we can communicate information between nodes 1 and

2 at a rate of 1 − ε12 packets per unit time and between nodes 2 and 3

at a rate of 1 − ε23 packets per unit time. Thus, we can communicate

information between nodes 1 and 3 at a rate of min(1 − ε12, 1 − ε23),

which is in general greater than (1 − ε12)(1 − ε23).

So why isn’t this solution used in packet networks? A key reason is

delay. Each stage of erasure coding, whether it uses a block code or a

convolutional code, incurs some degree of delay because the decoder of

each stage needs to receive some number of packets before decoding can

begin. Thus, if erasure coding is applied over every link a connection,

the total delay would be large. But applying extra stages of erasure

coding is simply a special form of network coding—it is coding applied
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2
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Fig. 1.6. The packet relay channel. Nodes 1 and 2 are each capable of injecting
a single packet per unit time on their respective outgoing links.

at intermediate nodes. Thus, network coding can be used to provide

robustness against packet losses, which can be translated into through-

put gains. What we want from a network coding solution is not only

increased throughput, however, we want a solution that goes beyond

merely applying additional stages of erasure coding—we want a net-

work coding scheme that applies additional coding at intermediate code

without decoding. In Chapter 4, we discuss how random linear network

coding satisfies the requirements of such a coding scheme.

Losses add an additional dimension to network coding problems and,

when losses are present, even a single unicast connection suffices for

gains to be observed. Losses are very pertinent to wireless networks,

and considering losses makes network coding more relevant to wireless

applications. Another characteristic of wireless networks that we have

discussed is the presence of broadcast links—links that reach more than

one end node—and we have yet to combine losses and broadcast links.

In Figure 1.6, we show a modification of the two-link tandem net-

work that we call the packet relay channel. Here, the link coming out

of node 1 doesn’t only reach node 2, but also reaches node 3. Be-

cause of packet loss, however, whether a packet transmitted by node 1

is received by neither node 2 nor node 3, by node 2 only, by node 3

only, or by both nodes 2 and 3 is determined probabilistically. Let’s

say packets transmitted by node 1 are received by node 2 only with

probability p1(23)2, by node 3 only with probability p1(23)3, and by both

nodes 2 and 3 with probability p1(23)(23)) (they are lost entirely with

probability 1 − p1(23)2 − p1(23)3 − p1(23)(23)). As for packets transmit-

ted by node 2, let’s say packets transmitted by node 2 are received

by node 3 with probability p233 (they are lost entirely with probability

1 − p233). Network coding, in particular random linear network cod-

ing, allows for the maximum achievable throughput in such a set-up,
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known as the min-cut capacity, to be reached, which in this case is

min(p1(23)2 + p1(23)3 + p1(23)(23), p1(23)3 + p1(23)(23) + p233).

This is no mean feat: first, from the standpoint of network infor-

mation theory, it is not even clear that there would exist a simple,

capacity-achieving network code and, second, it represents a significant

shift from the prevailing approach to wireless packet networks. The pre-

vailing, routing approach advocates treating wireless packet networks as

an extension of wireline packet networks. Thus, it advocates sending

information along routes; in this case, either sending information from

node 1 to node 2, then to node 3, or directly from node 1 to node 3, or,

in more sophisticated schemes, using a combination of the two. With

network coding, there are no paths as such—nodes contribute transmis-

sions to a particular connection, but these nodes do not necessarily fall

along a path. Hence a rethink of routing is necessary. This rethink

results in subgraph selection, which we examine in Chapter 5.

1.2.2.2 Robustness to link failures

Besides robustness against random packet losses, network coding is also

useful for protection from non-ergodic link failures. Live path protection,

where a primary and a backup flow are transmitted for each connection,

allows very fast recovery from link failures, since rerouting is not re-

quired. By allowing sharing of network resources among different flows,

network coding can improve resource usage. For a single multicast ses-

sion, there exists, for any set of failure patterns from which recovery is

possible with arbitrary rerouting, a static network coding solution that

allows recovery from any failure pattern in the set.

1.2.3 Complexity

In some cases, although optimal routing may be able to achieve similar

performance to that of network coding, the optimal routing solution

is difficult to obtain. For instance, minimum-cost subgraph selection

for multicast routing involves Steiner trees, which is complex even in

a centralized setting, while the corresponding problem with network

coding is a linear optimization that admits low-complexity distributed

solutions. This is discussed further in Section 5.1.1.

Network coding has also been shown to substantially improve per-

formance in settings where practical limitations necessitate suboptimal

solutions, e.g., gossip-based data dissemination [33] and 802.11 wireless

ad hoc networking [76].
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1.2.4 Security

From a security standpoint, network coding can offer both benefits and

drawbacks. Consider again the butterfly network (Figure 1.1). Suppose

an adversary manages to obtain only the packet b1⊕b2. With the packet

b1⊕b2 alone, the adversary cannot obtain either b1 or b2; thus we have a

possible mechanism for secure communication. In this instance, network

coding offers a security benefit.

Alternatively, suppose that node 3 is a malicious node that does not

send out b1 ⊕ b2, but rather a packet masquerading as b1 ⊕ b2. Because

packets are coded rather than routed, such tampering of packets is more

difficult to detect. In this instance, network coding results in a poten-

tial security drawback. We discuss the security implications of network

coding in Chapter 6.

We have now given a number of toy examples illustrating some benefits

of network coding. That these examples bear some relevance to packet

networks should be evident; exactly how the principles they illustrate

can be exploited in actual settings is perhaps not. We address more

general cases using the model that we put forth in the following section.

1.3 Network model

Packet networks, especially wireless packet networks, are immensely

complex and, as such, difficult to accurately model. Moreover, network

coding is used in such a wide variety of contexts that it is not sensible

to always use the same model. Nevertheless, there are common aspects

to all the models that we employ, which we now discuss. The specific

aspects of the various models we use are discussed as we encounter them.

As a starting point for our model, we assume that there are a number

of connections, or sessions, that we wish to establish. These connections

may be unicast (with a single source node and a single sink node) or

multicast (with a single source node and more than one sink node). In a

multicast connection, all the sink nodes wish to know the same message

originating from the source node. These connections are accompanied

with packets that we wish to communicate at rates that may or may

not be known. Thus, our model ignores congestion control, i.e., our

model does not consider having to regulate the rates of connections. We

consider congestion control to be separate problem that is beyond the

scope of this book.

We represent the topology of the network with a directed hypergraph
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H = (N ,A), where N is the set of nodes and A is the set of hyperarcs.

A hypergraph is a generalization of a graph, where, rather than arcs,

we have hyperarcs. A hyperarc is a pair (i, J), where i, the start node,

is an element of N and J , the set of end nodes, is a non-empty subset

of N . Each hyperarc (i, J) represents a broadcast link from node i to

nodes in the non-empty set J . In the special case where J consists of

a single element j, we have a point-to-point link. The hyperarc is now

a simple arc and we sometimes write (i, j) instead of (i, {j}). If the

network consists only of point-to-point links (as in wireline network),

then H is a graph, denoted alternatively as G rather than H. The link

represented by hyperarc (i, J) may be lossless or lossy, i.e., it may or

may not be subject to packet erasures.

To establish the desired connection or connections, packets are in-

jected on hyperarcs. Let ziJ be the average rate at which packets are

injected on hyperarc (i, J). The vector z, consisting of ziJ , (i, J) ∈ A,

defines the rate at which packets are injected on all hyperarcs in the

network. In this abstraction, we have not explicitly accounted for any

queues. We assume that queueing occurs at a level that is hidden from

our abstraction and, provided that z lies within some constraint set Z,

all queues in the network are stable. In wireline networks, links are

usually independent, and the constraint set Z decomposes as the Carte-

sian product of |A| constraints. In wireless networks, links are generally

dependent and the form of Z may be complicated (see, for example,

[29, 74, 75, 82, 140, 144]). For the time being, we make no assumptions

about Z except that it is a convex subset of the positive orthant and

that it contains the origin.

The pair (H, Z) defines a capacitated graph that represents the net-

work at our disposal, which may be a full, physical network or a sub-

network of a physical network. The vector z, then, can be thought of

as a subset of this capacitated graph—it is the portion actually under

use—and we call it the coding subgraph for the desired connection or

connections. We assume that the coding subgraph defines not only the

rates of packet injections on hyperarcs, but also the specific times at

which these injections take place. Thus, the classical networking prob-

lems of routing and scheduling are special subproblems of the problem

of selecting a coding subgraph.

The examples discussed in the previous section give instances of coding

subgraphs—instances where packet injections have been chosen, and the

task that remains is to use them as effectively as possible. Perhaps the

simplest way of representing a coding subgraph in a lossless network
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b1

b3 = f(b1, b2)

b2

Fig. 1.7. Coding at a node in a static subgraph. Two packets, b1 and b2, are
each carried by one of the incoming arcs. The outgoing arc carries a packet
that is a function of b1 and b2.

is to represent each packet transmission over some time period as a

separate hyperarc, as we have done in Figures 1.1–1.4. We may have

parallel hyperarcs as we do in Figure 1.3 (where there are two hyperarcs

(s, {1, 2})), representing multiple packets transmitted and received by

the same nodes in a single time period. Coding at a node is shown in

Figure 1.7. We call this representation of a subgraph a static subgraph.

In a static subgraph, time is not represented explicitly, and it appears

as though events occur instantaneously. Presumably in reality, there is

some delay involved in transmitting packets along links, so the output

of packets on a link are delayed from their input. Thus, static subgraphs

hide some timing details that, though not difficult to resolve, must be

kept in mind. Moreover, we must restrict our attention to acyclic graphs,

because cyclic graphs lead to the instantaneous feedback of packets.

Despite its limitations, static subgraphs suffice for much that we wish

to discuss, and they will be used more or less exclusively in Chapter 2,

where we deal with lossless networks.

For lossy networks, the issue of time becomes much more important.

The network codes that are used for lossy networks are generally much

longer than those for lossless networks, i.e., one coding block involves

many more source packets. Looked at another way, the time period that

must be considered for a network code in a lossy network is much longer

than that in a lossless network. Hence it becomes imperative to examine

the interplay of coding and time at a coding node. To do this, we extend

static subgraphs to time-expanded subgraphs.

A time-expanded subgraph represents not only the injection and re-

ception points of packets, but also the times at which these injections

and receptions take place. We draw only successful receptions, hence,
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b3 = f(b1, b2)

b1 b2

time1 2 3

Fig. 1.8. Coding at a node in a time-expanded subgraph. Packet b1 is received
at time 1, and packet b2 is received at time 2. The thick, horizontal arcs have
infinite capacity, and represent data stored at a node. Thus, at time 3, packets
b1 and b2 can be used to form packet b3.

in a lossy network, a time-expanded subgraph in fact represents a par-

ticular element in the random ensemble of a coding subgraph. Sup-

pose for example that, in Figure 1.7, packet b1 is received at time 1,

packet b2 is received at time 2, and packet b3 is injected at time 3. In

a time-expanded subgraph, we represent these injections and receptions

as shown in Figure 1.8. In this example, we have used integral values of

time, but real values of time can just as easily be used. We now have

multiple instances of the same node, with each instance representing the

node at a different time. Joining these instances are infinite capacity

links that go forward in time, representing the ability of nodes to store

packets. We use time-expanded subgraphs in Chapter 4, where we deal

with lossy networks.

1.4 Outline of book

We begin, in Chapter 2, with the setting for which network coding theory

was originally developed: multicast in a lossless wireline network. The

prime example illustrating the utility of network coding in this setting

is the butterfly network (Figure 1.1), and, in Chapter 2, we extend the

insight developed from this example to general topologies. We character-

ize the capacity of network coding for the multicast problem and discuss

both deterministic and random code constructions that allow this ca-

pacity to be achieved. In the theoretical discussion, we deal with static
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subgraphs, which, as we have noted, hide the details of time. Thus,

it is not immediately apparent how the theory applies to real packet

networks, where dynamical behavior is usually important. We discuss

packet networks explicitly in Section 2.5 and show how random network

coding can be applied naturally to dynamic settings. The strategy dis-

cussed here is revisited in Chapter 4. We conclude the chapter with two

other extensions of the basic theory for lossless multicast: the case of

networks with cycles (recall the issue of instantaneous feedback in static

subgraphs) and that of correlated source processes.

In Chapter 3, we extend our discussion to non-multicast problems in

lossless wireline networks, i.e., we consider the situation where we wish

to establish multiple connections, and we potentially code packets from

separate connections together, as in the case of the modified butterfly

network (Figure 1.2). We refer to this type of coding as inter-session

coding. This is as opposed to the situation where each connection is kept

separate (as in Chapter 2, where we only consider a single connection),

which we call intra-session coding. We show that linear network coding

is not in general sufficient to achieve capacity and that non-linear codes

may be required. Given the difficulty of constructing codes without a

linear structure, work on constructing inter-session codes has generally

focused on suboptimal approaches that give non-trivial performance im-

provements. We discuss some of these approaches in Chapter 3.

In Chapter 4, we consider lossy networks. We show how random linear

network coding can be applied in lossy networks, such as the packet relay

channel (Figure 1.6), and that it yields a capacity-achieving strategy for

single unicast or multicast connections in such networks. We also derive

an error exponent that quantifies the rate at which the probability of

error decays with coding delay.

Chapters 2–4 all assume that the coding subgraph is already defined.

Chapter 5 considers the problem of choosing an appropriate coding sub-

graph. Two types of approaches are considered: flow-based approaches,

where we assume that the communication objective is to establish con-

nections at certain, given flow rates, and queue-length-based approaches,

where the flow rates, though existent, are not known. We deal primar-

ily with subgraph selection for intra-session coding, though we do also

discuss approaches to subgraph selection for inter-session coding.

In Chapter 6, we consider the problem of security against adversarial

errors. This problem is motivated by the application of network coding

to overlay networks, where not all nodes can necessarily be trusted.
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Thus, mechanisms are necessary to allow errors introduced by malicious

nodes to be either corrected or detected.

1.5 Notes and further reading

Error-free networks have been considered for some time, and work on

error-free networks includes that of Han [52] and Tsitsiklis [133]. Ahlswede

et al. [4] were the first to consider the problem multicast of an error-free

network. In their work, which had its precursor in earlier work relating

to specific network topologies [146, 120, 152, 151], they showed that cod-

ing at intermediate nodes is in general necessary to achieve the capacity

of a multicast connection in an error-free network and characterized that

capacity. This result generated renewed interest in error-free networks,

and it was quickly strengthened by Li et al. [88] and Koetter and Médard

[85], who independently showed that linear codes (i.e., codes where nodes

are restricted to performing operations that are linear over some base

finite field) suffice to achieve the capacity of a multicast connection in

an error-free network.

Ho et al. [62] introduced random linear network coding as a method for

multicast in lossless packet networks and analyzed its properties. Ran-

dom linear network coding for multicast in lossless packet networks was

further studied in [27, 66]; it was also studied as a method for data dis-

semination in [34] and as a method for data storage in [1]; in [94, 98], its

application to lossy packet networks was examined. Protocols employ-

ing random linear network coding in peer-to-peer networks and mobile

ad-hoc networks (manets) are described in [50] and [112], respectively.

The butterfly network first appears in [4]; its modified form first ap-

pears in [84, 119]. The wireless butterfly network first appears in [97];

its modified form first appears in [139].

The basic static subgraph model that we use derives principally from

[85]. The use of time-expanded subgraphs first appears in [136].
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Lossless Multicast Network Coding

Multicast refers to the case where the same information is transmitted

to multiple sink nodes. The first application of network coding to be

discovered was that network coding allows the maximum possible multi-

cast rate to be achieved in a noise-free, or lossless, network. Clearly, this

rate can be no more than the capacity between the source and each sink

individually. As we will see, network coding allows joint use of network

resources by multiple sink nodes, so that any rate possible for all sinks

individually is simultaneously achievable for all sinks together.

2.0.1 Notational conventions

We denote matrices with bold uppercase letters and vectors with bold

lowercase letters. All vectors are row vectors unless indicated otherwise

with a subscript T . We denote by [x,y] the concatenation of two row vec-

tors x and y. For any vector (or matrix) whose entries (rows/columns)

are indexed by the arcs of a network, we assume a consistent ordering of

the vector entries (matrix rows/columns) corresponding to a topological

ordering of the arcs.

2.1 Basic network model and multicast network coding

problem formulation

Leaving aside for a start the complexities of real packet networks, we

consider a very simple network model and problem formulation, widely

used in the network coding literature, to gain some fundamental insights

and develop some basic results. We will later apply these insights and

results to more complex network models.

The basic problem we consider is a single-source multicast on an

16
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acyclic network. The network is represented by a graph G = (N ,A)

where N is the set of nodes and A is the set of arcs. There are r source

processes X1, . . . , Xr originating at a given source node s ∈ N . Each

source process Xi is a stream of independent random bits of rate one bit

per unit time.

The arcs are directed and lossless, i.e. completely reliable. Each arc

l ∈ A can transmit one bit per time unit from its start (origin) node o(l)

to its end (destination) node d(l); there may be multiple arcs connecting

the same pair of nodes. Arc l is called an input arc of d(l) and an

output arc of o(l). We denote by I(v),O(v) the set of input links and

output links respectively of a node v. We refer to the random bitstream

transmitted on an arc l as an arc process and denote it by Yl. For each

node v, the input processes of v are the arc processes Yk of input arcs

k of v and, if v = s, the source processes X1, . . . , Xr. The arc process

on each of v’s output arcs l is a function of one or more of v’s input

processes, which are called the input processes of l; we assume for now

that all of v’s input processes are input processes of l.†

All the source processes must be communicated to each of a given set

T ⊂ N\s of sink nodes. We assume without loss of generality that the

sink nodes do not have any output arcs‡. Each sink node t ∈ T forms

output processes Zt,1, . . . , Zt,r as a function of its input processes. Spec-

ifying a graph G, a source node s ∈ N , source rate r, and a set of sink

nodes T ⊂ N\s defines a multicast network coding problem. A solution

to such a problem defines coding operations at network nodes and decod-

ing operations at sink nodes such that each sink node reproduces the val-

ues of all source processes perfectly, i.e. Zt,i = Xi ∀ t ∈ T , i = 1, . . . , r,.

A network coding problem for which a solution exists is said to be solv-

able.

2.2 Delay-free scalar linear network coding

We first consider the simplest type of network code, delay-free scalar

linear network coding over a finite field. As we will see, this type of

network code is sufficient to achieve optimal throughput for the acyclic

multicast problem described above, but is not sufficient in general.

Each bitstream corresponding to a source process Xi or arc process

† We will drop this assumption in Section 2.5 when we extend the model to packet
networks. In the case without network coding, each arc has only one input process.

‡ Given any network, we can construct an equivalent network coding problem sat-
isfying this condition by adding, for each sink node t, a virtual sink node t′ and r

links from t to t′.
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Yl is divided into vectors of m bits. Each m-bit vector corresponds to

an element of the finite field Fq of size q = 2m. We can accordingly view

each source or arc process as a vector of finite field symbols instead of

bits.

Since we are considering an acyclic network, we do not have to ex-

plicitly consider arc transmission delays – we simply assume that the

nth symbol for each arc l is transmitted only after o(l) has received

the nth symbol of each of its input processes. This is equivalent, as

far as the analysis is concerned, to assuming that all transmissions hap-

pen instantaneously and simultaneously, hence the term delay-free. This

assumption would lead to stability problems if there is a cycle of depen-

dent arcs, i.e. a directed cycle of arcs each transmitting data that is a

function of data on its predecessor in the cycle, possibly coded together

with other inputs.

In scalar linear network coding, the nth symbol transmitted on an

arc l is a scalar linear function, in Fq, of the nth symbol of each input

process of node o(l), and this function is the same for all n. Thus,

instead of working with processes that are streams of symbols, it suffices

to consider just one symbol for each process. For notational convenience,

in the remainder of this section, Xi, Yl and Zt,i refer to a single symbol

of the corresponding source, arc and output processes respectively.

Scalar linear network coding for an arc l can be represented by the

equation

Yl =
∑

k∈I(o(l))

fk,lYk +

{ ∑

i ai,lXi if o(l) = s

0 otherwise
(2.1)

where ai,l, fk,l are scalar elements from Fq, called (local) coding coeffi-

cients, specifying the coding operation. In the case of multicast with

independent source processes, we will see that it suffices for each sink

node t to form its output symbols as a scalar linear combination of its

input symbols

Zt,i =
∑

k∈I(t)

bt,i,kYk (2.2)

We denote by a and f the vectors of coding variables (ai,l : 1 ≤ i ≤ r, l ∈

A) and (fk,l : , l, k ∈ A) respectively, and by b the vector of decoding

variables (bt,i,k : t ∈ T , 1 ≤ i ≤ r, k ∈ A).

Since all coding operations in the network are scalar linear operations

of the form (2.1), it follows inductively that for each arc l, Yl is a scalar
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linear function of the source symbols Xi. In equation form,

Yl =

r
∑

i=1

ci,lXi (2.3)

where coefficients ci,l ∈ Fq are functions of the coding variables (a, f).

The vector

cl = [c1,l . . . cr,l] ∈ Fr
q,

is called the (global) coding vector of arc l. It specifies the overall map-

ping from the source symbols to Yl resulting from the aggregate effect of

local coding operations at network nodes. For the source’s output arcs

l, cl = [a1,l . . . ar,l]. Since the network is acyclic, we can index the arcs

topologically, i.e. such that at each node all incoming arcs have lower

indexes than all outgoing arcs†, and inductively determine the coding

vectors cl in ascending order of l using (2.1).

Outputs Zt,i are likewise scalar linear operations of the source symbols

Xi. Thus, the mapping from the vector of source symbols x = [X1 . . . Xr]

to the vector of output symbols zt = [Zt,1 . . . Zt,r] at each sink t is

specified by a linear matrix equation

zt = xMt.

Mt is a function of (a, f ,b) and can be calculated as the matrix product

Mt = A(I − F)−1BT
t

where

• A = (ai,l) is an r× |A| matrix whose nonzero entries ai,l are the coef-

ficients with which source symbols Xi are linearly combined to form

symbols on the source’s output arcs l (ref Equation (2.1)). Columns

corresponding to all other arcs are all zero. Matrix A can be viewed

as a transfer matrix from the source symbols to the source’s output

arcs.

• F = (fk,l) is a |A| × |A| matrix whose nonzero entries fk,l are the

coefficients with which node d(k) linearly combines arc symbols Yk

to form symbols on output arcs l (ref Equation (2.1)). fk,l = 0 if

d(k) 6= o(l). For n = 1, 2, . . . , the (k, l)th entry of Fn gives the

mapping from Yk to Yl due to (n+1)-hop (or arc) paths. Since we are

† The topological order is an extension, generally non-unique, of the partial order
defined by the graph.
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considering an acyclic network, F is nilpotent, i.e. Fñ = 0 for some ñ,

and the (k, l)th entry of

(I − F)−1 = I + F + F2 + . . .

gives the overall mapping from Yk to Yl due to all possible paths

between arcs k and l. (I − F)−1 can thus be considered as a transfer

matrix from each arc to every other arc.

• Bt = (bt,i,k) is an r × |A| matrix. Its nonzero entries bt,i,k are the

coefficients with which sink t linearly combines symbols Yk on its input

arcs k to form output symbols Zt,i (ref Equation (2.2)). Columns

corresponding to all other arcs are all zero. Bt is the transfer matrix

representing the decoding operation at sink t.

The value of (a, f ,b), or equivalently, the value of (A,F,Bt : t ∈ T ),

specifies a scalar linear network code. Finding a scalar linear solution

is equivalent to finding a value for (a, f ,b) such that A(I − F)−1BT
t =

I ∀ t ∈ T , i.e. the source symbols are reproduced exactly at each sink

node.

Defining the matrix C := A(I − F)−1, we have that the lth column

of C gives the transpose of the coding vector cl for arc l.

Having developed a mathematical framework for scalar linear network

coding, we proceed in the following to address some basic questions:

• Given a multicast network coding problem, how do we determine the

maximum multicast rate for which the problem is solvable?

• What is the maximum throughput advantage for multicast network

coding over routing?

• Given a solvable multicast network coding problem, how do we con-

struct a solution?

2.3 Solvability and throughput

2.3.1 The unicast case

As a useful step towards characterizing solvability of a multicast prob-

lem, we consider the special case of unicast: communicating at rate r

between a source node s and a single sink node t in our basic network

model. This can be viewed as a degenerate multicast network coding

problem with r source processes originating at s and a single sink t.

The famous max-flow/min-cut theorem for a point-to-point connec-

tion tells us that the following two conditions are equivalent:
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(C1) There exists a flow of rate r between the s and t.

(C2) The value of the minimum cut between s and t† is at least r.

The network coding framework provides another equivalent condition

which is of interest to us because it generalizes readily to the multicast

case:

(C3) The determinant of the transfer matrix Mt is nonzero over the

ring of polynomials F2[a, f ,b].

Theorem 2.1 Conditions (C1) and (C3) are equivalent.

The proof of this theorem and the next uses the following lemma:

Lemma 2.1 Let f be a nonzero polynomial in variables x1, x2, . . . , xn

over F2, and let d be the maximum degree of f with respect to any

variable. Then there exist values for x1, x2, . . . , xn in Fn
2m such that

f(x1, x2, . . . , xn) 6= 0, for any m such that 2m > d.

Proof Consider f as a polynomial in x2, . . . , xn with coefficients from

F2[x1]. Since the coefficients of f are polynomials of degree at most d

they are not divisible by x2m

1 − x1 (the roots of which are the elements

of F2m). Thus, there exists an element α ∈ F2m such that f is nonzero

when x1 = α. The proof is completed by induction on the variables.

Proof of Theorem 2.1: If (C1) holds, we can use the Ford-Fulkerson

algorithm to find r arc-disjoint paths from s to t. This corresponds to

a solution where Mt = I, so (C3) holds. Conversely, if (C3) holds, by

Lemma 2.1, there exists a value for (a, f ,b) over a sufficiently large finite

field, such that det(Mt) 6= 0. Then B̃t = (MT
t )−1Bt satisfies CB̃T

t = I,

and (A,F, B̃) is a solution to the network coding problem, implying

(C1).

2.3.2 The multicast case

The central theorem of multicast network coding states that if a com-

munication rate r is possible between a source node and each sink node

individually, then with network coding it is possible to multicast at rate

† A cut between s and t is a partition of N into two sets Q,N\Q, such that s ∈ Q
and t ∈ N\Q. Its value is the number of arcs whose start node is in Q and whose
end node is in N\Q.
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r to all sink nodes simultaneously. An intuitive proof is obtained by

extending the preceding results for the unicast case.

Theorem 2.2 Consider an acyclic delay-free multicast problem where r

source processes originating at source node s are demanded by a set T

of sink nodes. There exists a solution if and only if for each sink node

t ∈ T there exists a flow of rate r between s and t.

Proof We have the following sequence of equivalent conditions:

∀t ∈ T there exists a flow of rate r between s and t

⇔ ∀t ∈ T the transfer matrix determinant det Mt is nonzero over

the ring of polynomials F2[a, f ,b]

⇔
∏

t∈T det Mt is nonzero over the ring of polynomials F2[a, f ,b]

⇔ there exists a value for (a, f ,b) in a large enough finite field such

that
∏

t∈T det Mt evaluates to a nonzero value. From this we can

obtain a solution (a, f ,b′), since each sink t can multiply the corre-

sponding vector of output values zt by M−1
t to recover the source

values x.

where the first step follows from applying Theorem 2.1 to each sink and

the last step follows from Lemma 2.1.

Corollary 2.1 The maximum multicast rate is the minimum, over all

sink nodes, of the minimum cut between the source node and each sink

node.

2.3.3 Multicasting from multiple source nodes

The analysis developed for the case of multicasting from one source

node readily generalizes to the case of multicasting from multiple source

nodes to the same set of sink nodes. Consider a multiple-source multicast

problem on a graph (N ,A) where each source process Xi, i = 1, . . . , r,

instead of originating at a common source node, originates at a (possibly

different) source node si ∈ N .

One approach is to allow ai,l to take a nonzero value only if Xi origi-

nates at o(l), i.e. we replace Equation 2.1 with

Yl =
∑

i : o(l)=si

ai,lXi +
∑

k∈I(o(l))

fk,lYk (2.4)

An alternative is to convert the multiple-source multicast problem
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into an equivalent single-source multicast problem, by adding to N a

virtual source node s from which r source processes originate, and to A

one virtual arc (s, si) for each source process Xi. We can then apply

similar analysis as in the single source node case to obtain the following

multiple source counterpart to Theorem 2.2.

Theorem 2.3 Consider an acyclic delay-free multicast problem on a

graph G = (N ,A) with r source processes Xi, i = 1, . . . , r originating at

source nodes si ∈ N respectively, demanded by a set T of sink nodes.

There exists a solution if and only if for each sink node t ∈ T and each

subset S ⊂ {si : i = 1, . . . , r} of source nodes, the max flow/min cut

between S and t is greater than or equal to |S|.

Proof Let G′ be the graph obtained by adding to N a virtual source node

s and to A one virtual arc (s, si) for each source process Xi. We apply

Theorem 2.2 to the equivalent single-source multicast problem on G′.

For any cut Q such that s ∈ Q, t ∈ N\Q, let S(Q) = Q∩ {si : 1, . . . , r}

be the subset of actual source nodes in Q. The condition that the value

of the cut Q in G′ is at least r is equivalent to the condition that the

value of the cut S(Q) in G is at least |S(Q)|, since there are r − |S(Q)|

virtual arcs crossing the cut Q from s to the actual source nodes not in

Q.

2.3.4 Maximum throughput advantage

The multicast throughput advantage of network coding over routing for

a given network graph (N ,A) with arc capacities z = (zl : l ∈ A),

source node s ∈ N and sink nodes T ⊂ N\s is defined as the ratio of

the multicast capacity with network coding to the multicast capacity

without network coding. The capacity with network coding is given

by the max flow min cut condition, from Corollary 2.1. The capacity

without network coding is equal to the fractional Steiner tree packing

number, which is given by the following linear program:

max
u

∑

k∈K

uk

subject to
∑

k∈K: l∈k

uk ≤ zl ∀ l ∈ A

uk ≥ 0 ∀ k ∈ K

(2.5)
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where K is the set of all possible Steiner trees in the network, and uk is

the flow rate on tree k ∈ K.

It is shown in [3] that for a given directed network, the maximum mul-

ticast throughput advantage of network coding over routing is equal to

the integrality gap of a linear programming relaxation for the minimum

weight directed Steiner tree. Specifically, consider a network (N ,A, s, T )

with arc weights w = (wl : l ∈ A). The minimum weight Steiner tree

problem can be formulated as an integer program

min
a

∑

l∈A

wlal

subject to
∑

l∈Γ+(Q)

al ≥ 1 ∀ Q ∈ C

al ∈ {0, 1} ∀ l ∈ A

(2.6)

where C := {Q ⊂ N : s ∈ Q, T 6⊂ Q} denotes the set of all cuts between

the source and at least one sink, Γ+(Q) := {(i, j) : i ∈ Q, j /∈ Q}

denotes the set of forward arcs of a cutQ, and al is the indicator function

specifying whether arc l is in the Steiner tree. This integer program

has an integer relaxation obtained by replacing the integer constraint

al ∈ {0, 1} with the linear constraint 0 ≤ al ≤ 1.

Theorem 2.4 For a given network (N ,A, s, T ),

max
z≥0

Mc(N ,A, s, T , z)

Mr(N ,A, s, T , z)
= max

w≥0

WIP (N ,A, s, T ,w)

WLP (N ,A, s, T ,w)

where Mc(N ,A, s, T , z) and Mr(N ,A, s, T , z) denote the multicast ca-

pacity with and without network coding respectively, under arc capacities

z, and WIP (N ,A, s, T ,w) and WLP (N ,A, s, T ,w) denote the optimum

of the integer program (2.6) and its linear relaxation respectively.

Determining the maximum value of the integrality gap, maxw≥0
WIP (N ,A,s,T ,w)
WLP (N ,A,s,T ,w) ,

is a long-standing open problem in computer science. From a known

lower bound on this integrality gap, we know that the multicast through-

put advantage for coding can be Ω((logn/ log logn)2) for a network with

n sink nodes. For undirected networks, there is a similar correspondence

between the maximum multicast throughput advantage for coding and

the integrality gap of the bidirected cut relaxation for the undirected

Steiner tree problem. Interested readers can refer to [3] for details.
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2.4 Multicast network code construction

Next, we address the question: given a solvable multicast network cod-

ing problem, how do we construct a solution? Note that here we are

considering a single multicast session (i.e. all the sink nodes demand the

same information) on a given graph whose arcs have their entire capacity

dedicated to supporting that multicast session. When there are multiple

sessions sharing a network, one possible approach for intra-session net-

work coding is to first allocate to each session a subset of the network,

called a subgraph, and then apply the techniques described in this sec-

tion to construct a code for each session on its allocated subgraph. The

issue of subgraph selection is covered in Chapter 5.

2.4.1 Centralized polynomial-time construction

Consider a solvable multicast network coding problem on an acyclic net-

work with r source processes and d sink nodes. The following centralized

algorithm constructs, in polynomial time, a solution over a finite field

Fq, where q ≥ d.

The algorithm’s main components and ideas are as follows:

• The algorithm first finds r arc-disjoint paths Pt,1, . . . ,Pt,r from the

source s to each sink t ∈ T . Let A′ ⊂ A be the set of arcs in the union

of these paths. By Theorem 2.2, the subgraph consisting of arcs in A′

suffices to support the desired multicast communication, so the coding

coefficients for all other arcs can be set to zero.

• The algorithm sets the coding coefficients of arcs in A′ in topological

order, maintaining the following invariant: for each sink t, the coding

vectors of the arcs in the set St form a basis for Fr
q, where St comprises

the arc from each of the paths Pt,1, . . . ,Pt,r whose coding coefficients

were set most recently. The invariant is initially established by adding

a virtual source node s′ and r virtual arcs from s′ to s that have

linearly independent coding vectors [0i−1, 1,0r−i], i = 1, . . . , r, where

0j denotes the length-j all zeros row vector. The invariant ensures

that at termination, each sink has r linearly independent inputs.

• To facilitate efficient selection of the coding coefficients, the algorithm

maintains, for each sink t and arc l ∈ St, a vector dt(l) satisfying the

condition

dt(l) · ck = δl,k ∀ l, k ∈ St
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where

δl,k :=

{

1 l = k

0 l 6= k
.

By this condition, dt(l) is orthogonal to the subspace spanned by

the coding vectors of the arcs in St excluding l. Note that a vector

v ∈ Fr
q is linearly independent of vectors {ck : k 6= l, k ∈ St} if and

only if v · dt(l) 6= 0. This can be seen by expressing v in the basis

corresponding to {ck : k ∈ St} as v =
∑

k∈St
bkck, and noting that

v · dt(l) =
∑

k∈St

bkck · dt(l) = bl.

• For an arc l on a path Pt,i, the arc immediately preceding l on Pt,i is

denoted pt(l), and the set of sinks t for which an arc l is in some path

Pt,i is denoted T (l). To satisfy the invariant, the coding coefficients

of each arc l are chosen such that the resulting coding vector cl is

linearly independent of the coding vectors of all arcs in St\{pt(l)} for

all t ∈ T (l), or equivalently, such that

cl · dt(l) 6= 0 ∀ t ∈ T (l). (2.7)

This can be done by repeatedly choosing random coding coefficients

until the condition (2.7) is met. Alternatively, this can be done deter-

ministically by applying Lemma 2.2 below to the set of vector pairs

{(cpt(l),dt(pt(l))) : t ∈ T (l)}.

Lemma 2.2 Let n ≤ q. For a set of pairs {(xi,yi) ∈ Fr
q × Fr

q : 1 ≤ i ≤

n} such that x · yi 6= 0 ∀ i, we can, in O(n2r) time, find a vector un

that is a linear combination of x1, . . . ,xn, such that un · yi 6= 0 ∀ i.

Proof This is done by the following inductive procedure, which con-

structs vectors u1, . . . ,un such that ui · yl 6= 0 ∀ 1 ≤ l ≤ i ≤ n. Set

u1 := x1. Let H be a set of n distinct elements of Fq. For i = 1, . . . , n−1,

if ui · yi+1 6= 0, set ui+1 := ui; otherwise set ui+1 := αui + xi+1 where

α is any element in

H\{−(xi+1 · yl)/(ui · yl) : l ≤ i} ,

which is nonempty since |H| > i. This ensures that

ui+1 · yl = αui · yl + xi+1 · yl 6= 0 ∀ l ≤ i.

Each dot product involves length-r vectors and is found in O(r) time,
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each ui is found in O(nr) time, and u1, . . . ,un is found in O(n2r) time.

The full network code construction algorithm is given in Algorithm 1.

It is straightforward to verify that ck · dt(l) = δk,l ∀ k, l ∈ S′
t at the end

Algorithm 1: Centralized polynomial-time algorithm for multicast

linear network code construction
Input: N ,A, s, T , r

N := N ∪ {s′}

A := A∪ {l1, . . . , lr} where o(li) = s′, d(li) = s for i = 1, . . . , r

Find r arc-disjoint paths Pt,1, . . . ,Pt,r from s′ to each sink t ∈ T ;

Choose field size q = 2m ≥ |T |

foreach i = 1, . . . , r do cli := [0i−1, 1,0r−i]

foreach t ∈ T do
St := {l1, . . . , lr}

foreach l ∈ St do dt(l) := cl

foreach k ∈ A\{l1, . . . , lr} in topological order do
choose, by repeated random trials or by the procedure of

Lemma 2.2, ck =
∑

k′∈P(k) fk′,kck′ such that ck is linearly

independent of {ck′ : k′ ∈ St, k
′ 6= pt(k)} for each t ∈ T (k)

foreach t ∈ T (k) do
S′

t := {k} ∪ St\pt(k)

d′
t(k) := (ck · dt(pt(k)))

−1dt(pt(k))

foreach k′ ∈ St\pt(k) do

A d′
t(k

′) := dt(k
′) − (ck · dt(k

′))d′
t(k)

(St,dt) := (S′
t,d

′
t)

return f

of step A.

Theorem 2.5 For a solvable multicast network coding problem on an

acyclic network with r source processes and d sink nodes, Algorithm 1

deterministically constructs a solution in O(|A| dr(r + d)) time.

Proof The full proof is given in [72].

Corollary 2.2 A finite field of size q ≥ d is sufficient for a multicast

network coding problem with d sink nodes on an acyclic network.
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ξ1X1 + ξ2X2

ξ5(ξ1X1 + ξ2X2)
+ξ6(ξ3X1 + ξ4X2)

ξ3X1 + ξ4X2

Fig. 2.1. An example of random linear network coding. X1 and X2 are the
source processes being multicast to the receivers, and the coefficients ξi are
randomly chosen elements of a finite field. The label on each arc represents
the process being transmitted on the arc. Reprinted with permission from
[56].

For the case of two source processes, a tighter bound of q ≥
√

2d− 7/4+

1/2 is shown in [46] using a coloring approach.

2.4.2 Random linear network coding

A simple approach that finds a solution with high probability is to choose

coding coefficients (a, f) independently at random from a sufficiently

large finite field. The value of (a, f) determines the value of the coding

vector Yl for each network arc l (which equals the lth column of C =

A(I − F)−1).

It is not always necessary to do random coding on every arc. For

instance, in our lossless network model, a node with a single input can

employ simple forwarding, as in Figure 2.1. Or if we have found r

disjoint paths from the source to each sink as in the algorithm of the

previous section, we can restrict coding to occur only on arcs where two

or more paths to different sinks merge. We will bound the probability
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that random network coding on η arcs yields a solution to a feasible

multicast problem.

Recall from the proof of Theorem 2.2 that for a solvable multicast

problem, the product of transfer matrix determinants
∏

t∈T det(A(I −

F)−1BT
t ) is nonzero over the ring of polynomials F2[a, f ,b]. Since the

only nonzero rows of BT
t are those corresponding to input arcs of sink t,

A(I−F)−1BT
t is nonsingular only if t has a set It ⊂ I(t) of r input arcs

with linearly independent coding vectors, or equivalently, the submatrix

CIt
formed by the r columns of C corresponding to It is nonsingular.

Then each sink t can decode by setting the corresponding submatrix

of Bt (whose columns correspond to arcs in It) to C−1
It

, which gives

Mt = I.

To obtain a lower bound on the probability that random coding yields

a solution, we assume that for each sink t the set It is fixed in advance

and other inputs, if any, are not used for decoding. A solution then

corresponds to a value for (a, f) such that

ψ(a, f) =
∏

t∈T

det CIt
(2.8)

is nonzero. The Schwartz-Zippel theorem (e.g., [105]) states that for any

nonzero polynomial in F2[x1, . . . , xn], choosing the values of variables

x1, . . . , xn independently and uniformly at random from F2m results in

a nonzero value for the polynomial with probability at least 1 − d/2m,

where d is the total degree of the polynomial. To apply this theorem

to the polynomial ψ(a, f), we need a bound on its total degree; we

can obtain a tighter bound by additionally bounding the degree of each

variable.

These degree bounds can be obtained from the next lemma, which

expresses the determinant of the transfer matrix Mt = A(I − F)−1BT
t

in a more transparent form, in terms of the related matrix

Nt =

[

A 0

I − F BT
t

]

. (2.9)

Lemma 2.3 For an acyclic delay-free network, the determinant of the

transfer matrix Mt = A(I − F)−1BT
t for receiver t is equal to

detMt = (−1)r(|A|+1) detNt.
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Proof Note that
[

I −A(I− F)−1

0 I

] [

A 0

I − F BT
t

]

=

[

0 −A(I − F)−1BT
t

I− F BT
t

]

Since

[

I −A(I − F)−1

0 I

]

has determinant 1,

det

([

A 0

I − F BT
t

])

= det

([

0 −A(I− F)−1BT
t

I− F BT
t

])

= (−1)r|A|det

([

−A(I − F)−1BT
t 0

BT
t I − F

])

= (−1)r|A|det(−A(I − F)−1BT
t )det(I − F)

= (−1)r(|A|+1)det(A(I − F)−1BT
t )det(I − F)

The result follows from observing that det(I − F) = 1 since F is upper-

triangular with zeros along the main diagonal.

This lemma can be viewed as a generalization of a classical result

linking (uncoded) network flow and bipartite matching. The problem of

checking the feasibility of an s − t flow of size r on graph G = (N ,A)

can be reduced to a bipartite matching problem by constructing the

following bipartite graph: one node set of the bipartite graph has r

nodes u1, . . . , ur, and a node vl,1 corresponding to each arc l ∈ A; the

other node set of the bipartite graph has r nodes w1, . . . , wr, and a node

vl,2 corresponding to each arc l ∈ A. The bipartite graph has

• an arc joining each node ui to each node vl,1 such that o(l) = s

(corresponding to an output link of source s)

• an arc joining node vl,1 to the corresponding node vl,2 for all l ∈ A,

• an arc joining node vl,2 to vj,1 for each pair (l, j) ∈ A× A such that

d(l) = o(j) (corresponding to incident links), and

• an arc joining each node wi to each node vl,2 such that d(l) = t

(corresponding to input links of sink t.

The s − t flow is feasible if and only if the bipartite graph has a per-

fect matching. The matrix Nt defined in Equation (equation:N) can

be viewed as a network coding generalization of the Edmonds matrix

(see e.g., [105]) used for checking if the bipartite graph has a perfect

matching.

Since each coding coefficient appears in only one entry of Nt, we can
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easily obtain degree bounds for det Nt using the complete expansion of

the determinant, as shown in the following lemma.

Lemma 2.4 Consider a random network code in which η arcs l have

associated coding coefficients ai,l and/or fk,l that are randomly chosen.

The determinant of Nt has maximum degree η in the random variables

{ai,l, fk,l}, and is linear in each of these variables.

Proof Note that the variables ai,l, fk,l corresponding to an arc l each

appear once, in column l of Nt. Thus, only the η columns corresponding

to arcs with associated random coefficients contain variable terms. The

determinant of Nt can be written as the sum of products of r + |A|

entries, each from a different column (and row). Each such product

is linear in each variable ai,l, fk,l, and has degree at most η in these

variables.

Noting that det CIt
equals det Mt for some bt†, and using Lemmas 2.3

and 2.4, we have that ψ(a, f) (defined in (2.8)) has total degree at most

dη in the randomly chosen coding coefficients and each coding coefficient

has degree at most d, where η is the number of arcs with randomly chosen

coding coefficients and d is the number of sink nodes.

Theorem 2.6 Consider a multicast problem with d sink nodes, and a

network code in which some or all of the coding coefficients (a, f) are

chosen uniformly at random from a finite field Fq where q > d, and the

remaining coding coefficients, if any, are fixed. If there exists a solution

to the multicast problem with these fixed coding coefficients, then the

probability that the random network code yields a solution is at least

(1 − d/q)η, where η is the number of arcs l with associated random

coding coefficients ai,l, fk,l.

Proof See Appendix 2.A.

The bound of Theorem 2.6 is a worst-case bound applying across all

networks with d sink nodes and η links with associated random coding

coefficients. For many networks, the actual probability of obtaining a

solution is much higher. Tighter bounds can be obtained by considering

additional aspects of network structure. For example, having more re-

dundant capacity in the network increases the probability that a random

linear code will be valid.

† when Bt is the identity mapping from arcs in It to outputs at t
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In the rest of this chapter, we will extend our basic network model

and lossless multicast problem in a few ways: from static source and arc

processes to time-varying packet networks, from acyclic networks to net-

works with cycles, and from independent to correlated source processes.

2.5 Packet networks

The algebraic description of scalar linear network coding in Section 2.2,

developed for the idealized static network model of Section 2.1, is readily

adapted to the case of transmission of a finite batch (generation) of

packets over a time-varying network where each packet can potentially

undergo different routing and coding operations.

Let the source message be composed of a batch of r exogenous source

packets. A packet transmitted by a node v is formed as a linear combi-

nation of one or more constituent packets, which may be source packets

originating at v or packets received previously by v. For a multicast

problem, the objective is to reproduce, at each sink, the r source pack-

ets.

For scalar linear network coding in a field Fq, the bits in each packet

are grouped into vectors of length m which are viewed as symbols from

Fq, q = 2m. We thus consider each packet as a vector of symbols from

Fq; we refer to such a vector as a packet vector.

We can think of source packets and transmitted packets as analogous

to source processes and arc processes respectively in the static network

model. The kth symbol of a transmitted packet is a scalar linear function

of the kth symbol of each of its constituent packets, and this function is

the same for all k. This is analogous to the formation of an arc process

Yl as a linear combination of one or more of the input processes of node

o(l) in the static model.

For a given sequence S of packet transmissions, we can consider a

corresponding static network G with the same node set and with arcs

corresponding to transmissions in S, where for each packet p transmitted

from node v to w in S, G has one unit-capacity arc p̃ from v to w. The

causality condition that each packet p transmitted by a node v is a

linear combination of only those packets received by v earlier in the

sequence translates into a corresponding restriction in G on the subset

of v’s inputs that can be inputs of p̃. This departs from our previous

assumption in Section 2.2 that each of node v’s inputs is an input of each

of v’s outgoing arcs. The restriction that arc k is not an input of arc l is

equivalent to setting the coding coefficient fk,l to zero. Such restrictions
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are conveniently specified using a line graph: the line graph G′ of G has

one node wl for every arc l of G, and contains the arc (wk, wl) if wk is

an input of wl.

2.5.1 Distributed random linear coding for packet networks

2.5.1.1 Coding vector approach

The random linear network coding approach of Section 2.4.2 can form

the basis of a practical, distributed multicast technique for time-varying

packet networks. Applying this approach to the packet network model,

each packet transmitted by a node v is an independent random linear

combination of previously received packets and source packets gener-

ated at v. The coefficients of these linear combinations are chosen with

the uniform distribution from the finite field Fq, and the same linear

operation is applied to each symbol in a packet.

In a distributed setting, network nodes independently choose random

coding coefficients, which determine the network code and the corre-

sponding decoding functions at the sinks. Fortunately, a sink node does

not need to know all these coefficients in order to know what decoding

function to use. It suffices for the sink to know the overall linear trans-

formation from the source packets to the packets it has received. As

in the static model, the overall linear transformation from the source

packets to a packet p is called the (global) coding vector of p.

There is a convenient way to convey this information to the sinks,

which is analogous to using a pilot tone or finding an impulse response.

For a batch of source packets with indexes i = 1, 2, . . . , r, we add to the

header of the ith source packet its coding vector, which is the length

r unit vector [0 . . . 0 1 0 . . . 0] with a single nonzero entry in the ith

position. For each packet formed subsequently by a coding operation,

the same coding operation is applied to each symbol of the coding vector

as to the data symbols of the packet. Thus, each packet’s header contains

the coding vector of that packet.

A sink node can decode the whole batch when it has received r linearly

independent packets. Their coding vectors form the rows of the transfer

matrix from the source packets to the received packets. The transfor-

mation corresponding to the inverse of this matrix can be applied to the

received packets to recover the original source packets. Decoding can

alternatively be done incrementally using Gaussian elimination.

Note that each coding vector is r log q bits long, where q is the coding
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field size. The proportional overhead of including the coding vector in

each packet decreases with the amount of data in each packet, so for

large packets this overhead is relatively small. For small packets, this

overhead can be reduced by decreasing the field size q or batch size r (by

dividing a large batch of source packets into smaller batches, and only

allowing coding among packets of the same batch). Decreasing q and

r also reduces decoding complexity. However, the smaller the field size

the higher the probability that more transmissions are required, since

there is higher probability of randomly picking linearly dependent trans-

missions. Also, reducing batch size reduces our ability to code across

bursty variations in source rates or arc capacities, resulting in reduced

throughput if packets near the batch boundaries have to be transmitted

without coding. An illustration is given in Figure 2.2. In this example,

a source node s is multicasting to sink nodes y and z. All the arcs have

average capacity 1, except for the four labeled arcs which have average

capacity 2. In the optimal solution, arc (w, x) should transmit coded

information for both receivers at every opportunity. However, variabil-

ity in the instantaneous capacities of arcs (u,w), (u, y), (t, w) and (t, z)

can cause the number of sink y packets in a batch arriving at node w

to differ from the number of sink z packets of that batch arriving at w,

resulting in some throughput loss.

Because of such trade-offs, appropriate values for q and r will depend

on the type of network and application. The effect of these parameter

choices, and performance in general, are also dependent on the choice

of subgraph (transmission opportunities) for each batch.† The effects

of such parameters are investigated by Chou et al. [26] under a particu-

lar distributed policy for determining when a node switches to sending

packets of the next batch.

2.5.1.2 Vector space approach

A more general approach for distributed random linear coding encodes

a batch of information in the choice of the vector space spanned by the

source packet vectors.

Specifically, let x1, . . . ,xr denote the source packet vectors, which are

length-n row vectors of symbols from Fq. We denote by X the r × n

matrix whose ith row is xi. Consider a sink node t, and let Yt be the

matrix whose rows are given by t’s received packet vectors. X and Yt

† Subgraph selection is the topic of Chapter 5.
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Fig. 2.2. An example illustrating throughput loss caused by restricting coding
to occur only among packets of a batch. Reprinted with permission from [58].

are linearly related by a matrix equation

Y = GtX‡

In a random network code, Gt is determined by the random coding

coefficients of network nodes. The vector space approach is based on the

observation that for any value of Gt, the row space of Y is a subspace of

the row space of X. If the sink receives r linearly independent packets,

it recovers the row space of X.

Let P(Fn
q ) denote the set of all subspaces of Fn

q , i.e. the projective

geometry of Fn
q . In this approach, a code corresponds to a nonempty

subset of P(Fn
q ), and each codeword is a subspace of Fn

q . A codeword is

transmitted as a batch of packets; the packet vectors of the source pack-

ets in the batch form a generating set for the corresponding subspace

or its orthogonal complement. It is natural to consider codes whose

codewords all have the same dimension r.† Note that the coding vector

approach of the previous section is a special case where the code con-

sists of all subspaces with generator matrices of the form [U|I], where

U ∈ F
r×(n−r)
q and I is the r × r identity matrix (corresponding to the

coding vectors). Since only a subset of all r-dimensional subspaces of Fn
q

correspond to codewords in the coding vector approach, the number of

‡ Gt is analogous to the transpose of matrix CI(t) defined in Section 2.4.2 for the
static network model.

† Such codes can be described as particular vertices of a Grassmann graph/q-
Johnson scheme. Details are given in [83].
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codewords and hence the code rate is lower than in the vector space ap-

proach, though the difference becomes asymptotically negligible as the

packet length n grows relative to the batch size r.

An important motivation for the vector space approach is its appli-

cation to correction of errors and erasures in networks. We discuss this

briefly in Section 6.2.2.2.

2.6 Networks with cycles and convolutional network coding

In our basic network model, which is acyclic, a simple delay-free net-

work coding approach (ref Section 2.2) can be used. Many networks of

interest contain cycles, but can be operated in a delay-free fashion by

imposing restrictions on the network coding subgraph to prevent cyclic

dependencies among arcs. For instance, we can restrict network coding

to occur over an acyclic subgraph of the network line graph (defined in

Section 2.5). Another type of restriction is temporal, as in the finite

batch packet model of the previous section: if we index the transmitted

packets according to their creation time, each transmitted packet has a

higher index than the constituent packets that formed it, so there are no

cyclic dependencies among packets. This can be viewed conceptually as

expanding the network in time. In general, a cyclic graph with v nodes

and rate r can be converted to a time-expanded acyclic graph with κv

nodes and rate at least (κ−v)r; communication on this expanded graph

can be emulated in κ time steps on the original cyclic graph.

For some network problems, such as those in Figure 2.3, the opti-

mal rate cannot be achieved over any acyclic subgraph of the network

line graph. In this example, to multicast both sources simultaneously

to both sinks, information must be continuously injected into the cycle

(the square in the middle of the network) from both sources. Convert-

ing the network to a time-expanded acyclic graph gives a time-varying

solution that asymptotically achieves the optimal rate, but at the ex-

pense of increasing delay and decoding complexity. An alternative for

such as networks is to take an approach akin to convolutional coding,

where delays are explicitly considered, and information from different

time steps is linearly combined. This approach, termed convolutional

network coding, enables the optimal rate to be achieved with a time-

invariant solution.
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Fig. 2.3. An example of a multicast problem in which the optimal rate cannot
be achieved over any acyclic subgraph of the network line graph. Each arc has
a constant rate of one packet per unit time. Reprinted with permission from
[64].

2.6.1 Algebraic representation of convolutional network

coding

Convolutional network codes can be cast in a mathematical framework

similar to that of Section 2.2 for delay-free scalar network codes, by rep-

resenting the random processes algebraically in terms of a delay operator

variable D which represents a unit time delay or shift: if

Xi(D) =

∞
∑

τ=0

Xi(τ)D
τ

Yl(D) =
∞
∑

τ=0

Yτ (l)Dτ , Yl(0) = 0

Zt,i(D) =

∞
∑

τ=0

Zt,i(τ)D
τ , Zt,i(0) = 0.
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The results for delay-free scalar linear network coding carry over to this

model by replacing the finite field Fq with the field Fq(D) of rational

functions in the delay variable D. Analogously to the delay-free case,

the transfer matrix from source processes to sink output processes can

be calculated as the matrix product

Mt = A(D)(I − F(D))−1Bt(D)T

where A(D) = (ai,l(D)),F(D) = (fk,l(D)),Bt(D) = (bt,i,k(D)) are ma-

trices whose entries are elements of Fq(D).

A simple type of convolutional network code uses a network model

where each arc has fixed unit delay; arcs with longer delay can be mod-

eled as arcs in series. At time τ + 1, each non-sink node v receives

symbols Yk(τ) on its input arcs k and/or source symbols Xi(τ) if v = si,

and linearly combines them to form symbols Yl(τ +1) on its output arcs

l. The corresponding coding operation at an arc l at time τ is similar

to Equation 2.4 but with time delay:

Yl(τ + 1) =
∑

{i : si=o(l)}

ai,lXi(τ)

+
∑

{k : d(k)=o(l)}

fk,lYk(τ)

which can be expressed in terms of D as

Yl(D) =
∑

{i : si=o(l)}

Dai,lXi(D)

+
∑

{k : d(k)=o(l)}

Dfk,lYk(D)

In this case, the coding coefficients at non-sink nodes are given by

ai,l(D) = Dai,l, fk,l(D) = Dfk,l. By considering D = 0, we can see

that the matrix I − F(D) is invertible. In a synchronous setting, this

does not require memory at non-sink nodes (though in practical settings

where arc delays are variable, some buffering is needed since the (τ+1)st

symbol of each output arc is transmitted only after reception of the τth

symbol of each input). The sink nodes, on the other hand, require mem-

ory: the decoding coefficients bt,i,k(D) are, in general, rational functions

of D, which corresponds to the use of past received and decoded symbols
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for decoding. The corresponding equations are

Zt,i(τ + 1) =

µ
∑

u=0

b′t,i(u)Zt,i(τ − u)

+
∑

{k : d(k)=t}

µ
∑

u=0

b′′t,i,k(u)Yk(τ − u)

and

Zt,i(D) =
∑

{k : d(k)=t}

bt,i,k(D)Yk(D),

where

bt,i,k(D) =

∑µ
u=0D

u+1b′′t,i,k(u)

1 −
∑µ

u=0D
u+1b′t,i(u)

. (2.10)

The amount of memory required, µ, depends on the structure of the

network. A rational function is realizable if it is defined when D = 0†,

and a matrix of rational entries is realizable if all its entries are realizable.

By similar arguments as in the acyclic delay-free case, we can extend

Theorem 2.2 to the case with cycles.

Theorem 2.7 Consider a multicast problem where r source processes

originating at source node s are demanded by a set T of sink nodes.

There exists a solution if and only if for each sink node t ∈ T there

exists a flow of rate r between s and t.

Proof The proof is similar to that of Theorem 2.2, but with a change of

field. Consider the simple unit arc delay model and network code. We

have the following equivalent conditions:

∀t ∈ T there exists a flow of rate r between s and t

⇔ ∀t ∈ T the transfer matrix determinant det Mt is a nonzero ratio

of polynomials from the ring F2(D)[a, f ,b′,b′′]

⇔
∏

t∈T det Mt is a nonzero ratio of polynomials from the ring

F2(D)[a, f ,b′,b′′]

⇔ there exists a value for (a, f ,b′,b′′) over F2m , for sufficiently large

m, such that
∏

t∈T det Mt is nonzero in F2m(D)

⇔ there exist realizable matrices Bt(D) such that Mt = DuI ∀t ∈ T

for some sufficiently large decoding delay u.

† i.e. For a realizable rational function, the denominator polynomial in lowest terms
has a nonzero constant coefficient
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More generally, it is not necessary to consider delays on every arc. To

ensure stability and causality of information flow, we only need every

directed cycle in the network to contain at least one delay element. Fur-

thermore, the delays can be associated with nodes instead of links: an

alternative model for convolutional network coding considers delay-free

links and associates all delays with coding coefficients at network nodes.

With this model, we can work in the binary field F2; having delay or

memory at nodes corresponds to coding coefficients that are polynomi-

als in F2[D]. For acyclic networks, such codes can be constructed in

polynomial time using an approach analogous to that in Section 2.4.1,

where the invariant becomes: for each sink t, the coding vectors of the

arcs in the set St span F2[D]r. For each arc, the coding coefficients

can be chosen from a set of d + 1 values, where d is the number of

sinks. The block network codes we have considered in previous sections

achieve capacity for acyclic networks, but in some cases convolutional

network codes can have lower delay and memory requirements. One rea-

son is that for block codes each coding coefficient is from the same field,

whereas for convolutional network codes the amount of delay/memory

can be different across coding coefficients. The case of cyclic networks

is more complicated since there is no well-defined topological order in

which to set the coding coefficients. An algorithm described in [?] up-

dates the coding coefficients associated with each sink’s subgraph in turn

(each sink’s subgraph consists of r arc-disjoint paths and the associated

coding coefficients can be updated in topological order).

2.7 Correlated source processes

In our basic network model, the source processes are independent. In this

section we consider correlated, or jointly distributed, source processes.

Such correlation can be exploited to improve transmission efficiency.

The problem of lossless multicasting from correlated sources is a gen-

eralization of the classical distributed source coding problem of Slepian

and Wolf, where correlated sources are separately encoded but jointly

decoded. The classical Slepian-Wolf problem corresponds to the special

case of a network consisting of one direct arc from each of two source

nodes to a common receiver. In the network version of the problem, the

sources are multicast over a network of intermediate nodes that can per-

form network coding. It turns out that a form of random linear network
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coding with nonlinear decoding is asymptotically rate-optimal. This can

be viewed as a network coding generalization of a classical random lin-

ear coding approach for the Slepian-Wolf problem, and as an instance

of joint source-network coding.

2.7.1 Joint source-network coding

For simplicity, we consider two sources† X1, X2 with respective rates r1
and r2 bits per unit time. The source bits at Xi are grouped into vectors

of ri bits which we refer to as symbols. The two sources’ consecutive

pairs of output symbols are drawn i.i.d. from the same joint distribution

Q.

We employ a vector linear network code that operates on blocks of bits

corresponding to n symbols from each source. Specifically, linear coding

is done in F2 over blocks consisting of nri bits from each source Xi.‡ Let

ck be the capacity of arc k. For each block, each node v transmits, on

each of its output arcs k, nck bits formed as random linear combinations

of input bits (source bits originating at v and bits received on input arcs).

This is illustrated in Figure 2.4. x1 ∈ Fnr1
2 and x2 ∈ Fnr2

2 are vectors

of source bits being multicast to the receivers, and the matrices Υi are

matrices of random bits. Suppose the capacity of each arc is c. Matrices

Υ1 and Υ3 are nr1 × nc, Υ2 and Υ4 are nr2 × nc, and Υ5 and Υ6 are

nc× nc.

To decode, sink maps its block of received bits to a block of decoded

values that has minimum entropy or maximum Q-probability among all

possible source values consistent with the received values.

We give a lower bound on the probability of decoding error at a sink

for Let m1 and m2 be the minimum cut capacities between the receiver

and each of the sources respectively, and let m3 be the minimum cut

capacity between the receiver and both sources. We denote by L the

maximum source-receiver path length. The type Px of a vector x ∈ Fñ
2 is

the distribution on F2 defined by the relative frequencies of the elements

of F2 in x, and joint types Pxy are analogously defined.

Theorem 2.8 The error probability of the random linear network code

† We use the term “source” in place of “source process” for brevity.
‡ The approach can be extended to coding over larger finite fields.
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4

t2

s

t11

3

2

x1, x2

Υ1x1 + Υ2x2

Υ5(Υ1x1 + Υ2x2)
+Υ6(Υ3x1 + Υ4x2)

Υ3x1 + Υ4x2

Fig. 2.4. An example illustrating vector linear coding. The label on each arc
represents the process being transmitted on the arc. Reprinted with permis-
sion from [56].

is at most
∑3

i=1 p
i
e, where

p1
e ≤ exp

{

− nmin
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m1(1 −
1

n
logL) −H(X |Y )

∣

∣

∣

∣

+
)

+22r1+r2 log(n+ 1)

}

p2
e ≤ exp

{

− nmin
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m2(1 −
1

n
logL) −H(Y |X)

∣

∣

∣

∣

+
)

+2r1+2r2 log(n+ 1)

}

p3
e ≤ exp

{

− nmin
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m3(1 −
1

n
logL) −H(XY )

∣

∣

∣

∣

+
)

+22r1+2r2 log(n+ 1)

}
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and X,Y are dummy random variables with joint distribution PXY .

Proof See Appendix 2.A.

The error exponents

e1 = min
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m1(1 −
1

n
logL) −H(X |Y )

∣

∣

∣

∣

+
)

e2 = min
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m2(1 −
1

n
logL) −H(Y |X)

∣

∣

∣

∣

+
)

e3 = min
X,Y

(

D(PXY ||Q)

+

∣

∣

∣

∣

m3(1 −
1

n
logL) −H(XY )

∣

∣

∣

∣

+
)

,

for general networks reduce to those for the Slepian-Wolf network where

L = 1,m1 = R1,m2 = R2,m3 = R1 +R2:

e1 = min
X,Y

(

D(PXY ||Q) + |R1 −H(X |Y )|+
)

e2 = min
X,Y

(

D(PXY ||Q) + |R2 −H(Y |X)|+
)

e3 = min
X,Y

(

D(PXY ||Q) + |R1 +R2 −H(XY )|+
)

.

2.7.2 Separation of source coding and network coding

A separate source coding and network coding scheme first performs

source coding to describe each source as a compressed collection of bits,

and then uses network coding to losslessly transmit to each sink a subset

of the resulting bits. Each sink first decodes the network code to recover

the transmitted bits, and then decodes the source code to recover the

original sources. Such an approach allows use of existing low complexity

source codes. However, separate source and network coding is in general

not optimal. This is shown by an example in Figure 2.5 which is for-

mally presented in [114]; we give here an informal description providing
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t1

t2

s1

s2

s3

ǫ

Fig. 2.5. An example in which separate source coding and network coding is
suboptimal. Each arc has capacity 1 + ǫ, except the arc from s3 to t1 which
has capacity ǫ, where 0 < ǫ < 1. Reprinted with permission from [114].

intuition for the result. Suppose source s1 is independent of sources s2
and s3, while the latter two are highly correlated, and all three sources

have entropy 1. In the limit as ǫ goes to 0 and sources s2 and s3 are

invertible functions of each other, we have essentially the equivalent of

the modified butterfly network in Figure 2.6, where sources s2 and s3 in

Figure 2.5 together play the role of source s2 in Figure 2.6. The problem

is thus solvable with joint source-network coding. It is not however solv-

able with separate source and network coding– sink t2 needs to do joint

source and network decoding based on the correlation between sources

s2 and s3.

2.8 Notes and further reading

The field of network coding has its origins in the work of Yeung et

al. [151], Ahlswede et al. [4] and Li et al. [88]. The famous butterfly

network and the max flow min cut bound for network coded multicast

were given in Ahlswede et al. [4]. Li et al. [88] showed that linear coding

with finite symbol size is sufficient for multicast connections. Koetter
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s2

t2

t1

s1

1 2

b1 ⊕ b2

b1

b1 ⊕ b2

b1 ⊕ b2

b1

b2

b2

Fig. 2.6. The modified butterfly network. In this network, every arc has ca-
pacity 1.

and Médard [85] developed the algebraic framework for linear network

coding used in this chapter.

The connection between multicast throughput advantage and inte-

grality gap of the minimum weight Steiner tree problem was given by

Agarwal and Charikar [3], and extended to the case of average through-

put by Chekuri et al. [23].

Concurrent independent work by Sanders et al. [123] and Jaggi et

al. [68] developed the centralized polynomial-time algorithm for acyclic

networks presented in this chapter. The coding vector approach for dis-

tributed random linear network coding was introduced in Ho et al. [62].

The network coding generalization of the Edmonds matrix was given in

Ho et al. [55, 57] and used in Harvey et al. [54], which presented a deter-

ministic construction for multicast codes based on matrix completion.

A practical batch network coding protocol based on random network

coding was presented in Chou et al. [27]. The vector space approach for

distributed random network coding was proposed by Koetter and Kschis-

chang [83]. A gossip protocol using random linear network coding was

presented in Deb and Médard [34]. Fragouli and Soljanin [47] developed

a code construction technique based on information flow decomposition.

A number of works have considered the characteristics of network

codes needed for achieving capacity on different types of multicast net-

work problems. Lower bounds on coding field size were presented by

Rasala Lehman and Lehman [116] and Feder et al. [43]. Upper bounds

were given by Jaggi et al. [73] (acyclic networks), Ho et al. [66] (general
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networks), Feder et al. [43] (graph-specific) and Fragouli et al. [47] (two

sources).

Convolutional network coding was first discussed in Ahlswede et al. [4].

The algebraic convolutional network coding approach presented in this

chapter is from Koetter and Médard [85]. Various aspects of convo-

lutional network coding, including constructive coding and decoding

techniques, are addressed in Erez and Feder [40, 41], Fragouli and Sol-

janin [45], and Li and Yeung [87]. The linear network coding approach

for correlated sources is an extension by Ho et al. [65] of the linear cod-

ing approach in Csiszár [30] for the Slepian-Wolf problem. Separation

of source coding and network coding is addressed in [114].

2.A Appendix: Random network coding

Lemma 2.5 Let P be a nonzero polynomial in F[ξ1, ξ2, . . . ] of degree less

than or equal to dη, in which the largest exponent of any variable ξi is

at most d. Values for ξ1, ξ2, . . . are chosen independently and uniformly

at random from Fq ⊆ F. The probability that P equals zero is at most

1 − (1 − d/q)η for d < q.

Proof For any variable ξ1 in P , let d1 be the largest exponent of ξ1 in

P . Express P in the form P = ξd1
1 P1 +R1, where P1 is a polynomial of

degree at most dη − d1 that does not contain variable ξ1, and R1 is a

polynomial in which the largest exponent of ξ1 is less than d1. By the

Principle of Deferred Decisions (e.g., [105]), the probability Pr[P = 0]

is unaffected if we set the value of ξ1 last after all the other coefficients

have been set. If, for some choice of the other coefficients, P1 6= 0, then

P becomes a polynomial in F[ξ1] of degree d1. By the Schwartz-Zippel

Theoremhim, this probability Pr[P = 0|P1 6= 0] is upper bounded by

d1/q. So

Pr[P = 0] ≤ Pr[P1 6= 0]
d1

q
+ Pr[P1 = 0]

= Pr[P1 = 0]

(

1 −
d1

q

)

+
d1

q
. (2.11)

Next we consider Pr[P1 = 0], choosing any variable ξ2 in P1 and letting

d2 be the largest exponent of ξ2 in P1. We express P1 in the form

P1 = ξd2
2 P2 +R2, where P2 is a polynomial of degree at most dη−d1−d2

that does not contain variables ξ1 or ξ2, and R2 is a polynomial in which
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the largest exponent of ξ2 is less than d2. Proceeding similarly, we assign

variables ξi and define di and Pi for i = 3, 4, . . . until we reach i = k

where Pk is a constant and Pr[Pk = 0] = 0. Note that 1 ≤ di ≤ d < q ∀ i

and
∑k

i=1 di ≤ dη, so k ≤ dη. Applying Schwartz-Zippel as before, we

have for k′ = 1, 2, . . . , k

Pr[Pk′ = 0] ≤ Pr[Pk′+1 = 0]

(

1 −
dk′+1

q

)

+
dk′+1

q
. (2.12)

Combining all the inequalities recursively, we can show by induction that

Pr[P = 0] ≤

∑k
i=1 di

q
−

∑

i6=l didl

q2

+ · · ·+ (−1)k−1

∏k
i=1 di

qk
.

Now consider the integer optimization problem

Maximize f =

∑dη
i=1 di

q
−

∑

i6=l didl

q2
+

· · · + (−1)dη−1

∏dη
i=1 di

qdη

subject to 0 ≤ di ≤ d < q ∀ i ∈ [1, dη],
dη
∑

i=1

di ≤ dη, and di integer (2.13)

whose maximum is an upper bound on Pr[P = 0].

We first consider the problem obtained by relaxing the integer condition

on the variables di. Let d∗ = {d∗1, . . . , d
∗
dη} be an optimal solution.

For any set Sh of h distinct integers from [1, dη], let fSh
= 1−

∑

i∈Sh
di

q +
∑

i,l∈Sh,i6=l didl

q2 − · · · + (−1)h
∏

i∈Sh
di

qh . We can show by induction on h

that 0 < fSh
< 1 for any set Sh of h distinct integers in [1, dη]. If

∑dη
i=1 d

∗
i < dη, then there is some d∗i < d, and there exists a feasible

solution d = {d1, . . . , ddη} such that di = d∗i + ǫ, ǫ > 0, and dh = d∗h for

h 6= i, which satisfies

f(d) − f(d∗)

=
ǫ

q

(

1 −

∑

h 6=i d
∗
h

q
+ · · · + (−1)dη−1

∏

h 6=i d
∗
h

qdη−1

)

.

This is positive, contradicting the optimality of d∗, so
∑dη

i=1 d
∗
i = dη.

Next suppose 0 < d∗i < d for some d∗i . Then there exists some d∗l such
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that 0 < d∗l < d, since if d∗l = 0 or d for all other l, then
∑dη

i=1 d
∗
i 6= dη.

Assume without loss of generality that 0 < d∗i ≤ d∗l < d. Then there

exists a feasible vector d = {d1, . . . , ddη} such that di = d∗i −ǫ, dl = d∗l +ǫ,

ǫ > 0, and dh = d∗h ∀ h 6= i, l, which satisfies

f(d) − f(d∗) = −

(

(d∗i − d∗l )ǫ− ǫ2

q2

)

(

1 −

∑

h 6=i,l d
∗
h

q
− · · · + (−1)dη−2

∏

h 6=i,land d
∗
h

qdη−2

)

.

This is again positive, contradicting the optimality of d∗.

Thus,
∑dη

i=1 d
∗
i = dη, and d∗i = 0 or d. So exactly η of the variables d∗i

are equal to d. Since the optimal solution is an integer solution, it is

also optimal for the integer program (2.13). The corresponding optimal

f = η d
q −

(

η
2

)

d2

q2 + · · · + (−1)η−1 dη

qη = 1 −
(

1 − d
q

)η

.

Proof of Theorem 2.8: We consider transmission, by random lin-

ear network coding, of one block of source bits, represented by vector

[ x1, x2 ] ∈ F
n(r1+r2)
2 . The transfer matrix CI(t) specifies the map-

ping from the vector of source bits [ x1, x2 ] to the vector z of bits on

the set I(t) of terminal arcs incident to the receiver.

The decoder maps a vector z of received bits onto a vector [ x̃1, x̃2 ] ∈

F
n(r1+r2)
2 minimizing α(Px1x2) subject to [ x1, x2 ]CI(t) = z. For a

minimum entropy decoder, α(Px1x2) ≡ H(Px1x2), while for a maximum

Q-probability decoder, α(Px1x2) ≡ − logQn(x1x2). We consider three

types of errors: in the first type, the decoder has the correct value for x2

but outputs the wrong value for x2; in the second, the decoder has the

correct value for x1 but outputs the wrong value for x2; in the third, the

decoder outputs wrong values for both x1 and x2. The error probability

is upper bounded by the sum of the probabilities of the three types of

errors,
∑3

i=1 p
i
e.

(Joint) types of sequences are considered as (joint) distributions PX

(PX,Y , etc.) of dummy variables X,Y , etc. The set of different types of

sequences in Fk
2 is denoted by P(Fk

2). Defining the sets of types

P
i
n =



































{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |

X̃ 6= X, Ỹ = Y } i = 1

{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |

X̃ = X, Ỹ 6= Y } i = 2

{PXX̃Y Ỹ ∈ P(Fnr1
2 × Fnr1

2 × Fnr2
2 × Fnr2

2 ) |

X̃ 6= X, Ỹ 6= Y } i = 3
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sequences

TXY = {[ x1, x2 ] ∈ F
n(r1+r2)
2 |

Px1x2 = PXY }

TX̃Ỹ |XY (x1x2) = {[ x̃1, x̃2 ] ∈ F
n(r1+r2)
2 |

Px̃1x̃2x1x2 = PX̃Ỹ XY }

we have

p1
e ≤

∑

P
XX̃Y Ỹ

∈ P
1
n :

α(P
X̃Y

) ≤ α(PXY )

∑

(x1, x2) ∈
TXY

Qn(x1x2) Pr

(

∃(x̃1, x̃2) ∈

TX̃Ỹ |XY (x1x2) s.t.[ x1 − x̃1, 0 ]CI(t) = 0

)

≤
∑

P
XX̃Y Ỹ

∈ P
1
n :

α(P
X̃Y

) ≤ α(PXY )

∑

(x1, x2) ∈ TXY

Qn(x1x2)

min

{

∑

(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(

[ x1 − x̃1, 0 ]CI(t) = 0
)

, 1

}

Similarly,

p2
e ≤

∑

P
XX̃Y Ỹ

∈ P
2
n :

α(P
XỸ

) ≤ α(PXY )

∑

(x1, x2) ∈ TXY

Qn(x1x2)

min

{

∑

(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(

[ 0, x2 − x̃2 ]CI(t) = 0
)

, 1

}

p3
e ≤

∑

P
XX̃Y Ỹ

∈ P
3
n :

α(P
X̃Ỹ

) ≤ α(PXY )

∑

(x1, x2) ∈ TXY

Qn(x1x2)

min

{

∑

(x̃1, x̃2) ∈
T

X̃Ỹ |XY
(x1x2)

Pr
(

[ x1 − x̃1, x2 − x̃2 ]CI(t) = 0
)

, 1

}

where the probabilities are taken over realizations of the network transfer

matrix CI(t) corresponding to the random network code. The probabil-
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ities

P1 = Pr
(

[ x1 − x̃1, 0 ]CI(t) = 0
)

P2 = Pr
(

[ 0, x2 − x̃2 ]CI(t) = 0
)

P3 = Pr
(

[ x1 − x̃1, x2 − x̃2 ]CI(t) = 0
)

for nonzero x1 − x̃1,x2 − x̃2 can be calculated for a given network, or

bounded in terms of n and parameters of the network as we will show

later.

We can apply some simple cardinality bounds

|P1
n| < (n+ 1)2

2r1+r2

|P2
n| < (n+ 1)2

r1+2r2

|P3
n| < (n+ 1)2

2r1+2r2

|TXY | ≤ exp{nH(XY )}

|TX̃Ỹ |XY (x1x2)| ≤ exp{nH(X̃Ỹ |XY )}

and the identity

Qn(x1x2) = exp{−n(D(PXY ||Q) +H(XY ))},

(x1,x2) ∈ TXY (2.14)

to obtain

p1
e ≤ exp

{

− n min
P

XX̃Y Ỹ
∈ P

1
n:

α(P
X̃Y

) ≤ α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|XY )

∣

∣

∣

∣

+
)

+ 22r1+r2 log(n+ 1)

}

p2
e ≤ exp

{

− n min
P

XX̃Y Ỹ
∈ P

2
n:

α(P
XỸ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP2 −H(Ỹ |XY )

∣

∣

∣

∣

+
)

+ 2r1+2r2 log(n+ 1)

}

p3
e ≤ exp

{

− n min
P

XX̃Y Ỹ
∈ P

3
n:

α(P
X̃Ỹ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ |XY )

∣

∣

∣

∣

+
)

+ 22r1+2r2 log(n+ 1)

}

,
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where the exponents and logs are taken with respect to base 2.

For the minimum entropy decoder, we have

α(PX̃Ỹ ) ≤ α(PXY ) ⇒






H(X̃|XY ) ≤ H(X̃ |Y ) ≤ H(X |Y ) for Y = Ỹ

H(Ỹ |XY ) ≤ H(Ỹ |X) ≤ H(Y |X) forX = X̃

H(X̃Ỹ |XY ) ≤ H(X̃Ỹ ) ≤ H(XY )

which gives

p1
e ≤ exp

{

− nmin
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
)

+22r1+r2 log(n+ 1)

}

(2.15)

p2
e ≤ exp

{

− nmin
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP2 −H(Y |X)

∣

∣

∣

∣

+
)

+2r1+2r2 log(n+ 1)

}

(2.16)

p3
e ≤ exp

{

− nmin
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+
)

+22r1+2r2 log(n+ 1)

}

. (2.17)

We next show that these bounds also hold for the maximum Q-

probability decoder, for which, from (2.14), we have

α(PX̃Ỹ ) ≤ α(PXY )

⇒ D(PX̃Ỹ ||Q) +H(X̃Ỹ ) ≤ D(PXY ||Q) +H(XY ). (2.18)

For i = 1, Ỹ = Y , and (2.18) gives

D(PX̃Y ||Q) +H(X̃ |Y ) ≤ D(PXY ||Q) +H(X |Y ). (2.19)
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We show that

min
P

XX̃Y Ỹ
∈ P

1
n :

α(P
X̃Ỹ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃ |XY )

∣

∣

∣

∣

+
)

≥ min
P

XX̃Y Ỹ
∈ P

1
n :

α(P
X̃Ỹ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|Y )

∣

∣

∣

∣

+
)

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
)

by considering two possible cases for any X, X̃, Y satisfying (2.19):

Case 1: − 1
n logP1 −H(X |Y ) < 0. Then

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|Y )

∣

∣

∣

∣

+

≥ D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
)

Case 2: − 1
n logP1 −H(X |Y ) ≥ 0. Then

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|Y )

∣

∣

∣

∣

+

≥ D(PXY ||Q) +

(

−
1

n
logP1 −H(X̃|Y )

)

≥ D(PX̃Y ||Q) +

(

−
1

n
logP1 −H(X |Y )

)

by (2.19)

= D(PX̃Y ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
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which gives

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃ |Y )

∣

∣

∣

∣

+

≥
1

2

[

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|Y )

∣

∣

∣

∣

+

+D(PX̃Y ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
]

≥
1

2

[

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+

+D(PX̃Y ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X̃|Y )

∣

∣

∣

∣

+
]

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP1 −H(X |Y )

∣

∣

∣

∣

+
)

.

A similar proof holds for i = 2.

For i = 3, we show that

min
P

XX̃Y Ỹ
∈ P

3
n :

α(P
X̃Ỹ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ |XY )

∣

∣

∣

∣

+
)

≥ min
P

XX̃Y Ỹ
∈ P

3
n :

α(P
X̃Ỹ

) ≤

α(PXY )

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ )

∣

∣

∣

∣

+
)

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+
)

by considering two possible cases for any X, X̃, Y, Ỹ satisfying (2.18):

Case 1: − 1
n logP3 −H(XY ) < 0. Then

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ )

∣

∣

∣

∣

+

≥ D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+
)
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Case 2: − 1
n logP3 −H(XY ) ≥ 0. Then

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ )

∣

∣

∣

∣

+

≥ D(PXY ||Q) +

(

−
1

n
logP3 −H(X̃Ỹ )

)

≥ D(PX̃Ỹ ||Q) +

(

−
1

n
logP3 −H(XY )

)

by (2.18)

= D(PX̃Ỹ ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+

which gives

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ )

∣

∣

∣

∣

+

≥
1

2

[

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(X̃Ỹ )

∣

∣

∣

∣

+

+D(PX̃Ỹ ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+
]

≥ min
XY

(

D(PXY ||Q) +

∣

∣

∣

∣

−
1

n
logP3 −H(XY )

∣

∣

∣

∣

+
)

.

We bound the probabilities Pi in terms of n and the network param-

eters mi, i = 1, 2, the minimum cut capacity between the receiver and

source Xi, m3, the minimum cut capacity between the receiver and both

sources, and L, the maximum source-receiver path length.

Let G1 and G2 be subgraphs of graph G consisting of all arcs down-

stream of sources 1 and 2 respectively, where an arc k is considered

downstream of a source Xi if si = o(k) or if there is a directed path

from the source to o(k). Let G3 be equal to G.

Note that in a random linear network code, any arc k which has at

least one nonzero input transmits the zero process with probability 1
2nck

,

where ck is the capacity of k. Since the code is linear, this probability is

the same as the probability that a pair of distinct values for the inputs

of k are mapped to the same output value on k.

For a given pair of distinct source values, let Ek be the event that

the corresponding inputs to arc k are distinct, but the corresponding

values on k are the same. Let E(G̃) be the event that Ek occurs for

some arc k on every source-receiver path in graph G̃. Pi is then equal to

the probability of event E(Gi).
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Let G′
i, i = 1, 2, 3 be the graph consisting of mi node-disjoint paths,

each consisting of L arcs each of unit capacity. We show by induction

on mi that Pi is upper bounded by the probability of event E(G′
i).

We let G̃ be the graphs Gi,G
′
i, i = 1, 2, 3 in turn, and consider any

particular source-receiver path PG̃ in G̃. We distinguish two cases:

Case 1: Ek does not occur for any of the arcs k on the path PG̃ . In

this case the event E(G̃) occurs with probability 0.

Case 2: There exists some arc k̂ on the path PG̃ for which Ek occurs.

Thus, we have Pr(E(G̃)) = Pr(case 2)Pr(E(G̃)|case 2). Since PG′
i

has at least as many arcs as PGi
, Pr(case 2 for G′

i) ≥ Pr(case 2 for Gi).

Therefore, if we can show that Pr(E(G′
i)|case 2) ≥ Pr(E(Gi)|case 2), the

induction hypothesis Pr(E(G′
i)) ≥ Pr(E(Gi)) follows.

For mi = 1, the hypothesis is true since Pr(E(G′
i)|case 2) = 1. For

mi > 1, in case 2, removing the arc k̂ leaves, for G′
i, the effective equiv-

alent of a graph consisting of mi − 1 node-disjoint length-L paths, and,

for Gi, a graph of minimum cut at least mi − 1. The result follows from

applying the induction hypothesis to the resulting graphs.

Thus, Pr(E(G′
i)) gives an upper bound on probability Pi:

Pi ≤

(

1 − (1 −
1

2n
)L

)mi

≤

(

L

2n

)mi

.

Substituting this into the error bounds (2.15)-(2.17) gives the desired

result.
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Inter-Session Network Coding

So far, we have considered network coding for a single communication

session, i.e. unicast communication to one sink node or multicast of com-

mon information to multiple sink nodes. This type of coding is called

intra-session network coding, since we only code together information

symbols that will be decoded by the same set of sink nodes. For intra-

session network coding, it suffices for each node to form its outputs

as random linear combinations of its inputs. Each sink node can de-

code once it has received enough independent linear combinations of the

source processes.

When there are multiple sessions sharing the network, a simple prac-

tical approach is to allocate disjoint subsets of the network capacity

to each session. If each session’s allocated subgraph satisfies the max-

flow/min-cut condition for each sink (Theorems 2.2 and 2.7), we can

obtain a solution with intra-session network coding among information

symbols of each session separately. Sections 5.1.1 and 5.2.1 discuss such

an approach.

In general, however, achieving optimal rates may require inter-session

network coding, i.e. coding among information symbols of different ses-

sions. Inter-session network coding is more complicated than intra-

session network coding. Coding must be done strategically in order

to ensure that each sink can decode its desired source processes – nodes

cannot simply combine all their inputs randomly, since the sink nodes

may not have sufficient incoming capacity to decode all the randomly

combined source processes. Unlike intra-session network coding, decod-

ing may have to be done at non-sink nodes. We will see an example

further on, in Section 3.5.1.

At present, for general multi-session network problems, it is not yet

known how to determine feasibility or construct optimal network codes.

56
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In this chapter, we first discuss some theoretical approaches and results.

We then describe constructions and implementations of suboptimal but

practical inter-session network codes.

3.1 Scalar and vector linear network coding

Scalar linear network coding was described in Section 2.2 for a single

multicast session. In the general case with multiple sessions, each sink

t ∈ T can demand an arbitrary subset

Dt ⊂ {1, 2, . . . , r} (3.1)

of the information sources. Scalar linear network coding for the general

case is defined similarly, the only difference being that each sink needs

only decode its demanded subset of information sources. We can gener-

alize the scalar linear solvability criterion as follows. In the single session

case, the criterion is that the transfer matrix determinant det Mt for

each sink node t, as a function of coding coefficients (a, f ,b), is nonzero

– this corresponds to each sink node being able to decode all the source

processes. In the inter-session case, the criterion is that there exists a

value for coefficients (a, f ,b) such that

(i) the submatrix of Mt consisting of rows whose indexes are in Dt

is nonsingular

(ii) the remaining rows of Mt are all zero.

This corresponds to each sink node being able to extract its demanded

source processes while removing the effect of other interfering (unwanted)

source processes.

The problem of determining whether a general network problem has a

scalar linear solution has been shown (by reduction from 3-CNF) to be

NP-hard. It can be reduced to the problem of determining whether a re-

lated algebraic variety is empty, as follows. Letm1(a, f ,b), . . . ,mK(a, f ,b)

denote all the entries of Mt, t ∈ T that must evaluate to zero accord-

ing to condition (ii). Let d1(a, f ,b), . . . , dL(a, f ,b) denote the deter-

minants of the submatrices that must be nonzero according to condi-

tion (i). Let ξ be a new variable, and let I be the ideal generated

by m1(a, f ,b), . . . ,mK(a, f ,b), 1 − ξ
∏L

i=1 di(a, f ,b). Then the decod-

ing conditions are equivalent to the condition that the variety associ-

ated with the ideal I is nonempty. This can be decided by computing

a Gröbner basis for I, which is not polynomial in complexity but for

which standard mathematical software exists.
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Unlike the single multicast session case, scalar linear network coding

is not optimal in the general case. Scalar coding is time-invariant. The

approach outlined above for determining scalar linear solvability does not

cover time-sharing among scalar solutions. Figure 3.1 gives an example

network problem which can be solved by time-sharing among different

routing strategies, but not by scalar linear network coding.

The class of vector linear network codes includes both scalar linear

network coding and time-sharing as special cases. In vector linear net-

work coding, the bitstream corresponding to each source and arc process

is divided into vectors of finite field symbols; the vector associated with

an arc is a linear function, specified by a matrix, of the vectors associated

with its inputs. Vector linear network coding was used in Section 2.7 for

multicasting from correlated sources.

3.2 Fractional coding problem formulation

In the basic model and problem formulation of Section 2.1, a solution is

defined with respect to fixed source rates and arc capacities (all assumed

to be equal); for a given network problem and class of coding/routing

strategies, a solution either exists or does not. A more flexible approach,

useful for comparing various different classes of strategies in the multiple

session case, is to define a network problem in terms of source/sink

locations and demands, and to ask what rates are possible relative to

the arc capacities.

The most general characterization of the rates achievable with some

class of strategies is a rate region which gives the trade-offs between the

rates of different sources. A simpler characterization, which suffices for

the purpose of comparing different classes of network codes, assumes that

the source rates are equal to each other and that the arc rates are equal

to each other, and asks what is the maximum ratio between the rate of a

source and the rate of an arc. Specifically, we consider sending a vector

of k symbols from each source with a vector of n symbols transmitted

on each arc. The symbols are from some alphabet (in the codes we have

considered so far, the alphabet is a finite field, but we can consider more

general alphabets such as rings). Such a network problem is defined

by a graph (N ,A), source nodes si ∈ N , i = 1, . . . , r, a set T ⊂ N of

sink nodes, and the sets Dt ⊂ {1, . . . , r} of source processes demanded

by each sink t ∈ T . For brevity, we will in the following refer to such

a network problem simply as a network. A (k, n) fractional solution

defines coding operations at network nodes and decoding operations at
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(a) An example network problem which can be solved by
time-sharing among different routing strategies, but not by
scalar linear network coding.
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(b) A time-sharing routing solution.

Fig. 3.1.

sink nodes such that each sink perfectly reproduces the values of its

demanded source processes. A solution, as in Section 2.1, corresponds

to the case where k = n. A scalar solution is a special case where

k = n = 1. The coding capacity of a network with respect to an alphabet
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A and a class C of network codes is

sup{k/n : ∃ a (k, n) fractional coding solution in C over A}

3.3 Insufficiency of linear network coding

Linear network coding is not sufficient in general for the case of multiple

sessions. This was shown by an example network P which has a nonlin-

ear coding capacity of 1, while there is no linear solution. The network

P and its nonlinear solution are shown in Figure 3.2. The class of lin-

ear codes for which P has no solution is more general than the class of

vector linear codes over finite fields described in Section 3.1. It includes

linear network codes where the source and arc processes are associated

with elements of any finite R-module G with more than one element,

for any ring R. (A ring is a generalization of a field, the difference being

that elements of a ring do not need to have multiplicative inverses. An

R-module is a generalization of a vector space using a ring R in place of

a field.)

The construction of P is based on connections with matroid theory.

By identifying matroid elements with source and arc processes in a net-

work, a (non-unique) matroidal network can be constructed from a given

matroid, such that dependencies and independencies of the matroid are

reflected in the network. Circuits (minimal dependent sets) of the ma-

troid are reflected in the dependence of output arc processes of a node

(or decoded output processes of a sink node) on the input processes of

the node. Bases (maximal independent sets) of the matroid correspond

to the set of all source processes, or the input processes of sink nodes

that demand all the source processes. Properties of the matroid thus

carry over to its associated matroidal network(s).

The network P is based on two matroidal networks P1 and P2 (shown

in Figures 3.4 and 3.6) associated with the well-known Fano and non-

Fano matroids respectively (shown in Figures 3.3 and 3.5. In the case of

vector linear coding, P1 has no vector linear solution of any dimension

over a finite field with odd characteristic, while P2 has no vector linear

solution of any dimension over a finite field with characteristic 2.† This

† In the more general case of R-linear coding over G, vector linear solvability corre-
sponds to scalar linear solvability over a larger module. It can be shown that if P
has a scalar linear solution, then it has a scalar linear solution for the case where
R acts faithfully on G and is a ring with an identity element I. In this case, P1

has no scalar R-linear solution over G if I + I 6= 0, while P2 has no scalar R-linear
solution over G if I + I = 0.
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Fig. 3.2. An example network problem whose nonlinear coding capacity is
greater than its linear coding capacity. The arc labels give a nonlinear solution
over an alphabet of size 4. Symbols + and − denote addition and subtraction
in the ring Z4 of integers modulo 4, ⊕ denotes bitwise xor, and t denotes the
operation of reversing the order of the bits in a 2-bit binary string.

incompatibility is exploited to construct the example network which does

not have a linear solution, but has a nonlinear solution over an alphabet

of size 4, shown in Figure 3.2.

For the case of vector linear codes over finite fields, it can be shown,

using information theoretic arguments described in the next section, that

the linear coding capacity of this example is 10/11. The proof is given

in [36]. Thus, vector linear network coding over finite fields is not even

asymptotically optimal.
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ẑ
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Fig. 3.3. A geometric representation of the Fano matroid. The labeled dots
correspond to the elements of the underlying set, any three elements of which
are dependent if and only if in the diagram they are collinear or on the circle.

3.4 Information theoretic approaches

Determining the coding capacity of an arbitrary network is an open prob-

lem, but progress in characterizing/bounding capacity in various cases

has been made using information theoretic entropy arguments. The in-

formation theoretic approach represents the source and arc processes as

random variables (or sequences of random variables). The entropies of

the source random variables can be identified with (or lower bounded

by) the source rates, while the entropies of the arc random variables

can be upper bounded by the arc capacities. Other constraint relations

involving the joint/conditional entropies of various subsets of these ran-

dom variables can be derived from the coding dependencies and decoding

requirements.

In the following we denote by S = {1, . . . , r} the set of information

sources, and by I(v),O(v) ∈ A,S(v) ⊂ S the set of input arcs, output

arcs and information sources respectively of a node v. As before, Dt ⊂ S

denotes the set of information sources demanded by a sink t.

In the case of an acyclic network, suppose there exists a (k, n) frac-

tional network coding solution over an alphabet B. Let the ith source

process, 1 ≤ i ≤ r, be represented by a random vector Xi consisting of

k independent random variables distributed uniformly over B. Denote

by Yj the corresponding random vector transmitted on each arc j ∈ A

under the fractional network code. We use the abbreviated notation

YA′ = {Yj : j ∈ A′} for a set of arcs A′ ⊂ A, and XS′ = {Xi : i ∈ S′}

for a set of sources S′ ⊂ S. Then we have the following entropy condi-
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Fig. 3.4. A network associated with the Fano matroid. Source processes a, b, c
originate at nodes 1,2,3 respectively, and are demanded by the sink nodes 14,
13, 12 respectively. The source and edge labels indicate the correspondence
with the elements of the Fano matroid as shown in Figure 3.3. The network
has no vector linear solution of any dimension over a finite field with odd
characteristic.

tions:

H(Xi) = k (3.2)

H(XS) = rk (3.3)

H(Yj) ≤ n ∀ j ∈ A (3.4)

H(YO(v) | XS(v), YI(v)) = 0 ∀ v ∈ N (3.5)

H(XDt
| YI(t)) = 0 ∀ t ∈ T (3.6)

Equations (3.2)-(3.3) state that the source vectors Xi each have entropy

k (in units scaled by the log of the alphabet size) and are indepen-

dent. Inequality (3.4) upper bounds the entropy of each arc vector Yj

by the arc capacity n. Equation (3.5) expresses the condition that each
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ẑ

ĉb̂

â

ŷ

x̂ŵ

Fig. 3.5. A geometric representation of the non-Fano matroid. The labeled
dots correspond to the elements of the underlying set, any three elements of
which are dependent if and only if in the diagram they are collinear.

node’s outputs are a deterministic function of its inputs. Equation (3.6)

expresses the requirement that each sink can reproduce its demanded

sources as a deterministic function of its inputs.

Given equations (3.2)-(3.6) for a particular network problem, informa-

tion inequalities can be applied with the aim of simplifying the equations

and obtaining a bound on the ratio k/n. Information inequalities are in-

equalities involving information measures (entropy, conditional entropy,

mutual information and conditional mutual information) of subsets of a

set of random variables, that hold under any joint distribution for the

random variables. Intuitively, information inequalities are constraints

which must be satisfied by the values of these information measures in

order for the values to be consistent with some joint distribution. For

any set N of discrete random variables, and any subsets U ,U ′,U ′′ of N ,

we have the following basic inequalities:

H(U) ≥ 0

H(U|U ′) ≥ 0

I(U ;U ′) ≥ 0

I(U ;U ′|U ′′) ≥ 0

The basic inequalities and all inequalities implied by the basic inequali-

ties are called Shannon-type information inequalities. For four or more

random variables, there exist inequalities not implied by the basic in-

equalities, called non-Shannon-type information inequalities. An exam-
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Fig. 3.6. A network associated with the non-Fano matroid. Source processes
a, b, c originate at nodes 1,2,3 respectively, and are demanded by the sets
of sink nodes {14, 15}, {13, 15}, {12, 15} respectively. The source and edge
labels indicate the correspondence with the elements of the non-Fano matroid
as shown in Figure 3.5. The network has no vector linear solution of any
dimension over a finite field with characteristic 2.

ple involving four random variables X1, X2, X3, X4 is the inequality

2I(X3;X4) ≤ I(X1;X2)+I(X1;X3, X4)+3I(X3;X4|X1)+I(X3;X4|X2),

(3.7)

Shannon-type inequalities are insufficient in general for computing cod-

ing capacity; this was shown in [37] by a network problem constructed

based on the Vámos matroid (e.g., [110]), for which the use of the non-

Shannon-type inequality (3.7) yields a tighter bound than any bound

derived only with Shannon-type inequalities.

The information theoretic approach yields an implicit characterization

of the rate region for deterministic network coding on a general acyclic

network with arc capacities ck, k ∈ A. We first introduce some defini-
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tions. Let N be a set of random variables denoted {Xi : i ∈ S} ∪ {Yj :

j ∈ A}. Let HN be the (2|N | − 1)-dimensional Euclidian space whose

coordinates correspond to the 2|N |−1 nonempty subsets of N . A vector

g ∈ HN is entropic if there exists some joint distribution for the random

variables in N such that each component of g equals the entropy of the

corresponding subset of random variables. Define the region

Γ∗
N = {g ∈ HN : g is entropic}

This region essentially summarizes the effect of all possible information

inequalities involving variables in N (we do not yet have a complete

characterization of this region or, equivalently, of all possible information

inequalities).

We define the following regions in HN :

C1 =

{

h ∈ HN : H(XS) =
∑

i∈S

H(Xi)

}

C2 =
{

h ∈ HN : H(YO(v) | XS(v), YI(v)) = 0 ∀ v ∈ N
}

C3 = {h ∈ HN : H(Yj) < cj ∀j ∈ A}

C4 =
{

h ∈ HN : H(XDt
|YI(t)) = 0 ∀ t ∈ T

}

Theorem 3.1 The capacity region for an arbitrary acyclic network with

multiple sessions is given by

R = Λ
(

projXS

(

conv(Γ∗
N ∩ C12) ∩ C3 ∩ C4

))

,

where for any region C ⊂ HN , projXS
(C) = {hXS : h ∈ C} is the

projection of C on the coordinates hXi
a corresponding to the source

entropies, conv(·) denotes the convex hull operator, the overbar denotes

the closure, and C12 = C1 ∩ C2.

Proof The proof is given in [145].

For networks with cycles, we need to also consider delay and causality

constraints. This can be done by considering, for each arc j, a se-

quence Y
(1)
j , . . . , Y

(T )
j of random variables corresponding to time steps

τ = 1, . . . , T . Then we have, in place of Equation (3.5),

H(Y
(1)
O(v), . . . , Y

(τ)
O(v) | XS(v), Y

(1)
I(v), . . . , Y

(τ−1)
O(v) ) = 0 ∀ v ∈ N .
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 2  3

1 4

5t1

t2

Fig. 3.7. Gadget for converting any general multiple session network coding
problem into a multiple unicast problem. Reprinted with permission from [37].

3.4.1 Multiple unicast networks

A special case of the multiple session network coding problem is the

multiple unicast case, i.e. multiple communication sessions each consist-

ing of one source node and one sink node. For directed wired networks,

any general multiple session network coding problem can be converted

into a multiple unicast problem without changing the solvability or lin-

ear solvability of the problem. Thus, it suffices to study the multiple

unicast case as far as capacity is concerned. The conversion procedure

uses the gadget shown in Figure 3.7. Suppose t1 and t2 are sink nodes

in an arbitrary directed network that both demand source X . We then

add five additional nodes as shown, where node 1 is an additional source

demanded by node 5, and node 4 demands source X . In the resulting

network, t1 and t2 are not sink nodes but must decode X in order to

satisfy the demands of the new sinks 4 and 5.

For an alternative undirected wired network model where each arc’s

capacity can be arbitrarily partitioned between the two directions of

information flow, it was conjectured in [90] that network coding does not

increase throughput for multiple unicast sessions. This is not however
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s2

t2

t1

s1

1 2

b1 ⊕ b2

b1

b1 ⊕ b2

b1 ⊕ b2

b1

b2

b2

Fig. 3.8. The two-unicast butterfly network. Each arc represents a directed
arc that is capable of carrying a single packet reliably. There is one packet b1

present at source node s1 that we wish to communicate to sink node t1 and
one packet b2 present at source node s2 that we wish to communicate to sink
node t2. b1 ⊕ b2 is the packet formed from the bitwise xor of the packets b1

and b2.

the case for undirected wireless networks, as we will see in the following

section.

3.5 Constructive approaches

The complexity of inter-session network coding motivates consideration

of suboptimal but useful classes of network codes that are feasible to con-

struct and implement in practice. A number of constructive approaches

are based on generalizations of simple example networks where bitwise

xor coding is useful.

3.5.1 Pairwise XOR coding in wireline networks

Figure 3.8, which we have seen before in Chapter 1, gives a simple exam-

ple of a wireline network where bitwise xor coding across two unicast

sessions doubles the common throughput that can be simultaneously

achieved for each session. This example has a “poison-antidote” inter-

pretation: the coded b1⊕b2 packet is called a poison packet, since by itself

it is not useful to either sink; each sink needs an antidote packet from

the other session’s source in order to recover its own session’s packet.

To generalize this example, each arc can be replaced by a path seg-
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remedy

poisoned

poisoned

remedy

s1 t2

t1s2

remedy request

remedy request

poisoned

Fig. 3.9. The canonical poison-antidote scenario. This is an example of inter-
session xor coding between two unicast sessions where decoding must take
place at intermediate non-sink nodes.

ment. The antidote segment can be between intermediate nodes rather

than directly from source to sink node, as shown in Figure 3.9. We can

also consider a stream of packets rather than a single packet from each

source.

For more than two unicast sessions, a tractable approach is to restrict

consideration to xor coding across pairs of unicasts. The throughput-

optimization problem then becomes the problem of optimally packing,

in the network, poison-antidote butterfly structures of the form shown

in Figure 3.9. This can be formulated as a linear optimization problem,

which we discuss in Section 5.1.3.
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b1 + b2

1 2 3

b1 b2

Fig. 3.10. Information exchange via a single relay node.

3.5.2 XOR coding in wireless networks

3.5.2.1 Canonical scenarios

The broadcast nature of the wireless medium gives rise to more situa-

tions where network coding is beneficial. The simplest example, where

two sources exchange packets via a common relay node, is given in Fig-

ure 3.10 (it is the same as Figure 1.4 of Chapter 1, but drawn without

the hyperarcs explicitly shown).

For the case where the two sources exchange a stream of packets, this

example can be generalized by replacing the single relay node with a

multiple-relay path, as illustrated in Figure 3.11. Each coded broadcast

transmission by a relay node can transfer useful information in both

directions, replacing two uncoded point-to-point transmissions. This

canonical scenario is called the information exchange scenario.

The information exchange scenario involves wireless broadcast of coded

packets by relay nodes. The path intersection scenario, illustrated in Fig-

ure 3.12, involves wireless broadcast of coded packets as well as uncoded

packets which are used for decoding the coded packets. The information

exchange and path intersection scenarios are called wireless one-hop xor

coding scenarios, since each coded packet travels one hop before being

decoded.

The poison-antidote scenario described earlier for wireline networks

can also be adapted to wireless networks. The information exchange

scenario and the path intersection scenario with two unicast sessions

can be viewed as special cases where the coded packets travel exactly

one hop, and the antidote packets travel zero and one hop respectively.

3.5.2.2 Opportunistic coding

The Completely Opportunistic Coding (cope) protocol, proposed by

Katti et al., is based on the canonical wireless one-hop xor coding sce-
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a1 b1

1 2 3 4 5

(a) The initial packets are sent uncoded from each source . . .

b1a2 a1

1 2 3 4 5

b2

(b) . . . until a packet from each source reaches an intermediate relay node.

a1 + b1

a3 a2 b2

1 2 3 4 5

b3

(c) This node can take the bitwise xor of the two packets to form a coded
packet. It then broadcasts the coded packet to its two neighbor nodes with
a single wireless transmission. Each neighbor node has already seen (and
stored) one of the two original packets, and so is able to decode the other.
Thus, the coded broadcast is equivalent to forwarding the two original pack-
ets individually.

a1 + b3

b4a4
a2 + b2

a3 + b1

1 2 3 4 5

(d) Each neighbor node now has a packet from each source, and can similarly
xor them to form a coded packet, which is then broadcast.

Fig. 3.11. The multiple-relay information exchange scenario. After [138].

narios described in the previous section, and operates over any under-

lying routing protocol (e.g., shortest path or geographic routing) and

medium access protocol (e.g., 802.11 MAC).

There is an opportunistic listening (overhearing) component: the broad-

cast nature of the wireless medium allows nodes to overhear transmis-

sions intended for other nodes; all overheard packets are stored for some

period of time. Nodes periodically send reception reports, which can

be annotations to their own transmissions, informing their neighbors of

which packets they have overheard.

In the opportunistic coding component, at each transmission opportu-

nity, a node makes a decision on which of its queued packets to code and

transmit, based on the packets’ next-hop nodes and which of these pack-

ets have been overheard by the next-hop nodes. A node with packets to
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t3

t2 s2

s3

s1

t1

Fig. 3.12. The path intersection scenario with three unicast sessions. Each
source communicates with its sink via a common relay node, and each source’s
transmission is received by the relay node as well as the other two sessions’ sink
nodes. The relay node broadcasts the bitwise xor of the three sources’ packets.
Each sink can decode as it has the other two sources’ packets. Reprinted with
permission from [39].

forward to different next hop neighbors looks for the largest subset S of

packets such that

• each packet u ∈ S has a different next hop node vu

• each of these next hop nodes vu already has all the packets in S except

u.

The packets in S are xored together to form a coded packet which is

broadcast to nodes vu, u ∈ S, each of which has enough information

to decode its intended packet u. This policy maximizes the number of

packets that are communicated by its transmission, assuming that the

nodes that receive the packet will attempt to decode immediately upon

reception. For example, consider the situation illustrated in Figure 3.13.

In this situation, the coding decision made by node 1 is to send out the

packet b1 ⊕ b2 ⊕ b3, because this allows three packets, b1, b2, and b3,

to be communicated to their next hops, while allowing the nodes that

receive the packet to decode upon reception and recover the packets that

they each desire. Node 1 does not, for example, send out the packet

b1 ⊕ b2 ⊕ b4, because only node 2 is able to immediately decode and

recover the packet that it desires, b4. The ability to make the coding

decision requires each node to know the contents of the queues of the

neighboring nodes.
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Fig. 3.13. An example of the Katti et al. queue-length-based approach. Sup-
pose the next hop for packet b1 is node 4, the next hop for packet b2 is node
3, and the next hop for packets b3 and b4 is node 2. Node 1 has a transmis-
sion opportunity on its lossless broadcast arc reaching nodes 2, 3, and 4. The
decision it makes is to send out the packet b1 ⊕ b2 ⊕ b3, because this allows
three packets, b1, b2, and b3, to be communicated to their next hops. After
[78].

Experiments have shown that opportunistic coding can significantly

improve throughput in ad hoc wireless networks using 802.11 and geo-

graphic routing, particularly under congested network conditions. We

discuss cope further in Section 5.2.2, in relation to subgraph selection.

3.5.2.3 Coding-influenced routing

There can be greater scope for network coding gains when routing is

influenced by potential coding opportunities. For instance, consider the
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s1

t2
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Fig. 3.14. The reverse carpooling scenario.

information exchange scenario, which involves two unicast flows such

that the source of each unicast is co-located with the sink of the other.

This can be generalized to the case of two unicast sessions whose source

and sink nodes are not co-located, by selecting routes for the two sessions

which overlap in opposite directions. In analogy to carpooling, each

session’s route may involve a detour which is compensated for by the

sharing of transmissions on the common portion of the route, hence the

name reverse carpooling. An illustration is given in Figure 3.14.

The problem of finding the best solution within a class of network

codes is a subgraph selection problem. Tractable optimization problems

can be obtained by limiting consideration to strategies involving reverse

carpooling, poison-antidote and/or path intersection scenarios with a

limit on the number of constituent sessions of a coded packet. This is

discussed in Sections 5.1.3 and 5.2.2.

3.6 Notes and further reading

The algebraic characterization and construction of scalar linear non-

multicast network codes presented in this chapter is from Koetter and

Médard [85]. Rasala Lehman and Lehman [116] determined the com-

plexity classes of different scalar linear network coding problems. Ex-

ample networks requiring vector linear rather than scalar linear coding

solutions were given in Rasala Lehman and Lehman [116], Médard et

al. [104] and Riis [119]. Dougherty et al. showed in [38] that linear
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coding is insufficient in general for non-multicast networks, and in [37]

that Shannon-type inequalities are insufficient in general for analyzing

network coding capacity, using connections between matroid theory and

network coding described in [37]. Group network codes have been con-

sidered by Chan [21].

The entropy function-based characterization of capacity for acyclic

networks presented in this chapter is due to Yan et al. [145]. Entropy-

based approaches and other techniques for bounding communication

rates in non-multicast problems have been given in various works in-

cluding [104, 38, 147, 86, 2, 53].

The conversion processThe study of network coding on the undirected

wired network model was initiated by Li and Li [89].

On the code construction side, the poison-antidote approach for multi-

ple unicast network coding was introduced by Ratnakar et al. [117, 118].

The information exchange scenario was introduced by Wu et al. [139].

The (cope) protocol was developed by Katti et al. [77, 78]. We discuss

work on subgraph selection for inter-session network coding in Chap-

ter 5.



4

Network Coding in Lossy Networks

In this chapter, we discuss the use of network coding, particularly ran-

dom linear network coding, in lossy networks with packet erasures. The

main result that we establish is that random linear network coding

achieves the capacity of a single connection (unicast or multicast) in

a given coding subgraph, i.e., by efficiently providing robustness, ran-

dom linear network coding allows a connection to be established at the

maximum throughput that is possible in a given coding subgraph.

Throughout this chapter, we assume that a coding subgraph is given;

we address the problem of subgraph selection in Chapter 5, where we

also discuss whether separating coding and subgraph selection is optimal.

The lossy coding subgraphs we consider here are applicable to various

types of network, including multi-hop wireless networks and peer-to-peer

networks. In the latter case, losses are not caused so much by unreliable

links, but rather by unreliable nodes that intermittently join and leave

the network.

We model coding subgraphs using the time-expanded subgraphs de-

scribed in Section 1.3. Recall that a time-expanded subgraph describes

the times and locations at which packet injections and receptions occur.

Since a coding subgraph specifies only to the times at which packet in-

jections occur, a time-expanded subgraph is in fact an element in the

random ensemble of a coding subgraph. A time-expanded subgraph is

shown in Figure 4.1.

For simplicity, we assume that links are delay-free in the sense that

the arrival time of a received packet corresponds to the time that it was

injected to the link. This assumption does not alter the results that

we derive in this chapter, and a link with delay can be converted into

delay-free links by introducing an artificial node implementing a trivial

coding function. On the left of Figure 4.2, we show a fragment of a

76



Network Coding in Lossy Networks 77

b3 = f(b1, b2)

b1 b2

time1 2 3

Fig. 4.1. Coding at a node in a time-expanded subgraph. Packet b1 is received
at time 1, and packet b2 is received at time 2. The thick, horizontal arcs have
infinite capacity, and represent data stored at a node. Thus, at time 3, packets
b1 and b2 can be used to form packet b3.

1

Node 1

Node 1′

Node 2

b1

2 time

b1

1

b1

2 time

Fig. 4.2. Conversion of a link with delay into delay-free links.

time-expanded subgraph that depicts a transmission with delay. The

packet b1 is injected by node 1 at time 1, and this packet is not received

by node 2 until time 2. On the right, we depict the same transmission,

but we introduce an artificial node 1′. Node 1′ does nothing but store b1
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time1

Node 1

Node 2

Node 3

τ0

Fig. 4.3. A time-expanded subgraph where, between time 0 and time τ , a
packet is successfully transmitted from node 1 to node 2 and another is suc-
cessfully transmitted from node 1 to both nodes 2 and 3.

then transmit it out again at time 2. In this way, we can suppose that

there is a delay-free transmission from node 1 to node 1′ at time 1 and

one from node 1′ to node 2 at time 2.

Let AiJ be the counting process describing the arrival of packets that

are injected on hyperarc (i, J), and let AiJK be the counting process

describing the arrival of packets that are injected on hyperarc (i, J) and

received by exactly the set of nodes K ⊂ J ; i.e., for τ ≥ 0, AiJ (τ) is

the total number of packets that are injected on hyperarc (i, J) between

time 0 and time τ , and AiJK(τ) is the total number of packets that are

injected on hyperarc (i, J) and received by all nodes in K (and no nodes

in N \K) between time 0 and time τ . For example, suppose that three

packets are injected on hyperarc (1, {2, 3}) between time 0 and time τ0
and that, of these three packets, one is received by node 2 only, one is

lost entirely, and one is received by both nodes 2 and 3; then we have

A1(23)(τ0) = 3, A1(23)∅(τ0) = 1, A1(23)2τ0) = 1, A1(23)3(τ0) = 0, and

A1(23)(23)(τ0) = 1. A possible time-expanded subgraph corresponding

to these events is shown in Figure 4.3.

We assume that AiJ has an average rate ziJ and that AiJK has an
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average rate ziJK ; more precisely, we assume that

lim
τ→∞

AiJ (τ)

τ
= ziJ

and that

lim
τ→∞

AiJK(τ)

τ
= ziJK

almost surely. Hence we have ziJ =
∑

K⊂J ziJK and, if the link is

lossless, we have ziJK = 0 for all K ( J . The vector z, consisting of

ziJ , (i, J) ∈ A, is the coding subgraph that we are given.

In Section 4.1, we specify precisely what we mean by random linear

network coding in a lossy network, then, in Section 4.2, we establish the

main result of this chapter: we show that random linear network coding

achieves the capacity of a single connection in a given coding subgraph.

This result is concerned only with throughput and does not consider

delay: in Section 4.3, we strengthen the result in the special case of

Poisson traffic with i.i.d. losses by giving error exponents. These error

exponents allow us to quantify the rate of decay of the probability of

error with coding delay and to determine the parameters of importance

in this decay.

4.1 Random linear network coding

The specific coding scheme we consider is as follows. We suppose that,

at the source node, we have K message packets w1, w2, . . . , wK , which

are vectors of length λ over some finite field Fq. (If the packet length is

b bits, then we take λ = ⌈b/ log2 q⌉.) The message packets are initially

present in the memory of the source node.

The coding operation performed by each node is simple to describe

and is the same for every node: received packets are stored into the

node’s memory, and packets are formed for injection with random linear

combinations of its memory contents whenever a packet injection occurs

on an outgoing link. The coefficients of the combination are drawn

uniformly from Fq.

Since all coding is linear, we can write any packet u in the network

as a linear combination of w1, w2, . . . , wK , namely, u =
∑K

k=1 γkwk. We

call γ the global encoding vector of u, and we assume that it is sent

along with u, as side information in its header. The overhead this incurs

(namely, K log2 q bits) is negligible if packets are sufficiently large.

Nodes are assumed to have unlimited memory. The scheme can be
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Initialization:

• The source node stores the message packets w1, w2, . . . , wK in its
memory.

Operation:

• When a packet is received by a node,

– the node stores the packet in its memory.

• When a packet injection occurs on an outgoing link of a node,

– the node forms the packet from a random linear combination
of the packets in its memory. Suppose the node has L packets
u1, u2, . . . , uL in its memory. Then the packet formed is

u0 :=
L
∑

l=1

αlul,

where αl is chosen according to a uniform distribution over the
elements of Fq. The packet’s global encoding vector γ, which

satisfies u0 =
∑K

k=1 γkwk, is placed in its header.

Decoding:

• Each sink node performs Gaussian elimination on the set of global
encoding vectors from the packets in its memory. If it is able
to find an inverse, it applies the inverse to the packets to obtain
w1, w2, . . . , wK ; otherwise, a decoding error occurs.

Fig. 4.4. Summary of the random linear network coding scheme used in this
chapter (cf. Section 2.5.1.1).

modified so that received packets are stored into memory only if their

global encoding vectors are linearly-independent of those already stored.

This modification keeps our results unchanged while ensuring that nodes

never need to store more than K packets.

A sink node collects packets and, if it has K packets with linearly-

independent global encoding vectors, it is able to recover the message

packets. Decoding can be done by Gaussian elimination. The scheme

can be run either for a predetermined duration or, in the case of rateless

operation, until successful decoding at the sink nodes. We summarize

the scheme in Figure 4.4.

The scheme is carried out for a single block of K message packets at

the source. If the source has more packets to send, then the scheme is

repeated with all nodes flushed of their memory contents.
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21 3

Fig. 4.5. A network consisting of two point-to-point links in tandem.
Reprinted with permission from [93].

4.2 Coding theorems

In this section, we specify achievable rate intervals for random linear

network coding in various scenarios. The fact that the intervals we

specify are the largest possible (i.e., that random linear network coding

is capacity-achieving) can be seen by simply noting that the rate of a

connection must be limited by the rate at which distinct packets are

being received over any cut between the source and the sink. A formal

converse can be obtained using the cut-set bound for multi-terminal

networks (see [28, Section 14.10]).

4.2.1 Unicast connections

4.2.1.1 Two-link tandem network

We develop our general result for unicast connections by extending from

some special cases. We begin with the simplest non-trivial case: that of

two point-to-point links in tandem (see Figure 4.5).

Suppose we wish to establish a connection of rate arbitrarily close to

R packets per unit time from node 1 to node 3. Suppose further that

random linear network coding is run for a total time ∆, from time 0

until time ∆, and that, in this time, a total of N packets is received by

node 2. We call these packets v1, v2, . . . , vN .

Any packet u received by a node is a linear combination of v1, v2, . . . , vN ,

so we can write

u =

N
∑

n=1

βnvn.

Now, since vn is formed by a random linear combination of the message

packets w1, w2, . . . , wK , we have

vn =

K
∑

k=1

αnkwk
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for n = 1, 2, . . . , N . Hence

u =

K
∑

k=1

(

N
∑

n=1

βnαnk

)

wk,

and it follows that the kth component of the global encoding vector of

u is given by

γk =

N
∑

n=1

βnαnk.

We call the vector β associated with u the auxiliary encoding vector of u,

and we see that any node that receives ⌊K(1 + ε)⌋ or more packets with

linearly-independent auxiliary encoding vectors has ⌊K(1 + ε)⌋ packets

whose global encoding vectors collectively form a random ⌊K(1+ε)⌋×K

matrix over Fq, with all entries chosen uniformly. If this matrix has rank

K, then node 3 is able to recover the message packets. The probability

that a random ⌊K(1+ε)⌋×K matrix has rankK is, by a simple counting

argument,
∏⌊K(1+ε)⌋

k=1+⌊K(1+ε)⌋−K (1 − 1/qk), which can be made arbitrarily

close to 1 by taking K arbitrarily large. Therefore, to determine whether

node 3 can recover the message packets, we essentially need only to

determine whether it receives ⌊K(1 + ε)⌋ or more packets with linearly-

independent auxiliary encoding vectors.

Our proof is based on tracking the propagation of what we call inno-

vative packets. Such packets are innovative in the sense that they carry

new, as yet unknown, information about v1, v2, . . . , vN to a node. It

turns out that the propagation of innovative packets through a network

follows the propagation of jobs through a queueing network, for which

fluid flow models give good approximations. We first give a heuristic

argument in terms of this fluid analogy before proceeding to a formal

argument.

Since the packets being received by node 2 are the packets v1, v2, . . . , vN

themselves, it is clear that every packet being received by node 2 is in-

novative. Thus, innovative packets arrive at node 2 at a rate of z122,

and this can be approximated by fluid flowing in at rate z122. These

innovative packets are stored in node 2’s memory, so the fluid that flows

in is stored in a reservoir.

Packets, now, are being received by node 3 at a rate of z233, but

whether these packets are innovative depends on the contents of node 2’s

memory. If node 2 has more information about v1, v2, . . . , vN than node

3 does, then it is highly likely that new information will be described to
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2

3

z122

z233

Fig. 4.6. Fluid flow system corresponding to two-link tandem network.
Reprinted with permission from [93].

node 3 in the next packet that it receives. Otherwise, if node 2 and node

3 have the same degree of information about v1, v2, . . . , vN , then packets

received by node 3 cannot possibly be innovative. Thus, the situation

is as though fluid flows into node 3’s reservoir at a rate of z233, but the

level of node 3’s reservoir is restricted from ever exceeding that of node

2’s reservoir. The level of node 3’s reservoir, which is ultimately what

we are concerned with, can equivalently be determined by fluid flowing

out of node 2’s reservoir at rate z233.

We therefore see that the two-link tandem network in Figure 4.5 maps

to the fluid flow system shown in Figure 4.6. It is clear that, in this

system, fluid flows into node 3’s reservoir at rate min(z122, z233). This

rate determines the rate at which packets with new information about

v1, v2, . . . , vN—and, therefore, linearly-independent auxiliary encoding

vectors—arrive at node 3. Hence the time required for node 3 to receive

⌊K(1+ ε)⌋ packets with linearly-independent auxiliary encoding vectors

is, for large K, approximately K(1 + ε)/min(z122, z233), which implies

that a connection of rate arbitrarily close to R packets per unit time can

be established provided that

R ≤ min(z122, z233). (4.1)

The right-hand side of (4.1) is indeed the capacity of the two-link tandem

network, and we therefore have the desired result for this case.

We now proceed to establish the result formally. All packets received

by node 2, namely v1, v2, . . . , vN , are considered innovative. We asso-

ciate with node 2 the set of vectors U , which varies with time and is

initially empty, i.e., U(0) := ∅. If packet u is received by node 2 at time

τ , then its auxiliary encoding vector β is added to U at time τ , i.e.,

U(τ+) := {β} ∪ U(τ).

We associate with node 3 the set of vectorsW , which again varies with

time and is initially empty. Suppose packet u, with auxiliary encoding
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vector β, is received by node 3 at time τ . Let µ be a positive integer,

which we call the innovation order. Then we say u is innovative if

β /∈ span(W (τ)) and |U(τ)| > |W (τ)|+ µ− 1. If u is innovative, then β

is added to W at time τ .†

The definition of innovative is designed to satisfy two properties: First,

we require that W (∆), the set of vectors in W when the scheme termi-

nates, is linearly independent. Second, we require that, when a packet is

received by node 3 and |U(τ)| > |W (τ)|+µ−1, it is innovative with high

probability. The innovation order µ is an arbitrary factor that ensures

that the latter property is satisfied.

Suppose |U(τ)| > |W (τ)| + µ− 1. Since u is a random linear combi-

nation of vectors in U(τ), it follows that u is innovative with some non-

trivial probability. More precisely, because β is uniformly-distributed

over q|U(τ)| possibilities, of which at least q|U(τ)| − q|W (τ)| are not in

span(W (τ)), it follows that

Pr(β /∈ span(W (τ))) ≥
q|U(τ)| − q|W (τ)|

q|U(τ)|

= 1 − q|W (τ)|−|U(τ)|

≥ 1 − q−µ.

Hence u is innovative with probability at least 1 − q−µ. Since we can

always discard innovative packets, we assume that the event occurs with

probability exactly 1 − q−µ. If instead |U(τ)| ≤ |W (τ)| + µ − 1, then

we see that u cannot be innovative, and this remains true at least until

another arrival occurs at node 2. Therefore, for an innovation order of

µ, the propagation of innovative packets through node 2 is described by

the propagation of jobs through a single-server queueing station with

queue size (|U(τ)| − |W (τ)| − µ + 1)+, where, for a real number x,

(x)+ := max(x, 0). We similarly define (x)− := max(−x, 0).

The queueing station is serviced with probability 1−q−µ whenever the

queue is non-empty and a received packet arrives on arc (2, 3). We can

equivalently consider “candidate” packets that arrive with probability

1 − q−µ whenever a received packet arrives on arc (2, 3) and say that

† This definition of innovative differs from merely being informative, which is the
sense in which innovative is used in [27]. Indeed, a packet can be informative,
in the sense that in gives a node some new, as yet unknown, information about
v1, v2, . . . , vN (or about w1, w2, . . . , wK), and not satisfy this definition of innova-
tive. We have defined innovative so that innovative packets are informative (with
respect to other innovative packets at the node), but not necessarily conversely.
This allows us to bound, or dominate, the behavior of random linear network
coding, though we cannot describe it exactly.
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the queueing station is serviced whenever the queue is non-empty and a

candidate packet arrives on arc (2, 3). We consider all packets received

on arc (1, 2) to be candidate packets.

The system we wish to analyze, therefore, is the following simple

queueing system: Jobs arrive at node 2 according to the arrival of re-

ceived packets on arc (1, 2) and, with the exception of the first µ−1 jobs,

enter node 2’s queue. The jobs in node 2’s queue are serviced by the

arrival of candidate packets on arc (2, 3) and exit after being serviced.

The number of jobs exiting is a lower bound on the number of packets

with linearly-independent auxiliary encoding vectors received by node

3.

We analyze the queueing system of interest using the fluid approxima-

tion for discrete-flow networks (see, e.g., [24, 25]). We do not explicitly

account for the fact that the first µ − 1 jobs arriving at node 2 do not

enter its queue because this fact has no effect on job throughput. Let B1,

B, and C be the counting processes for the arrival of received packets on

arc (1, 2), of innovative packets on arc (2, 3), and of candidate packets

on arc (2, 3), respectively. Let Q(τ) be the number of jobs queued for

service at node 2 at time τ . Hence Q = B1 − B. Let X := B1 − C and

Y := C −B. Then

Q = X + Y. (4.2)

Moreover, we have

Q(τ)dY (τ) = 0, (4.3)

dY (τ) ≥ 0, (4.4)

and

Q(τ) ≥ 0 (4.5)

for all τ ≥ 0, and

Y (0) = 0. (4.6)

We observe now that equations (4.2)–(4.6) give us the conditions for

a Skorohod problem (see, e.g., [25, Section 7.2]) and, by the oblique

reflection mapping theorem, there is a well-defined, Lipschitz-continuous

mapping Φ such that Q = Φ(X).
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Let

C̄(K)(τ) :=
C(Kτ)

K
,

X̄(K)(τ) :=
X(Kτ)

K
,

and

Q̄(K)(τ) :=
Q(Kτ)

K
.

Recall that A233 is the counting process for the arrival of received

packets on arc (2, 3). Therefore, C(τ) is the sum of A233(τ) Bernoulli-

distributed random variables with parameter 1 − q−µ. Hence

C̄(τ) := lim
K→∞

C̄(K)(τ)

= lim
K→∞

(1 − q−µ)
A233(Kτ)

K
a.s.

= (1 − q−µ)z233τ a.s.,

where the last equality follows by the assumptions of the model. There-

fore

X̄(τ) := lim
K→∞

X̄(K)(τ) = (z122 − (1 − q−µ)z233)τ a.s.

By the Lipschitz-continuity of Φ, then, it follows that Q̄ := limK→∞ Q̄(K) =

Φ(X̄), i.e., Q̄ is, almost surely, the unique Q̄ that satisfies, for some Ȳ ,

Q̄(τ) = (z122 − (1 − q−µ)z233)τ + Ȳ , (4.7)

Q̄(τ)dȲ (τ) = 0, (4.8)

dȲ (τ) ≥ 0, (4.9)

and

Q̄(τ) ≥ 0 (4.10)

for all τ ≥ 0, and

Ȳ (0) = 0. (4.11)

A pair (Q̄, Ȳ ) that satisfies (4.7)–(4.11) is

Q̄(τ) = (z122 − (1 − q−µ)z233)
+τ (4.12)

and

Ȳ (τ) = (z122 − (1 − q−µ)z233)
−τ.

Hence Q̄ is given by equation (4.12).
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L + 121 · · ·

Fig. 4.7. A network consisting of L point-to-point links in tandem. Reprinted
with permission from [93].

Recall that node 3 can recover the message packets with high proba-

bility if it receives ⌊K(1+ε)⌋ packets with linearly-independent auxiliary

encoding vectors and that the number of jobs exiting the queueing sys-

tem is a lower bound on the number of packets with linearly-independent

auxiliary encoding vectors received by node 3. Therefore, node 3 can

recover the message packets with high probability if ⌊K(1 + ε)⌋ or more

jobs exit the queueing system. Let ν be the number of jobs that have

exited the queueing system by time ∆. Then

ν = B1(∆) −Q(∆).

Take K = ⌈(1 − q−µ)∆RcR/(1 + ε)⌉, where 0 < Rc < 1. Then

lim
K→∞

ν

⌊K(1 + ε)⌋
= lim

K→∞

B1(∆) −Q(∆)

K(1 + ε)

=
z122 − (z122 − (1 − q−µ)z233)

+

(1 − q−µ)RcR

=
min(z122, (1 − q−µ)z233)

(1 − q−µ)RcR

≥
1

Rc

min(z122, z233)

R
> 1

provided that

R ≤ min(z122, z233). (4.13)

Hence, for all R satisfying (4.13), ν ≥ ⌊K(1 + ε)⌋ with probability arbi-

trarily close to 1 for K sufficiently large. The rate achieved is

K

∆
≥

(1 − q−µ)Rc

1 + ε
R,

which can be made arbitrarily close to R by varying µ, Rc, and ε.

4.2.1.2 L-link tandem network

We extend our result to another special case before considering general

unicast connections: we consider the case of a tandem network consisting

of L point-to-point links and L+ 1 nodes (see Figure 4.7).
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L + 1

2

zL(L+1)(L+1)

z233

z122

. . .

Fig. 4.8. Fluid flow system corresponding to L-link tandem network.
Reprinted with permission from [93].

This case is a straightforward extension of that of the two-link tandem

network. It maps to the fluid flow system shown in Figure 4.8. In this

system, it is clear that fluid flows into node (L + 1)’s reservoir at rate

min1≤i≤L{zi(i+1)(i+1)}. Hence a connection of rate arbitrarily close to

R packets per unit time from node 1 to node L + 1 can be established

provided that

R ≤ min
1≤i≤L

{zi(i+1)(i+1)}. (4.14)

Since the right-hand side of (4.14) is indeed the capacity of the L-link

tandem network, we therefore have the desired result for this case.

The formal argument requires care. For i = 2, 3, . . . , L+1, we associate

with node i the set of vectors Vi, which varies with time and is initially

empty. We define U := V2 andW := VL+1. As in the case of the two-link

tandem, all packets received by node 2 are considered innovative and,

if packet u is received by node 2 at time τ , then its auxiliary encoding

vector β is added to U at time τ . For i = 3, 4, . . . , L + 1, if packet u,

with auxiliary encoding vector β, is received by node i at time τ , then

we say u is innovative if β /∈ span(Vi(τ)) and |Vi−1(τ)| > |Vi(τ)|+µ− 1.

If u is innovative, then β is added to Vi at time τ .

This definition of innovative is a straightforward extension of that in

Section 4.2.1.1. The first property remains the same: we continue to

require that W (∆) is a set of linearly-independent vectors. We extend

the second property so that, when a packet is received by node i for any

i = 3, 4, . . . , L+ 1 and |Vi−1(τ)| > |Vi(τ)| + µ − 1, it is innovative with

high probability.

Take some i ∈ {3, 4, . . . , L+1}. Suppose that packet u, with auxiliary

encoding vector β, is received by node i at time τ and that |Vi−1(τ)| >

|Vi(τ)|+µ−1. Thus, the auxiliary encoding vector β is a random linear

combination of vectors in some set V0 that contains Vi−1(τ). Hence,
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because β is uniformly-distributed over q|V0| possibilities, of which at

least q|V0| − q|Vi(τ)| are not in span(Vi(τ)), it follows that

Pr(β /∈ span(Vi(τ))) ≥
q|V0| − q|Vi(τ)|

q|V0|

= 1 − q|Vi(τ)|−|V0|

≥ 1 − q|Vi(τ)|−|Vi−1(τ)|

≥ 1 − q−µ.

Therefore u is innovative with probability at least 1 − q−µ. Following

the argument in Section 4.2.1.1, we see, for all i = 2, 3, . . . , L, that the

propagation of innovative packets through node i is described by the

propagation of jobs through a single-server queueing station with queue

size (|Vi(τ)|−|Vi+1(τ)|−µ+1)+ and that the queueing station is serviced

with probability 1−q−µ whenever the queue is non-empty and a received

packet arrives on arc (i, i+1). We again consider candidate packets that

arrive with probability 1 − q−µ whenever a received packet arrives on

arc (i, i+ 1) and say that the queueing station is serviced whenever the

queue is non-empty and a candidate packet arrives on arc (i, i+ 1).

The system we wish to analyze in this case is therefore the following

simple queueing network: Jobs arrive at node 2 according to the arrival

of received packets on arc (1, 2) and, with the exception of the first µ−1

jobs, enter node 2’s queue. For i = 2, 3, . . . , L − 1, the jobs in node i’s

queue are serviced by the arrival of candidate packets on arc (i, i+1) and,

with the exception of the first µ−1 jobs, enter node (i+1)’s queue after

being serviced. The jobs in node L’s queue are serviced by the arrival of

candidate packets on arc (L,L + 1) and exit after being serviced. The

number of jobs exiting is a lower bound on the number of packets with

linearly-independent auxiliary encoding vectors received by node L+ 1.

We again analyze the queueing network of interest using the fluid

approximation for discrete-flow networks, and we again do not explicitly

account for the fact that the first µ − 1 jobs arriving at a queueing

node do not enter its queue. Let B1 be the counting process for the

arrival of received packets on arc (1, 2). For i = 2, 3, . . . , L, let Bi, and

Ci be the counting processes for the arrival of innovative packets and

candidate packets on arc (i, i+1), respectively. Let Qi(τ) be the number

of jobs queued for service at node i at time τ . Hence, for i = 2, 3, . . . , L,

Qi = Bi−1−Bi. Let Xi := Ci−1−Ci and Yi := Ci−Bi, where C1 := B1.

Then, we obtain a Skorohod problem with the following conditions: For
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all i = 2, 3, . . . , L,

Qi = Xi − Yi−1 + Yi.

For all τ ≥ 0 and i = 2, 3, . . . , L,

Qi(τ)dYi(τ) = 0,

dYi(τ) ≥ 0,

and

Qi(τ) ≥ 0.

For all i = 2, 3, . . . , L,

Yi(0) = 0.

Let

Q̄
(K)
i (τ) :=

Qi(Kτ)

K

and Q̄i := limK→∞ Q̄
(K)
i for i = 2, 3, . . . , L. Then the vector Q̄ is,

almost surely, the unique Q̄ that satisfies, for some Ȳ ,

Q̄i(τ) =











(z122 − (1 − q−µ)z233)τ + Ȳ2(τ) if i = 2,

(1 − q−µ)(z(i−1)ii − zi(i+1)(i+1))τ

+Ȳi(τ) − Ȳi−1(τ)
otherwise,

(4.15)

Q̄i(τ)dȲi(τ) = 0, (4.16)

dȲi(τ) ≥ 0, (4.17)

and

Q̄i(τ) ≥ 0 (4.18)

for all τ ≥ 0 and i = 2, 3, . . . , L, and

Ȳi(0) = 0 (4.19)

for all i = 2, 3, . . . , L.

A pair (Q̄, Ȳ ) that satisfies (4.15)–(4.19) is

Q̄i(τ) = (min(z122, min
2≤j<i

{(1 − q−µ)zj(j+1)(j+1)})

− (1 − q−µ)zi(i+1)(i+1))
+τ (4.20)

and

Ȳi(τ) = (min(z122, min
2≤j<i

{(1 − q−µ)zj(j+1)(j+1)})

− (1 − q−µ)zi(i+1)(i+1))
−τ.
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Hence Q̄ is given by equation (4.20).

The number of jobs that have exited the queueing network by time ∆

is given by

ν = B1(∆) −
L
∑

i=2

Qi(∆).

Take K = ⌈(1 − q−µ)∆RcR/(1 + ε)⌉, where 0 < Rc < 1. Then

lim
K→∞

ν

⌊K(1 + ε)⌋
= lim

K→∞

B1(∆) −
∑L

i=2Q(∆)

K(1 + ε)

=
min(z122,min2≤i≤L{(1 − q−µ)zi(i+1)(i+1)})

(1 − q−µ)RcR

≥
1

Rc

min1≤i≤L{zi(i+1)(i+1)}

R
> 1

(4.21)

provided that

R ≤ min
1≤i≤L

{zi(i+1)(i+1)}. (4.22)

Hence, for all R satisfying (4.22), ν ≥ ⌊K(1 + ε)⌋ with probability arbi-

trarily close to 1 for K sufficiently large. The rate can again be made

arbitrarily close to R by varying µ, Rc, and ε.

4.2.1.3 General unicast connection

We now extend our result to general unicast connections. The strategy

here is simple: A general unicast connection can be formulated as a

flow, which can be decomposed into a finite number of paths. Each of

these paths is a tandem network, which is the case that we have just

considered.

Suppose that we wish to establish a connection of rate arbitrarily close

to R packets per unit time from source node s to sink node t. Suppose

further that

R ≤ min
Q∈Q(s,t)







∑

(i,J)∈Γ+(Q)

∑

K 6⊂Q

ziJK







,

where Q(s, t) is the set of all cuts between s and t, and Γ+(Q) denotes

the set of forward hyperarcs of the cut Q, i.e.,

Γ+(Q) := {(i, J) ∈ A | i ∈ Q, J \Q 6= ∅}.
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Therefore, by the max-flow/min-cut theorem (see, e.g., [5, Sections 6.5–

6.7], [11, Section 3.1]), there exists a flow vector x satisfying

∑

{J|(i,J)∈A}

∑

j∈J

xiJj −
∑

{j|(j,I)∈A,i∈I}

xjIi =















R if i = s,

−R if i = t,

0 otherwise,

for all i ∈ N ,
∑

j∈K

xiJj ≤
∑

{L⊂J|L∩K 6=∅}

ziJL (4.23)

for all (i, J) ∈ A and K ⊂ J , and xiJj ≥ 0 for all (i, J) ∈ A and j ∈ J .

Using the conformal realization theorem (see, e.g., [11, Section 1.1]),

we decompose x into a finite set of paths {p1, p2, . . . , pM}, each carrying

positive flow Rm for m = 1, 2, . . . ,M , such that
∑M

m=1Rm = R. We

treat each path pm as a tandem network and use it to deliver innova-

tive packets at rate arbitrarily close to Rm, resulting in an overall rate

for innovative packets arriving at node t that is arbitrarily close to R.

Some care must be take in the interpretation of the flow and its path

decomposition because the same packet may be received by more than

one node.

Consider a single path pm. We write pm = {i1, i2, . . . , iLm
, iLm+1},

where i1 = s and iLm+1 = t. For l = 2, 3, . . . , Lm + 1, we associate with

node il the set of vectors V
(pm)
l , which varies with time and is initially

empty. We define U (pm) := V
(pm)
2 and W (pm) := V

(pm)
Lm+1.

We note that the constraint (4.23) can also be written as

xiJj ≤
∑

{L⊂J|j∈L}

α
(j)
iJLziJL

for all (i, J) ∈ A and j ∈ J , where
∑

j∈L α
(j)
iJL = 1 for all (i, J) ∈ A and

L ⊂ J , and α
(j)
iJL ≥ 0 for all (i, J) ∈ A, L ⊂ J , and j ∈ L. Suppose

packet u, with auxiliary encoding vector β, is placed on hyperarc (i1, J)

and received by K ⊂ J , where K ∋ i2, at time τ . We associate with

u the independent random variable Pu, which takes the value m with

probability Rmα
(i2)
i1JK/

∑

{L⊂J|i2∈L} α
(i2)
i1JLziJL. If Pu = m, then we say

u is innovative on path pm, and β is added to U (pm) at time τ .

Take l = 2, 3, . . . , Lm. Now suppose packet u, with auxiliary en-

coding vector β, is placed on hyperarc (il, J) and received by K ⊂

J , where K ∋ il+1, at time τ . We associate with u the indepen-

dent random variable Pu, which takes the value m with probability
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Rmα
(il+1)
ilJK /

∑

{L⊂J|il+1∈L} α
(il+1)
ilJL ziJL. We say u is innovative on path

pm if Pu = m, β /∈ span(∪m−1
n=1 W

(pn)(∆)∪V
(pm)

l+1 (τ)∪∪M
n=m+1U

(pn)(∆)),

and |V
(pm)
l (τ)| > |V

(pm)
l+1 (τ)| + µ− 1.

This definition of innovative is somewhat more complicated than that

in Sections 4.2.1.1 and 4.2.1.2 because we now have M paths that we

wish to analyze separately. We have again designed the definition to

satisfy two properties: First, we require that ∪M
m=1W

(pm)(∆) is linearly-

independent. This is easily verified: Vectors are added to W (p1)(τ) only

if they are linearly independent of existing ones; vectors are added to

W (p2)(τ) only if they are linearly independent of existing ones and ones

in W (p1)(∆); and so on. Second, we require that, when a packet is

received by node il, Pu = m, and |V
(pm)
l−1 (τ)| > |V

(pm)
l (τ)| + µ− 1, it is

innovative on path pm with high probability.

Take l ∈ {3, 4, . . . , Lm + 1}. Suppose that packet u, with auxiliary

encoding vector β, is received by node il at time τ , that Pu = m, and

that |V
(pm)
l−1 (τ)| > |V

(pm)
l (τ)|+µ−1. Thus, the auxiliary encoding vector

β is a random linear combination of vectors in some set V0 that contains

V
(pm)
l−1 (τ). Hence β is uniformly-distributed over q|V0| possibilities, of

which at least q|V0| − qd are not in span(V
(pm)
l (τ) ∪ Ṽ\m), where d :=

dim(span(V0) ∩ span(V
(pm)
l (τ) ∪ Ṽ\m)). We have

d = dim(span(V0)) + dim(span(V
(pm)
l (τ) ∪ Ṽ\m))

− dim(span(V0 ∪ V
(pm)
l (τ) ∪ Ṽ\m))

≤ dim(span(V0 \ V
(pm)
l−1 (τ))) + dim(span(V

(pm)
l−1 (τ)))

+ dim(span(V
(pm)
l (τ) ∪ Ṽ\m))

− dim(span(V0 ∪ V
(pm)
l (τ) ∪ Ṽ\m))

≤ dim(span(V0 \ V
(pm)
l−1 (τ))) + dim(span(V

(pm)
l−1 (τ)))

+ dim(span(V
(pm)
l (τ) ∪ Ṽ\m))

− dim(span(V
(pm)
l−1 (τ) ∪ V

(pm)
l (τ) ∪ Ṽ\m)).

Since V
(pm)
l−1 (τ)∪Ṽ\m and V

(pm)
l (τ)∪Ṽ\m both form linearly-independent

sets,

dim(span(V
(pm)
l−1 (τ))) + dim(span(V

(pm)
l (τ) ∪ Ṽ\m))

= dim(span(V
(pm)

l−1 (τ))) + dim(span(V
(pm)

l (τ))) + dim(span(Ṽ\m))

= dim(span(V
(pm)

l (τ))) + dim(span(V
(pm)

l−1 (τ) ∪ Ṽ\m)).
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Hence it follows that

d ≤ dim(span(V0 \ V
(pm)
l−1 (τ))) + dim(span(V

(pm)
l (τ)))

+ dim(span(V
(pm)
l−1 (τ) ∪ Ṽ\m))

− dim(span(V
(pm)
l−1 (τ) ∪ V

(pm)
l (τ) ∪ Ṽ\m))

≤ dim(span(V0 \ V
(pm)
l−1 (τ))) + dim(span(V

(pm)
l (τ)))

≤ |V0 \ V
(pm)
l−1 (τ)| + |V

(pm)
l (τ)|

= |V0| − |V
(pm)
l−1 (τ)| + |V

(pm)
l (τ)|,

which yields

d− |V0| ≤ |V
(pm)
l (τ)| − |V

(pm)
l−1 (τ)| ≤ −ρ.

Therefore, it follows that

Pr(β /∈ span(V
(pm)
l (τ) ∪ Ṽ\m)) ≥

q|V0| − qd

q|V0|
= 1 − qd−|V0| ≥ 1 − q−µ.

We see then that, if we consider only those packets such that Pu = m,

the conditions that govern the propagation of innovative packets are

exactly those of an Lm-link tandem network, which we dealt with in

Section 4.2.1.2. By recalling the distribution of Pu, it follows that the

propagation of innovative packets along path pm behaves like an Lm-link

tandem network with average arrival rate Rm on every link. Since we

have assumed nothing special about m, this statement applies for all

m = 1, 2, . . . ,M .

Take K = ⌈(1 − q−µ)∆RcR/(1 + ε)⌉, where 0 < Rc < 1. Then, by

equation (4.21),

lim
K→∞

|W (pm)(∆)|

⌊K(1 + ε)⌋
>
Rm

R
.

Hence

lim
K→∞

| ∪M
m=1 W

(pm)(∆)|

⌊K(1 + ε)⌋
=

M
∑

m=1

|W (pm)(∆)|

⌊K(1 + ε)⌋
>

M
∑

m=1

Rm

R
= 1.

As before, the rate can be made arbitrarily close to R by varying µ, Rc,

and ε.

4.2.2 Multicast connections

The result for multicast connections is, in fact, a straightforward exten-

sion of that for unicast connections. In this case, rather than a single
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sink t, we have a set of sinks T . As in the framework of static broad-

casting (see [127, 128]), we allow sink nodes to operate at different rates.

We suppose that sink t ∈ T wishes to achieve rate arbitrarily close to

Rt, i.e., to recover the K message packets, sink t wishes to wait for a

time ∆t that is only marginally greater than K/Rt. We further suppose

that

Rt ≤ min
Q∈Q(s,t)







∑

(i,J)∈Γ+(Q)

∑

K 6⊂Q

ziJK







for all t ∈ T . Therefore, by the max-flow/min-cut theorem, there exists,

for each t ∈ T , a flow vector x(t) satisfying

∑

{j|(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi =















R if i = s,

−R if i = t,

0 otherwise,

for all i ∈ N ,
∑

j∈K

x
(t)
iJj ≤

∑

{L⊂J|L∩K 6=∅}

ziJL

for all (i, J) ∈ A and K ⊂ J , and x
(t)
iJj ≥ 0 for all (i, J) ∈ A and j ∈ J .

For each flow vector x(t), we go through the same argument as that

for a unicast connection, and we find that the probability of error at

every sink node can be made arbitrarily small by taking K sufficiently

large.

We summarize our results with the following theorem statement.

Theorem 4.1 Consider the coding subgraph z. The random linear net-

work coding scheme described in Section 4.1 is capacity-achieving for

single connections in z, i.e., for K sufficiently large, it can achieve, with

arbitrarily small error probability, a connection from source node s to

sink nodes in the set T at rate arbitrarily close to Rt packets per unit

time for each t ∈ T if

Rt ≤ min
Q∈Q(s,t)







∑

(i,J)∈Γ+(Q)

∑

K 6⊂Q

ziJK







for all t ∈ T .

Remark. The capacity region is determined solely by the average rates

{ziJK} at which packets are received. Thus, the packet injection and
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loss processes, which give rise to the packet reception processes, can in

fact take any distribution, exhibiting arbitrary correlations, as long as

these average rates exist.

4.3 Error exponents for Poisson traffic with i.i.d. losses

We now look at the rate of decay of the probability of error pe in the

coding delay ∆. In contrast to traditional error exponents where coding

delay is measured in symbols, we measure coding delay in time units—

time τ = ∆ is the time at which the sink nodes attempt to decode the

message packets. The two methods of measuring delay are essentially

equivalent when packets arrive in regular, deterministic intervals.

We specialize to the case of Poisson traffic with i.i.d. losses. Thus, the

process AiJK is a Poisson process with rate ziJK . Consider the unicast

case for now, and suppose we wish to establish a connection of rate R.

Let C be the supremum of all asymptotically-achievable rates.

We begin by deriving an upper bound on the probability of error. To

this end, we take a flow vector x from s to t of size C and, following the

development in Section 4.2, develop a queueing network from it that de-

scribes the propagation of innovative packets for a given innovation order

µ. This queueing network now becomes a Jackson network. Moreover,

as a consequence of Burke’s theorem (see, e.g., [79, Section 2.1]) and

the fact that the queueing network is acyclic, the arrival and departure

processes at all stations are Poisson in steady-state.

Let Ψt(m) be the arrival time of the mth innovative packet at t, and

let C′ := (1 − q−µ)C. When the queueing network is in steady-state,

the arrival of innovative packets at t is described by a Poisson process

of rate C′. Hence we have

lim
m→∞

1

m
log E[exp(θΨt(m))] = log

C′

C′ − θ
(4.24)

for θ < C′ [14, 113]. If an error occurs, then fewer than ⌈R∆⌉ innovative

packets are received by t by time τ = ∆, which is equivalent to saying

that Ψt(⌈R∆⌉) > ∆. Therefore,

pe ≤ Pr(Ψt(⌈R∆⌉) > ∆),

and, using the Chernoff bound, we obtain

pe ≤ min
0≤θ<C′

exp (−θ∆ + log E[exp(θΨt(⌈R∆⌉))]) .

Let ε be a positive real number. Then using equation (4.24) we obtain,
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for ∆ sufficiently large,

pe ≤ min
0≤θ<C′

exp

(

−θ∆ +R∆

{

log
C′

C′ − θ
+ ε

})

= exp(−∆(C′ −R−R log(C′/R)) +R∆ε).

Hence, we conclude that

lim
∆→∞

− log pe

∆
≥ C′ −R−R log(C′/R). (4.25)

For the lower bound, we examine a cut whose flow capacity is C. We

take one such cut and denote it by Q∗. It is clear that, if fewer than

⌈R∆⌉ distinct packets are received across Q∗ in time τ = ∆, then an

error occurs. The arrival of distinct packets across Q∗ is described by a

Poisson process of rate C. Thus we have

pe ≥ exp(−C∆)

⌈R∆⌉−1
∑

l=0

(C∆)l

l!

≥ exp(−C∆)
(C∆)⌈R∆⌉−1

Γ(⌈R∆⌉)
,

and, using Stirling’s formula, we obtain

lim
∆→∞

− log pe

∆
≤ C −R−R log(C/R). (4.26)

Since (4.25) holds for all positive integers µ, we conclude from (4.25)

and (4.26) that

lim
∆→∞

− log pe

∆
= C −R−R log(C/R). (4.27)

Equation (4.27) defines the asymptotic rate of decay of the proba-

bility of error in the coding delay ∆. This asymptotic rate of decay

is determined entirely by R and C. Thus, for a packet network with

Poisson traffic and i.i.d. losses employing random linear network coding

as described in Section 4.1, the flow capacity C of the minimum cut of

the network is essentially the sole figure of merit of importance in deter-

mining the effectiveness of random linear network coding for large, but

finite, coding delay. Hence, in deciding how to inject packets to support

the desired connection, a sensible approach is to reduce our attention

to this figure of merit, which is indeed the approach that we take in

Chapter 5.

Extending the result from unicast connections to multicast connec-

tions is straightforward—we simply obtain (4.27) for each sink.
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4.4 Notes and further reading

Network coding for lossy networks has been looked at in [51, 94, 80, 98,

32, 136]. In [51, 32], a capacity result is established; in [80], a capacity

result is established for the case where no side-information is placed in

packet headers, and a code construction based on maximum distance

separable (mds) codes is proposed; in [94, 98, 136], the use of random

linear network coding in lossy networks is examined. The exposition in

this chapter is derived from [93, 94, 98].

Random linear network coding originates from [62, 27, 66], which deal

with lossless networks. In [111, 99, 103], some variations to random lin-

ear network coding, as described in Section 4.1, are proposed. In [99],

a variation that reduces memory usage at intermediate nodes is exam-

ined, while, in [111, 103], variations that reduce encoding and decoding

complexity are examined. One of the schemes proposed in [103] achieves

linear encoding and decoding complexity.



5

Subgraph Selection

In the previous two chapters, we assumed that a coding subgraph spec-

ifying the times and locations of packet injections was given. We dealt

only with half the problem of establishing connections in coded packet

networks—the coding half. This chapter deals with the other half: sub-

graph selection.

Subgraph selection, which is the problem of determining the coding

subgraph to use, is the coded networks analog of the joint problems

of routing and scheduling in conventional, routed networks. Subgraph

selection and coding are very different problems, and the techniques

used in the this chapter differ significantly from those in the previous

two chapters. In particular, while the previous two chapters generally

used techniques from information theory and coding theory, this chapter

generally uses techniques from networking theory.

Subgraph selection is essentially a problem of network resource allo-

cation: We have a limited resource (packet injections) that we wish to

allocate to coded packets in such as way as to achieve certain commu-

nication objectives. We propose a number of solutions to the problem,

and we divide these solutions into two categories: flow-based approaches

(Section 5.1) and queue-length-based approaches (Section 5.2). In flow-

based approaches, we assume that the communication objective is to

establish a set of (unicast or multicast) connections at certain, given

flow rates while, in queue-length-based approaches, we suppose that the

flow rates, though existent, are not necessarily known, and we select

coding subgraphs using the state of packet queues.

As in the previous two chapters, we deal primarily with intra-session

coding—coding confined to a single session or connection. This allows

us to make use the various results that we have established for network

coding in a single session. Unfortunately, intra-session coding is sub-

99
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optimal. Recall the modified butterfly network (Figure 1.2) and mod-

ified wireless butterfly network (Figure 1.4). In both these examples,

a gain was achieved by using inter-session coding—coding across two

or more independent sessions. There are far fewer results concerning

inter-session coding than those concerning intra-session coding. One

thing that is known, though, is linear codes do not suffice in general

to achieve the inter-session coding capacity of a coding subgraph [38].

Since no non-linear network codes that seem practicable have yet been

found, we are therefore forced to find suboptimal approaches to linear

inter-session coding, or to simply use intra-session coding. We discuss

subgraph selection techniques for both intra-session coding and subop-

timal inter-session coding in this chapter.

We place particular emphasis on subgraph selection techniques that

can computed in a distributed manner, with each node making com-

putations based only on local knowledge and knowledge acquired from

information exchanges. Such distributed algorithms are inspired by ex-

isting, successful distributed algorithms in networking, such as the dis-

tributed Bellman-Ford algorithm (see, e.g., [13, Section 5.2]), which is

used to find routes in routed packet networks. In general, distributed

subgraph selection techniques currently exist only in cases where arcs

essentially behave independently and the capacities of separate arcs are

not coupled.

5.1 Flow-based approaches

We discuss flow-based approaches under the assumption that there is

a cost that we wish to minimize. This cost, which is a function of the

coding subgraph z, reflects some notion of network efficiency (we could

have, for example, an energy cost, a congestion cost, or even a mone-

tary cost), and it allows us to favor particular subgraphs in the class of

subgraphs that are capable of establishing the desired connections. A

cost-minimization objective is certainly not the only possible (through-

put maximization, for example, is another possibility), but it is very

general, and much of the following discussion applies to other objec-

tives also. Let f be the cost function. We assume, for tractability and

simplicity, that f is convex.

We first discuss intra-session coding. For intra-session coding, we

formulate the problem and discuss methods for its solution then, in

Section 5.1.1.6, we consider applying these methods for communication
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over wireless networks, and we compare their performance to existing

methods. In Section 5.1.3, we discuss inter-session coding.

5.1.1 Intra-session coding

5.1.1.1 Problem formulation

We specify a multicast connection with a triplet (s, T, {Rt}t∈T ), where

s is the source of the connection, T is the set of sinks, and {Rt}t∈T is

the set of rates to the sinks (see Section 4.2.2). Suppose we wish to

establish C multicast connections, (s1, T1, {Rt,1}), . . . , (sC , TC , {Rt,C}).

Using Theorem 4.1 and the max-flow/min-cut theorem, we see that sub-

graph selection in a lossy network with random linear network coding in

each session can be phrased as the following mathematical programming

problem:

minimize f(z)

subject to z ∈ Z,

C
∑

c=1

y
(c)
iJK ≤ ziJK , ∀ (i, J) ∈ A, K ⊂ J,

∑

j∈K

x
(t,c)
iJj ≤

∑

{L⊂J|L∩K 6=∅}

y
(c)
iJL,

∀ (i, J) ∈ A, K ⊂ J , t ∈ Tc, c = 1, . . . , C,

x(t,c) ∈ F (t,c), ∀ t ∈ Tc, c = 1, . . . , C,

(5.1)

where x(t,c) is the vector consisting of x
(t,c)
iJj , (i, J) ∈ A, j ∈ J , and F (t,c)

is the bounded polyhedron of points x(t,c) satisfying the conservation of

flow constraints

∑

{J|(i,J)∈A}

∑

j∈J

x
(t,c)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t,c)
jIi =















Rt,c if i = sc,

−Rt,c if i = t,

0 otherwise,

∀ i ∈ N ,

and non-negativity constraints

x
(t,c)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J.

In this formulation, y
(c)
iJK represents the average rate of packets that are

injected on hyperarc (i, J) and received by exactly the set of nodes K
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(which occurs with average rate ziJK) and that are allocated to connec-

tion c.

For simplicity, let us consider the case where C = 1. The extension

to C > 1 is conceptually straightforward and, moreover, the case where

C = 1 is interesting in its own right: whenever each multicast group

has a selfish cost objective, or when the network sets arc weights to

meet its objective or enforce certain policies and each multicast group

is subject to a minimum-weight objective, we wish to establish single

efficient multicast connections.

Let

biJK :=

∑

{L⊂J|L∩K 6=∅} ziJL

ziJ
,

which is the fraction of packets injected on hyperarc (i, J) that are re-

ceived by a set of nodes that intersects K. Problem (5.1) is now

minimize f(z)

subject to z ∈ Z,
∑

j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T .

(5.2)

In the lossless case, problem (5.2) simplifies to the following problem:

minimize f(z)

subject to z ∈ Z,
∑

j∈J

x
(t)
iJj ≤ ziJ , ∀ (i, J) ∈ A, t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T .

(5.3)

As an example, consider the network depicted in Figure 5.1, which

consists only of point-to-point arcs. Suppose that the network is lossless,

that we wish to achieve multicast of unit rate from s to two sinks, t1 and

t2, and that we have Z = [0, 1]|A| and f(z) =
∑

(i,j)∈A zij . An optimal

solution to problem (5.3) is shown in the figure. We have flows x(1) and

x(2) of unit size from s to t1 and t2, respectively, and, for each arc (i, j),

zij = max(x
(1)
ijj , x

(2)
ijj), as we expect from the optimization. For a simple

arc (i, j), it is unnecessary to write x
(1)
ijj for the component of flow x(1)

on the arc; we can simply write x
(1)
ij , and we shall do so as appropriate.

Under this abbreviated notation, we have zij = max(x
(1)
ij , x

(2)
ij ).
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t1

t2

s

(1/2, 0, 1/2)

(1/2, 0, 1/2)

(1/2, 1/2, 0)

(1/2, 1/2, 1/2)

(1/2, 1/2, 1/2)

(1/2, 0, 1/2)

(1/2, 1/2, 1/2)

(1/2, 1/2, 0)

(1/2, 1/2, 0)

Fig. 5.1. A network of lossless point-to-point arcs with multicast from s to

T = {t1, t2}. Each arc is marked with the triple (zij , x
(1)
ij , x

(2)
ij ). Reprinted

with permission from [101].

s

t1

t2

(0, 1/2)

(1/2, 0)

1/2

1/2

(1/2, 1/2)

(1/2, 1/2)

1/2

(1/2, 0)

(0, 1/2)

1

(1/2, 0)

(0, 1/2)

Fig. 5.2. A network of lossless broadcast arcs with multicast from s to T =

{t1, t2}. Each hyperarc is marked with ziJ at its start and the pair (x
(1)
iJj , x

(2)
iJj)

at its ends.

The same multicast problem in a routed packet network would entail

minimizing the number of arcs used to form a tree that is rooted at

s and that reaches t1 and t2—in other words, solving the Steiner tree

problem on directed graphs [115]. The Steiner tree problem on directed

graphs is well-known to be np-complete, but solving problem (5.3) is

not. In this case, problem (5.3) is in fact a linear optimization problem.

It is a linear optimization problem that can be thought of as a fractional
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relaxation of the Steiner tree problem [154]. This example illustrates

one of the attractive features of the coded approach: it allows us avoid

an np-complete problem and instead solve its fractional relaxation.

For an example with broadcast arcs, consider the network depicted in

Figure 5.2. Suppose again that the network is lossless, that we wish to

achieve multicast of unit rate from s to two sinks, t1 and t2, and that

we have Z = [0, 1]|A| and f(z) =
∑

(i,J)∈A ziJ . An optimal solution to

problem (5.3) is shown in the figure. We still have flows x(1) and x(2)

of unit size from s to t1 and t2, respectively, but now, for each hyperarc

(i, J), we determine ziJ from the various flows passing through hyperarc

(i, J), each destined toward a single node j in J , and the optimization

gives ziJ = max(
∑

j∈J x
(1)
iJj ,

∑

j∈J x
(2)
iJj).

Neither problem (5.2) nor (5.3) as it stands is easy to solve. But the

problems are very general. Their complexities improve if we assume

that the cost function is separable and possibly even linear, i.e., if we

suppose f(z) =
∑

(i,J)∈A fiJ(ziJ ), where fiJ is a convex or linear func-

tion, which is a very reasonable assumption in many practical situations.

For example, packet latency is usually assessed with a separable, convex

cost function and energy, monetary cost, and total weight are usually

assessed with separable, linear cost functions.

The complexities of problems (5.2) and (5.3) also improve if we make

some assumptions on the form of the constraint set Z, which is the case

in most practical situations.

A particular simplification applies if we assume that, when nodes

transmit in a lossless network, they reach all nodes in a certain re-

gion, with cost increasing as this region is expanded. This applies,

for example, if we are interested in minimizing energy consumption,

and the region in which a packet is reliably received expands as we ex-

pend more energy in its transmission. More precisely, suppose that we

have separable cost, so f(z) =
∑

(i,J)∈A fiJ(ziJ ). Suppose further that

each node i hasMi outgoing hyperarcs (i, J
(i)
1 ), (i, J

(i)
2 ), . . . , (i, J

(i)
Mi

) with

J
(i)
1 ( J

(i)
2 ( · · · ( J

(i)
Mi

. (We assume that there are no identical arcs,

as duplicate arcs can effectively be treated as a single arc.) Then, we

assume that f
iJ

(i)
1

(ζ) < f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and nodes

i.

Let us introduce, for (i, j) ∈ A′ := {(i, j)|(i, J) ∈ A, J ∋ j}, the
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variables

x̂
(t)
ij :=

Mi
∑

m=m(i,j)

x
(t)

iJ
(i)
m j

,

where m(i, j) is the unique m such that j ∈ J
(i)
m \ J

(i)
m−1 (we define

J
(i)
0 := ∅ for all i ∈ N for convenience). Now, problem (5.3) can be

reformulated as the following problem, which has substantially fewer

variables:

minimize
∑

(i,J)∈A

fiJ (ziJ )

subject to z ∈ Z

∑

k∈J
(i)
Mi

\J
(i)
m−1

x̂
(t)
ik ≤

Mi
∑

n=m

z
iJ

(i)
n
, ∀ i ∈ N , m = 1, . . . ,Mi, t ∈ T ,

x̂(t) ∈ F̂ (t), ∀ t ∈ T ,

(5.4)

where F̂ (t) is the bounded polyhedron of points x̂(t) satisfying the con-

servation of flow constraints

∑

{j|(i,j)∈A′}

x̂
(t)
ij −

∑

{j|(j,i)∈A′}

x̂
(t)
ji =















Rt if i = s,

−Rt if i = t,

0 otherwise,

∀ i ∈ N,

and non-negativity constraints

0 ≤ x̂
(t)
ij , ∀ (i, j) ∈ A′.

Proposition 5.1 Suppose that f(z) =
∑

(i,J)∈A fiJ (ziJ ) and that f
iJ

(i)
1

(ζ) <

f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and i ∈ N . Then problem (5.3)

and problem (5.4) are equivalent in the sense that they have the same

optimal cost and z is part of an optimal solution for (5.3) if and only if

it is part of an optimal solution for (5.4).

Proof Suppose (x, z) is a feasible solution to problem (5.3). Then, for
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all (i, j) ∈ A′ and t ∈ T ,

Mi
∑

m=m(i,j)

z
iJ

(i)
m

≥
Mi
∑

m=m(i,j)

∑

k∈J
(i)
m

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

Mi
∑

m=max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

≥
∑

k∈J
(i)
Mi

\J
(i)

m(i,j)−1

Mi
∑

m=max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J
(i)

m(i,j)−1

Mi
∑

m=m(i,k)

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J
(i)

m(i,j)−1

x̂
(t)
ik .

Hence (x̂, z) is a feasible solution of problem (5.4) with the same cost.

Now suppose (x̂, z) is an optimal solution of problem (5.4). Since f
iJ

(i)
1

(ζ) <

f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and i ∈ N by assumption, it fol-

lows that, for all i ∈ N , the sequence z
iJ

(i)
1
, z

iJ
(i)
2
, . . . , z

iJ
(i)
Mi

is given

recursively, starting from m = Mi, by

z
iJ

(i)
m

= max
t∈T











∑

k∈J
(i)
Mi

\J
(i)
m−1

x̂
(t)
ik











−
Mi
∑

m′=m+1

z
iJ

(i)

m′
.

Hence z
iJ

(i)
m

≥ 0 for all i ∈ N and m = 1, 2, . . . ,Mi. We then set,

starting from m = Mi and j ∈ J
(i)
Mi

,

x
(t)

iJ
(i)
m j

:= min






x̂

(t)
ij −

Mi
∑

l=m+1

x
iJ

(i)
l

j
, z

iJ
(i)
m

−
∑

k∈J
(i)
Mi

\J
(i)

m(i,j)

x
(t)

iJ
(i)
m k






.

It is now not difficult to see that (x, z) is a feasible solution of problem

(5.3) with the same cost.

Therefore, the optimal costs of problems (5.3) and (5.4) are the same

and, since the objective functions for the two problems are the same, z

is part of an optimal solution for problem (5.3) if and only if it is part

of an optimal solution for problem (5.4).
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2

1 3

Fig. 5.3. The slotted Aloha relay channel. Reprinted with permission from
[93].

5.1.1.2 Example: Slotted Aloha relay channel

This example, which we refer to as the slotted Aloha relay channel, re-

lates to multi-hop wireless networks. One of most important issues in

multi-hop wireless networks is medium access, i.e., determining how ra-

dio nodes share the wireless medium. A simple, yet popular, method

for medium access control is slotted Aloha (see, e.g., [13, Section 4.2]),

where nodes with packets to send follow simple random rules to deter-

mine when they transmit. In this example, we consider a multi-hop

wireless network using slotted Aloha for medium access control.

We suppose that the network has the simple topology shown in Fig-

ure 5.3 and that, in this network, we wish to establish a single unicast

connection of rate R from node 1 to node 3. The random rule we take

for transmission is that the two transmitting nodes, node 1 and node

2, each transmit packets independently in a given time slot with some

fixed probability. In coded packet networks, nodes are never “unback-

logged” as they are in regular, routed slotted Aloha networks—nodes

can transmit coded packets whenever they are given the opportunity.

Hence z1(23), the rate of packet injection on hyperarc (1, {2, 3}), is the

probability that node 1 transmits a packet in a given time slot, and

likewise z23, the rate of packet injection on hyperarc (2, 3), is the prob-

ability that node 2 transmits a packet in a given time slot. Therefore,

Z = [0, 1]2, i.e., 0 ≤ z1(23) ≤ 1 and 0 ≤ z23 ≤ 1.

If node 1 transmits a packet and node 2 does not, then the packet is

received at node 2 with probability p1(23)2, at node 3 with probability

p1(23)3, and at both nodes 2 and 3 with probability p1(23)(23) (it is lost

entirely with probability 1 − p1(23)2 − p1(23)3 − p1(23)(23)). If node 2

transmits a packet and node 1 does not, then the packet is received at

node 3 with probability p233 (it is lost entirely with probability 1−p233).
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If both nodes 1 and 2 each transmit a packet, then the packets collide

and neither of the packets is received successfully anywhere.

It is possible that simultaneous transmission does not necessarily re-

sult in collision, with one or more packets being received. This phe-

nomenon is referred to as multipacket reception capability [48] and is

decided by lower-layer implementation details. In this example, however,

we simply assume that simultaneous transmission results in collision.

Hence, we have

z1(23)2 = z1(23)(1 − z23)p1(23)2, (5.5)

z1(23)3 = z1(23)(1 − z23)p1(23)3, (5.6)

z1(23)(23) = z1(23)(1 − z23)p1(23)(23), (5.7)

and

z233 = (1 − z1(23))z23p233. (5.8)

We suppose that our objective is to set up the desired connection while

minimizing the total number of packet transmissions for each message

packet, perhaps for the sake of energy conservation or conservation of

the wireless medium (to allow it to be used for other purposes, such as

other connections). Therefore

f(z1(23), z23) = z1(23) + z23.

The slotted Aloha relay channel is very similar to the relay channel

introduced by van der Meulen [134], and determining the capacity of the

latter is one of the famous, long-standing, open problems of information

theory. The slotted Aloha relay channel is related to the relay channel

(hence its name), but different. While the relay channel relates to the

physical layer, we are concerned with higher layers, and our problem is

soluble.

The relevant optimization problem to solve in this case is (5.2), and

it reduces to

minimize z1(23) + z23

subject to 0 ≤ z1(23), z23 ≤ 1,

R ≤ z1(23)(1 − z23)(p1(23)2 + p1(23)3 + p1(23)(23)),

R ≤ z1(23)(1 − z23)(p1(23)3 + p1(23)(23)) + (1 − z1(23))z23p233.

Let us assume some values for the parameters of the problem and work

through it. Let R := 1/8, p1(23)2 := 9/16, p1(23)3 := 1/16, p1(23)(23) :=
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1
4
z1(23)(1 − z23) + 3

4
(1 − z1(23))z23 = 1

8

13
16

z1(23)(1 − z23) = 1
8

Z0
0.4

0.8

1

0 0.2 0.4 0.6 0.8

z 2
3

z1(23)

1
0

0.2

0.6

Fig. 5.4. Feasible set of problem (5.9). Reprinted with permission from [93].

3/16, and p233 := 3/4. Then the optimization problem we have is

minimize z1(23) + z23

subject to 0 ≤ z1(23), z23 ≤ 1,

1

8
≤

13

16
z1(23)(1 − z23),

1

8
≤

1

4
z1(23)(1 − z23) +

3

4
(1 − z1(23))z23.

(5.9)

The feasible set of this problem is shown in Figure 5.4. It is the shaded

region labeled Z0. By inspection, the optimal solution of (5.9) is the

lesser of the two intersections between the curves defined by

13

16
z1(23)(1 − z23) =

1

8

and
1

4
z1(23)(1 − z23) +

3

4
(1 − z1(23))z23 =

1

8
.

We obtain z∗1(23) ≃ 0.179 and z∗23 ≃ 0.141.

The problem we have just solved is by no means trivial. We have taken
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a wireless packet network subject to losses that are determined by a

complicated set of conditions—including medium contention—and found

a way of establishing a given unicast connection of fixed throughput

using the minimum number of transmissions per message packet. The

solution is that node 1 transmits a packet every time slot with probability

0.179, and node 2 transmits a packet every time slot independently with

probability 0.141. Whenever either node transmits a packet, they follow

the coding scheme of Section 4.1.

The network we dealt with was, unfortunately, only a small one, and

the solution method we used will not straightforwardly scale to larger

problems. But the solution method is conceptually simple, and there

are cases where the solution to large problems is computable—and com-

putable in a distributed manner. We deal with this topic next.

5.1.1.3 Distributed algorithms

In many cases, the optimization problems (5.2), (5.3), and (5.4) are con-

vex or linear problems and their solutions can, in theory, be computed.

For practical network applications, however, it is often important that

solutions can be computed in a distributed manner, with each node mak-

ing computations based only on local knowledge and knowledge acquired

from information exchanges. Thus, we seek distributed algorithms to

solve optimization problems (5.2), (5.3), and (5.4), which, when paired

with the random linear coding scheme of the previous chapter, yields a

distributed approach to efficient operation. The algorithms we propose

will generally take some time to converge to an optimal solution, but

it is not necessary to wait until the algorithms have converged before

transmission—we can apply the coding scheme to the coding subgraph

we have at any time, optimal or otherwise, and continue doing so while

it converges. Such an approach is robust to dynamics such as changes

in network topology that cause the optimal solution to change, because

the algorithms will simply converge toward the changing optimum.

To this end, we simplify the problem by assuming that the objective

function is of the form f(z) =
∑

(i,J)∈A fiJ(ziJ ), where fiJ is a mono-

tonically increasing, convex function, and that, as ziJ is varied, ziJK/ziJ

is constant for all K ⊂ J . Therefore, biJK is a constant for all (i, J) ∈ A

and K ⊂ J . We also drop the constraint set Z, noting that separable

constraints, at least, can be handled by making fiJ approach infinity

as ziJ approaches its upper constraint. These assumptions apply if, at

least from the perspective of the connection we wish to establish, arcs
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essentially behave independently and the capacities of separate arcs are

not coupled.

With these assumptions, problem (5.2) becomes

minimize
∑

(i,J)∈A

fiJ(ziJ )

subject to
∑

j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T .

(5.10)

Since the fiJ are monotonically increasing, the constraint
∑

j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J , t ∈ T (5.11)

gives

ziJ = max
K⊂J,t∈T

{

∑

j∈K x
(t)
iJj

biJK

}

. (5.12)

Expression (5.12) is, unfortunately, not very useful for algorithm design

because the max function is difficult to deal with, largely as a result

of its not being differentiable everywhere. One way to overcome this

difficulty is to approximate ziJ by replacing the max in (5.12) with an

lm-norm (see [35]), i.e., to approximate ziJ with z′iJ , where

z′iJ :=





∑

K⊂J,t∈T

(

∑

j∈K x
(t)
iJj

biJK

)m




1/m

.

The approximation becomes exact asm→ ∞. Moreover, since z′iJ ≥ ziJ

for all m > 0, the coding subgraph z′ admits the desired connection for

any feasible solution.

Now the relevant optimization problem is

minimize
∑

(i,J)∈A

fiJ (z′iJ)

subject to x(t) ∈ F (t), ∀ t ∈ T ,

which is no more than a convex multicommodity flow problem. There

are many algorithms for convex multicommodity flow problems (see [109]

for a survey), some of which (e.g., the algorithms in [9, 12]) are well-

suited for distributed implementation. The primal-dual approach to

internet congestion control (see [129, Section 3.4]) can also be used to
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solve convex multicommodity flow problems in a distributed manner,

and we examine this method in Section 5.1.1.4.

There exist, therefore, numerous distributed algorithms for the sub-

graph selection problem—or, at least, for an approximation of the prob-

lem. What about distributed algorithms for the true problem? One clear

tactic for finding such algorithms is to eliminate constraint (5.11) using

Lagrange multipliers. Following this tactic, we obtain a distributed algo-

rithm that we call the subgradient method. We describe the subgradient

method in Section 5.1.1.5.

5.1.1.4 Primal-dual method

For the primal-dual method, we assume that the cost functions fiJ are

strictly convex and differentiable. Hence there is a unique optimal solu-

tion to problem (5.10). We present the algorithm for the lossless case,

with the understanding that it can be straightforwardly extended to the

lossy case. Thus, the optimization problem we address is

minimize
∑

(i,J)∈A

fiJ (z′iJ)

subject to x(t) ∈ F (t), ∀ t ∈ T ,

(5.13)

where

z′iJ :=





∑

t∈T





∑

j∈J

x
(t)
iJj





m



1/m

.

Let (y)+a denote the following function of y:

(y)+a =

{

y if a > 0,

max{y, 0} if a ≤ 0.

To solve problem (5.13) in a distributed fashion, we introduce ad-

ditional variables p and λ and consider varying x, p, and λ in time τ

according to the following time derivatives:

ẋ
(t)
iJj = −k

(t)
iJj(x

(t)
iJj)

(

∂fiJ (z′iJ)

∂x
(t)
iJj

+ q
(t)
ij − λ

(t)
iJj

)

, (5.14)

ṗ
(t)
i = h

(t)
i (p

(t)
i )(y

(t)
i − σ

(t)
i ), (5.15)

λ̇
(t)
iJj = m

(t)
iJj(λ

(t)
iJj)

(

−x
(t)
iJj

)+

λ
(t)
iJj

, (5.16)
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where

q
(t)
ij := p

(t)
i − p

(t)
j ,

y
(t)
i :=

∑

{J|(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi,

and k
(t)
iJj(x

(t)
iJj) > 0, h

(t)
i (p

(t)
i ) > 0, andm

(t)
iJj(λ

(t)
iJj) > 0 are non-decreasing

continuous functions of x
(t)
iJj , p

(t)
i , and λ

(t)
iJj respectively.

Proposition 5.2 The algorithm specified by Equations (5.14)–(5.16) is

globally, asymptotically stable.

Proof We prove the stability of the primal-dual algorithm by using the

theory of Lyapunov stability (see, e.g., [129, Section 3.10]). This proof

is based on the proof of Theorem 3.7 of [129].

The Lagrangian for problem (5.13) is as follows:

L(x, p, λ) =
∑

(i,J)∈A

fiJ(z′iJ )

+
∑

t∈T







∑

i∈N

p
(t)
i





∑

{J|(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi − σ

(t)
i





−
∑

(i,J)∈A

∑

j∈J

λ
(t)
iJjx

(t)
iJj







, (5.17)

where

σ
(t)
i =















Rt if i = s,

−Rt if i = t,

0 otherwise.

Since the objective function of problem (5.13) is strictly convex, it has a

unique minimizing solution, say x̂, and Lagrange multipliers, say p̂ and

λ̂, which satisfy the following Karush-Kuhn-Tucker conditions:

∂L(x̂, p̂, λ̂)

∂x
(t)
iJj

=

(

∂fiJ(z′iJ)

∂x
(t)
iJj

+
(

p̂
(t)
i − p̂

(t)
j

)

− λ̂
(t)
iJj

)

= 0,

∀ (i, J) ∈ A, j ∈ J , t ∈ T , (5.18)
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∑

{J|(i,J)∈A}

∑

j∈J

x̂
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x̂
(t)
jIi = σ

(t)
i , ∀ i ∈ N , t ∈ T ,

(5.19)

x̂
(t)
iJj ≥ 0 ∀ (i, J) ∈ A, j ∈ J , t ∈ T , (5.20)

λ̂
(t)
iJj ≥ 0 ∀ (i, J) ∈ A, j ∈ J , t ∈ T , (5.21)

λ̂
(t)
iJj x̂

(t)
iJj = 0 ∀ (i, J) ∈ A, j ∈ J , t ∈ T . (5.22)

Using equation (5.17), we see that (x̂, p̂, λ̂) is an equilibrium point of

the primal-dual algorithm. We now prove that this point is globally,

asymptotically stable.

Consider the following function as a candidate for the Lyapunov func-

tion:

V (x, p, λ) =
∑

t∈T







∑

(i,J)∈A

∑

j∈J

(

∫ x
(t)
iJj

x̂
(t)
iJj

1

k
(t)
iJj(σ)

(σ − x̂
(t)
iJj)dσ

+

∫ λ
(t)
iJj

λ̂
(t)
iJj

1

m
(t)
iJj(γ)

(γ − λ̂
(t)
iJj)dγ

)

+
∑

i∈N

∫ p
(t)
i

p̂
(t)
i

1

h
(t)
i (β)

(β − p̂
(t)
i )dβ

}

.

Note that V (x̂, p̂, λ̂) = 0. Since, k
(t)
iJj(σ) > 0, if x

(t)
iJj 6= x̂

(t)
iJj , we have

∫ x
(t)
iJj

ˆ
x
(t)
iJj

1

k
(t)
iJj(σ)

(σ − x̂
(t)
iJj)dσ > 0.

This argument can be extended to the other terms as well. Thus, when-

ever (x, p, λ) 6= (x̂, p̂, λ̂), we have V (x, p, λ) > 0.

Now,

V̇ =
∑

t∈T







∑

(i,J)∈A

∑

j∈J

[

(

−x
(t)
iJj

)+

λ
(t)
iJj

(λ
(t)
iJj − λ̂

(t)
iJj)

−

(

∂fiJ (z′iJ)

∂x
(t)
iJj

+ q
(t)
iJj − λ

(t)
iJj

)

· (x
(t)
iJj − x̂

(t)
iJj)

]

+
∑

i∈N

(y
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}

.

Note that
(

−x
(t)
iJj

)+

λ
(t)
iJj

(λ
(t)
iJj − λ̂

(t)
iJj) ≤ −x

(t)
iJj(λ

(t)
iJj − λ̂

(t)
iJj),



5.1 Flow-based approaches 115

since the inequality is an equality if either x
(t)
iJj ≤ 0 or λ

(t)
iJj ≥ 0; and,

in the case when x
(t)
iJj > 0 and λ

(t)
iJj < 0, we have (−x

(t)
iJj)

+

λ
(t)
iJj

= 0 and,

since λ̂
(t)
iJj ≥ 0, −x

(t)
iJj(λ

(t)
iJj − λ̂

(t)
iJj) ≥ 0. Therefore,

V̇ ≤
∑

t∈T







∑

(i,J)∈A

∑

j∈J

[

−x
(t)
iJj(λ

(t)
iJj − λ̂

(t)
iJj)

−

(

∂fiJ(z′iJ )

∂x
(t)
iJj

+ q
(t)
iJj − λ

(t)
iJj

)

· (x
(t)
iJj − x̂

(t)
iJj)

]

+
∑

i∈N

(y
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}

= (q̂ − q)′(x− x̂) + (p̂− p)′(y − ŷ)

+
∑

t∈T







∑

(i,J)∈A

∑

j∈J

[

−x̂
(t)
iJj(λ

(t)
iJj − λ̂

(t)
iJj)

−

(

∂fiJ(z′iJ )

∂x
(t)
iJj

+ q̂
(t)
iJj − λ̂

(t)
iJj

)

· (x
(t)
iJj − x̂

(t)
iJj)

]

+
∑

i∈N

(ŷ
(t)
i − σ

(t)
i )(p

(t)
i − p̂

(t)
i )

}

=
∑

t∈T

∑

(i,J)∈A

∑

j∈J

(

∂fiJ(ẑ′iJ )

∂x̂
(t)
iJj

−
∂fiJ(z′iJ )

∂x
(t)
iJj

)

(x
(t)
iJj − x̂

(t)
iJj) − λ′x̂,

where the last line follows from Karush-Kuhn-Tucker conditions (5.18)–

(5.22) and the fact that

p′y =
∑

t∈T

∑

i∈N

p
(t)
i





∑

{J|(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi





=
∑

t∈T

∑

(i,J)∈A

∑

j∈J

x
(t)
iJj(p

(t)
i − p

(t)
j ) = q′x.

Thus, owing to the strict convexity of the functions {fiJ}, we have V̇ ≤

−λ′x̂, with equality if and only if x = x̂. So it follows that V̇ ≤ 0 for all

λ ≥ 0, since x̂ ≥ 0.

If the initial choice of λ is such that λ(0) ≥ 0, we see from the primal-

dual algorithm that λ(τ) ≥ 0. This is true since λ̇ ≥ 0 whenever λ ≤ 0.
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Thus, it follows by the theory of Lyapunov stability that the algorithm

is indeed globally, asymptotically stable.

The global, asymptotic stability of the algorithm implies that no mat-

ter what the initial choice of (x, p) is, the primal-dual algorithm will

converge to the unique solution of problem (5.13). We have to choose

λ, however, with non-negative entries as the initial choice. Further,

there is no guarantee that x(τ) yields a feasible solution for any given

τ . Therefore, a start-up time may be required before a feasible solution

is obtained.

The algorithm that we currently have is a continuous time algorithm

and, in practice, an algorithm operating in discrete message exchanges is

required. To discretize the algorithm, we consider time steps n = 0, 1, . . .

and replace the derivatives by differences:

x
(t)
iJj [n+ 1] = x

(t)
iJj [n] − α

(t)
iJj [n]

(

∂fiJ(z′iJ [n])

∂x
(t)
iJj [n]

+ q
(t)
ij [n] − λ

(t)
iJj [n]

)

,

(5.23)

p
(t)
i [n+ 1] = p

(t)
i [n] + β

(t)
i [n](y

(t)
i [n] − σ

(t)
i ), (5.24)

λ
(t)
iJj [n+ 1] = λ

(t)
iJj [n] + γ

(t)
iJj [n]

(

−x
(t)
iJj [n]

)+

λ
(t)
iJj

[n]
, (5.25)

where

q
(t)
ij [n] := p

(t)
i [n] − p

(t)
j [n],

y
(t)
i [n] :=

∑

{J|(i,J)∈A}

∑

j∈J

x
(t)
iJj [n] −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi[n],

and α
(t)
iJj [n] > 0, β

(t)
i [n] > 0, and γ

(t)
iJj [n] > 0 are step sizes. This dis-

cretized algorithm operates in synchronous rounds, with nodes exchang-

ing information in each round. It is expected that this synchronicity can

be relaxed in practice.

We associate a processor with each node. We assume that the pro-

cessor for node i keeps track of the variables pi, {xiJj}{J,j|(i,J)∈A,j∈J},

and {λiJj}{J,j|(i,J)∈A,j∈J}. With such an assignment of variables to pro-

cessors, the algorithm is distributed in the sense that a node exchanges

information only with its neighbors at every iteration of the primal-dual

algorithm. We summarize the primal-dual method in Figure 5.5.
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(i) Each node i initializes pi[0], {xiJj [0]}{J,j|(i,J)∈A,j∈J}, and
{λiJj [0]}{J,j|(i,J)∈A,j∈J} such that λiJj [0] ≥ 0 for all (J, j)
such that (i, J) ∈ A and j ∈ J . Each node i sends pi[0],
{xiJj [0]}j∈J , and {λiJj [0]}j∈J over each outgoing hyperarc
(i, J).

(ii) At the nth iteration, each node i computes pi[n + 1],
{xiJj [n+1]}{J,j|(i,J)∈A,j∈J}, and {λiJj [n+1]}{J,j|(i,J)∈A,j∈J}

using equations (5.23)–(5.25). Each node i sends pi[n + 1],
{xiJj [n + 1]}j∈J , and {λiJj [n + 1]}j∈J over each outgoing hy-
perarc (i, J).

(iii) The current coding subgraph z′[n] is computed. For each node
i, we set

z′
iJ [n] :=

(

∑

t∈T

(

∑

j∈J

x
(t)
iJj[n]

)m)1/m

for all outgoing hyperarcs (i, J).
(iv) Steps (ii) and (iii) are repeated until the sequence of coding

subgraphs {z′[n]} converges.

Fig. 5.5. Summary of the primal-dual method.

5.1.1.5 Subgradient method

We present the subgradient method for linear cost functions; with some

modifications, it may be made to apply also to convex ones. Thus, we

assume that the objective function f is of the form

f(z) :=
∑

(i,J)∈A

aiJziJ ,

where aiJ > 0.

Consider the Lagrangian dual of problem (5.10):

maximize
∑

t∈T

q(t)(p(t))

subject to
∑

t∈T

∑

K⊂J

p
(t)
iJK = aiJ ∀ (i, J) ∈ A,

p
(t)
iJK ≥ 0, ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

(5.26)

where

q(t)(p(t)) := min
x(t)∈F (t)

∑

(i,J)∈A

∑

j∈J





∑

{K⊂J|K∋j}

p
(t)
iJK

biJK



 xiJj . (5.27)

In the lossless case, the dual problem defined by equations (5.26) and

(5.27) simplifies somewhat, and we require only a single dual variable
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p
(t)
iJJ for each hyperarc (i, J). In the case that relates to optimization

problem (5.4), the dual problem simplifies more still, as there are fewer

primal variables associated with it. Specifically, we obtain, for the La-

grangian dual,

maximize
∑

t∈T

q̂(t)(p(t))

subject to
∑

t∈T

p
(t)

iJ
(i)
m

= s
iJ

(i)
m
, ∀ i ∈ N , m = 1, . . . ,Mi,

p
(t)
iJ ≥ 0, ∀ (i, J) ∈ A, t ∈ T ,

(5.28)

where

s
iJ

(i)
m

:= a
iJ

(i)
m

− a
iJ

(i)
m−1

,

and

q̂(t)(p(t)) := min
x̂(t)∈F̂ (t)

∑

(i,j)∈A′





m(i,j)
∑

m=1

p
(t)

iJ
(i)
m



 x̂
(t)
ij . (5.29)

Note that, by the assumptions of the problem, siJ > 0 for all (i, J) ∈ A.

In all three cases, the dual problems are very similar, and essentially

the same algorithm can be used to solve them. We present the subgra-

dient method for the case that relates to optimization problem (5.4)—

namely, the primal problem

minimize
∑

(i,J)∈A

aiJziJ

subject to
∑

k∈J
(i)
Mi

\J
(i)
m−1

x̂
(t)
ik ≤

Mi
∑

n=m

z
iJ

(i)
n
,

∀ i ∈ N , m = 1, . . . ,Mi, t ∈ T ,

x̂(t) ∈ F̂ (t), ∀ t ∈ T

(5.30)

with dual (5.28)—with the understanding that straightforward modifi-

cations can be made for the other cases.

We first note that problem (5.29) is, in fact, a shortest path problem,

which admits a simple, asynchronous distributed solution known as the

distributed asynchronous Bellman-Ford algorithm (see, e.g., [13, Section

5.2]).

Now, to solve the dual problem (5.28), we employ subgradient opti-

mization (see, e.g., [10, Section 6.3.1] or [108, Section I.2.4]). We start

with an iterate p[0] in the feasible set of (5.28) and, given an iterate p[n]
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for some non-negative integer n, we solve problem (5.29) for each t in T

to obtain x[n]. Let

g
(t)

iJ
(i)
m

[n] :=
∑

k∈J
(i)
Mi

\J
(i)
m−1

x̂
(t)
ik [n].

We then assign

piJ [n+ 1] := argmin
v∈PiJ

∑

t∈T

(v(t) − (p
(t)
iJ [n] + θ[n]g

(t)
iJ [n]))2 (5.31)

for each (i, J) ∈ A, where PiJ is the |T |-dimensional simplex

PiJ =

{

v

∣

∣

∣

∣

∣

∑

t∈T

v(t) = siJ , v ≥ 0

}

and θ[n] > 0 is an appropriate step size. In other words, piJ [n+1] is set

to be the Euclidean projection of piJ [n] + θ[n]giJ [n] onto PiJ .

To perform the projection, we use the following proposition.

Proposition 5.3 Let u := piJ [n] + θ[n]giJ [n]. Suppose we index the

elements of T such that u(t1) ≥ u(t2) ≥ . . . ≥ u(t|T |). Take k̂ to be the

smallest k such that

1

k

(

siJ −
tk
∑

r=1

u(r)

)

≤ −u(tknn+1)

or set k̂ = |T | if no such k exists. Then the projection (5.31) is achieved

by

p
(t)
iJ [n+ 1] =







u(t) +
siJ−

∑ t
k̂

r=1 u(r)

k̂n
if t ∈ {t1, . . . , tk̂},

0 otherwise.

Proof We wish to solve the following problem.

minimize
∑

t∈T

(v(t) − u(t))2

subject to v ∈ PiJ .

First, since the objective function and the constraint set PiJ are both

convex, it is straightforward to establish that a necessary and sufficient

condition for global optimality of v̂(t) in PiJ is

v̂(t) > 0 ⇒ (u(t) − v̂(t)) ≥ (u(r) − v̂(r)), ∀ r ∈ T (5.32)
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(see, e.g., [10, Section 2.1]). Suppose we index the elements of T such

that u(t1) ≥ u(t2) ≥ . . . ≥ u(t|T |). We then note that there must be an

index k in the set {1, . . . , |T |} such that v(tl) > 0 for l = 1, . . . , k and

v(tl) = 0 for l > kn + 1, for, if not, then a feasible solution with lower

cost can be obtained by swapping around components of the vector.

Therefore, condition (5.32) implies that there must exist some d such

that v̂(t) = u(t) + d for all t ∈ {t1, . . . , tkn} and that d ≤ −u(t) for all

t ∈ {tkn+1, . . . , t|T |}, which is equivalent to d ≤ −u(tk+1). Since v̂(t) is

in the simplex PiJ , it follows that

kd+

tk
∑

t=1

u(t) = siJ ,

which gives

d =
1

k

(

siJ −
tk
∑

t=1

u(t)

)

.

By taking k = k̂, where k̂ is the smallest k such that

1

k

(

siJ −
tk
∑

r=1

u(r)

)

≤ −u(tk+1),

(or, if no such k exists, then k̂ = |T |), we see that we have

1

k̂ − 1

(

siJ −

tk−1
∑

t=1

u(t)

)

> −u(tk),

which can be rearranged to give

d =
1

k̂

(

siJ −
tk
∑

t=1

u(t)

)

> −u(tk).

Hence, if v(t) is given by

v(t) =







u(t) +
siJ−

∑ t
k̂

r=1 u(r)

k̂
if t ∈ {t1, . . . , tk̂},

0 otherwise,
(5.33)

then v(t) is feasible and we see that the optimality condition (5.32) is

satisfied. Note that, since d ≤ −u(tk+1), equation (5.33) can also be

written as

v(t) = max



0, u(t) +
1

k̂



siJ −

t
k̂
∑

r=1

u(r)







 . (5.34)
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The disadvantage of subgradient optimization is that, whilst it yields

good approximations of the optimal value of the Lagrangian dual prob-

lem (5.28) after sufficient iteration, it does not necessarily yield a primal

optimal solution. There are, however, methods for recovering primal so-

lutions in subgradient optimization. We employ the following method,

which is due to Sherali and Choi [125].

Let {µl[n]}l=1,...,n be a sequence of convex combination weights for

each non-negative integer n, i.e.,
∑n

l=1 µl[n] = 1 and µl[n] ≥ 0 for all

l = 1, . . . , n. Further, let us define

γln :=
µl[n]

θ[n]
, l = 1, . . . , n, n = 0, 1, . . .,

and

∆γmax
n := max

l=2,...,n
{γln − γ(l−1)n}.

Proposition 5.4 If the step sizes {θ[n]} and convex combination weights

{µl[n]} are chosen such that

(i) γln ≥ γ(l−1)n for all l = 2, . . . , n and n = 0, 1, . . .,

(ii) ∆γmax
n → 0 as n→ ∞, and

(iii) γ1n → 0 as n → ∞ and γnn ≤ δ for all n = 0, 1, . . . for some

δ > 0,

then we obtain an optimal solution to the primal problem from any ac-

cumulation point of the sequence of primal iterates {x̃[n]} given by

x̃[n] :=

n
∑

l=1

µl[n]x̂[l], n = 0, 1, . . . . (5.35)

Proof Suppose that the dual feasible solution that the subgradient

method converges to is p̄. Then, using (5.31), there exists some m such

that for n ≥ m

p
(t)
iJ [n+ 1] = p

(t)
iJ [n] + θ[n]g

(t)
iJ [n] + ciJ [n]

for all (i, J) ∈ A and t ∈ T such that p̄
(t)
iJ > 0.

Let g̃[n] :=
∑n

l=1 µl[n]g[l]. Consider some (i, J) ∈ A and t ∈ T . If
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p̄
(t)
iJ > 0, then for n > m we have

g̃
(t)
iJ [n] =

m
∑

l=1

µl[n]g
(t)
iJ [l] +

n
∑

l=m+1

µl[n]g
(t)
iJ [l]

=

m
∑

l=1

µl[n]g
(t)
iJ [l] +

n
∑

l=m+1

µl[n]

θ[n]
(p

(t)
iJ [n+ 1] − p

(t)
iJ [n] − ciJ [n])

=

m
∑

l=1

µl[n]g
(t)
iJ [l] +

n
∑

l=m+1

γln(p
(t)
iJ [n+ 1] − p

(t)
iJ [n])

−
n
∑

l=m+1

γlnciJ [n].

(5.36)

Otherwise, if p̄
(t)
iJ = 0, then from equation (5.34), we have

p
(t)
iJ [n+ 1] ≥ p

(t)
iJ [n] + θ[n]g

(t)
iJ [n] + ciJ [n],

so

g̃
(t)
iJ [n] ≤

m
∑

l=1

µl[n]g
(t)
iJ [l]+

n
∑

l=m+1

γln(p
(t)
iJ [n+1]−p

(t)
iJ [n])−

n
∑

l=m+1

γlnciJ [n].

(5.37)

It is straightforward to see that the sequence of iterates {x̃[n]} is primal

feasible, and that we obtain a primal feasible sequence {z[n]} by setting

z
iJ

(i)
m

[n] := max
t∈T











∑

k∈J
(i)
Mi

\J
(i)
m−1

x̃
(t)
ik [n]











−
Mi
∑

m′=m+1

z
iJ

(i)

m′
[n]

= max
t∈T

g̃
iJ

(i)
m

−
Mi
∑

m′=m+1

z
iJ

(i)

m′
[n]

recursively, starting from m = Mi and proceeding through to m = 1.

Sherali and Choi [125] showed that, if the required conditions on the

step sizes {θ[n]} and convex combination weights {µl[n]} are satisfied,

then
m
∑

l=1

µl[n]g
(t)
iJ [l] +

n
∑

l=m+1

γln(p
(t)
iJ [n+ 1] − p

(t)
iJ [n]) → 0

as k → ∞; hence we see from equations (5.36) and (5.37) that, for k
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sufficiently large,

Mi
∑

m′=m

z
iJ

(i)

m′
[n] = −

n
∑

l=m+1

γlnciJ(i)
m

[n].

Recalling the primal problem (5.30), we see that complementary slack-

ness with p̄ holds in the limit of any convergent subsequence of {x̃[n]}.

The required conditions on the step sizes and convex combination

weights are satisfied by the following choices ([125, Corollaries 2–4]):

(i) step sizes {θ[n]} such that θ[n] > 0, limn→0 θ[n] = 0,
∑∞

n=1 θn =

∞, and convex combination weights {µl[n]} given by µl[n] =

θ[l]/
∑n

k=1 θ[k] for all l = 1, . . . , n, n = 0, 1, . . .;

(ii) step sizes {θ[n]} given by θ[n] = a/(b + cn) for all n = 0, 1, . . .,

where a > 0, b ≥ 0 and c > 0, and convex combination weights

{µl[n]} given by µl[n] = 1/n for all l = 1, . . . , n, n = 0, 1, . . .; and

(iii) step sizes {θ[n]} given by θ[n] = n−α for all n = 0, 1, . . ., where

0 < α < 1, and convex combination weights {µl[n]} given by

µl[n] = 1/n for all l = 1, . . . , n, n = 0, 1, . . ..

Moreover, for all three choices, we have µl[n+ 1]/µl[n] independent of l

for all n, so primal iterates can be computed iteratively using

x̃[n] =

n
∑

l=1

µl[n]x̂[l]

=
n−1
∑

l=1

µl[n]x̂[l] + µn[n]x̂[n]

= φ[n− 1]x̃[n− 1] + µn[n]x̂[n],

where φ[n] := µl[n+ 1]/µl[n].

This gives us our distributed algorithm. We summarize the subgradi-

ent method in Figure 5.6. We see that, although the method is indeed a

distributed algorithm, it again operates in synchronous rounds. Again,

it is expected that this synchronicity can be relaxed in practice.

5.1.1.6 Application: Minimum-transmission wireless unicast

We have now discussed sufficient material to allow us to establish coded

connections. But is it worthwhile to do so? Surely, coding should not

be used for all network communications; in some situations, the gain

from coding is not sufficient to justify the additional work, and packets
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(i) Each node i computes siJ for its outgoing hyperarcs and ini-
tializes piJ [0] to a point in the feasible set of (5.28). For

example, we take p
(t)
iJ [0] := siJ/|T |. Each node i sends siJ

and piJ [0] over each outgoing hyperarc (i, J).

(ii) At the nth iteration, use p(t)[n] as the hyperarc costs and
run a distributed shortest path algorithm, such as distributed
Bellman-Ford, to determine x̂(t)[n] for all t ∈ T .

(iii) Each node i computes piJ [n + 1] for its outgoing hyperarcs
using Proposition 5.3. Each node i sends piJ [n + 1] over each
outgoing hyperarc (i, J).

(iv) Nodes compute the primal iterate x̃[n] by setting

x̃[n] :=

n
∑

l=1

µl[n]x̂[l].

(v) The current coding subgraph z[n] is computed using the pri-
mal iterate x̃[n]. For each node i, we set

z
iJ

(i)
m

[n] := max
t∈T











∑

k∈J
(i)
Mi

\J
(i)
m−1

x̃
(t)
ik [n]











−

Mi
∑

m′=m+1

z
iJ

(i)

m′
[n]

recursively, starting from m = Mi and proceeding through to
m = 1.

(vi) Steps (ii)–(v) are repeated until the sequence of primal iterates
{x̃[n]} converges.

Fig. 5.6. Summary of the subgradient method.

should simply be routed. In this section, we describe an application

where coding is worthwhile.

We consider the problem of minimum-transmission wireless unicast—

the problem of establishing a unicast connection in a lossy wireless net-

work using the minimum number of transmissions per packet. This

efficiency criterion is the same as that in Section 5.1.1.2; it is a generic

efficiency criterion reflects the fact that sending packets unnecessarily

wastes both energy and bandwidth.

There are numerous approaches to wireless unicast; we consider five,

three of which (approaches (i)–(iii)) are routed approaches and two of

which (approaches (iv) and (v)) are coded approaches:

(i) End-to-end retransmission: A path is chosen from source to

sink, and packets are acknowledged by the sink, or destination

node. If the acknowledgment for a packet is not received by the

source, the packet is retransmitted. This represents the situation
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where reliability is provided by a retransmission scheme above

the arc layer, e.g., by the transmission control protocol (tcp) at

the transport layer, and no mechanism for reliability is present

at the arc layer.

(ii) End-to-end coding: A path is chosen from source to sink, and

an end-to-end forward error correction (fec) code, such as a

Reed-Solomon code, an lt code [92], or a Raptor code [102, 126],

is used to correct for packets lost between source and sink. This

is the Digital Fountain approach to reliability [18].

(iii) Arc-by-arc retransmission: A path is chosen from source to

sink, and automatic repeat request (arq) is used at the arc layer

to request the retransmission of packets lost on every arc in the

path. Thus, on every arc, packets are acknowledged by the in-

tended receiver and, if the acknowledgment for a packet is not

received by the sender, the packet is retransmitted.

(iv) Path coding: A path is chosen from source to sink, and every

node on the path employs coding to correct for lost packets. The

most straightforward way of doing this is for each node to use

an fec code, decoding and re-encoding packets it receives. The

drawback of such an approach is delay. Every node on the path

codes and decodes packets in a block. A way of overcoming this

drawback is to use codes that operate in more of a “convolutional”

manner, sending out coded packets formed from packets received

thus far, without decoding. The random linear network coding

scheme of Section 4.1 is such a code. A variation, with lower

complexity, is described in [111].

(v) Full coding: In this case, paths are eschewed altogether, and we

use our solution to the efficient operation problem. Problem (5.2)

is solved to find a subgraph, and the random linear coding scheme

of Section 4.1 is used. This represents the limit of achievability

provided that we are restricted from modifying the design of the

physical layer and that we do not exploit the timing of packets

to convey information.

We consider the following experiment: Nodes are placed randomly

according to a uniform distribution over a square region whose size is

set to achieve unit node density. In the network, transmissions are sub-

ject to distance attenuation and Rayleigh fading, but not interference

(owing to scheduling). So, when node i transmits, the signal-to-noise

ratio (snr) of the signal received at node j is γd(i, j)−α, where γ is an
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Fig. 5.7. Average number of transmissions per packet as a function of network
size for various wireless unicast approaches. Reprinted with permission from
[101].

exponentially-distributed random variable with unit mean, d(i, j) is the

distance between node i and node j, and α is an attenuation parameter

that was taken to be 2. A packet transmitted by node i is successfully

received by node j if the received snr exceeds β, i.e., γd(i, j)−α ≥ β,

where β is a threshold that was taken to be 1/4. If a packet is not

successfully received, then it is completely lost. If acknowledgments are

sent, acknowledgments are subject to loss in the same way that packets

are and follow the reverse path.

The average number of transmissions required per packet using the

various approaches in random networks of varying size is shown in Fig-

ure 5.7. Paths or subgraphs were chosen in each random instance to min-

imize the total number of transmissions required, except in the cases of

end-to-end retransmission and end-to-end coding, where they were cho-

sen to minimize the number of transmissions required by the source node

(the optimization to minimize the total number of transmissions in these

cases cannot be done straightforwardly by a shortest path algorithm).

We see that, while end-to-end coding and arc-by-arc retransmission al-
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ready represent significant improvements on end-to-end retransmission,

the coded approaches represent more significant improvements still. By

a network size of nine nodes, full coding already improves on arc-by-arc

retransmission by a factor of two. Moreover, as the network size grows,

the performance of the various schemes diverges.

Here, we discuss performance simply in terms of the number of trans-

missions required per packet; in some cases, e.g., congestion, the per-

formance measure increases super-linearly in this quantity, and the per-

formance improvement is even greater than that depicted in Figure 5.7.

We see, at any rate, that coding yields significant gains, particularly for

large networks.

5.1.2 Computation-constrained coding

In the previous section, we assumed that all nodes in the network are ca-

pable of coding, and we focused on the problem of minimizing resources

that can be expressed as a function of the coding subgraph. But what if

the computation required for coding is itself a scarce resource? This is

a concern, for example, in currently-deployed networks that only have

routing capability—each node that needs to be upgraded to add coding

capability will incur some cost. In the computation-constrained case, we

wish to restrict coding to only a subset of the network nodes, trading

off resources for transmission with resources for computation.

The computation-constrained problem is, in general, a hard one. Sim-

ply determining a minimal set of nodes where coding is required in a

given subgraph is np-hard [81], suggesting that heurstics are necessary

for multicast connections involving more than a few sinks. When there

are only a small number of sinks, however, an optimal solution can be

found using a flow-based approach. This approach, due to Bhattad et al.

[17], partitions flows not only into sinks, but into sets of sinks. Thus, for

a multicast with sinks in the set T , we not only have a flow x(t) for each

t ∈ T , but we have a flow x(T ′) for each T ′ ⊂ T . The flow formulation

by Bhattad et al. involves a number of variables and constraints that

grows exponentially with the number of sinks, so it is feasible only when

|T | is small, but, under this restriction, it allows optimal solutions to be

found.

When dealing with a larger number of sinks, suboptimal heuristics

provide a solution. Kim et al. [81] have proposed an evolutionary ap-

proach based on a genetic algorithm that shows good empircal perfor-

mance.
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Fig. 5.8. The modified butterfly network. In this network, every arc represents
a directed arc that is capable of carrying a single packet reliably.

5.1.3 Inter-session coding

Optimal inter-session coding, as we have mentioned, is very difficult.

In fact, even good inter-session coding is very difficult. One of the few

methods for finding non-trivial inter-session coding solutions was pro-

posed by Koetter and Médard [85]; their method searched only within

a particular, limited class of linear codes and, even then, its complexity

scaled exponentially in the size of the network. Since we must maintain

an eye on practicability, we must not be too ambitious in our search for

inter-session codes.

As discussed in Section 3.5.1, a modest approach that we can take is

the following: Since our most familiar examples of inter-session coding

are the modified butterfly network (Figure 1.2) and modified wireless

butterfly network (Figure 1.4), we seek direct extensions of the inter-

session coding opportunities exemplified by these two cases.

For starters, let us consider the lossless wireline case. We show the

modified butterfly network again in Figure 5.8. Without intersession

coding, we would require two unit-sized flows x(1) and x(2), originating

and ending at s1 and t1 and s2 and t2, respectively. There is only one

possible solution for each of the two flows:

x(1) = (x
(1)
s11, x

(1)
s21, x

(1)
s1t2 , x

(1)
12 , x

(1)
s2t1 , x

(1)
2t2
, x

(1)
2t1

) = (1, 0, 0, 1, 0, 0, 1),

x(2) = (x
(2)
s11, x

(2)
s21, x

(2)
s1t2 , x

(2)
12 , x

(2)
s2t1 , x

(1)
2t2
, x

(2)
2t1

) = (0, 1, 0, 1, 0, 1, 0).

This solution, as we know, is not feasible because it violates the capacity

constraint on arc (1, 2). Without inter-session coding, the total rate of
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packet injections on arc (1, 2) would be two, which violates its capacity

of one. We also know, however, that a simple inter-session code where

packets from each of the two sessions are xored at node 1 resolves this

situation by reducing the rate of packet injections on arc (1, 2) from two

to one and increasing the rate of packet injections on arc (s1, t2) and

(s2, t1) from zero to one. If we can formulate the effect of this code

as flow equations, then we can hope to develop a flow-based approach

for systematically finding inter-session coding opportunities of the type

exemplified by the modified butterfly network.

Such a flow formulation was developed by Traskov et al. [132]. In the

formulation, three variables are introduced for each coding opportunity:

p, the poison variable, q, the antidote request variable, and r, the anti-

dote variable. The poison p represents the effect of coding two sessions

together with an xor. The poison on arc (i, j), pij , is strictly negative

if the arc carries poisoned flow, i.e., it carries packets xored from two

separate sessions; otherwise, it is zero. Such a flow is “poisoned” be-

cause the xored packets, by themselves, are not useful to their intended

destinations. The antidote r represents the extra “remedy” packets that

must be set so that the effect of the poison can be reversed, i.e., so that

the xored packets can be decoded to recover the packets that are ac-

tually useful. The antidote on arc (i, j), rij , is strictly positive if the

arc carries remedy packets; otherwise, it is zero. The antidote request

q is essentially an imaginary variable in that it need not correspond to

any real physical entity, It could, however, correspond to actual protocol

messages requesting remedy packets to be sent. The antidote request

connects the coding node to the nodes from which remedy packets are

sent, thus making a cycle from p, q, and r and facilitating a flow formu-

lation. The antidote request on arc (i, j), qij , is strictly negative if the

arc carries antidote requests; otherwise, it is zero.

The Traskov et al. flow formulation is best understood using an ex-

ample. We take, as our example, the modified butterfly network and, in

Figure 5.9, we show the poison, antidote request, and antidote variables

for this network. We have two of each variable: one, 1 → 2, relates to

the impact of coding on flow two, while the other, 2 → 1, relates to

the impact of coding on flow one. Note that p(1 → 2), q(1 → 2), and

r(1 → 2) form a cycle, as do p(2 → 1), q(2 → 1), and r(2 → 1).

This formulation, once extended to a general lossless wireline network

that allows coding at all nodes, yields the following formulation of the
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s1

2

s2 t1

1

t2

q(2 → 1) = −1

p(1 → 2) = −1

r(2 → 1) = 1

r(1 → 2) = 1

p(2 → 1) = −1

q(1 → 2) = −1 p(1 → 2) = −1

p(2 → 1) = −1

Fig. 5.9. The modified butterfly network with poison, antidote request, and
antidote variables shown. Reprinted with permission from [132].

subgraph selection problem:

minimize f(z)

subject to z ∈ Z,

∑

{j|(i,j)∈A}

x
(c)
ij −

∑

{j|(j,i)∈A}

x
(c)
ji =















Rc if i = sc,

−Rc if j = tc,

0 otherwise,

∀ i ∈ N , c = 1, . . . , C,

x ≥ 0

x ∈ T (z),

(5.38)

where T (z) for a given z is the set of x satisfying, for some {pij(c →

d, k)}, {qij(c → d, k)}, and {rij(c → d, k)}, the following equalities and
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inequalities:

∑

{j|(j,i)∈A}

(pji(c→ d, k) + qji(c→ d, k) + rji(c→ d, k))

=
∑

{j|(i,j)∈A}

(pij(c→ d, k) + qij(c → d, k) + rij(c → d, k)) ,

∀ i, k ∈ N , c, d = 1, . . . , C,

∑

{j|(j,i)∈A}

pji(c→ d, k) −
∑

{j|(i,j)∈A}

pij(c → d, k)

{

≥ 0 if i = k,

≤ 0 otherwise,

∀ i, k ∈ N , c, d = 1, . . . , C,

∑

{j|(j,i)∈A}

qji(c→ d, k) −
∑

{j|(i,j)∈A}

qij(c→ d, k)

{

≤ 0 if i = k,

≥ 0 otherwise,

∀ i, k ∈ N , c, d = 1, . . . , C,

pij(d→ c, i) = pij(c→ d, i),

∀ j ∈ {j|(i, j) ∈ A}, c, d = 1, . . . , C,

C
∑

c=1







xij(c) +
∑

k

∑

d>c

pmax
ij (c, d, k) +

∑

k

∑

d 6=c

rij(c → d, k)







≤ zij ,

∀ (i, j) ∈ A,

xij(d) +
∑

k

∑

c

(pij(c → d, k) + qij(d→ c, k)) ≥ 0,

∀ (i, j) ∈ A, d = 1, . . . , C,

p ≤ 0, r ≥ 0, s ≤ 0,

where

pmax
ij (c, d, k) , max(pij(c→ d, k), pij(d→ c, k)).

In this formulation, multicast is not explicitly considered—only inter-

session coding for multiple unicast sessions is considered. It allows for

packets from two separate sessions to be xored at any node and for

remedy packets to be sent and decoding to be performed at any nodes

at which these operations are valid. It does not allow, however, for

poisoned flows to be poisoned again. That this formulation is indeed

correct, given these restrictions, is shown in [132].

This formulation can be straightforwardly extended to the case of

lossless wireless networks, thus allowing us to extend the modified wire-
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less butterfly network in the same way. The precise equations that are

obtained are given in [42].

5.2 Queue-length-based approaches

Queue-length-based, or back-pressure, algorithms were first introduced

in [131, 6] for multicommodity flow problems, i.e. multiple unicast net-

work problems without coding. The basic idea can be summed up as

follows. Each node i keeps track of the number U
(c)
i of packets of each

unicast session c. It is convenient to think of U
(c)
i as the length of a queue

of packetsQ
(c)
i maintained by node i for each session c. Each queue has a

potential that is an increasing function of its length. At each step, packet

transmissions are prioritized according to the potential difference across

their corresponding start and end queues, so as to maximize the total

potential decrease in the network, subject to network constraints. In the

simplest version, the potential is equal to the queue length, and trans-

missions are prioritized according to the queue length difference, i.e., for

a given arc (i, j), packets of session argmaxc(U
(c)
i − U

(c)
j ) have priority

for transmission. This policy gives rise to queue length gradients from

each session’s source to its sink. We can draw an analogy with pressure

gradients and think of packets as “flowing down” these gradients.

Different versions and extensions of the basic back-pressure algorithm

have been proposed for finding asymptotically optimal solutions for var-

ious types of multicommodity flow problems with different objectives.

For instance, back-pressure algorithms with potential given by queue

lengths are proposed for dynamic control of routing and scheduling

in time-varying networks, in [131] and other subsequent works. Such

approaches are extended to the problem of minimum-energy routing

in [107]. In [7] a back-pressure algorithm with an exponential potential

function is proposed as a low-complexity approximation algorithm for

constructing a solution to a feasible multicommodity flow problem.

The back-pressure approach can be generalized to optimize over differ-

ent classes of network codes. The underlying idea is the introduction of

an appropriately defined system of virtual queues and/or virtual trans-

missions. The back-pressure principle of maximizing total potential de-

crease at each step, subject to network constraints, can then be applied

to obtain control policies for network coding, routing and scheduling

based on the virtual queue lengths. Extensions to various types of net-
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work problems with different objectives can be obtained analogously to

the multicommodity routing case.

5.2.1 Intra-session network coding for multiple multicast

sessions

In this section, we consider a dynamically varying network problem with

a set C of multicast sessions. Each session c ∈ C has a set Sc of source

nodes whose data is demanded by a set Tc of sink nodes. We describe

an extension of the basic queue-length-based approach to the case of

multiple multicast sessions with intra-session network coding, i.e. only

packets from the same session are coded together.

5.2.1.1 Network model

We consider a lossless network comprised of a set N of N = |N | nodes,

with a set A of communication arcs between them that are fixed or time-

varying according to some specified processes. There is a set of multicast

sessions C sharing the network. Each session c ∈ C is associated with

a set Sc ⊂ N of source nodes, and an arrival process, at each source

node, of exogenous session c packets to be transmitted to each of a set

Tc ⊂ N\Sc of sink nodes. We denote by τmax the maximum number of

sinks of a session.

Time is assumed to be slotted, with the time unit normalized so that

time slots correspond to integral times τ = 0, 1, 2, . . . . For simplicity, we

assume fixed length packets and arc transmission rates that are restricted

to integer numbers of packets per slot. We assume that the channel

states, represented by a vector S(τ) taking values in a finite set, are fixed

over the duration of each slot τ , and known at the beginning of the slot.

For simplicity of exposition we assume that the exogenous packet arrival

and channel processes are independent and identically distributed (i.i.d.)

across slots. The queue-length-based policy described below applies also

in the case of stationary ergodic processes. The analysis below can be

generalized to the latter case using an approach similar to that in [106]†.

We consider both wired and wireless networks. In our model, for

the wired case the network connectivity and the arc rates are explic-

itly specified. For wireless networks, the network connectivity and arc

transmission rates depend on the signal and interference powers and the

† Groups of M timeslots are considered as a “super timeslot”, where M is sufficiently
large that the time averages of the channel and arrival processes differ from their
steady-state values by no more than a given small amount.
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channel states. We assume that the vector of transmit powers P (τ) at

each time τ takes values in a given set Π and is constant over each slot.

We also assume we are given a rate function µ(P , S) specifying the vec-

tor of instantaneous arc rates µ(τ) = (µiJ (τ)) as a function of the vector

of transmit powers P (τ) and channel states S(τ).

In this section, all arc, source and flow rates are in packets per unit

time. We assume upper bounds µout
max and µin

max on the total flow rate

into and out of a node respectively.

5.2.1.2 Network coding and virtual queues

We use the approach of distributed random linear network coding with

coefficient vectors, described in Section 2.5.1.1. For simplicity, we do not

explicitly consider batch restrictions in the descriptions and analysis of

the policies in this section. Thus, the results represent an upper bound

on performance that is approached only asymptotically (in the batch size

and packet length). If the policies are operated across multiple batches

(the only change from the policy described below being an additional

restriction not to code across batches), there is some capacity loss which

decreases with increasing batch size and depends on the detailed source

and channel statistics.

Recall from Section 2.3 that for network coding within a multicast

session, a solution is given by a union of individual flow solutions for

each sink. Here, we define virtual queues to keep track of the individual

sinks’ flow solutions as follows.

Each node i conceptually maintains, for each sink t of each session

c, a virtual queue Q
(t,c)
i whose length U

(t,c)
i is the number of session c

packets queued at node i that are intended for sink t. A single physical

session c packet corresponds to a packet in the virtual queue Q
(t,c)
i of

each sink t for which it is intended. For instance, in the butterfly network

of Figure 5.10, each physical session c packet at source node s is intended

to be multicast to the two sink nodes t1, t2, and so corresponds to one

packet in each virtual queue Q
(t1,c)
s and Q

(t2,c)
s . Each packet in a virtual

queue corresponds to a distinct physical packet; thus there is a one-to-

many correspondence between physical packets and packets in virtual

queues.

A packet in a virtual queue Q
(t,c)
i can be transferred over an arc (i, j)

to the corresponding virtual queue Q
(t,c)
j at the arc’s end node j; this is

called a virtual transmission. With network coding, for any subset T ′ ⊂

Tc of a session’s sinks, a single physical transmission of a packet on an

arc (i, j) can simultaneously accomplish, for each sink t ∈ T ′, one virtual
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Fig. 5.10. The butterfly network with a single multicast session c, one source
node s and two sink nodes t1, t2.

transmission from Q
(t,c)
i to Q

(t,c)
j . The physically transmitted packet is a

random linear coded combination of the physical packets corresponding

to the virtually transmitted packets. In the case of a wireless broadcast

transmission from a node i to a set of nodes J , although the nodes in

J all receive the transmitted packet, they update their virtual queues

selectively, according to control information included in the packet, such

that each constituent virtual transmission is point-to-point, i.e. from one

queue Q
(t,c)
i to one queue Q

(t,c)
j at some end node j ∈ J , which may

differ for different sinks t. Thus, there is conservation of virtual packets

(virtual flows); we can draw an analogy with the no-coding case where

physical packets (physical flows) are conserved. An illustration is given

in Figure 5.11 of a physical broadcast transmission which accomplishes

two virtual transmissions, for a multicast session with two sinks.

Let w
(c)
i be the average arrival rate of exogenous session c packets

at each node i; w
(c)
i = 0 for i 6∈ Sc. Each source node i ∈ Sc forms

coded source packets at an average rate r
(c)
i = w

(c)
i + ǫ for some ǫ > 0,

slightly higher than its exogenous packet arrival rate w
(c)
i . Each coded

source packet is formed as an independent random linear combination

of previously arrived exogenous packets, and is “added” to each queue

Q
(t,c)
i , t ∈ Tc. In order for each sink to be able to decode all source

packets,
w

(c)
i

r
(c)
i

should be at most the ratio of the total number of packets

reaching each sink to the total number of coded source packets. As we
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Sink 1

Sink 2

Sink 1

Sink 2

Sink 1

Sink 2

Fig. 5.11. Illustration of a physical broadcast transmission comprising two
virtual transmissions. Each oval corresponds to a node. The left node broad-
casts a physical packet received by the two right nodes, one of which adds the
packet to the virtual queue for sink 1, and the other, to the virtual queue for
sink 2.

will see in the next section, for sufficiently large times t, this condition

is satisfied and decoding is successful with high probability.†

Let A
(c)
i (τ) be the number of coded session c source packets formed

at node i in timeslot τ . Thus we have

r
(c)
i = E{A

(c)
i (τ)}. (5.39)

We assume that the second moment of the total number of source packets

formed at each node in each timeslot is bounded by a finite maximum

value A2
max, i.e.

E







(

∑

c

A
(c)
i (τ)

)2






≤ A2
max, (5.40)

which implies

E

{

∑

c

A
(c)
i (τ)

}

≤ Amax. (5.41)

† If we employ batch coding where each batch contains a fixed number of exogenous
packets, feedback from the sinks can be used to signal when the sources should
stop forming coded packets of each batch. This determines the effective value of ǫ

for each batch.
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5.2.1.3 Problem and notation

We consider a multiple multicast network problem where the average

network capacity is slightly higher than the minimum needed to support

the source rates. We would like a control policy for dynamic subgraph

selection (i.e. scheduling of packets/transmitters, and routing) which,

coupled with random linear network coding, stably supports the given

source rates. The problem is formulated more precisely as follows.

Let U c
i (τ) be the number of physical session c packets queued at node

i at time τ . Stability is defined in terms of an “overflow” function

γ
(c)
i (M) = lim sup

τ→∞

1

τ

τ
∑

τ ′=0

Pr{U c
i (τ ′) > M} (5.42)

The session c queue at node i is considered stable if γc
i (M) → 0 as

M → ∞. A network of queues is considered stable iff each individual

queue is stable. Since

U c
i (τ) ≤

∑

t

U
(t,c)
i (τ) ≤ τmaxU

c
i (τ) ∀ i, c, τ

the network is stable iff all virtual queues are stable.

Let ziJ denote the average value of the time-varying rate µiJ (τ) of

hyperarc (i, J). We use x
(t,c)
iJj to denote average virtual flow rate, over

arc (i, J) ∈ A, from Q
(t,c)
i to Q

(t,c)
j , j ∈ J . We use y

(c)
iJ to denote average

session c physical flow rate on (i, J) ∈ A.

For brevity of notation, we use the convention that any term with

subscript iJj equals zero unless (i, J) ∈ A, j ∈ J , and any term with

superscript (t, c) equals zero unless c ∈ C, t ∈ Tc.

Let πS denote the probability in each slot that the channel states take

the value S . Let Z be the set consisting of all rate vectors z = (ziJ ) that

can represented as z =
∑

S πSzS for some set of rate vectors zS , each of

which is in the convex hull of the set of rate vectors {µ
iJ

(P , S)|P ∈ Π}.

Z represents the set of all long-term average transmission rates (ziJ )

supportable by the network [106, 59].

Let Λ be the set of all rate vectors (r
(c)
i ) such that there exist values
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for (ziJ) ∈ Z and {x
(t,c)
iJj , y

(t,c)
iJ } satisfying:

x
(t,c)
tJi = 0 ∀ c, t, J, i (5.43)

x
(t,c)
iJj ≥ 0 ∀ i, j, c, t, J (5.44)

r
(c)
i ≤

∑

J,j

x
(t,c)
iJj −

∑

j,I

x
(t,c)
jIi ∀ i, c, t ∈ Tc, t 6= i (5.45)

∑

j∈J

x
(t,c)
iJj ≤ y

(c)
iJ ∀ i, J, c, t (5.46)

∑

c

y
(c)
iJ ≤ ziJ ∀ i, J (5.47)

Equations (5.43)–(5.47) correspond to the feasible set of problem (5.1)

in the lossless case, where, rather than a single source node sc for each

session c, there may be multiple source nodes, described by the set Sc.

The variables {x
(t,c)
ab } for a (session, sink) pair (c, t ∈ Tc) define a flow

carrying rate at least r
(c)
i from each source node i to t (Inequalities

(5.44)–(5.45)), in which virtual flow that is intended for t is not retrans-

mitted away from t (Equation (5.46)).

We describe below a queue-length-based policy that is stable and

asymptotically achieves the given source rates for any network prob-

lem where (r
(c)
i + ǫ′) ∈ Λ.† This condition implies the existence of a

solution, but we assume that the queue-length-based policy operates

without knowledge of the solution variables.

5.2.1.4 Control policies

We consider policies that make control decisions at the start of each time

slot τ and operate as follows.

• Power allocation: A vector of transmit powers P (τ) = (PiJ (τ)) is

chosen from the set Π of feasible power allocations. This, together

with the channel state S(τ), determines the arc rates µ(τ) = (µiJ (τ)),

assumed constant over the time slot.

• Session scheduling, rate allocation and network coding: For each arc

(i, J), each sink t of each session c is allocated a transmission rate

† This particular problem formulation, which provisions sufficient network capacity
to support, for each session c, an additional source rate of ǫ′ at each node, affords
a simple solution and analysis. We could alternatively use a slightly more com-
plicated formulation which includes for each session c an additional source rate of
ǫ′ only at the actual source nodes s ∈ Sc, similarly to that in [67] for the case of
correlated sources.
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µ
(t,c)
iJj (τ) for each destination node j ∈ J . These allocated rates must

satisfy the overall arc rate constraint

µiJ (τ) ≥
∑

c∈C

max
t∈Tc

∑

j∈J

µ
(t,c)
iJj (τ).

µ
(t,c)
iJj (τ) gives the maximum rate of virtual transmissions from Q

(t,c)
i

to Q
(t,c)
j . Besides this limit on virtual transmissions for pairs of queues

over each link, the total number of virtual transmissions out of Q
(t,c)
i

over all links with start node i is also limited by the queue length

U
(t,c)
i (τ) at the start of the time slot. Each session c packet physically

transmitted on arc (i, J) is a random linear combination, in Fq, of

packets corresponding to a set of virtual transmissions on (i, J), each

associated with a different sink in Tc. Thus, the rate allocated to

session c on (i, J) is the maximum, over sinks t ∈ Tc, of each sink t’s

total allocated rate
∑

j∈J µ
(t,c)
iJj (τ).

The following dynamic policy relies on queue length information to

make control decisions, without requiring knowledge of the input or

channel statistics. The intuition behind the policy is that it seeks to

maximize the total weight of virtual transmissions for each time slot,

subject to the above constraints.

Back-pressure policy

For each time slot τ , the transmit powers (PiJ (τ)) and allocated rates

(µ
(t,c)
iJj (τ)) are chosen based on the queue lengths (U

(t,c)
i (τ)) at the start

of the slot, as follows.

• Session scheduling: For each arc (i, J),

– for each session c and sink t ∈ Tc, one end node

j
(t,c)∗
iJ = argmax

j∈J

(

U
(t,c)
i − U

(t,c)
j

)

= argmin
j∈J

U
(t,c)
j

is chosen. Let U
(t,c)∗
iJ denote U

(t,c)

j
(t,c)∗
iJ

for brevity.

– one session

c∗iJ = argmax
c

{

∑

t∈Tc

max
(

U
(t,c)
i − U

(t,c)∗
iJ , 0

)

}
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is chosen. Let

w∗
iJ =

∑

t∈Tc∗
iJ

max
(

U
(t,c)
i − U

(t,c)∗
iJ , 0

)

(5.48)

be the weight of the chosen session.

• Power control: The state S(τ) is observed, and a power allocation

P (τ) = arg max
P∈Π

∑

i,J

µiJ (P , S(τ))w∗
iJ (5.49)

is chosen.

• Rate allocation: For each arc (i, J),

µ
(t,c)
iJj (τ) =

{

µiJ (τ) if c = c∗iJ , t ∈ Tc, j = j
(t,c)∗
iJ and U

(t,c)
i − U

(t,c)
j > 0

0 otherwise
.

(5.50)

In a network where simultaneous transmissions interfere, optimizing

(5.49) requires a centralized solution. If there are enough channels for

independent transmissions, the optimization can be done independently

for each transmitter.

The stability of the back-pressure policy is shown by comparison with

a randomized policy that assumes knowledge of a solution based on the

long-term input and channel statistics. We will show that the random-

ized policy is stable, and that stability of the randomized policy implies

stability of the back-pressure policy.

Randomized policy

Assume given values of (ziJ) ∈ Z and {x
(t,c)
iJj , y

(t,c)
iJ } satisfying

x
(t,c)
tJi = 0 ∀ c, t, J, i (5.51)

x
(t,c)
iJj ≥ 0 ∀ i, j, c, t, J (5.52)

r
(c)
i + ǫ′ ≤

∑

J,j

x
(t,c)
iJj −

∑

j,I

x
(t,c)
jIi ∀ i, c, t ∈ Tc, t 6= i (5.53)

∑

j∈J

x
(t,c)
iJj ≤ y

(c)
iJ ∀ i, J, c, t (5.54)

∑

c

y
(c)
iJ ≤ ziJ ∀ i, J (5.55)

are given.

The following lemma shows that for any rate vector (ziJ ) ∈ Z, power

can be allocated according to the time-varying channel state S(τ) such

that the time average link rates converge to (ziJ ).
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Lemma 5.1 Consider a rate vector (ziJ ) ∈ Z. There exists a stationary

randomized power allocation policy which gives link rates µiJ (τ) satisfy-

ing

lim
τ→∞

1

τ

τ
∑

0

µiJ (τ ′) = ziJ

with probability 1 for all (i, J) ∈ A, where, for each time slot τ in which

channel state S(τ) takes value S, the power allocation is chosen ran-

domly from a finite set {PS,1, . . . , PS,m} according to stationary proba-

bilities {qS,1, . . . , qS,m}.

Proof (Outline) From the definition of Z in Section 5.2.1.3 and by

Carathéodory’s Theorem (see, e.g. [8]), (ziJ ) =
∑

S πSzS for some set

of rate vectors zS , each of which is a convex combination of vectors

in {µ
iJ

(P , S)|P ∈ Π}. The probabilities of the stationary randomized

power allocation policy are chosen according to the weights of the convex

combinations for each state S.

The randomized policy is designed such that

E{µ
(t,c)
iJj (τ)} = x

(t,c)
iJj . (5.56)

For each time slot τ , transmit powers (PiJ (τ)) and allocated rates (µ
(t,c)
iJj (τ))

are chosen based on the given values of (ziJ ) and {x
(t,c)
iJj , y

(t,c)
iJ } as well

as the channel state S(τ), as follows.

• Power allocation: The channel state S(τ) is observed, and power is

allocated according to the algorithm of Lemma 5.1, giving instanta-

neous arc rates µiJ (τ) and long-term average rates ziJ .

• Session scheduling and rate allocation: For each arc (i, J), one session

c = ciJ is chosen randomly with probability
y
(c)
iJ

∑

c y
(c)
iJ

. Each of its sinks

t ∈ Tc is chosen independently with probability
∑

j x
(t,c)
iJj

y
(c)
iJ

. Let TiJ ⊂ Tc

denote the set of chosen sinks. For each t ∈ TiJ , one destination node

j = j
(t,c)
iJ in J is chosen with probability

x
(t,c)
iJj

∑

j x
(t,c)
iJj

. The corresponding

allocated rates are

µ
(t,c)
iJj (τ) =

{

∑

c y
(c)
iJ

ziJ
µiJ (τ) if c = ciJ , t ∈ TiJ and j = j

(t,c)
iJ

0 otherwise
.

(5.57)
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Theorem 5.1 If input rates (r
(c)
i ) are such that (r

(c)
i + ǫ′) ∈ Λ, ǫ′ >

0, both the randomized policy and the back pressure policy stabilize the

system with average total virtual queue length bounded as

∑

i,c,t

U
(t,c)
i = lim sup

τ→∞

1

τ

τ−1
∑

τ ′=0

∑

i,c,t

E{U
(t,c)
i (τ ′)} ≤

BN

ǫ′
(5.58)

where

B =
τmax

2

(

(Amax + µin
max)2 + (µout

max)2
)

. (5.59)

The proof of this theorem uses the following result:

Theorem 5.2 Let U(τ) = (U1(τ), . . . , Un(τ)) be a vector of queue

lengths. Define the Lyapunov function L(U(τ)) =
∑n

j=1[Uj(τ)]
2. If

for all τ

E{L(U(τ + 1)) − L(U(τ))|U (τ)} ≤ C1 − C2

n
∑

j=1

Uj(τ) (5.60)

for some positive constants C1, C2, and if E{L(U(0))} <∞, then

n
∑

j=1

Uj = lim sup
τ→∞

1

τ

τ−1
∑

τ ′=0

n
∑

j=1

E{Uj(τ
′)} ≤

C1

C2
(5.61)

and each queue is stable.

Proof Summing over τ = 0, 1, . . . , T − 1 the expectation of (5.60) over

the distribution of U(τ), we have

E{L(U(T )) − L(U(0))} ≤ TC1 − C2

T−1
∑

τ=0

n
∑

j=1

E{Uj(τ)}.

Since L(U(T )) > 0,

1

T

T−1
∑

τ=0

n
∑

j=1

E{Uj(τ)} ≤
C1

C2
+

1

TC2
E{L(U(0))}.
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Taking the lim sup as T → ∞ gives (5.61). Each queue is stable since

γj(M) = lim sup
τ→∞

1

τ

τ
∑

τ ′=0

Pr{Uj(τ
′) > M}

≤ lim sup
τ→∞

1

τ

τ
∑

τ ′=0

E{Uj(τ
′)}/M (5.62)

≤
C1

C2M
→ 0 as M → ∞, (5.63)

where (5.62) holds since Uj(τ
′) is nonnegative.

Proof of Theorem 5.1: The queue lengths evolve according to:

U
(t,c)
i (τ + 1) ≤ max







U
(t,c)
i (τ) −

∑

J,j

µ
(t,c)
iJj (τ) , 0







+
∑

j,I

µ
(t,c)
jIi (τ) +A

(c)
i (τ) (5.64)

which reflects the policy that the total number of virtual transmissions

out of Q
(t,c)
i is limited by the queue length U

(t,c)
i (τ).

Define the Lyapunov function L(U) =
∑

i,c,t(U
(t,c)
i )2. Squaring (5.64)

and dropping some negative terms from the right hand side, we obtain

[U
(t,c)
i (τ + 1)]2 ≤ [U

(t,c)
i (τ)]2 +









A
(c)
i +

∑

j,I

µ
(t,c)
jIi





2

+





∑

J,j

µ
(t,c)
iJj





2






−2U
(t,c)
i (τ)





∑

J,j

µ
(t,c)
iJj −

∑

j,I

µ
(t,c)
jIi −A

(c)
i



 (5.65)

where the time dependencies of µ
(t,c)
iJj and A

(c)
i are not shown for brevity,

since these remain constant over the considered time slot.

Taking expectations of the sum of (5.65) over all i, c, t, noting that

∑

i,c,t





∑

j,Z

µ
(t,c)
iJj





2

≤
∑

i,c

τmax



max
t∈Tc

∑

j,Z

µ
(t,c)
iJj





2

≤
∑

i

τmax





∑

c



max
t∈Tc

∑

j,Z

µ
(t,c)
iJj









2

(5.66)

≤ Nτmax

(

µout
max

)2
,
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and

∑

i,c,t



A
(c)
i +

∑

j,I

µ
(t,c)
jIi





2

≤
∑

i,c

τmax



A
(c)
i + max

t∈Tc

∑

j,I

µ
(t,c)
jIi





2

≤
∑

i

τmax





∑

c



A
(c)
i + max

t∈Tc

∑

j,I

µ
(t,c)
jIi









2

(5.67)

≤ Nτmax

(

Amax + µin
max

)2

(where the Cauchy-Schwarz inequality is used in steps (5.66) and (5.67)),

and using (5.39), (5.40), we obtain the drift expression

E{L(U(τ + 1)) − L(U(τ))|U (τ)} ≤ 2BN −

2
∑

i,c,t

U
(t,c)
i (τ)



E







∑

J,j

µct
iJj −

∑

j,I

µ
(t,c)
jIi

∣

∣

∣

∣

U(τ)







− r
(c)
i



 .(5.68)

Substituting (5.53) and (5.56) into (5.68) gives

E{L(U(τ + 1)) − L(U(τ))|U (τ)} ≤ 2BN − 2ǫ′
∑

i,c,t

U
(t,c)
i (τ) (5.69)

where B is defined in (5.59).

Applying Theorem 5.2 gives

∑

i,c,t

U
(t,c)
i ≤

BN

ǫ′
. (5.70)

Thus the randomized policy satisfies the queue occupancy bound (5.58).

For the back pressure policy, E{µ
(t,c)
iJj (τ)|U (τ)} is dependent on U(τ).

The drift expression (5.71) can be expressed as

E{L(U(τ + 1)) − L(U(τ))|U (τ)} ≤ 2BN − 2



D −
∑

i,c,t

U
(t,c)
i (τ)r

(c)
i





where

D =
∑

i,c,t

U
(t,c)
i (τ)



E







∑

J,j

µ
(ct)
iJj −

∑

j,I

µ
(t,c)
jIi

∣

∣

∣

∣

U(τ)









 , (5.71)

which is the portion of the drift expression that depends on the policy,

can be rewritten as

D =
∑

i,J,j

∑

c,t

E
{

µ
(t,c)
iJj |U(τ)

}(

U
(t,c)
i (τ) − U

(t,c)
j (τ)

)

.
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We compare the values of (5.72) for the two policies, giving

Drand =
∑

i,J,j

∑

c,t

x
(t,c)
iJj

(

U
(t,c)
i − U

(t,c)
j

)

≤
∑

j,I

∑

c

yc
iJ

∑

t

max
j∈Z

(

U
(t,c)
i − U

(t,c)
j

)

≤
∑

j,I

∑

c

yc
iJw

∗
iJ

≤
∑

j,I

ziJw
∗
iJ

=
∑

j,I





∑

S

πSz
S
iJ



w∗
iJ

≤
∑

S

πS max
P∈Π

∑

j,I

µiJ (P , S)w∗
iJ

= Dbackpressure

where the last step follows from (5.49)-(5.50). Since the Lyapunov drift

for the back-pressure policy is more negative than the drift for the ran-

domized policy, the bound (5.70) also applies for the back-pressure pol-

icy. This completes the proof.

The queue-length-based policy can be simplified in the wired network

case where each arc (i, j) has a destination node set of size 1 and a

capacity µij that does not depend on P or S.

Back-pressure policy for wired networks

For each time slot τ and each arc (i, j),

• Session scheduling: one session

c∗ij = argmax
c

{

∑

t∈Tc

max
(

U
(t,c)
i − U

(t,c)
j , 0

)

}

is chosen.

• Rate allocation: the maximum rate of virtual transmissions fromQ
(t,c)
i

to Q
(t,c)
j is set as

µ
(t,c)
ij (τ) =

{

µij if c = c∗ij , t ∈ Tc, and U
(t,c)
i − U

(t,c)
j > 0

0 otherwise.
(5.72)

• Network coding: each session c packet physically transmitted on arc
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(i, j) is a random linear combination, in Fq, of packets correspond-

ing to a set of virtual transmissions on (i, j), each associated with a

different sink in Tc.

Theorem 5.1 implies that each sink can receive packets at a rate

asymptotically close to the source rate. To retrieve the actual infor-

mation, each sink must also be able to decode the coded packets. The

following theorem shows that the probability that not all sinks are able

to decode the information tends to zero exponentially in the coding block

length.

Theorem 5.3 For exogenous arrival rates w
(c)
i = r

(c)
i − ǫ, if (r

(c)
i ) is

strictly interior to Λ, then for sufficiently large time τ , the probabil-

ity that not every sink is able to decode its session’s exogenous packets

decreases exponentially in the length of the code.

Proof As described in Section 2.5, we can draw a parallel between a

given sequence S of packet transmissions and a corresponding static

network G with the same node set N and with links corresponding to

transmissions in S. The following analysis is an extension, based on

this correspondence, of the analysis in Section 2.4.2 of random network

coding for static networks.

Consider any session c. Let the randomly chosen network coding coef-

ficients associated with the session c packets be represented by a vector

ξ = (ξ1, . . . , ξν). Consider any sink t ∈ Tc. It follows from Theorem 5.1

that over some sufficiently large time τ , with high probability there is a

virtual flow of rc
i τ −

∑

j U
(t,c)
j (τ) ≥ (r

(c)
i − ǫ)τ packets from each session

c source node i to t, corresponding to coded combinations of (r
(c)
i − ǫ)τ

exogenous packets. Consider any (r
(c)
i − ǫ)τ of the packets received by

t from each session c source node i. We denote by d(t,c)(ξ) the determi-

nant, as a polynomial in ξ, of the matrix whose rows equal the coefficient

vectors of these packets. Consider the physical packet transmissions cor-

responding to this virtual flow, which are transmissions involving queues

Q
(t,c)
j . These physical transmissions would constitute an uncoded phys-

ical flow if their originating transmissions from the source nodes were

uncoded independent packets and there were no other sinks/virtual flows

in the network. We denote by ξ̃ the value of ξ corresponding to this case,

noting that d(t,c)(ξ̃) = ±1.† Thus, d(t,c)(ξ) is not identically zero.

† For this uncoded flow case, the coefficient vectors of the (r
(c)
i −ǫ)τ session c packets

received by t form the rows of the identity matrix.
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Since the product
∏

c,t∈Tc
d(t,c)(ξ) as a function of the network code

coefficients ξ is not identically zero, by the Schwartz-Zippel theorem,

choosing the code coefficients uniformly at random from a finite field of

size q yields a zero value with probability inversely proportional to q.

The result follows since q is exponential in the length of the code.

5.2.2 Inter-session coding

Queue-length-based approaches can also be extended to subgraph selec-

tion for simple inter-session network codes such as those described in

Section 3.5. In different classes of network coding strategies, different

aspects of the coding/routing history of packets restrict whether and

how they can be coded/decoded/removed at particular nodes. Using

these aspects to define different commodities or queues allows the effect

of such restrictions to be propagated to influence control decisions at

other nodes. The class of strategies over which we optimize, as well

as the complexity and convergence rate, is determined by the choice of

commodities and algorithm details.

Queue-length-based algorithms for optimizing over the class of pair-

wise poison-antidote codes (ref Section 3.5.1) are given in [42, 61]. A

common feature of both algorithms is that they make coding decisions

by treating an xor coding operation as a type of virtual transmission

that, unlike the virtual transmissions of the previous section, does not

occur over a physical network arc. A coding operation is analogous to

an actual arc transmission in that it removes one packet from each of a

set of start queues and adds one packet to each of a set of end queues.

For pairwise poison-antidote coding, there are two start queues corre-

sponding to the packets being coded together, and, depending on the

variant of the algorithm, the end queues correspond to the resulting

poison packet and/or antidote packets†. At each step, besides prioritiz-

ing among physical transmissions over arcs analogously to the previous

section, the algorithms also choose, among the coding possibilities at

each node, the one with the largest positive potential difference across

start and end queues. In [61] there are also virtual decoding transmis-

sions that determine, based on local queue lengths, where each poison

packet is decoded. Interested readers are referred to [42, 61] for details.

Simpler algorithms in this vein can be used to optimize over classes of

strategies involving the canonical wireless one-hop xor coding scenarios

† Separate control messages must be sent to the nodes from which the antidote
packets are to originate.
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of Section 3.5.2.1: for controlling routing/MAC to optimally create and

exploit opportunities for coding. Such approaches generalize the cope

protocol which, as discussed in Sections 3.5.2.2-3.5.2.3, assumes given

protocols for routing and MAC that do not take coding into account.

cope has been shown experimentally to yield significant performance

improvements for udp sessions over 802.11 wireless networks [77, 78],

but it has not been rigorously studied under a theoretical model. Queue-

length-based approaches offer one possible approach for distributed op-

timization over various classes of wireless one-hop xor codes.

5.3 Notes and further reading

The first papers to broach the subject of subgraph selection in coded

packet networks are due to Cui et al. [31], Lun et al. [95, 96, 97, 100,

101], and Wu et al. [140, 141]. These papers all describe flow-based

approaches for intra-session coding. Subsequent extensions of this work

are plentiful and include [15, 17, 81, 91, 121, 122, 130, 137, 142, 143].

The distributed algorithms that we describe, the primal-dual method

and the subgradient method, first appear in [100] and [95], respectively.

The flow-based approach for inter-session coding that we discuss is due

to Traskov et al. [132]. Another, that deals with cope-like coding in

wireless networks, has recently been put forth by Sengupta et al. [124].

Queue-length-based approaches to subgraph selection in coded packet

networks first appear in [67] for the case of intra-session multicast coding.

The approach and analysis presented in this chapter, from [59], is based

on and generalizes that in [106] for the case of multi-commodity routing.

Queue-length-based approaches for inter-session coding are still in their

infancy, though they show promise. Some recent work on this topic is

described in [42, 61].

An approach to subgraph selection for wireless xor coding in trian-

gular grid networks is given in [39].
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Security Against Adversarial Errors

6.1 Introduction

Multicast in decentralized settings, such as wireless ad hoc and peer to

peer networks, is seen as a potential application area that can benefit

from distributed network coding and its robustness to arc failures and

packet losses. In such settings, packets are coded and forwarded by end

hosts to other end hosts. It is thus important to consider security against

compromised nodes.

Network coding presents new capabilities as well as challenges for

network security. One advantage of multicast network coding is that it

facilitates the use of a subgraph containing multiple paths to each sink

node. Coding across multiple paths offers useful possibilities for infor-

mation theoretic security against adversaries that observe or control a

limited subset of arcs/transmissions in the network. By adding appro-

priately designed redundancy, error detection or error correction capa-

bilities can be added to a distributed multicast scheme based on random

linear network coding, as described in the following. On the other hand,

coding at intermediate nodes poses a problem for traditional security

techniques. For instance, coded combinations involving an erroneous

packet result in more erroneous packets, so traditional error correction

codes that deal with a limited proportion of erroneous packets are less

effective. Also, traditional signature schemes do not allow for coding

at non-trusted intermediate nodes. A homomorphic signature scheme

by [22], which is based on elliptic curves, allows nodes to sign linear

combinations of packets; under the assumption of the hardness of the

computational co-Diffie-Hellman problem on elliptic curves, it prevents

forging of signatures and detects corruption of packets. In this chapter

149
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we focus on the problem of detection and correction of adversarial errors

in multicast network coding, taking an information theoretic approach.

6.1.1 Notational conventions

We denote matrices with bold uppercase letters and vectors with bold

lowercase letters. All vectors are row vectors unless indicated otherwise

with a subscript T . We denote by [x,y] the concatenation of two row vec-

tors x and y. For any vector (or matrix) whose entries (rows/columns)

are indexed by the arcs of a network, we assume a consistent ordering of

the vector entries (matrix rows/columns) corresponding to a topological

ordering of the arcs.

6.2 Error correction

We consider network coded multicast on an acyclic graph G = (N ,A),

with a single source node s ∈ N and a set T ⊂ N of sink nodes. The

problem is to correct errors introduced on an unknown subset Z ⊂ A of

arcs (or packets†), so as to allow reliable communication. The maximum

rate at which reliable communication is possible depends on |Z| and the

minimum source-sink cut capacity m = mint∈T R(s, t), where R(s, t) is

the minimum cut capacity between s and t. We discuss below some

theoretical bounds as well as constructions of network error-correcting

codes.

6.2.1 Error correction bounds for centralized network coding

6.2.1.1 Model and problem formulation

The case where the network code is centrally designed and known to all

parties (source, sinks and adversary) is the most direct generalization

from traditional algebraic coding theory to network coding.

The problem formulation here is similar to that of Section 3.2 in that

all arcs are assumed to have the same capacity (there can be multiple

arcs connecting a pair of nodes), and we are interested in how large the

source rate can be relative to the arc capacity. We use the term network

to refer to a tuple (G, s, T ), or equivalently, (N ,A, s, T ).

Without loss of generality, we assume that the source node has in-

degree 0. Since the network is acyclic, we can adopt a delay-free network

† See Section 2.5 for a discussion of the correspondence between the static arc-based
and dynamic packet-based network models.
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coding model, i.e. the nth symbol of an arc l is transmitted only after

o(l) has received the nth symbol of of its input processes. We restrict

consideration to scalar network coding, i.e. the nth symbol transmitted

on an arc l is a function of the nth symbol of each input process of node

o(l), and this function is the same for all n. The transmitted symbols

are from an arc alphabet Y assumed to be equal to Fq for some prime

power q. In these respects the coding model resembles the delay-free

scalar linear coding model of Section 2.2. However, we allow arbitrary

(possibly nonlinear) coding operations, and allow the source alphabet

X to be different from the arc alphabet Y; instead of a given number of

fixed-rate source processes, we have a single source process whose rate

log |X | we seek to bound relative to the arc capacity log |Y|.

As in Section 2.2, we can focus on a single symbol for the source and

each arc. The coding operation for an arc l is a function φl : X → Y

if o(l) = s, or φl :
∏

k: d(k)=o(l) Y → Y if o(l) 6= s. The set of coding

operations for all network arcs defines a network code φ = {φl : l ∈ A}.

Let X denote the random source symbol, and Yl the random symbol

received by the end node d(l) of arc l.† Let

YI(l) :=

{

X o(l) = s

{Yk : d(k) = o(l)} o(l) 6= s

denote the set of input symbols of an arc l.

We index and consider the arcs l ∈ A in topological order, i.e. lower-

indexed arcs are upstream of higher-indexed arcs. For brevity we will

refer to the arc and its index interchangeably. If no arc error occurs on

l, Yl = φl(YI(l)). An arc error is said to occur on l if Yl 6= φl(YI(l)).

We say that a z-error occurs (in the network) if errors occur on exactly

z of the arcs. A network code is said to correct a z-error if, upon

occurrence of the error, each sink in T is still able to reproduce the

source symbol. A network code is z-error-correcting if it can correct all

z′-errors for all z′ ≤ z. For a set Z of arcs, if an error occurs on each

arc l ∈ Z and no errors occur on other arcs, an Z-error is said to occur;

the set Z is called the error pattern of the error. A Z-error-correcting

code corrects all Z-errors.

The proofs of the network error correction bounds below use a number

of additional definitions. For each arc l ∈ A, we define the (error-free)

† The transmitted symbol may differ from the received symbol, e.g. if the error is
caused by interference on the arc. An error can also be caused by an adversarial
or faulty node transmitting a value different from that specified by the network
code. The following analysis, which focuses on the received symbol, applies to
both cases.
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global coding function φ̃l : X → Y, where φ̃l(X) = Yl when all arcs are

error-free. Γ+(Q) := {(i, j) : i ∈ Q, j /∈ Q} denotes the set of forward

arcs of a cut Q; |Γ+(Q)| is called the size of the cut.

6.2.1.2 Upper bounds

In this section we present upper bounds on the size of the source alpha-

bet, which are analogs of the classical Hamming and Singleton bounds

for point-to-point error-correcting codes. Here we consider arbitrary

(possibly nonlinear) coding functions φl, and define the error value el

associated with arc l as

el :=
(

Yl − φl(YI(l))
)

mod q. (6.1)

Note that el is defined relative to the values of the arc inputs YI(l). This

allows us to think of el simply as an input of node d(l); for a given code

and arc error values, we can inductively determine the arc values Yl in

topological order using

Yl =
(

φl(YI(l)) + el

)

mod q. (6.2)

The same result is obtained if we first find the arc values when the

network is error-free, then “apply” the arc errors in topological order,

i.e. for each arc l for which el 6= 0, we add el to Yl mod q and change

the values of higher-indexed arcs accordingly. Note that an error on arc

l does not affect lower-indexed arcs. A (network) error is defined by

the vector e := (el : l ∈ A) ∈ Y |A|; we will refer to an error and its

corresponding vector interchangeably.

Theorem 6.1 (Generalized Hamming Bound) Let (G, s, T ) be an

acyclic network, and let m = mint∈T R(s, t). If there exists a z-error-

correcting code on (G, s, T ) for an information source with alphabet X ,

where z ≤ m, then

|X | ≤
qm

∑z
i=0

(

m
i

)

(q − 1)i
,

where q is the size of arc alphabet Y.

Proof For a given network code φ and a set L of arcs, we denote by

out(φ, z,L, x) the set of all possible values of the vector (Yl : l ∈ L) when

the source value is x ∈ X and at most z errors occur in the network.

Suppose φ is a z-error-correcting code. Consider any cut Q separating

the source node s and a sink node t, and any pair of distinct source
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values x, x′ ∈ X . To ensure t can distinguish between x and x′ for up to

z errors, we must have

out(φ, z,Γ+(Q), x) ∩ out(φ, z,Γ+(Q), x′) = ∅. (6.3)

Consider the set E consisting of Z-errors where Z ⊂ Γ+(Q), |Z| ≤ z.

Let e, e′ be two distinct errors in E , and let k0 be the smallest arc

index k such that the kth entry of e and e′ differ. For a fixed source

value x ∈ X , the values of Yl, l < k0 are the same under both errors

e, e′ while the value of Yk0 differs for the two errors. Thus, the value

of (Yl : l ∈ Γ+(Q)) differs for any pair of distinct errors in E . Let

|Γ+(Q)| = j. Since |E| =
∑z

i=0

(

j
i

)

(q − 1)i, we have

|out(φ, z,Γ+(Q), x)| ≥
z
∑

i=0

(

j

i

)

(q − 1)i. (6.4)

From (6.13) and (6.4), since there are only qj possible values for (Yl :

l ∈ Γ+(Q)), the number of source values is bounded by

|X | ≤
qj

∑z
i=0

(

j
i

)

(q − 1)i
.

The theorem follows by noting that the bound holds for any source-sink

cut.

Theorem 6.2 (Generalized Singleton Bound) Let (G, s, T ) be an

acyclic network, and let m = mint∈T R(s, t). If there exists a z-error-

correcting code on (G, s, T ) for an information source with alphabet X ,

where m > 2z, then

log |X | ≤ (m− 2z) log q.

Proof Suppose {φl : l ∈ A} is a z-error-correcting code for an informa-

tion source with alphabet X , where m > 2z and

|X | > qm−2z. (6.5)

We will show that this leads to a contradiction.

Consider a sink t ∈ T for which there exists a cutQ of sizem between the

source and t. Let k1, . . . , km be the arcs of Γ+(Q), ordered topologically,

i.e. k1 < k2 < · · · < km. By (6.5), there exist two distinct source symbols

x, x′ ∈ X such that φ̃ki
(x) = φ̃ki

(x′) ∀ i = 1, 2, . . . ,m − 2z, so we can

write
(

φ̃k1 (x), . . . , φ̃km
(x)
)

= (y1, . . . , ym−2z, u1, . . . , uz, w1, . . . , wz) (6.6)
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(

φ̃k1(x
′), . . . , φ̃km

(x′)
)

= (y1, . . . , ym−2z, u
′
1, . . . , u

′
z, w

′
1, . . . , w

′
z) (6.7)

Suppose the source symbol is x. Let Z be the set of arcs

{km−2z+1, . . . , km−z}.

We can construct a Z-error that changes the value of (Yk1 , . . . , Ykm
)

from its error-free value in (6.6) to the value

(y1, . . . , ym−2z, u
′
1, . . . , u

′
z, w

′′
1 , . . . , w

′′
z ) , (6.8)

as follows. We start with the error-free value of (Yk1 , . . . , Ykm
), and

apply errors on the arcs of Z in topological order. First, we apply an

error of value (u′1 − Ykm−2z+1)mod q = (u′1 − u1)mod q on arc km−2z+1,

which causes Ykm−2z+1 to change value from u1 to u′1. Note that this

may change the values of Yj , j > km−2z+1 but not the values of Yj , j <

km−2z+1. We proceed similarly for arcs km−2z+i, i = 2, . . . , z, in turn:

we apply an error of value (u′i − Ykm−2z+i
)mod q and update the values

of Yj , j > km−2z+i accordingly. The value of (Yk1 , . . . , Ykm
) at the end

of this procedure is given by (6.8).

For the source symbol x′, we can follow a similar procedure to construct,

for the set of arcs Z ′ = {km−z+1, . . . , km}, a Z ′-error that changes the

value of (Yk1 , . . . , Ykm
) from its error-free value in (6.7) to the value in

(6.8).

Thus, sink t cannot reliably distinguish between the source symbols x

and x′, which gives a contradiction.

6.2.1.3 Generic linear network codes

Before developing lower bounds on the source alphabet size in the next

section, we introduce the notion of a generic linear network code, which

will be used in constructing network error-correcting codes that prove

the bounds. Intuitively speaking, a generic linear code is a scalar linear

code satisfying the following maximal independence property: for every

subset of arcs, if their (global) coding vectors can be linearly independent

in some network code, then they are linearly independent in a generic

linear code. A generic linear code is formally defined as follows.

Definition 6.1 For an acyclic network (N ,A, s, T ), let a linear network

code with n-dimensional coding vectors {cl : l ∈ A}, whose entries are

elements of a field Fq, be given. Let each node i ∈ N be associated with
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a linear subspace Wi of Fn
q , where

Wi =

{

Fn
q i = s

span({cl : d(l) = i}) i ∈ N\s.

The network code is generic if, for any subset of arcs S ⊂ A,

Wo(l) 6⊂ span({ck : k ∈ S\l}) ∀ l ∈ S (6.9)

⇒ Coding vectors cl, l ∈ S are linearly independent. (6.10)

Note that (6.9) is a necessary condition for (6.10); the definition of a

generic code requires the converse to hold.

Generic linear codes satisfy a stronger linear independence require-

ment compared to multicast linear codes (ref Section 2.2) which require

only that each sink node has a full rank set of inputs. Thus, a generic

linear code is also a multicast linear code, but a multicast linear code is

not in general generic.

Generic linear codes can be constructed using techniques analogous to

those we have seen for constructing multicast linear codes. The random

linear coding technique introduced for constructing multicast codes in

Section 2.4.2 can also construct generic linear network codes with proba-

bility asymptotically approaching 1 in the field size, though significantly

larger field sizes may be required to achieve similar success probabilities

in constructing generic codes, as compared to multicast codes, on a given

network. We can also take a centralized deterministic approach similar

to that in Section 2.4.1. For any positive integer n and an acyclic network

(N ,A, s, T ), the following algorithm constructs a generic linear network

code over a finite field F with more than
(

|A|+n−1
n−1

)

elements. The algo-

rithm is similar to Algorithm 1 for constructing a multicast linear code,

in that it sets the coding vectors† of the network arcs in topological or-

der, starting with n virtual arcs connecting a virtual source node s′ to

the actual source node s.

Note that at step A, there are at most
(

|A|+n−1
n−1

)

sets S, so it is always

possible to find a vector w satisfying the condition. It can be shown by

induction that the network code constructed by Algorithm 2 is always

generic. The proof is given in [149].

6.2.1.4 Lower bounds

Next we derive lower bounds on the size of the source alphabet, which

generalize the classical Gilbert and Varshamov bounds for point-to-point

† The coding coefficients for an arc can be obtained from the coding vector of the
arc.
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Algorithm 2: Centralized algorithm for generic linear network code

construction
Input: N ,A, s, T , n

N ′ := N ∪ {s′}

A′ := A ∪ {l1, . . . , lm} where o(li) = s′, d(li) = s for i = 1, . . . ,m

foreach i = 1, . . . ,m do cli := [0i−1, 1,0n−i]

foreach l ∈ A do Initialize cl := 0;

foreach i ∈ N in topological order do

foreach l ∈ O(i) do
A choose cl := w ∈ span({ck : d(k) = i}) where

w 6∈ span({ck : k ∈ S}) for any set S of n− 1 arcs in A\l

such that span({ck : d(k) = i}) 6⊂ span({ck : k ∈ S})

error correcting codes. These bounds give sufficient conditions for the

existence of network error-correcting codes with parameters satisfying

the bounds.

The proofs are by construction. To construct the network error-

correcting codes in this section, we use a generalization of scalar lin-

ear network coding where the arc alphabet Y is a finite field Fq and the

source alphabet X is a subset of an n-dimensional linear space Fn
q , where

we set n equal to the minimum source-sink cut size m = mint∈T R(s, t).

(For basic scalar linear network coding (ref Section 2.2), the source al-

phabet is the entire n-dimensional linear space Fn
q , where n is equal to

the number of source processes.) For a linear network error-correcting

code, X is a k-dimensional subspace of Fm
q for some k ≤ m. We will con-

sider the source values x ∈ X as length-m row vectors with entries in Fq.

To distinguish between the set of arc coding operations φ = {φl : l ∈ A}

(defined in Section 6.2.1.1) and the complete network code, which in-

cludes the choice of X ⊂ Fm
q as well, we refer to the former as the

underlying (scalar linear network) code. In this section, we use a generic

linear code as the underlying code φ, which can be constructed for a

given network as described in the previous section. Our remaining task

is to choose X such that its values can be distinguished under a given

set of error events.

The error value el associated with an arc l is defined as the difference,
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in Fq, between Yl and φl(YI(l)). In place of (6.1)-(6.2) we have

el := Yl − φl(YI(l)) (6.11)

Yl = φl(YI(l)) + el (6.12)

where all operations are in Fq. An error is defined by the vector e :=

(el : l ∈ A) ∈ F
|A|
q . Since Yl is given recursively by (6.12) which is a

linear relation, the value of Yl can be expressed as the sum

φ̃l(x) + θl(e)

where φ̃l and θl are linear functions, determined by φ, whose arguments

x, e are the source and error values respectively. φ̃l(x), the error-free

global coding function for arc l, is given by xcT
l where cl is the global

coding vector of arc l in the underlying code φ.

Consider a set Υ of error patterns, and let Υ∗ be the set of all errors

whose error pattern is in Υ. A pair of distinct source values x,x′ is said

to be Υ-separable at a sink node t if t can distinguish between x and x′

for any errors in Υ∗. In other words, ∀e, e′ ∈ Υ∗,

(φ̃l(x) + θl(e) : l ∈ I(t)) 6= (φ̃l(x
′) + θl(e

′) : l ∈ I(t)). (6.13)

A pair x,x′ is said to be Υ-separable if it is Υ-separable at every sink

node.

We wish to translate this condition on separability into a restriction

on the set X of source values. We assume without loss of generality

that the number of input arcs at each sink is exactly m, the source-sink

minimum cut size. Let Ct denote the matrix whose columns correspond

to the coding vectors cl(x) of t’s input arcs l ∈ I(t). Let pt(e) denote

the row vector (θl(e) : l ∈ I(t)). Then (6.13) can be written as

xCt + pt(e) 6= x′Ct + pt(e
′).

Right-multiplying both sides by C−1
t †, we obtain the following equivalent

condition for x,x′ to be Υ-separable at t: ∀e, e′ ∈ Υ∗,

x + pt(e)C−1
t 6= x′ + pt(e

′)C−1
t .

Defining the sets

Ξ(φ,Υ, t) := {pt(e)C−1
t : e ∈ Υ∗} (6.14)

∆(φ,Υ) :=
⋃

t∈T

{w = u′ − u : u,u′ ∈ Ξ(φ,Υ, t)} (6.15)

† The inverse exists since the underlying code is generic.
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and denoting by x + ∆(φ,Υ) the set {x + w : w ∈ ∆(φ,Υ)}, we have

the following lemma.

Lemma 6.1 (a) A pair of source values x,x′ ∈ Fm
q is Υ-separable if

and only if

x′ 6∈ x + ∆(φ,Υ). (6.16)

(b) The network code obtained from the underlying generic code φ by

restricting the source alphabet to a set X ⊂ Fm
q is a Υ-error-correcting

code for the network if and only if the vectors in X are pairwise Υ-

separable.

Let K = |A| be the number of arcs in the network, and let

Υj := {Z : |Z| = j,Z ∈ Υ} (6.17)

be the subset of error patterns in Υ with exactly j arcs.

Theorem 6.3 (Generalized Gilbert-Varshamov Bound) For any

given error pattern set Υ and any positive integer A satisfying

(A− 1)|T |





K
∑

j=0

|Υj |(q − 1)j





2

< qm, (6.18)

one can construct an Υ-error-correcting code with source alphabet size

|X | = A. For any positive integer k satisfying

|T |





K
∑

j=0

|Υj |(q − 1)j





2

< qm−k,

one can construct a k-dimensional linear Υ-error-correcting code, i.e. |X | =

qk.

Proof We first consider a given underlying code φ. By Lemma 6.1, if we

can find a set X ⊂ Fm
q such that (6.16) holds for any pair x,x′ ∈ X , then

the network code obtained from φ by restricting the source alphabet to

X is an Υ-error-correcting code.

For the first part of the theorem, which generalizes the Gilbert bound,

we use a greedy approach similar to that in Gilbert [49]. We show that

for any positive integer A satisfying

(A− 1)|∆(φ,Υ)| < qm, (6.19)
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one can construct an Υ-error-correcting code with source alphabet size

|X | = A. First, a candidate set W of source values is initialized as Fm
q .

For i = 1, . . . , A − 1, at the ith step, an arbitrary vector xi ∈ W is

chosen, xi is added to X , and all vectors in the set (x+∆(φ,Υ))∩W are

removed from W . This is possible since the number of vectors removed

at each step is at most |xi + ∆(φ,Υ)| = |∆(φ,Υ)|, so that at each step

i ≤ A− 1, W has size at least

|Fm
q | − i|∆(φ,Υ)| ≥ qm − (A− 1)|∆(φ,Υ)|

> 0

by condition (6.19). For the set X constructed by this procedure, any

pair x,x′ ∈ X satisfies (6.16).

For the second part of the theorem, which generalizes the Varshamov

bound, we use an approach similar to that used in Varshamov [135]. We

show that for any positive integer k satisfying

|∆(φ,Υ)| < qm−k, (6.20)

one can construct a k-dimensional linear Υ-error-correcting code, i.e. |X | =

qk. For a linear code, the source alphabet X is a linear subspace of Fm
q ,

and the condition that (6.16) holds for any pair x,x′ ∈ X is equivalent

to the condition that

∆(φ,Υ) ∩ X = {0}. (6.21)

We construct X by constructing its parity check matrix H, which is an

(m− k) ×m matrix with full row rank such that

X = {x : x ∈ Fm
q ,HxT = 0T }. (6.22)

Defining

∆∗(φ,Υ) := ∆(φ,Υ)\{0}, (6.23)

we have that (6.21) is equivalent to the condition that

HwT 6= 0T ∀ w ∈ ∆∗(φ,Υ). (6.24)

To construct H, we first partition ∆∗(φ,Υ) into subsets ∆1(φ,Υ), . . . ,∆m(φ,Υ)

such that ∆i(φ,Υ) contains all vectors w ∈ ∆∗(φ,Υ) whose last nonzero

entry is the ith entry, i.e.

∆i(φ,Υ) := {w ∈ ∆∗(φ,Υ) : w = (w1, w2, . . . , wi, 0, . . . , 0), wi 6= 0}.

(6.25)

Let hT
i be the column vector corresponding to the ith column of H,



160 Security Against Adversarial Errors

i.e. H = [hT
1 . . .h

T
m]. We set hT

1 equal to any nonzero vector in Fm−k
q .

For i = 2, 3, . . . ,m, we recursively set hT
i equal to any vector in Fm−k

q \Ki(h
T
1 , . . . ,h

T
i−1),

where

Ki(h
T
1 , . . . ,h

T
i−1) :=







kT ∈ Fm−k
q : wik

T +

i−1
∑

j=1

wjh
T
j = 0T for some w ∈ ∆i(φ,Υ)







;

this is possible since the number of possible choices for hT
i is at least

|Fm−k
q | − |Ki(h

T
1 , . . . ,h

T
i−1)| ≥ qm−k − |∆i(φ,Υ)|

≥ qm−k − |∆(φ,Υ)|

> 0.

By construction, (6.24) is satisfied.

To obtain bounds that are independent of the choice of underlying code

φ, note that

|∆(φ,Υ)| ≤
∑

t∈T

|Ξ(φ,Υ, t)|2 (6.26)

≤ |T | |Υ∗|2 (6.27)

where (6.26) follows from the definition of ∆(φ,Υ) in (6.15), and (6.27)

follows from the definition of Ξ(φ,Υ, t) in (6.14). Recall that

Υj := {Z : |Z| = j,Z ∈ Υ} (6.28)

is the subset of error patterns in Υ with exactly j arcs. Then the number

of errors in Υ∗ is given by

|Υ∗| =

K
∑

j=0

|Υj|(q − 1)j . (6.29)

The theorem follows from combining (6.19)-(6.20) with (6.26), (6.27)

and (6.29).

We next consider the case where Υ is the collection of subsets of z or

fewer arcs, where z ≤ m. We can use a different proof approach, along

with a bound on |∆(φ,Υ)| which tightens the more general bound (6.27)

for this case, to obtain the following bound which is tighter than that

obtained by simply specializing Theorem 6.3 to this case.

Theorem 6.4 (Strengthened Generalized Varshamov Bound)

For any fixed acyclic network with minimum cut m = mint∈T R(s, t),
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k = m − 2z > 0, and q sufficiently large, there exists a k-dimensional

linear z-error-correcting code for the network.

Proof As in the proof of Theorem 6.3, we construct X by constructing

its (2z) ×m parity check matrix H (ref (6.22)). We need matrix H to

satisfy (6.24) for the case where Υ is the collection of subsets of z or

fewer arcs. For this case, the sets

∆∗(φ,Υ), ∆i(φ,Υ), 1 ≤ i ≤ m,

defined in (6.23) and (6.25) respectively, are denoted by

∆∗(φ, z), ∆i(φ, z), 1 ≤ i ≤ m.

Each set ∆i(φ, z), 1 ≤ i ≤ m, is partitioned into |∆i(φ, z)|/(q−1) equiv-

alence classes each of size q−1, such that the vectors in each equivalence

class are nonzero scalar multiples of each other. For any particular one

of these equivalence classes Q ⊂ ∆i(φ, z), a matrix H satisfies

HwT = 0T (6.30)

for all vectors w ∈ Q if and only if it satisfies (6.30) for the vector

(w1, . . . , wi−1, 1, 0, . . . , 0) ∈ Q, or equivalently,

hi = −
i−1
∑

j=1

wjhj .

Thus, there are exactly q2z(m−1) values for H (corresponding to arbitrary

values for h1, . . . ,hi−1,hi+1, . . . ,hm, the first i− 1 of which determine

hi) such that there exists w ∈ Q satisfying (6.30). The number of values

for H such that there exists w ∈ ∆∗(φ, z) satisfying (6.30) is then at

most

m
∑

i=1

q2z(m−1)|∆i(φ, z)|/(q − 1) = q2z(m−1)|∆∗(φ, z)|/(q − 1)(6.31)

≤ q2z(m−1)|∆(φ, z)|/(q − 1).(6.32)

We obtain a bound on |∆(φ, z)| that is tighter than the more general

bound (6.27) as follows. From (6.14) and (6.15), we have

∆(φ, z) =
⋃

t∈T

{pt(e)C−1
t − pt(e

′)C−1
t : wH(e) ≤ z, wH(e′) ≤ z}

where wH denotes Hamming weight. Since pt(e) is a linear function in
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e, we have

pt(e)C−1
t − pt(e

′)C−1
t = pt(e − e′)C−1

t ,

and

{e− e′ : wH(e) ≤ z, wH(e′) ≤ z} = {d : wH(d) ≤ 2z}.

Thus,

∆(φ, z) =
⋃

t∈T

{pt(d)C−1
t : wH(d) ≤ 2z} (6.33)

which gives

|∆(φ, z)| ≤ |T |
2z
∑

i=0

(

K

i

)

(q − 1)i

< |T |(q − 1)2z2m

≤ |T |(q − 1)2z2K (6.34)

Using (6.34) we can upper bound (6.32) by

q2z(m−1)|T |2K(q − 1)2z−1 < |T |2Kq2zm−1 (6.35)

If q ≥ 2K |T |, then (6.35) is upper bounded by q2zm. Since the number of

2z ×m matrices over Fq is q2zm, for q ≥ 2K |T |, there exists some value

for H such that HwT 6= 0T ∀ w ∈ ∆∗(φ, z), which gives the desired

network code.

6.2.2 Distributed random network coding and

polynomial-complexity error correction

In this section, we consider network error correction in a distributed

packet network setting. The model and approach differ from that of the

previous section in two ways. First, instead of a centrally-designed net-

work code known in advance by all parties, we use distributed random

linear network coding. Second, we allow a fixed amount of overhead

in each packet that can be amortized over large packets. We describe,

for this setting, constructions of asymptotically optimal network error-

correcting codes with polynomial-complexity coding and decoding algo-

rithms.
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6.2.2.1 Coding vector approach

We consider multicasting of a batch of r packets from source node s to

the set of sink nodes T , using the distributed random coding approach

with coding vectors described in Section 2.5.1.1. A non-adversarial

packet is formed as a random linear combination†, in Fq, of its input

packets, i.e. packets received by its origin node prior to its formation.

An adversary can arbitrarily corrupt the coding vector as well as the

data symbols of a packet. A packet that is not a linear combination of

its input packets is called adversarial.

We describe below the construction of a network error-correcting code

whose parameters depend on the maximum number zo of adversarial

packets as well as m, the minimum source-sink cut capacity (maximum

error-free multicast rate) in units of packets over the batch. The number

of source packets in the batch is set as

r = m− zo. (6.36)

The proportion of redundant symbols in each packet, denoted ρ, is set

as

ρ = (zo + ǫ)/r (6.37)

for some ǫ > 0.

For i = 1, . . . , r, the ith source packet is represented as a length-n

row vector xi with entries in a finite field Fq. The first n − ρn − r

entries of the vector are independent exogenous data symbols, the next

ρn are redundant symbols, and the last r symbols form the packet’s

coding vector (the unit vector with a single nonzero entry in the ith

position). The corresponding information rate of the code is m− 2zo −

ǫ − r2/n, where the r2/n term, due to the overhead of including the

coding vector, decreases with the length n of the packet. We will show

that the probability of error decreases exponentially with ǫ.

We denote by X the r×n matrix whose ith row is xi; it can be written

in the block form
[

U R I
]

where U denotes the r × (n − ρn − r)

matrix of exogenous data symbols, R denotes the r × ρn matrix of

redundant symbols and I is the r × r identity matrix.

The rρn redundant symbols are obtained as follows. For any matrix

M, let vT
M denote the column vector obtained by stacking the columns of

M one above the other, and vM its transpose, a row vector. Matrix X,

represented in column vector form, is given by vT
X = [vU,vR,vI]

T . Let

† All n symbols of a packet undergo the same random linear coding operations.
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D be an rρn×rn matrix obtained by choosing each entry independently

and uniformly at random from Fq. The redundant symbols constituting

vR (or R) are obtained by solving the matrix equation

D[vU,vR,vI]
T = 0 (6.38)

for vR. The value of D is known to all parties.

Let yu denote the vector representing a non-adversarial packet u. If

there are no errors in the network, then for all packets u, yu = tuX

where tu is the packet’s coding vector. An adversarial packet can be

viewed as an additional source packet. The vector representing the ith

adversarial packet is denoted zi. Let Z denote the matrix whose ith row

is zi.

For the rest of this section, we focus on any one of the sink nodes t ∈ T .

Let w be the number of linearly independent packets received by t; let

Y ∈ Fw×n
q denote the matrix whose ith row is the vector representing

the ith of these packets. Since all coding operations in the network are

scalar linear operations in Fq, Y can be be expressed as

Y = GX + KZ (6.39)

where matrices G ∈ Fw×r
q and K ∈ Fw×z

q represent the linear mappings

from the source and adversarial packets respectively to the sink’s set of

linearly independent input packets.

Since the matrix formed by the last r columns of X is the identity

matrix, the matrix G′ formed by the last r columns of Y is given by

G′ = G + KL, (6.40)

where L is the matrix formed by the last r columns of Z. In the error-

free setting, G′ = G; in the presence of errors, the sink knows G′ but

not G. Thus, we rewrite (6.39) as

Y = G′X + K(Z − LX) (6.41)

= G′X + E. (6.42)

Matrix E can be intuitively interpreted as the effective error seen by

the sink. It gives the difference between the data values in the received

packets and the data values corresponding to their coding vectors; its

last r columns are all zero.

Lemma 6.2 With probability at least (1 − 1/q)|A| > 1 − |A|/q where

|A| is the number of arcs in the network, the matrix G′ has full column
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rank, and the column spaces of G′ and K are disjoint except in the zero

vector.

Proof If the adversarial packets were replaced by additional source pack-

ets, the total number of source packets would be at most r+ zo = m, by

(6.36). By Theorems 2.3 and 2.6, with probability at least (1− 1/q)|A|,

random linear network coding in Fq allows t to decode the original source

packets†. This corresponds to G having full column rank and the column

spaces of G and K being disjoint except in the zero vector. The result

follows by noting from (6.40) that any linear combination of columns of

G′ corresponds to a linear combination of one or more columns of G

and zero or more columns of K, which is nonzero and not in the column

space of K.

The decoding process at sink t is as follows. First, the sink determines

z, the minimum cut from the adversarial packets to the sink. This is

with high probability equal to w− r, the difference between the number

of linearly independent packets received by the sink and the number of

source packets. Next, it chooses z columns of Y that, together with

the columns of G′, form a basis for the column space of Y. We assume

without loss of generality that the first z columns are chosen, and we

denote the corresponding submatrix G′′. Matrix Y, rewritten in the

basis corresponding to the matrix [G′′ G′], takes the form

Y = [G′′ G′]

[

Iz YZ 0

0 YX Ir

]

= G′′
[

Iz YZ 0
]

+ G′
[

0 YX Ir

]

(6.43)

where YZ ,YX are z×(n−z−r) and r×(n−z−r) matrices respectively.

Let X1,X2,X3 be the submatrices of X consisting of its first z columns,

the next n− z − r columns of X, and the last r columns respectively.

Lemma 6.3

G′X2 = G′(YX + X1Y
Z) (6.44)

Proof Equating (6.41) and (6.43), we have

G′X+K(Z−LX) = G′′
[

Iz YZ 0
]

+G′
[

0 YX Ir

]

. (6.45)

† though some of the additional adversarial source packets might not be decodable
if the minimum cut between them and t is less than zo
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The column space of G′′ is spanned by the column space of [G′ K], so

we can rewrite the equation in the form

G′X+K(Z−LX) = (G′M1+KM2)
[

Iz YZ 0
]

+G′
[

0 YX Ir

]

.

(6.46)

From Lemma 6.2, the column spaces of G′ and K are disjoint except in

the zero vector, so we can equate the terms involving G′:

G′
[

X1 X2 X3

]

= G′M1

[

Iz YZ 0
]

+ G′
[

0 YX Ir

]

.

(6.47)

The leftmost z columns of the matrix equation give X1 = M1. Substi-

tuting this into the next n− z − r columns, we obtain (6.44).

Lemma 6.4 With probability approaching 1 in q, the system of equations

(6.38) and (6.44) can be solved simultaneously to recover X.

Proof We rewrite the system of equations with the matrices X1,X2,Y
X , I

expressed in column vector form† vT
X1
,vT

X2
,vT

YX ,v
T
I .

Let D = [D1 D2 D3], where D1 comprises the first rz columns of D,

D2 the next r(n − r − z) columns and D3 the remaining r2 columns of

D. Let

α = n− r − z (6.48)

and let yi,j denote the (i, j)th entry of matrix YZ . We can write the

system of equations (6.38) and (6.44) in block matrix form as follows:

A

(

vT
X1

vT
X2

)

=

(

G′vT
YX

−D3v
T
I

)

(6.49)

where A is given by



























−y1,1G
′ −y2,1G

′ . . . −yz,1G
′ G′ 0 . . . . . . 0

−y1,2G
′ −y2,2G

′ . . . −yz,2G
′ 0 G′ 0 . . . 0

−y1,3G
′ −y2,3G

′ . . . −yz,3G
′

... 0 G′ 0 0
...

...
...

...
...

... 0
. . . 0

−y1,αG′ −y2,αG′ . . . −yz,αG′ 0 0 0 0 G′

D1 D2



























.

† Recall that for any matrix M, vT
M

denotes the column vector obtained by stacking
the columns of M one above the other.
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For j = 1, . . . , α, the jth row of matrices in A corresponds to the jth

column of (6.44), equivalently written as

−G′X1Y
Z + G′X2 = G′YX .

The bottom submatrix [D1 D2] of A corresponds to (6.38). We will

show that with probability approaching 1 in q, A has full column rank

(i.e. the columns of A are linearly independent) which allows (6.49) to

be solved.

By Lemma 6.2, with probability approaching 1 in q, the columns of

matrix G′, and thus the rightmost αr columns of A, are linearly inde-

pendent. The upper left submatrix of A can be zeroed out by column

operations involving the right submatrix (rightmost αr columns) of A.

The original matrix A has full column rank iff the matrix resulting from

these column operations (or, equivalently, its lower left rρn × rz sub-

matrix, denoted B) has full column rank. Let dT
k , k = 1, . . . , rz, denote

the kth column of D1. Consider any fixed value of YZ (whose entries

are the yi,j variables), and denote by bT
k , k = 1, . . . , rz, the kth column

of B. bT
k is equal to the sum of dT

k and a linear combination, deter-

mined by the values of the yi,j variables, of the columns of D2. Since

the entries of D1 are independently and uniformly distributed in Fq, so

are the entries of B. The probability that B does not have full column

rank is 1 −
∏rz

l=1

(

1 − 1/qrρn−l+1
)

, which is upper bounded by qrz−rρn

for sufficiently large q. Using a union bound over the qαz possible values

of YZ , the probability that B does not have full column rank for one or

more values of YZ is upper bounded by

qrz−rρn+αz = qrz−n(zo+ǫ)+(n−r−z)z (6.50)

< q−nǫ

where (6.50) follows from (6.37) and (6.48).

The decoding algorithm’s most complex step is solving the system of

equations (6.38) and (6.44), or equivalently the matrix equation (6.49)

which has dimension O(nm). Thus, the decoding algorithm has com-

plexity O(n3m3).

If instead of an omniscient adversary we assume that the adversary

observes only a limited number of packets, or that the source and sinks

share a secret channel, then it is possible to achieve a higher communica-

tion rate of m− zo. Such non-omniscient adversary models are analyzed

in [71, 69].
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6.2.2.2 Vector space approach

The vector space approach of Section 2.5.1.2 can be applied directly to

the problem of network error and erasure correction.

Distributed random linear network coding on an unknown network is

modeled as an operator channel, defined as follows.

Definition 6.2 An operator channel associated with ambient space W

is a channel with input and output alphabets equal to the set P(W ) of all

subspaces of W . The input V and output U of the channel are related

by

U = gk(V ) ⊕ E

where gk is an erasure operator that projects V onto a random k-dimensional

subspace of V , and E ∈ P(W ) is the error vector space.

This casts the problem as a point-to-point channel coding problem.

This channel coding formulation admits a Reed-Solomon like code

construction, where the basis for the transmitted vector space is obtained

by evaluating a linearized message polynomial. We consider F = F2m as

a vector space of dimension m over Fq. Let u = (u0, u1, . . . , uj−1) ∈ Fj

be the source symbols, and

f(x) :=

j−1
∑

i=0

uix
qi

the corresponding linearized polynomial. Let A = {α1, . . . , αl} be a set

of l ≥ j linearly independent elements of F spanning an l-dimensional

vector space 〈A〉 over Fq. The ambient space W is given by {(α, β) :

α ∈ 〈A〉, β ∈ F} which is regarded as a (l+m)-dimensional vector space

over Fq. The vector space V transmitted by the source is then the span

of the set

{(α1, f(α1)), . . . , (αl, f(αl))}.

In [83] is shown that these Reed-Solomon like codes are nearly Singleton

Bound-achieving, and admit an efficient decoding algorithm.

6.3 Detection of adversarial errors

In this section we consider information theoretic detection of errors in-

troduced by an adversary who knows the entire message and coding
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strategy except for some of the random coding coefficients. Such a sit-

uation may arise, for instance, if an adversary compromises a sink node

that was originally an intended recipient of the source message.

Suppose the adversary sends z erroneous adversarial packets. Each

sink receives packets that are random linear combinations of these r+ z

packets. In the error correction case, the minimum overhead (i.e. propor-

tion of redundant information) depends on the number of arcs/transmissions

controlled by the adversary as a proportion of the source-sink minimum

cut. In the error detection case, there is no minimum overhead; it can

be traded off flexibly against the detection probability and coding field

size. An error detection scheme can be used for low overhead monitoring

during normal conditions when no adversary is known to be present, in

conjunction with a higher overhead error correction scheme activated

upon detection of an adversarial error.

Error detection capability is added to random linear coding by in-

cluding a flexible number of hash symbols in each packet. With this

approach, a sink node can detect adversarial modifications with high

probability. The only condition needed, which we will make precise be-

low, is the adversary’s incomplete knowledge of the random network

code when designing its packets. The adversary can have the same

(or greater) transmission capacity compared to the source, even to the

extent where every packet received by a sink is corrupted with an inde-

pendent adversarial packet.

6.3.1 Model and problem formulation

Each packet p in the network is represented by a row vector wp of

d + c + r symbols from a finite field Fq, where the first d entries are

data symbols, the next c are redundant hash symbols and the last r

form the packet’s (global) coefficient vector tp. The hash symbols in

each exogenous packet are given by a function ψd : Fd
q → Fc

q of the

data symbols. The coding vector of the ith exogenous packet is the unit

vector with a single nonzero entry in the ith position.

Let row vector mi ∈ F
(c+d)
q represent the concatenation of the data

and hash symbols for the ith exogenous packet, and let M be the ma-

trix whose ith row is mi. A packet p is genuine if its data/hash symbols

are consistent with its coding vector, i.e. wp = [tpM, tp]. The exoge-

nous packets are genuine, and any packet formed as a linear combina-

tion of genuine packets is also genuine. Adversarial packets, i.e. packets

transmitted by the adversary, may contain arbitrary coding vector and
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data/hash values. An adversarial packet p can be represented in general

by [tpM + vp, tp], where vp is an arbitrary vector Fc+d
q . If vp is nonzero,

p (and linear combinations of p with genuine packets) are non-genuine.

A set S of packets can be represented as a block matrix [TSM + VS |TS ]

whose ith row is wpi
where pi is the ith packet of the set. A sink node

t attempts to decode when it has collected a decoding set consisting of

r linearly independent packets (i.e. packets whose coding vectors are

linearly independent). For a decoding set D, the decoding process is

equivalent to pre-multiplying the matrix [TDM + VD|TD] with T−1
D .

This gives
[

M + T−1
D VD|I

]

, i.e. the receiver decodes to M + M̃, where

M̃ = T−1
D VD (6.51)

gives the disparity between the decoded packets and the original packets.

If at least one packet in a decoding set is non-genuine, VD 6= 0, and the

decoded packets will differ from the original packets. A decoded packet

is inconsistent if its data and hash values do not match, i.e. applying

the function ψd to its data values does not yield its hash values. If one

or more decoded packets are inconsistent, the sink declares an error.

The coding vector of a packet transmitted by the source is uniformly

distributed over Fr
q; if a packet whose coding vector has this uniform dis-

tribution is linearly combined with other packets, the resulting packet’s

coding vector has the same uniform distribution. We are concerned with

the distribution of decoding outcomes conditioned on the adversary’s in-

formation, i.e. the adversary’s observed and transmitted packets, and its

information on independencies/dependencies among packets. Note that

in this setup, scaling a packet by some scalar element of Fq does not

change the distribution of decoding outcomes.

For given M, the value of a packet p is specified by the row vector

up = [tp,vp]. We call a packet p secret if, conditioned on the value of

vp and the adversary’s information, its coding vector tp is uniformly

distributed over Fr
q\W for some (possibly empty) subspace or affine

space W ⊂ Fr
q. Intuitively, secret packets include genuine packets whose

coding vectors are unknown (in the above sense) to the adversary, as

well as packets formed as linear combinations involving at least one se-

cret packet. A set S of secret packets is secrecy-independent if each

of the packets remains secret when the adversary is allowed to observe

the other packets in the set; otherwise it is secrecy-dependent. Secrecy-

dependencies arise from the network transmission topology, for instance,

if a packet p is formed as a linear combination of a set S of secret pack-

ets (possibly with other non-secret packets), then S ∪ {p} is secrecy-
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dependent. To illustrate these definitions, suppose that the adversary

knows that a sink’s decoding set contains an adversarial packet p1 and

a packet p4 formed as a linear combination of a non-genuine adversarial

packet p2 with a genuine packet p3, and suppose that the adversary does

not observe any packets dependent on p3. Since a decoding set consists

of packets with linearly independent coding vectors, the distribution of

tp4 , conditioned on the adversary’s information and any potential value

k2vp2 for vp4 , is uniform over Fr
q\{ktp1 − k2tp2 : k ∈ Fq}. Also, packets

p3 and p4 are secrecy-dependent.

Consider a decoding set D containing one or more secret packets.

Choosing an appropriate packet ordering, we can express [TD |VD] in

the form

[TD|VD] =







A + B1 V1

NA + B2 V2

B3 V3






(6.52)

where for any given values of Bi ∈ Fsi×r
q , Vi ∈ F

si×(d+c)
q , i = 1, 2, 3, and

N ∈ Fs2×s1
q , the matrix A ∈ Fs1×r

q has a conditional distribution that

is uniform over all values for which TD is nonsingular. The first s1 + s2
rows correspond to secret packets, and the first s1 rows correspond to

a set of secrecy-independent packets. s2 = 0 if there are no secrecy-

dependencies among the secret packets in D.

6.3.2 Detection probability

In the following we consider decoding from a set of packets that contains

some non-genuine packet, which causes the decoded packets to differ

from the original exogenous packets. The first part of the theorem gives

a lower bound on the number of equally likely potential values of the

decoded packets– the adversary cannot narrow down the set of possible

outcomes beyond this regardless of how it designs its adversarial packets.

The second part provides, for a simple polynomial hash function, an

upper bound on the proportion of potential decoding outcomes that can

have consistent data and hash values, in terms of k =
⌈

d
c

⌉

, the ceiling of

the ratio of the number of data symbols to hash symbols. Larger values

for k correspond to lower overheads but lower probability of detecting

an adversarial modification. This tradeoff is a design parameter for the

network.
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Theorem 6.5 Consider a decoding set D containing a secrecy-independent

subset of s1 secret (possibly non-genuine) packets, and suppose the de-

coding set contains at least one non-genuine packet.

a) The adversary cannot determine which of a set of at least (q − 1)s1

equally likely values of the decoded packets will be obtained at the sink.

In particular, there will be at least s1 packets such that, for each of these,

the adversary cannot determine which of a set of at least q − 1 equally

likely values will be obtained.

b) Let ψ : Fk
q → Fq be the function mapping (x1, . . . , xk), xi ∈ Fq, to

ψ(x1, . . . , xk) = x2
1 + · · · + xk+1

k (6.53)

where k =
⌈

d
c

⌉

. Suppose the function ψd mapping the data symbols

x1, . . . , xd to the hash symbols y1, . . . , yc in an exogenous packet is de-

fined by

yi = ψ(x(i−1)k+1, . . . , xik) ∀ i = 1, . . . , c− 1

yc = ψ(x(c−1)k+1, . . . , xd)

Then the probability of not detecting an error is at most
(

k+1
q

)s1

.

Proof See Appendix 6.A.

Corollary 6.1 Let the hash function ψd be defined as in Theorem 6.5b.

Suppose a sink obtains more than r packets, including a secrecy-independent

set of s secret packets, and at least one non-genuine packet. If the sink

decodes using two or more decoding sets whose union includes all its re-

ceived packets, then the probability of not detecting an error is at most
(

k+1
q

)s

.

Example: With 2% overhead (k = 50), code length=7, s = 5, the

detection probability is at least 98.9%; with 1% overhead (k = 100),

code length=8, s = 5, the detection probability is at least 99.0%.

While this approach works under relatively mild assumptions as de-

scribed above, it fails in the case where the adversary knows that the

genuine packets received at a sink have coding vectors that lie in some

w-dimensional subspace W ⊂ Fr
q, the following strategy allows it to con-

trol the decoding outcome and so ensure that the decoded packets have

consistent data and hash values.

The adversary ensures that the sink receives w genuine packets with

linearly independent coefficient vectors in W , by supplying additional
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such packets if necessary. The adversary also supplies the sink with

r −w non-genuine packets whose coding vectors t1, . . . , tr−w are not in

W . Let tr−w+1, . . . , tr be a set of basis vectors for W , and let T be the

matrix whose ith row is ti. Then the coding vectors of the r packets can

be represented by the rows of the matrix
[

I 0

0 K

]

T

where K is a nonsingular matrix in Fw×w
q . From (6.54), we have

[

I 0

0 K

]

TM̃ =

[

Ṽ

0

]

M̃ = T−1

[

I 0

0 K−1

]

[

Ṽ

0

]

= T−1

[

Ṽ

0

]

Since the adversary knows T and controls Ṽ, it can determine M̃.

6.4 Notes and further reading

Yeung and Cai were the first to study error correction in network coding.

They developed the bounds on centralized network error correction pre-

sented in this chapter [148, 20]. Low-complexity methods for detection

and correction of adversarial errors in distributed random network cod-

ing were given in Ho et al. [63] and Jaggi et al. [70, 71] respectively. The

vector space approach for correction of errors and erasures in distributed

random network coding was developed by Koetter and Kschischang [83].

In other related work on network coding security not covered in this

section, Charles et al. [22] and Zhao et al. [153] have developed signature

schemes for multicast network coding. The problem of ensuring secrecy

for multicast network coding in the presence of a wire tap adversary has

been considered in [19, 44, 16, 130].

6.A Appendix: Proof of results for adversarial error detection

We first establish two results that are used in the proof of Theorem 6.5.

Consider the hash function defined in (6.53). We call a vector (x1, . . . , xk+1) ∈

Fk+1
q consistent if xk+1 = ψ(x1, . . . , xk).
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Lemma 6.5 At most k + 1 out of the q vectors in a set

{u + γv : γ ∈ Fq},

where u = (u1, . . . , uk+1) is a fixed vector in Fk+1
q and v = (v1, . . . , vk+1)

is a fixed nonzero vector in Fk+1
q , can be consistent.

Proof Suppose some vector u + γv is consistent, i.e.

uk+1 + γvk+1 = (u1 + γv1)
2 + · · · + (uk + γvk)k+1

Note that for any fixed value of u and any fixed nonzero value of v,

(6.54) is a polynomial equation in γ of degree equal to 1 + k̃, where

k̃ ∈ [1, k] is the highest index for which the corresponding vk′ is nonzero,

i.e. vk̃ 6= 0, vk′ = 0 ∀ k′ > k̃. By the fundamental theorem of algebra,

this equation can have at most 1 + k̃ ≤ 1 + k roots. Thus, the property

can be satisfied for at most 1 + k values of γ.

Corollary 6.2 Let u be a fixed row vector in Fn
q and Y a fixed nonzero

matrix in F
n×(k+1)
q . If row vector g is distributed uniformly over Fn

q ,

then the vector u + gY is consistent with probability at most k+1
q .

Proof Suppose the ith row of Y, denoted yi, is nonzero. We can parti-

tion the set of possible values for g such that each partition consists of

all vectors that differ only in the ith entry gi. For each partition, the cor-

responding set of values of u + gY is of the form {u′ + giyi : gi ∈ Fq}.

The result follows from Lemma 6.5 and the fact that gi is uniformly

distributed over Fq.

Proof of Theorem 6.5: Writing A′ = A + B1, TD becomes




A′

N(A′ − B1) + B2

B3





From (6.51), we have





A′

N(A′ − B1) + B2

B3



 M̃ =





V1

V2

V3









A′

−NB1 + B2

B3



 M̃ =





V1

V2 − NV1

V3




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which we can simplify to

[

A′

B′

]

M̃ =

[

V1

V′
2

]

(6.54)

by writing

B′ =

[

−NB1 + B2

B3

]

, V′
2 =

[

V2 − NV1

V3

]

Since
[

A′

B′

]

is nonsingular ⇔ TD is nonsingular,

for given values of B′,V1 and V′
2, matrix A′ ∈ Fs1×r

q has a conditional

distribution that is uniform over the set A of values for which

[

A′

B′

]

is nonsingular.

The condition that the decoding set contains at least one non-genuine

packet corresponds to the condition VD 6= 0. We consider two cases. In

each case we show that we can partition the set A such that at most a

fraction
(

k+1
q

)s1

of values in each partition give decoding outcomes M+

M̃ with consistent data and hash values. The result then follows since

the conditional distribution of values within each partition is uniform.

Case 1: V′
2 6= 0. Let vi be some nonzero row of V′

2, and bi the

corresponding row of B′. Then biM̃ = vi.

We first partition A into cosets

An = {An + rT bi : r ∈ Fs1
q }, n = 1, 2, . . . , χ

where

χ =
|A|

qs1

This can be done by the following procedure. Any element of A can

be chosen as A1. Matrices A2,A3, . . . ,Aχ are chosen sequentially; for

each j = 2, . . . , χ, Aj is chosen to be any element of A not in the cosets

An, n < j. Note that this forms a partition of A, since the presence of

some element c in two sets An and Aj , n < j, implies that Aj is also

in An, which is a contradiction. It is also clear that each coset has size
∣

∣{r : r ∈ Fs1
q }
∣

∣ = qs1 .
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For each such coset An, the corresponding values of M̃ satisfy, from

(6.54),

[

An + rT bi

B′

]

M̃ =

[

V1

V′
2

]

[

An

B′

]

M̃ =

[

V1 − rT vi

V′
2

]

M̃ =

[

An

B′

]−1 [
V1 − rT vi

V′
2

]

Let U be the submatrix consisting of the first s1 columns of

[

An

B′

]−1

.

Since U is nonsingular, we can find a set J ⊂ {1, . . . , r} of s1 indexes

that correspond to independent rows of U. Consider sequentially the

corresponding rows of M + M̃. The set of potential values for each of

these s1 rows, for any given value of the previously considered rows, is

or can be partitioned into sets of the form {u+γvi : γ ∈ Fq}. Applying

Lemma 6.5 yields the result for this case.

Case 2: V′
2 = 0, i.e. V2−NV1 = V3 = 0. Then V1 6= 0, since other-

wise V1 = V2 = 0 and VD = 0 which would contradict the assumption

that there is at least one non-genuine packet.

We partition A such that each partition consists of all matrices in A

that have the same row space:

An =
{

RAn : R ∈ Fs1×s1
q , det(R) 6= 0

}

, n = 1, 2, . . . , χ

where

|An| =

s1−1
∏

i=0

(

qs1 − qi
)

, χ =
|A|

|An|

This can be done by choosing any element of A as A1, and choosing

An, n = 2, . . . , χ sequentially such that An is any element of A not in

Aj , j < n.
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For each An, n = 1, . . . , χ, the corresponding values of M̃ satisfy, from

(6.54),

[

RAn

B′

]

M̃ =

[

V1

0

]

[

An

B′

]

M̃ =

[

R−1V1

0

]

M̃ =

[

An

B′

]−1 [
R−1V1

0

]

Let U be the submatrix consisting of the first s1 columns of

[

An

B′

]−1

.

We can find an ordered set J = {i1, . . . , is1 : i1 < · · · < is1} ⊂

{1, . . . , r} of s1 indexes that correspond to linearly independent rows

of U. Let UJ and MJ be the submatrices of U and M respectively

consisting of the s1 rows corresponding to J . Then UJ is nonsingular,

and the value of the matrix representation of the corresponding decoded

packets is uniformly distributed over the set

{

MJ + R′V1 : R′ ∈ Fs1×s1
q , det(R′) 6= 0

}

(6.55)

Let ν be the rank of V1. Consider a set of ν independent rows of V1.

Denote by I the corresponding set of row indexes, and denote by VI

the submatrix of V1 consisting of those rows. We can write

V1 = LVI

where L ∈ Fs1×ν
q has full rank ν. We define RI = R′L, noting that

RIVI = R′LVI = R′V1

and that RI is uniformly distributed over all matrices in Fs1×ν
q that

have full rank ν. Thus, (6.55) becomes

{

MJ + RIVI : RI ∈ Fs1×ν
q , rank(RI) = ν

}

(6.56)

Denote by r1, . . . , rs1 the rows of RI , and by Rn the submatrix of RI

consisting of its first n rows. We consider the rows sequentially, starting

with the first row r1. For n = 1, . . . , s1, we will show that conditioned on

any given value of Rn−1, the probability that the inth decoded packet

Min
+ rnVI is consistent is at most k+1

q . Note that the conditional

distribution of rn is the same for any values of Rn−1 that have the same

rank.
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Case A: Rn−1 has zero rank. This is the case if n = 1, or if n > 1 and

Rn−1 = 0.

Suppose we remove the restriction rank(RI) = ν, so that rn is uni-

formly distributed over Fν
q . By Corollary 6.2, min

+ rnVI would have

consistent data and hash values with probability at most k+1
q . With the

restriction rank(RI) = ν, the probability of rn being equal to 0 is low-

ered. Since the corresponding decoded packet min
+ rnVI is consistent

for rn = 0, the probability that it is consistent is less than
(

k+1
q

)

.

Case B: n > 1 and Rn−1 has nonzero rank.

Conditioned on rn being in the row space of Rn−1, rn = gRn−1

where g is uniformly distributed over Fn−1
q . Since Rn−1VI 6= 0, by

Corollary 6.2, the corresponding decoded packet

min
+ rnVI = min

+ gRn−1VI

is consistent with probability at most k+1
q .

Conditioned on rn not being in the row space of Rn−1, we can parti-

tion the set of possible values for rn into cosets
{

r + gRn−1 : g ∈ Fn−1
q

}

where r is not in the row space of Rn−1; the corresponding values of the

inth decoded packet are given by
{

min
+ rVI + gRn−1VI : g ∈ Fn−1

q

}

.

Noting as before that Rn−1VI 6= 0 and applying Corollary 6.2, the inth

decoded packet is consistent with probability at most k+1
q .

Proof of Corollary 6.1: Suppose two or more different sets of packets

are used for decoding. If not all of them contain at least one non-genuine

packet, the decoded values obtained from different decoding sets will

differ, and indicate an error. Otherwise, suppose all the decoding sets

contain at least one non-genuine packet. Consider the sets in turn,

denoting by s′i the number of unmodified packets in the ith set that are

not in any set j < i. For any particular values of packets in sets j < i,

we have from Theorem 6.5 that at most a fraction
(

k+1
q

)s′
i

of decoding

outcomes for set i have consistent data and hash values. Thus, the

overall fraction of consistent decoding outcomes is at most
(

k+1
q

)

∑

i s′
i

=
(

k+1
q

)s

.
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S. Acedański, S. Deb, M. Médard, and R. Koetter, “How good is random
linear coding based distributed networked storage?” in Proc. WINMEE,
RAWNET and NETCOD 2005 Workshops, Riva del Garda, Italy, Apr.
2005.

M. Adler, N. J. A. Harvey, K. Jain, R. Kleinberg, and A. R. Lehman, “On the
capacity of information networks,” IEEE Transactions on Information
Theory, vol. 52, no. 6, June 2006.

A. Agarwal and M. Charikar, “On the advantage of network coding for im-
proving network throughput,” in Information Theory Workshop, 2004.

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, July
2000.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algo-
rithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1993.

B. Awerbuch and T. Leighton, “A simple local-control approximation algo-
rithm for multicommodity flow,” in Proc. 34th Annu. IEEE Symp. Foun-
dations of Computer Science, Palo Alto, CA, Nov. 1993, pp. 459–468.

——, “Improved approximation algorithms for the multicommodity flow prob-
lem and local competitive routing in dynamic networks,” in STOC ’94:
Proc. 26th Ann. ACM Symp. Theory of Computing, Montreal, QC,
Canada, May 1994, pp. 487–496.

D. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex analysis and optimization.
Athena Scientific, 2003.

D. P. Bertsekas, “A class of optimal routing algorithms for communication
networks,” in Proc. 5th Int. Conf. Computer Communication (ICCC ’80),
Atlanta, GA, Oct. 1980, pp. 71–76.

——, Nonlinear Programming. Belmont, MA: Athena Scientific, 1995.
——, Network Optimization: Continuous and Discrete Models. Belmont,

MA: Athena Scientific, 1998.
D. P. Bertsekas, E. M. Gafni, and R. G. Gallager, “Second derivative algo-

rithms for minimum delay distributed routing in networks,” IEEE Trans.
Commun., vol. 32, no. 8, pp. 911–919, Aug. 1984.

D. P. Bertsekas and R. Gallager, Data Networks, 2nd ed. Upper Saddle River,
NJ: Prentice Hall, 1992.

D. Bertsimas, I. C. Paschalidis, and J. Tsitsiklis, “On the large deviations be-
havior of acyclic networks of G/G/1 queues,” Ann. Appl. Probab., vol. 8,

179



180 Bibliography

no. 4, pp. 1027–1069, Nov. 1998.
S. Bhadra, S. Shakkottai, and P. Gupta, “Min-cost selfish multicast with net-

work coding,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 5077–
5087, Nov. 2006.

K. Bhattad and K. R. Nayayanan, “Weakly secure network coding,” in Proc.
WINMEE, RAWNET and NETCOD 2005 Workshops, Riva del Garda,
Italy, Apr. 2005.

K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan, “Minimal net-
work coding for multicast,” in Proc. 2005 IEEE Int. Symp. Information
Theory (ISIT 2005), Adelaide, Australia, Sept. 2005, pp. 1730–1734.

J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain approach
to asynchronous reliable multicast,” IEEE J. Select. Areas Commun.,
vol. 20, no. 8, pp. 1528–1540, Oct. 2002.

N. Cai and R. W. Yeung, “Secure network coding,” in Proc. 2002 IEEE
Int. Symp. Information Theory (ISIT 2002), Lausanne, Switzerland,
June/July 2002, p. 323.

——, “Network error correction, part II: Lower bounds,” Commun. Inf. Syst.,
vol. 6, no. 1, pp. 37–54, 2006.

T. H. Chan, “On the optimality of group network codes,” in Proc. 2005 IEEE
Int. Symp. Information Theory (ISIT 2005), Adelaide, Australia, Sept.
2005, pp. 1992–1996.

D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,” in Proc.
2006 Conf. Information Sciences and Systems (CISS 2006), Princeton,
NJ, Mar. 2006, invited paper.

C. Chekuri, C. Fragouli, and E. Soljanin, “on average throughput and alpha-
bet size in network coding,” IEEE Transactions on Information Theory,
vol. 52, no. 6, June 2006.

H. Chen and A. Mandelbaum, “Discrete flow networks: Bottleneck analysis
and fluid approximations,” Math. Oper. Res, vol. 16, no. 2, pp. 408–446,
May 1991.

H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Performance,
Asymptotics, and Optimization, ser. Applications of Mathematics. New
York, NY: Springer, 2001, vol. 46.

P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in
Proceedings of 41st Annual Allerton Conference on Communica-
tion, Control, and Computing, October 2003. [Online]. Available:
http://research.microsoft.com/ pachou/pubs/ChouWJ03.pdf

——, “Practical network coding,” in Proc. 41st Annu. Allerton Conf. Com-
munication, Control, and Computing, Monticello, IL, Oct. 2003.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New York,
NY: John Wiley & Sons, 1991.

R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling and power
control in multi-hop wireless networks,” in Proc. IEEE INFOCOM 2003,
vol. 1, San Francisco, CA, Mar./Apr. 2003, pp. 702–711.

I. Csiszár, “Linear codes for sources and source networks: Error exponents,
universal coding,” IEEE Trans. Inform. Theory, vol. 28, no. 4, pp. 585–
592, July 1982.

Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal distributed multicast routing us-
ing network coding: Theory and applications,” SIGMETRICS Perform.
Eval. Rev., vol. 32, no. 2, pp. 47–49, Sept. 2004.

A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity of



Bibliography 181

wireless erasure networks,” IEEE Trans. Inform. Theory, vol. 52, no. 3,
pp. 789–804, Mar. 2006.

S. Deb and M. Medard, “Algebraic gossip: A network coding approach to
optimal multiple rumor mongering,” IEEE Transactions on Information
Theory, submitted, 2004.

S. Deb, M. Médard, and C. Choute, “Algebraic gossip: A network coding
approach to optimal multiple rumor mongering,” IEEE Trans. Inform.
Theory, vol. 52, no. 6, pp. 2486–2507, June 2006.

S. Deb and R. Srikant, “Congestion control for fair resource allocation in
networks with multicast flows,” IEEE/ACM Trans. Networking, vol. 12,
no. 2, pp. 274–285, Apr. 2004.

R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in
network information flow,” IEEE Transactions on Information Theory,
vol. 51(8):, pp. 2745–2759, August 2005.

——, “Networks, matroids, and non-Shannon information inequalities,” IEEE
Trans. Inform. Theory, vol. 53, no. 6, June 2007.

——, “Insufficiency of linear coding in network information flow,” IEEE Trans.
Inform. Theory, vol. 51, no. 8, pp. 2745–2759, Aug. 2005.

M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design for
wireless networks,” in Proc. 2006 IEEE Information Theory Workshop
(ITW 2006), Punta del Este, Uruguay, Mar. 2006, pp. 62–66.

E. Erez and M. Feder, “Convolutional network codes,” in Proc. 2004 IEEE Int.
Symp. Information Theory (ISIT 2004), Chicago, IL, June/July 2004, p.
146.

——, “Convolutional network codes for cyclic networks,” in Proc. WINMEE,
RAWNET and NETCOD 2005 Workshops, Riva del Garda, Italy, Apr.
2005.

A. Eryilmaz and D. S. Lun, “Control for inter-session network coding,” in
Proc. 2007 Information Theory and Applications Workshop (ITA 2007),
San Diego, CA, Jan./Feb. 2007.

M. Feder, D. Ron, and A. Tavory, “Bounds on linear codes for network mul-
ticast,” Electronic Colloquium on Computational Complexity, Report
TR03-033, May 2003.

J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “On the capacity of
secure network coding,” in Proc. 42nd Annu. Allerton Conf. Communi-
cation, Control, and Computing, Monticello, IL, Sept./Oct. 2004.

C. Fragouli and E. Soljanin, “A connection between network coding and con-
volutional codes,” in Proc. 2004 IEEE Int. Conf. Communications (ICC
2004), vol. 2, Paris, France, June 2004, pp. 661–666.

——, “Information flow decomposition for network coding,” IEEE Transac-
tions on Information Theory, submitted, 2004.

——, “Information flow decomposition for network coding,” IEEE Trans. In-
form. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
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