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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00539077


UNIVERSITE DE GRENOBLE
INSTITUT POLYTECHNIQUE DE GRENOBLE
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Notation

The following symbols and conventions will be used consistently throughout the thesis.

≡ identically equal
6≡ not identically equal
≈ approximately equal
, defined as
< (>) less (greater) than
≤ (≥) less (greater) than or equal to
≪ (≫) much less (greater) than
± plus and minus
∀ for all
∈ belongs to
⊂ subset of
∩ intersected with
: such as
→ tend to
xT the transpose of a vectorx
∞ infinity
∑ summation
|x| the absolute value ofx
‖x‖ the norm of a vectorx
‖x‖p the p-norm of a vectorx
[a,b] closed interval froma to b
{1,2, ...,N} the set from 1 toN
xk discrete variable
q−1 discrete-time delay or parameter, i.e.,xk−1 = q−1xk

R
n the n-dimensional Euclidean space

R
+ the semi-positive-dimensional Euclidean space

N the set of natural numbers
Z the set of integer numbers
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Re z the real part of a complex variablez
(x,y) metric space
In n-dimensional identity matrix
diag[a1, ...,an] a diagonal matrix with diagonal elementsa1 to an

O(·) order of magnitude notation
f : S1 → S2 a function f mapping a setS1 into a setS2
∂ f
∂x the Jacobian matrix
ẏ the first derivative ofy with respect to time
d
dt the first derivative ofy with respect to time
λmin(P) the minimum eigenvalue of symmetric matrix P
P > 0 a positive definite matrix
P≥ a positive semidefinite matrix P
e neperian number
s the Laplace variable
sign sign function
max maximum
min minimum
exp exponential function
sin sine
cos cosine
dist(p,M) the distance from a point p to a set M
limx→c f (x) limit of f (x) asx approachesc

satMm(x) is defined as







M if x > M
x if m≤ x≤ M
m if x < m.

C o is the convex hull of a set
round(x) is the nearest integer tox
ζ + denotesζ (k+1)
ζ− denotesζ (k)
∆ζ , ζ +−ζ− the value ofζ in two consecutive sampling time
L2 is the space of{x} with the norm:‖x‖2

2 , ∑∞
k=0xTx < ∞

H∞ H-infinite method
� designation of the end of definition
� designation of the end of proof
[xx] see reference numberxx in the bibliography
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Chapter 1

Introduction

1.1 Introduction to power converters

Power converters are electronic circuits associated to theconversion, control, and condition-
ing of electric power. The power range can be from milliwatts, mobile phone, for example,
to megawatts, in electric power transmission systems. Reliability of the power converters
become a key industrial focus. Electronic devices and control circuit must be highly robust
in order to achieve a high useful life. A special accent must be set on the total efficiency of
the power electronic circuits. Firstly, because of the economic and environmental value of
wasted power and, secondly, because of the cost of energy dissipated that it can generate.
Even a small improvement in converter power efficiency translates to improved profitability
of the investment in the electronic market [33,100].

Among all electronic converters, the most common technology is switched-mode power
converters (SMPC) [118]. They convert the voltage input to another voltage signal, by stor-
ing the input energy temporarily and then releasing that energy to the output at a different
voltage. This switched-mode conversion has a particular interest due to the fact that it can
switch at high frequency in a very efficient way. Power is controlled (even modified) by
controlling the timing that the electronic switches are “on” and “off”.

A much greater emphasis is required on achieving high-powerefficiency in low-power
level electronic technology, since few low-power circuitscan tolerate a power efficiency less
than 85%. Converters are used in these circuits in order to change the supply voltage in the
blocks of the System on Chips (SoCs) according to performance requirements, for power
efficiency reasons. Research have been focused on developing electronic circuits that can be
employed as switches. e.g. approximating ideal closed or open switches, as the Vdd-hopping
converter [98].

1



2 1.1. Introduction to power converters

1.1.1 Converters classification

Power converters control the flow of power between two systems by changing the character
of electrical energy: from direct current to alternating current, from one voltage level to
another voltage, or in some other way.

Here, some important way to classify the power converters are described. The aim of this
section is not to make a rigorous converter classification, either to make a state of the art,
because it is not the purpose of this thesis. It is only desired to understand some properties
of these kind of circuits.

The most common classification of power conversion systems is based on the waveform
of the input and output signals, in the case whether they are alternating current (AC) or direct
current (DC) [33], thus:

• DC to DC.

• DC to AC. Inverter.

• AC to DC. Rectifier.

• AC to AC . Transformer.

At the same time, the devices within converters can be switched in different ways [72,
79, 100]. If the devices switch at the line frequency (normally, 50Hz or 60HZ), they can
be line frequency converters(naturally commutated converters) orhigh-frequency switching
(forced-commutated converters).

Depending on the character of the input source, they may bevoltage-source converters
or current-source converters. Moreover, converters may be of low, medium or high voltage
and/or current level. Another sort of classification may be performed according to the size
of the output signal obtained from the input signal; if the converter accomplishes a lower
output signal it is well known asstep-down, and if it obtains a larger signal, it is known as
step-up[2].

1.1.2 DC-DC converters

DC-DC converters are electronic circuits that change the DCoperating voltage or current.
They have recently aroused the interest in the current market due to its wide range of appli-
cability. Normally, they are designed in order to transfer power from the input to the output
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in one direction. However, in the case of switches topologies, the power moving may be also
bidirectional, being very useful to develop new converter topologies for other applications,
as can be an inverter topology [25].

They have a particular interest in low-power circuits, as cellular phone and personal com-
puters (PCs). This sort of technology are composed of many sub-circuits that require an own
voltage level from an external supply (higher, lower or evennegative) or battery. DC-DC con-
verters have a special role in these kind of systems, since they can be employed to change the
voltage from a partial lowered battery voltage thereby. This is based on the Dynamic Voltage
Scaling technic (DVS) [27, 89, 136]. The main idea of DVS is tovary the supply voltage in
order to consume a minimal amount of energy. This fact improves the power efficiency and
saves space in spite of using multiple batteries to accomplish the same voltage level [82].

1.1.3 DC-AC converter

DC-AC converters, or commonly named inverters, can obtain acertain amplitude and fre-
quency of the AC voltage and/or current without using normally an intermediate DC stage.
This electrical device is a power electronic oscillator [118]. An electronic oscillator is just
an electric circuit that produces a repetitive signal, as a sine-wave output signal. Generally,
they are SMPCs.

These kind of circuits require an efficient control for the switches devices that, in many
occasions, can be quite complex due to system structure. Therefore, to design a suitable
control law currently is a subject of much research [22,107].

1.1.4 AC-DC converter

The process that converts AC to DC is known as rectification, hence, these converters are
also called rectifier. Among others applications, they are used in power supplies and detector
of radio signals.

The rectification can be half-wave or full-wave. In the first case (half-wave rectification),
only one half of the input waveform can be employed to reach the desired output. Therefore,
only this half AC wave (positive or negative) is converted. The efficiency will depend of
the kind of application. It is clear, that it is not useful forpower transfer. The full-wave
rectification can convert the whole of the input waveform to achieve the constant output
signal. It becomes more efficient [59,137].
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1.1.5 AC-AC converter

AC-AC converters are employed to transform an AC input signal to another AC output signal
with an arbitrary amplitude. Likewise, depending on the converter complexity, the frequency
can be changed as well. The efficiency of these kind of systemsdepends on the type of
circuit employed. It is clear that a higher power density andreliability will be obtained with
a conversion in one single stage [139].

1.2 Research motivation

A lot of research has recently been focused on converters dueto the increasing deal of in-
terest in power electronics. This is mainly caused by their broad applicability domain that
includes battery-operating portable equipment, computers, appliances, vehicles, industrial
electronic equipment, uninterruptible power supplies, telecommunication systems and much
more. This current research is specially focused on finding highly-efficient converter topolo-
gies for every system application and, on designing controlmechanisms that accomplishes
the converter objectives. On this way, one or more electrical parameters can be regulated with
a high reliability and efficiency, e.g., the supply voltage of an appliance, the temperature of
an oven, the speed of a motor, the supply voltage within calcul node of a SoCs [41,141].

Tackling the control problem in detail for every converter is out of the scope of a thesis.
That is why, among all variety of converters, this thesis is focused on providing a control
solution for two converters topologies, which have some interesting properties and appli-
cations. The converters that will be dealt with are: firstly,a switch inverter topology; and
secondly, a DC-DC converter for low power application.

1.2.1 Boost inverter

As was said before, inverters are devices that obtain a current output signal capables from
passing through zero. The inverters are generally SMPCs, and their topologies are derived
from coupling one or more basic switch topologies. Among them, it can be found the boost-
buck inverter [95], the buck-boost inverter [90], the buck inverter [127], the boost inverter
[25].

The first part of this thesis is focused on a boost inverter. Its interest is due to its step-up
property, which is achieved through a signal stage. In this case, two DC-DC boost converters
are connected with a load between them, thus it has a bidirectional current [25].
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In this system, four switches have to be controlled by two control signals, in order to
control the two output voltages of each DC-DC boost converter. Not only the voltage ampli-
tude must be controlled, but the phase of both signal must also be controlled to achieve the
specified output voltage.

Several control laws have been designed for this converter from other authors [25, 126,
149], applying different control strategies. In this thesis, a novel control strategy based on
energy shaping for generation of oscillations is employed [16,58], being the control objective
a limit cycle. The novelty of this method is that it does not need to track any reference signal
to achieve an oscillatory character in the output signal.

1.2.2 DC-DC Vdd-Hopping converter

The second part of the thesis is focused on a DC-DC converter employed in low-power
applications. As mentioned, the demand for high efficiency DC-DC converters is increasing
dramatically, especially in battery-operated devices such as cellular phones and personal
computers.

In SoCs, to extend battery life has a particular role. By employing DC-DC converters
based on power-saving, power efficiency in SoCs can be significantly increased, thereby
extending battery life. The goal of these efficiency DC-DC converters is to adapt dynami-
cally the supply voltage of the chip according to the required performance level. This is the
DVS idea mentioned before. Numerous DC-DC converters employed for this aim have been
proposed over the years to increase the power efficiency of anSoCs. The most commonly
used topologies in DC-DC converters in low-power electronics are: continuous buck con-
verters [119, 143, 153], boost converters [36], buck-boost[125, 142] converters and charge
pump [125], among others. However, while converters may decrease conduction losses, ad-
ditional losses can be added if switched devices are employed. In low-power applications
where a high-efficiency is required, other different topologies far from switched-mode are
employed.

In [98], a discrete DC-DC converter was proposed based on the‘Vdd-Hopping’ tech-
nique. This method is expired in scaling the voltage supplyVdd in a discrete way, de-
livering two small voltage levels according to the optimumVdd required for every perfor-
mance [75, 106, 128]. Hence its name of ‘DC-DC Vdd-Hopping converter’. Therefore, this
technique replaces the continuous adjustable voltage, just to two set-points [83], so that it
reaches a high-efficiency and reduced size. Likewise, it is avery simple system, becoming
easily controllable [55].

This converter is employed in a French gouvernement project, with a very ambitious
objective: ‘to reduce the size of the SoCs to 32nm’. For this, a new technology must be
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Converter Power level Conversion Scales Model order

Boost Inverter More suitable
for medium
and high
power

DC-AC normal 4th

Vdd-Hopping Converter Low power DC-DC micro- or
nano-scales

1st

Table 1.1: Main differences between boost inverter and Vdd-Hopping converter

developed, since the currently technology applied to 45nmcan not be employed for physical
reasons. Here, the control may take a particular role since,a suitable control law can achieve
the equilibrium and the demanded requirements, as well. Forinstance, it has to achieve the
highest efficiency (among other goals) to achieve the globalproject objective.

1.3 Main objectives

The two selected converters have different natures and applications, and hence, they may
have different control objectives. They covers a wide rangeof the power converter domain.
The boost inverter normally is applied to medium and high power level for normal scales;
and DC-DC Vdd-hopping converter is used in low-power technology for micro-scales or
nano-scales. Likewise, conversions are DC-to-DC, and DC-to-AC. The DC-AC converter
is based on the switched-mode classical topology, as is the boost inverter; and the DC-DC
converter has a topology far from the common structures. Thecomplexity of the systems
are quite different, from a 1st-order model in the DC-DC converter to a 4th-order. Table 1.1
summarizes these differences.

That does not mean that these two applications completely cover all power converter
domain. In fact, there are other features that have not been taken into account, as is the
different natural- or forced-commuted characteristic, the input sources, the level of the output
signal, among others.

These two converter applications, as for its work context asfor its different characteris-
tics, have some different control objectives.
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1.3.1 Controlling a boost inverter

The first application is focused on controlling an SMPC boostinverter. This converter is
particularly interesting because it does not only allow to generate an alternating current, but
it can also obtain an output voltage larger than the input signal. It has a high efficiency due
to its switching character. Nevertheless, it has a non-minimum phase, 4th-order model. In
addition, the desired behavior is not an equilibrium point but a limit cycle.

Due to all the mentioned boost inverter characteristics, the main objective is to design
a control law that guarantees not only the convergence to thedesired limit cycle, but also
the stability of it, with the particularity that no externalreference is applied to the system.
Likewise, the system has to accomplish right performance not only for known loads, but also
for unknown loads. Another important aim is to estimate a setof initial voltage and current
values, for which the system variables tend to the desired limit cycles when the control law
before is applied to the boost inverter.

If all these objectives are achieved, a control system guarantees a stable and robust behav-
ior from an initial condition, which is within an estimated attraction region. And, in addition,
the system is autonomous in the sense that no reference signals are needed.

1.3.2 Controlling a DC-DC Vdd-hopping converters

The second application deals with the control of a discrete DC-DC Vdd-Hooping converter.
This is a low-power converter with a high-efficiency. Furthermore, it has nice properties, for
instance, it has a 1st-order and its control objective is an equilibrium. Nevertheless, in low-
power technology, this level of efficiency may not become enough if certain requirements are
demanded (e.g. high energy-efficiency, small current peaksand reduced space) to achieve a
certain objective. For this, to design a control law focusedon achieving an optimal energy-
efficiency may be an attractive control problem in order to reach this objective. Indeed, the
control problem of the Vdd-Hopping converter in this thesiscomes directly demanded by the
industry. Concretely, it is included in a French national project called ARAVIS, sponsored
by the global competitive cluster Minalogic1.

The main control objective of this converter is to guaranteethat the system reaches the
desired equilibrium point, achieving certain required features as: high-efficiency, stability,
low computational cost, robustness with respect to parameter uncertainties and robustness
with respect to delays due to synchronization and computation issues [45]. In this way, the
control law must be designed taken these objectives into account.

1http://www.minalogic.com/
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1.4 Thesis structure

This thesis, as is noted above, is composed of two parts. PartI covers Chapters 2 to 5 while
Part II covers Chapter 6 to 10. Conclusions are drawn in Chapter 11.

The first part deals with controlling the boost inverter. In Chapter 2, the model of the
double boost converter (boost inverter) is presented. Likewise, the objectives are specified in
details, just as a particular solution is proposed in order to resolve the raised problem. Chap-
ter 3 shows the general idea of producing oscillating behavior by means of the generation of
a limit cycle through energy shaping. This idea yields a controller for the boost inverter, but
it is shown that the behavior is not acceptable due to a lack ofsynchronization. Therefore, a
phase controller is added to achieve the synchronization ofan isolated boost inverter as well
as the synchronization of the boost inverter with a pre-specified signal. Chapter 4 deals with
the unknown-load case, which is solved by means of an adaptation mechanism design. A
stability analysis for the full-system is also studied by using singular perturbation analysis.
Chapter 5 is devoted to develop a method of estimating an attraction domain. This method
deals with control and state constraints. It is employed to provide an estimated attraction
domain for the boost inverter.

The second part of the thesis is focused on controlling the DC-DC Vdd-Hopping con-
verter. In Chapter 6, a summary of the ARAVIS project work context, where this research is
included, is performed. Likewise, the control objectives required for this DC-DC converter
in the ARAVIS project are defined. In Chapter 7, a set of controllers are presented and dis-
cussed. From the control solution that offers the best performance, a controller is developed
in order to achieve the control objectives. For this, optimal control theory as well as adap-
tation methods are applied. Nevertheless, it has an important drawback, its implementation
is not simple, thus it is not suitable in the ARAVIS project. Next, another controller is de-
veloped in Chapter 8. This proposed control solution is developed from the simplest control
implementation of the set of controllers presented in Chapter 7. This controller presents
good properties for the project. In Chapter 9, a rigorous stability analysis is developed for
the closed-loop system with this last controller. Chapter 10 presents an optimal tuning mech-
anism for the control constants in order to deal with delays and parameter uncertainties. This
development copes with resolving aH∞ problem, proposing some Linear Matrix Inequalities
(LMIs) developed from Lyapunov Krasovskii method.
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Chapter 2

Introduction

DC-DC power converters have a very large presence in all kindof electronic circuits, from in-
dustrial applications (spacecraft power systems, DC motordrives, telecommunication equip-
ment) to personal applications (PCs, office equipment, electrical appliance). These systems
provide a regulated DC voltage level(Vo) from an unregulated DC voltage level(Vin).

High efficiency is the most important requirement for DC-DC converters in a wide range
of load power, since it directly affects the battery lifetime [42]. It can be achieved using
‘switched-mode’. A switched-mode power converter (SMPC) is characterized by rapidly
switching on and off some devices, transferring a rate of energy from the input to the output.
This rate of energy is controlled by a duty cycle1 to minimize the dissipated energy. The
switching effect is achieved by transistors, which dissipates little power when it is outside of
its active region. In addition, SMPCs have an inductor, whose main function is to limit the
current slew rate through the power switch. This action helpto limit the otherwise high peak
current. Moreover, the inductor stores the energy, which can be recovered in the discharge
phase [43,118]. This approach is also used in alternating current (AC) applications.

The basic components of the switching circuit can be rearranged to form a:

1. Buck converter. It is a step-down: the output voltage is lower than the input voltage.

2. Boost converter.It is a step-up: the output voltage is larger than the input voltage.

3. Buck-boost converter. It can be a step-down or a step-up. Its main characteristic is
that it inverts the polarity of the voltage.

4. Cuk converter. It has the same features that a buck-boost converter, with other differ-
ent configuration.

1Duty cycle is the fraction of time that a system is operated.

11



12 2.1. Boost inverter

5. SEPIC converter. It can be a step-down or a step-up, but it does not invert the voltage
polarity.

From these topologies other converters can be obtained [96,100].

A buck or boost topology, by oneself, can not achieve alternating current. Physical rea-
sons prevent the output current signal from passing throughzero. Hence, some topologies
have been proposed in order to obtain the alternating current condition.

Traditionally, DC-AC converters (or inverters) are based on the buck topology. Never-
theless, this kind of configurations obtain an AC output voltage lower in amplitude than the
input voltage [90]. In applications that require a boostingoutput, this problem is solved by
using two-stages. One-stage to change the signal from DC to AC, and the other stage, to
raise the amplitude [121]. These topologies have the drawback of needing more space and
dissipating more energy since they use more components.

In [25], a new inverter was proposed composed of two boost converter. It is known as
boost inverter. This inverter has as main advantage that it generates an AC output voltage
from a lower DC voltage in a single stage. As side effect, it has a higher efficiency and
a better signal quality with respect to the traditional buckinverters [126, 147]. These nice
properties are only achieved with a suitable controller. Hence, to design an appropriate
control law has an important relevance for these kind of circuits.

The boost inverter may be used in diverse applications, as for example in photovoltaic
system market. The solar cells can charge a battery up with a DC voltage of 48V. When
they are used in domestic installations, a standard domestic AC power is required as power
supply [15, 29]. Therefore, a boost inverter provides in these kind of applications a better
benefit. Its structure allows to isolate as well as to increase the voltage. Moreover, it ensures
that the power conversion is done with reduced energy losses[3, 4]. Figure 2.1 represents a
domestic photovoltaic installation.

2.1 Boost inverter

A boost circuit is usually employed as a DC-DC converter, being especially interesting be-
cause it generates an output voltage larger than its input voltage, i.e., it is a voltage elevator.
In [46, 48], there is a proposition of using this boost circuit as a way to convert DC volt-
age into an oscillating voltage. However, alternating current cannot be generated with this
converter, since the output current cannot change its sign.For this, an inverter is yielded by
duplicating the boost circuit [25].
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BOOST

INVERTER

PHOTOVOLTAIC

ARRAY

DC 48V

ELECTRICAL

GRID

AC 220Vrms 50Hz

AC 220Vrms 50Hz

Figure 2.1: Domestic photovoltaic installation.

The boost inverter is made up of two DC-DC converters2 and a load connected differ-
entially across them, having a bidirectional current (see Fig. 2.2). Each converter produces
a DC-biased sine wave output,v1 andv2, so that each source generates a unipolar voltage.
Voltagesv1 andv2 should present a phase shift equal to 180◦, to maximize the voltage excur-
sion across the load. In this way, to generate an oscillatorysignal without bias is possible.
The circuit implementation is shown in Fig. 2.3.

In order to simplify the analysis, a part of the boost inverter is replaced by a constant
voltage source as is shown in Fig. 2.4. Once the desired results are obtained, they are extrap-
olated to the full inverter. Note that, this replacement shows more clearly the bidirectional
current of each boost DC-DC converter.

2.1.1 System description

Now, some assumptions about the boost inverter are presented.

Assume that:

2Throughout this part of the thesis, each part of the boost inverter will be referred as ‘boost DC-DC con-
verter’ since each part is a normal boost converter that is commonly used as a DC-DC converter. Nevertheless,
it should be taken into account that, in the boost inverter, each part does not act as a DC-DC converter.
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Figure 2.2: Basic representation of the boost inverter.
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• all the components are ideal and the currents of the converter are continuous,

• the power supply is constant and known,

• the converter operates at a high-switching frequency,

• the inductancesL1 = L2, and the capacitancesC1 = C2, are known and symmetric,

• v1 andv2 are positive and sinusoidal voltages.

The circuit shown in Fig. 2.4 is driven by the transistor ON/OFF inputs,Qi . This yields
two modes of operation illustrated in Fig. 2.5. Formally, this circuit generates a switched
model. For control purposes, it is common to use an average model described in terms of
the mean current and voltage levels [97]. This averaging process may reach an averaged,
smooth, nonlinear, continuous-time ordinary differential equation (ODE), as will be seen
below.
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+
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Figure 2.5: Operation modes.

If the control variable,q, is defined asq = 0 whenQ1 = OFF andQ2 = ON, andq = 1,
whenQ1 = ON andQ2 = OFF, the converter dynamic equations are

L1
diL1

dt
=−v1 +qv1 +Vin (2.1)

C1
dv1

dt
= iL1 −qiL1 −

v1

R
+

v2

R
. (2.2)

Now, u1 = 1−q is taken as the control action in equations (2.1)–(2.2); obtaining

L1
diL1

dt
=−u1v1 +Vin (2.3)

C1
dv1

dt
= u1iL1 −

v1

R
+

v2

R
, (2.4)
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whereu1 is the control variable, which can only take two valuesu1 ∈ {0,1}. However,
it is usual to consider its average valueu1(t) = 1

T

∫ T+t
t u1(s)ds whereT is the switching

period [97]. Therefore,u1 is a continuous variable defined asu1 ∈ [0,1].

The full inverter structure according to Fig. 2.3 is

L1
diL1

dt
=−u1v1+Vin (2.5)

C1
dv1

dt
= u1iL1 −

v1

R
+

v2

R
(2.6)

L2
diL2

dt
=−u2v2+Vin (2.7)

C2
dv2

dt
= u2iL2 +

v1

R
− v2

R
, (2.8)

whereu2 controls the other part of the full system (remember that this part has been replaced
by a constant voltage source).

The main difficulty of system (2.5)–(2.8) copes with its control, because of:

• system nonlinearities. The control signals multiply the state variables. This kind of
system are more difficult to study [76].

• The linear part of system (2.5)–(2.8) is nonminimum phase because it has poles in the
positive semiplane. Therefore, it is not stable in open-loop [131].

• It is 4th order, which is a relatively high order.

• The current signal is indirectly controlled. An alternating current signal can be achieved
by a suited control-law that controls the voltage output [48].

• A phase shift of 180◦ is not necessarily achieved. In order to reach a right performance
with this inverter, both voltages signals must present thisphase shift [25].

• Boost inverter is a double oscillator, thus it does not present two equilibrium points but
two limit cycles.

• The control law variables are saturated because of duty-cycle signals [25].

• Loads in this kind of systems are unknown or/and slowly variable [63].

2.2 Control problem objectives

As mentioned before, the main objective for the boost inverter is to generate alternating
current. Hence, it can produce an oscillating voltage centered around zero, and thus, it can
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achieve negative voltages. Its main drawback, however, is its control due to the complexity
of the system structure.

The general control objectives for the boost inverter, which are common in switching
electronics converters, are:

1. to generate a stable output voltage with an amplitude equal to the desired voltage.
Furthermore, in certain applications, it is required that the output voltage has a pre-
specified phase;

2. to ensure the performance for unknown or/and slowly variable loads;

3. in the case that the control law does not guarantee global stability, to study an attraction
domain composed of all initial conditions that ensure a convergency to the system right
performance. This estimation of the region of attraction isimportant for the design of
the starting phase.

In this thesis, these general objectives can be achieved fora particular solution made up
of some proposed specific objectives:

1. to design a suitable control law for the duty cycle by usingenergy shaping, without
introducing reference signals;

2. to achieve an anti-synchronization3 between the voltage signals of each side of the
circuit;

3. to propose an adaptive control to deal with unknown and/orslowly varying loads and,

4. to estimate an attraction domain for the resulting system.

Figure 2.6 shows a block diagram of the solution proposed in this thesis for the boost in-
verter control problem. Note that the user has to specify thedesired amplitude and frequency
of the output voltage, as well as that the initial conditionsbelong to an estimated attraction
domain to ensure the system convergency.

2.2.1 Control law

The control of switched-mode inverter is usually accomplished by tracking a reference (sinu-
soidal) signal [20,35,126,150]. The use of this external signal makes the closed-loop system

3In this thesis it is said that two sinusoidal signals of the same frequency are anti-synchronized, or in anti-
phase, when the phase shift between them is equal to 180◦.
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Figure 2.6: General control problem.

non-autonomous in such a way that its analysis is more involved than if it were autonomous.
In these kind of systems, the control objective can be seen asthe generation of a stable limit
cycle defined by a given amplitude and frequency. Figure 2.7 shows the control objective,
which corresponds to the valley of a certain surface with a ‘Mexican-hat’ shape [115]. If
a control law is able to produce such a limit cycle, alternating current will be generated
without the need to introduce a time-dependent reference signal. The generation of limit
cycles to produce self-oscillations has been successfullyapplied to electro-mechanical sys-
tems [56, 57]. Applications to electronic devices are [16, 58], where a three-phase UPS and
a boost converter are controlled using this method. The ideabehind [19, 73] is similar but
there a sliding mode controller is proposed.

In Chapter 3, this approach is applied to a nonlinear boost inverter [11]. Several ap-
proaches have been applied to control this topology of inverter. For instance, in [25, 126],
sliding mode method is applied and, in [148], the control is based on passivity. Nevertheless,
these methods need a reference signal.

Therefore, the main contribution in this part of the thesis is to control the boost inverter
without using any reference signal, i.e., the system becomes autonomous [24, 150]. Figure
2.8 shows the autonomous structure that replaces the standard feedback control loop. This
is a sub-control problem, since both current and voltage signals are controlled by the same
control variable.
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Figure 2.7: Desired energy function: Mexican-hat shape.

CONTROL SYSTEM

+

−

Reference Output

Figure 2.8: Autonomous feedback control loop.
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It is shown that the direct application of the approach proposed in [16] and [58] does not
fulfill the objective due to the lack of anti-synchronization between both parts of the circuit.
In order to achieve anti-synchronization, a phase controller (PHC) in an external loop is
added to the previous control law. This approach is also applied to synchronize4 the output
with a given signal. An example of such a configuration is the synchronization of the boost
inverter with the electrical grid (as in the photovoltaic case) in order to achieve a satisfactory
power factor, which is shown in Fig. 2.6.

The circuit performance is validated in the simulation of a practical case presented in this
chapter.

Previous results were extended to the case that the load is not purely resistive but it
is inductive, as is usually the case in industrial applications. In [10], the extension to the
controller based on energy shaping method considering an inductive load was presented,
taking also into account the PHC.

2.2.2 Adaptive control

Previously, a control law satisfying previous requirements was designed in Chapter 3. It
has been supposed that the load is known and constant. However, it is well known in in-
dustrial applications that the load can be unknown or sufferperturbations. This problem
in switched-mode converters is usually dealt with by using adaptation mechanisms along
with other techniques such as feedback stabilization [63],input-output feedback lineariza-
tion [64], backstepping [123, 135], grid-point modeled [102], sliding modes [28, 134, 145],
predictive control [94] or fuzzy logic control [40]. In [108], an adaptive control is obtained
for a part of the DC-DC boost converter, which is controlled using the oscillation generation
approach mentioned before. This adaptive controller is computed using passivity arguments.
This approach is not easily applicable to the boost inverterbecause its model is more involved
than the converter of [108].

In Chapter 4, the goal is to design a load-adaptation mechanism for the boost inverter
controlled by energy shaping methodology. In order to estimate the load, a state observer is
designed for any system variable even when the state variables are measured (Fig. 2.6). This
provides a fast, successful adaptation of the load parameter [7]. This approach is applied by
simulation to a real industrial case.

The stability of the full system is analyzed by singular perturbation analysis, [76,78]. For
the sake of simplicity, the phase controller is not considered in this analysis. The resulting
adaptive control is tested by simulations.

4In this thesis it is said that two sinusoidal signals of the same frequency are synchronized when the phase
shift between them is equal to 0◦.
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The extension to case of unknown and non-purely resistive load using the adaptation
mechanism before is published in [12]. In this application two parameters of the load are
adapted at the same time.

2.2.3 Attraction domain

In Chapter 3, a control law for the boost inverter is designedsatisfying its main objectives.
Ideally, the designed control law guarantees global stability by means of a Lyapunov func-
tion. In practice, however, the control law does not achieveglobal stability due to two rea-
sons: firstly, the ideal control signal cannot be implemented globally due to control signal
saturation; and secondly, the circuit imposes physical constraints on certain state variables:
the capacitor voltages, for example, cannot be negative. Consequently, it is necessary to es-
timate an attraction region for the boost inverter. This attraction region is composed of all
initial conditions of the system that guarantee the convergency to the right behavior. There
is a starting phase, which is very common in this kind of systems [13, 91, 156], that must
bring the state of the system into a point inside this region.The attraction domain estimation
problem presents several difficulties. The main drawback isthe complexity of the control
law, which is a rational function with a high degree polynomial numerator. Moreover, it is
necessary to highlight that the desired behavior does not correspond to an equilibrium point
but to a limit cycle. Therefore, to obtain an estimated attraction domain for the boost inverter
can be quite involved.

There exist many published methods to estimate the region ofattraction (see, for exam-
ple [54, 76] and the references therein). One example of thiskind of methods is based on
Lyapunov theory, in which closed Lyapunov-function level surfaces are employed to deter-
mine approximate sort of ‘conservative’ estimations for the region of attraction [76] (see Fig.
2.9). These methods often employ polynomial systems [85,124,146].

Chapter 5 presents a method of estimating an attraction domain, considering state and
control-signal constraints. This approach can be applied to a class of system, whose local
system stability was previously guaranteed by a Lyapunov function, as is the problem pro-
posed here. By means of employing this Lyapunov function to estimate a ‘conservative’
attraction domain, a simple computational approach can be generated, although the model
and/or control law have a relative high degree and complexity. In order to apply the method,
the closed-loop system must be in a polynomial form, in such away that the problem is
transformed in a sum of squares (SOS) optimization problem [117].

This method is applied to estimate an attraction domain for the boost inverter. It is re-
marked, that the computed attraction region obtained from this Lyapunov function consid-
ers physical system constraints, containing control law saturations. The application of this
method is very simple and satisfactory results are obtained.
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Chapter 3

Control of the DC-AC boost converter by
energy shaping

This chapter exposes a novel control strategy for nonlinearboost inverter. Boost inverter is
nonminimum phase 4th order nonlinear system, which has not an equilibrium point but a
limit cycle. The control objective is not only to obtain a right system performance, but also
to guaranty the system stability. In addition, it is necessary to mention that it is a sub-control
problem. The control law has to control voltage as well as current signal.

The idea behind is based on generating an autonomous stable oscillator. The interesting
advantage of this method is that an external reference signal is not needed. This aim is
achieved by using energy-shaping methodology with a suitable Hamiltonian function which
defines the desired system behavior [44]. This approach guaranties the system stability.

The only missed thing in the developed controller is to synchronize the voltage signals
with a phase shift of 180◦. This is important in order to obtain the desired response. For
this, a phase controller is added to the control law in order to achieve 180◦-synchronization
between both parts of the circuit, as is shown in Fig. 3.1. In addition, this idea is used
to synchronize the voltage output with a pre-specified signal, e.g. synchronization with the
electrical grid. The resulting control is tested by means ofsimulations.

3.1 Normalized average model

Assume system (2.3)–(2.4) is only subject to a resistive load. In order to simplify the control
study, a known change of variable is employed [18, 133], in order to achieve a normalize
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Figure 3.1: Controlled boost inverter with PHC.

model:

x1 =
1

Vin

√

L1

C1
iL1 (3.1)

x2 =
v1

Vin
(3.2)

x3 =
1

Vin

√

L1

C1
iL2 (3.3)

x4 =
v2

Vin
(3.4)

wherex1 and x3 are the averaged currents andx2 andx4 are the averaged voltages. The
normalized time scale is

t̃ = ωnt (3.5)

with

ωn =
1√

L1C1
, (3.6)

which yields

ẋ1 =−u1x2 +1 (3.7)

ẋ2 = u1x1−ax2+ax4, (3.8)

ẋ3 =−u2x4 +1 (3.9)

ẋ4 = u2x3 +ax2−ax4, (3.10)

wherea = 1
R

√

L1
C1

. Note thatωn is the natural frequency anda is twice the damping.
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Remark 3.1 ẋ1, ẋ2, ẋ3 and ẋ4 are time derivatives of x1, x2, x3 and x4, respectively, with
respect tõt.

As mentioned in the chapitre before, for simplicity, the simplified boost inverter (2.3)–
(2.4) is dealt with and, later, the results are extrapolatedto the full system.

Focussing on the simplified system. Ifu1 is eliminated in (3.7)–(3.8), next equation is
obtained

x1(1− ẋ1) = x2(ẋ2+ax2−ax4). (3.11)

This equation is an implicit equation, which relates the state variables (x2, x4) and their
time derivatives and does not depend on the control signalu. Note thatx4 can be considered
an exogenous input in system (3.7)–(3.8). Equation (3.11) can be understood as the internal
dynamic of the system. If ˙x1 = 0 and ẋ2 = 0 is performed, the equilibrium manifold is
x1 = ax2(x2− x4). In this way, the internal dynamic of system (3.7)–(3.8) given by (3.11)
acts as a constraint on the system states.

From Eq. (3.11), it is possible to see that givenx4, and only controllingx1, variablex2

can be indirectly controlled1. Moreover, the stability of the system is maintained [48].

3.2 Energy shaping control for generation of oscillations

3.2.1 Approach overview

The generation of alternating current in electronic converters can be achieved by generating
a stable limit cycle without the need to introduce a reference signal. To do this, an oscillatory
target system may be defined and by matching its equations andsystem equations (3.7)–(3.8)
a control law can be obtained. In order to define the target system, consider the following
energy-like function

H0(η1,η2) =
1
4

Γ2
1(η1,η2), (3.12)

whereη1 and η2 are state variables andΓ1(η1,η2) , ω2(η1 − η10)
2 + (η2 − η20)

2 − µ.
Parametersω, η10, η20 andµ > 0 should be chosen so that the closed curveΓ1 = 0 defines
the desired behavior. This curve is an ellipse centered at point (η10,η20). A dynamical
system can be defined such that this closed curve is its limit set. This can be reached by

1For the full system, it is had:x1(1− ẋ1) = x2(ẋ2 +a(x2−x4)) andx3(1− ẋ3) = x4(ẋ4 +a(x4−x2)). Thus,
controllingx1 andx3, the desired behaviors forx2 andx4 can be obtained.



26 3.2. Energy shaping control for generation of oscillations

adoptingH0 as a Hamiltonian function [16, 108], and defining the Hamiltonian dynamical
system

[

η̇1

η̇2

]

=

[

−ka1
1

Γ1

− 1
Γ1

−ka2

][ ∂H0
∂η1
∂H0
∂η2

]

, (3.13)

which, after using (3.12), results in

η̇1 = (η2−η20)−ka1ω2(η1−η10)Γ1 (3.14)

η̇2 =−ω2(η1−η10)−ka2(η2−η20)Γ1. (3.15)

Taking into account that

Ḣ0 = −Γ2
1

(

ka1ω4(η1−η10)
2+ka2(η2−η20)

2)≤ 0, (3.16)

by using the LaSalle invariance principle it can be seen that, for all initial conditions except
the center of the ellipse, the trajectories of the system tend to the curveΓ1 = 0. Figure 3.2
shows this energy-like function.

Figure 3.2: Desired energy function: mexican-hat.

The behavior of the target system (Γ1 = 0) corresponds to the desired sinusoidal behav-
ior for the DC-AC converter. Constantsω, η10, η20 and µ are design parameters for the
frequency, bias and amplitude of the desired behavior, while ka1 andka2 define the speed of
the transient response.

Note thatη̇1 and η̇2 are in this case time derivatives ofη1 andη2 with respect tõt, in
order to work with the normalized averaged model (3.7)–(3.8).
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3.2.2 Controller design

System (3.7)–(3.8) can not be directly transformed to the form of system (3.14)–(3.15), but
this can be done using the new change of coordinates given below:

ζ1 =
x2

1 +x2
2

2
(3.17)

ζ2 = x1−ax2
2+ax2x4 +ζ20 (3.18)

whereζ20 is an offset term that will be a tuning parameter. From (3.17)–(3.18), it is easy to
see that

ζ̇1 = ζ2−ζ20 (3.19)

ζ̇2 = 1+2a2x2
2−3a2x4x2 +a2x2

4 +ax2ẋ4−u1(x2+2ax1x2−ax4x1). (3.20)

It is not easy to obtain simple relationshipsx1 = f (ζ1,ζ2) andx2 = f (ζ3,ζ4) from (3.17)–
(3.18) due to the quadratic terms. Nevertheless, this change of variables is a diffeomorphism
if and only if x2 + 2ax1x2 − ax4x1 6= 0, as follows from the inverse function theorem. In
Chapter 5 it will be seen that this constraint restricts the domain of attraction of the desired
limit cycle when the controller obtained below is applied.

Looking at target system structure (3.14)–(3.15) and comparing it with (3.19)–(3.20) the
choiceka1 = 0 is obvious, resulting in the target system

ζ̇1 = ζ2−ζ20 (3.21)

ζ̇2 = −ω2(ζ1−ζ10)−k1Γ1(ζ2−ζ20), (3.22)

where, for sake of simplicity,ka2 has been denoted ask1. The attraction of curveΓ = 0 can
still be proved by the LaSalle invariance principle.

The control law,u, that matches (3.19)–(3.20) and (3.21)–(3.22) is

u1 =
1+2a2x2

2−3a2x4x2 +a2x2
4 +ax2ẋ4+k1Γ1(ζ2−ζ20)+ω2(ζ1−ζ10)

x2 +2ax1x2−ax4x1
. (3.23)

Indeed,u1 varies dependently onx, as can be noted from Eq. (3.17)– (3.18). This controller
has several problems. First, the denominator in (3.23) may be zero (this is the same neces-
sary condition for (3.19)–(3.20) to be a diffeomorphism). Furthermore, in other cases, the
resultingu1 can violate the constraint 0≤ u1 ≤ 1. In Chapter 5, an estimation for the region
of attraction of the desired limit cycle will be obtained by taking these problems into ac-
count. It is assumed that a starting strategy will bring the state of the system into this region
of attraction [13,91,156].
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Parametersη10, η20 andµ have to be defined as a function of the desired behavior. For
this, it is necessary to obtain an analytical expression of the desired objective curve in plane
x1−x2. Assume that the desired time evolutions forx2 andx4 are

x∗2 = Asinωt +B (3.24)

x∗4 = −Asinωt +B, (3.25)

whereA, B andω take pre-specified values to obtain the desired evolution for v1 and iL1

using (3.1)–(3.4), (3.5) and (3.6). In addition, note that these desired evolutions allow us
to remove the bias in the output. The origin of time in (3.24)–(3.25) is arbitrary in such a
way that no phase shift value is imposed (signal synchronization will be achieved below).
Assume that the desired steady state forx1 can be approximated by

x∗1 = aα0+α1cosωt +β1sinωt (3.26)

This assumption is very common in the field of electronics [20,37,48,60].

By substituting (3.24)–(3.25) and (3.26) in (3.11)

aα0+(β1+aα0α1ω)sinωt +(α1−aα0β1ω)cosωt +
1
2

ω(α2
1 −β 2

1 )sin2ωt

−α1β1ω cos2ωt = aA2−2aABsinωt −ωABcosωt +
1
2

ωA2sin2ωt −aA2cos2ωt.

If the second order harmonics are neglected, the corresponding coefficients can be equated:

aα0 = aA2

β1+aα0α1ω =−2aAB

α1−aα0β1ω =−ωAB.

When this system is resolved forα0, α1 andβ1,

α0 = A2 (3.27)

α1 =
ωAB(2a2A2+1)

1+a2A4ω2 (3.28)

β1 = −aAB(ω2A2−2)

1+a2A4ω2 . (3.29)

The next problem is to show that the desired behavior forζ1 andζ2 is an ellipse and
defining the ellipse parameters (ω, ζ10, ζ20 andµ) in terms of the desired behavior forx2.
For this, it is necessary to obtain the desired evolution forζ1 andζ2 by applying the change
of variables (3.17)–(3.18) to (3.24)–(3.25) and (3.26).

ζ1 =
1
2
[(aα0+α1cosωt +β1sinωt)2+(Asinωt +B)2] (3.30)

ζ2 = aα0+α1cosωt +β1sinωt −a(Asinωt +B)2 +a(−A2sin2 ωt +B2)+ζ20(3.31)
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Expanding these expressions in Fourier terms yields

ζ1 = ζ (0)
1 +ζ (11)

1 cosωt +ζ (12)
1 sinωt +ζ (21)

1 cos2ωt +ζ (22)
1 sin2ωt (3.32)

ζ2 = ζ (0)
2 +ζ (11)

2 cosωt +ζ (12)
2 sinωt +ζ (21)

2 cos2ωt +ζ (22)
2 sin2ωt. (3.33)

By equating (3.30)–(3.31) with (3.32)–(3.33) the following Fourier coefficients, are obtained

ζ (0)
1 =

2a2α2
0 +α2

1 +β 2
1 +A2+2B2

4

ζ (11)
1 = aα0α1

ζ (12)
1 = aα0β1+AB

ζ (21)
1 =

α2
1 −β 2

1 −A2

4

ζ (22)
1 =

α1β1

2

ζ (0)
2 = ζ20

ζ (11)
2 = α1

ζ (12)
2 = β1−2aAB

ζ (21)
2 = aA2

ζ (22)
2 = 0.

Assuming that the double frequency termsζ (21)
1 , ζ (22)

1 , ζ (21)
2 andζ (22)

2 can be neglected,
these expressions can be approximated by an ellipse in the planeζ1, ζ2 since (3.30)–(3.31)
yields

ωζ (11)
1 = −ζ (12)

2 (3.34)

ωζ (12)
1 = ζ (11)

2 . (3.35)

The parameters of this ellipse are given by

ζ10 = ζ (0)
1 (3.36)

ζ20 = ζ (0)
2 (3.37)

µ = ω2((ζ (11)
1 )2+(ζ (12)

1 )2). (3.38)

3.2.3 Control law for the full system

The boost inverter is composed of two DC-DC converters. Therefore, it has two control
signals. For that, the previous control law, which is used for a part of the system, is used in
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order to obtain the control law for the other part of the system.

By comparing the normalized full model Eqs. (3.7)–(3.10) and (3.7)–(3.8) there is a sim-
ilar structure for the pairs of current and voltage of both boost DC-DC converters. Therefore,
the two control laws are easily obtained. Control lawu2 is obtained by using symmetry. The
control laws are

u1 =
1+a2(2x2

2−3x2x4+x2
4 +x2ẋ4)+k1Γ1(ζ2−ζ20)+ω2(ζ1−ζ10)

x2 +2ax1x2−ax4x1
, κ1(x) (3.39)

u2 =
1+a2(2x2

4−3x2x4+x2
2 +x4ẋ2)+k2Γ2(ζ4−ζ40)+ω2(ζ3−ζ30)

x4 +2ax3x4−ax2x3
, κ2(x),(3.40)

where

Γ1(ζ1,ζ2) = ω2(ζ1−ζ10)
2+(ζ2−ζ20)

2−µ (3.41)

Γ2(ζ3,ζ4) = ω2(ζ3−ζ30)
2+(ζ4−ζ40)

2−µ. (3.42)

The expressions for the time derivatives ˙x2 andẋ4 are taken directly from the normalized
equations of the boost inverter.

The stability is proved taking:

H =
1
4
(Γ2

1+Γ2
2),

whose differetation is:

Ḣ = −Γ2
1k(ζ2−ζ20)

2−Γ2
2k(ζ4−ζ40)

2 ≤ 0.

3.2.4 Simulation results

The following simulation shows how the controller is applied in a practical case. It is desired
to obtain an output voltageVo = 220 2√

2
sin(50·2πt) from an input voltageVin = 48V.

These simulations are performed considering,R= 100Ω, L = 250µH, C = 250µF . The
desired frequency and voltage amplitude aref = 1

T = 50Hzand 220Vrms, respectively.

Note that, ωn = 4·103 rad
s and ϖ = 2π f = 3.14·102 rad

s , i.e., ωn > 5ϖ and
a
2 = 0.01≪ 1 .

ParameterA in Eqs. (3.24)–(3.25) has to be the half of the desired outputvoltage ampli-
tude, andB is chosen so thatx2 andx4 are always positive. In order to obtain this voltage, the
parameters areA = 3.33 andB = 9.37 withω = 0.078 in the normalized variables (x1,x2).
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Figure 3.3 shows the results of a simulation using a commutation frequency of 50KHz
and employing a sample time of 0.1T s (remind thatT is the commutation frequency period).
Both DC-DC converters achieve the desired limit cycle.
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Figure 3.3: a) Evolution of(x1,x2) (solid) and(x3,x4) (dashed); b) evolution of(ζ1,ζ2) (solid) and
(ζ3,ζ4) (dashed).

Figure 3.4 shows the boost inverter output voltage. Note that the system does not show
overshoot, converging to the desired behaviour very fast. It can be seen that the desired
amplitude is not achieved. The reason is that the previous design does not force the phase
shift between signalsv1 andv2 to be in anti-phase (180◦ phase shift). Figure 3.5 shows that,
as a result, this goal is not achieved. The next section dealswith this problem.

The control signals are shown in Fig. 3.6. For the parameter chosen in the application,
the control law signal oscillates between 0.08 and 0.17. As pointed out by the jury member
this signal has values smaller than 0.1, what is not good for the implementation. This is a
circuit design problem. If the circuit is designed for more suitable values of the duty cycle,
the proposed controller would also lead to satisfactory results.
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Figure 3.4: Output voltage of the boost inverter.
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Figure 3.5: Output voltages of the first (solid) and second (dashed) boost DC-DC converters.
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Figure 3.6: Time evolution of the control laws.

3.3 Synchronization problem

The controllers developed above for boost inverters do not synchronize the two parts of the
circuit with a phase shift of 180◦ since each one controls independently a DC-DC converter.
Therefore, in the above design, the voltage signal did not present the phase shift mentioned
before. In order to get the desired output voltage, it is necessary to synchronize these signals,
in such a way that they present a phase shift to 180◦. In this section, a phase controller (PHC),
inspired by the configuration of a phase-lock loop (PLL) [66]– [1], is added. The PHC allows
us to achieve the desired phase shift between the output of the two DC-DC converters as well
as to synchronize the boost inverter output with respect to aspecified voltage signal, as in
the case of synchronization with the electrical grid.

3.3.1 Boost inverter synchronization

The objective is to synchronize voltage signalsx2 andx4 in anti-phase. The method is illus-
trated in Fig. 3.7. The normalized voltage of the second DC-DC converter,x4, is taken as
a reference signal and the normalized voltage of the first DC-DC converter,x2, is the signal
to be synchronized withx4 in anti-phase. These are the inputs to the PHC. The output is a
frequency variation,̃ω , which is added to the nominal frequency,ω, in the Control 1 block
and the resultant frequency is entered in (3.39). The outputof the converter is a sinusoidal
signal of that resulting frequency.
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Figure 3.7: Block diagram of boost DC-AC converter with output voltages in anti-phase by the PHC.

The PHC block diagram appears in Fig. 3.8. The multiplier obtains the product,x′2×x′4,
in such way that its output, once filtered by a low pass filter (LPF), is a measure of the
deviation of the phase shift with respect to 90◦, [66]. For this reason, one of the inputs of the
multiplier, e.g.x′2, is obtained by passing voltagex2 through a high pass filter (HPF) in order
to eliminate its continuous component. Likewise,x′4 is obtained after passingx4 through
another HPF, changing its sign and integrating it.

In the following, an intuitive explanation of the correct behavior of the full system is
presented. It is assumed thatω̃(t) is small and varies slowly. Under this assumption it
can be expected that the introduction of the PHC does not affect the normal behavior of the
controllers (3.39) and (3.40) (apart from the phase shift betweenx2 andx4 as desired). In this
way, it can be assumed that, after a transient period,x2 andx4 evolve as sinusoidal signals:

x2 = Asin((ω + ω̃(t))t +ϕ ′
i )+B≈ Asin(ωt +ϕi(t))+B (3.43)

x4 = Asin(ωt +π)+B (3.44)

where the origin of time has been chosen in such a way thatϕi(t) represents the phase shift
betweenx2 and the desired behavior forx2. Note,ϕ ′

i is constant. Likewise, it is desired that
ϕi = 2nπ with n∈ Z.

Assuming that both HPFs eliminate the bias terms, the signals that enter into the multi-
plier in Fig. 3.8 are

x′2 ≈ Asin((ωt +ϕi(t))

x′4 = Acos(ωt +π)+CPHC

whereCPHC is generated by the integrator, being eliminated by the LPF.

Assuming that the LPF filters out every sinusoidal signal of frequency greater or equal
thanω, then

ω̃(t) =
A2Kvd

2
sin(ϕi(t)−π) = −A2Kvd

2
sin(ϕi(t)).
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Figure 3.8: Conceptual block diagram of the PHC.

whereKvd is a positive design parameter. In this expression, sin(α)cos(β ) = 1
2(sin(α +

β )+sin(α −β )) has been employed. On the other side, from Eq. (3.43), it is easy to obtain
ϕ̇i ≈ ω̃ , and thus,

ϕ̇i ≈−A2Kvd

2
sin(ϕi(t)).

Obviouslyϕi(t) converges to 2nπ with n∈ Z, which corresponds to the desired behavior.

Simulation results The previous values are used for the boost inverter parameters. The
high pass filter applied is:

1.4s
s+ω

.

The LPF is a second order Butterworth filter [69]:

1

(s+0.008(
√

2
2 −

√
2

2 j))(s+0.008(
√

2
2 +

√
2

2 j))
. (3.45)

The value of the PHC gain isKvd = 5 ·10−4.

The results of the PHC application are shown in Fig. 3.9. Voltagesv1 andv2 in anti-phase.
In Fig. 3.10 the boost inverter output voltage is represented.

Figure 3.11 shows the ripple in the inductance currents, which is quite acceptable.

The output signal has a total harmonic distortion (THD) below 0.22% for a 50-Hz output
voltage. Figure 3.12 shows the signal spectrum of the signals v2 andv4. As can be seen, the
harmonics of the fundamental frequency wave of the obtainedoutput is quite satisfactory.

This result justifies the first harmonic approximations carried out during the design of
the control law. Of course, this is only valid for the chosen parameters and it does not
prove the usefulness of the law in a general sense. In fact, the approximation does not
work when the circuit parameters are not chosen adequately,but it is thought that, when



36 3.3. Synchronization problem

0 0.02 0.04 0.06 0.08 0.1

300

350

400

450

500

550

600

a)

Time(s)

V
1V

2(
V

)

0.6 0.62 0.64 0.66 0.68 0.7

300

350

400

450

500

550

600

b)

Time(s)

V
1V

2(
V

)

Figure 3.9: Output voltage of the first (solid) and second (dashed) boost DC-DC converters. In a) the
transient time is shown and in b) the steady-state is shown.
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Figure 3.10: Output voltage with PHC. In a) the transient time is shown and in b) the steady-state is
shown.
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Figure 3.12: Output voltage signal spectrum.
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the circuit is designed properly (taking into account the voltage, current and power levels),
the approximations will yield good results. Notice once more that these approximations are
common in the literature [47,48].

3.3.2 Synchronization with the electrical grid

In some applications, such as renewable energy plants, an inverter is necessary to inject
energy from production plants into the electrical grid. In this case, the problem is to syn-
chronize the voltage output signals with the pre-specified signal. For this, the normalized
voltage signals of both DC-DC converters (x2, x4) are treated with two PHCs, as is shown
in Fig. 3.13. x2 is synchronized with the grid voltage using a phase shift of 180◦ by using
PHC1, whose structure is shown in Fig. 3.14 and which is similar to the PHC in Fig. 3.8.
Signalx4 is synchronized with the grid voltage using a zero phase shift by means of PHC2
shown in Fig. 3.15. In this case,g′ = A

ω sin
(

ωt − π
2

)

.

For simplicity, the stability analysis of the full system isnot delivered, which is similar
to the previous subsection.

ω̃1 ω̃2

u1 u2

R

ω

x2 x4

Grid

ControlControl ConverterConverter

PHC1 PHC2

1 1 22

Figure 3.13: Block diagram of boost DC-AC converter with output voltagesynchronized with the
electrical grid.

Simulation results The grid voltage is

Vgrid = 220
2√
2

sin(100πt) (3.46)

The values used in this simulation for the filter parameters and gain,Kvd, are the same ones
used previously.
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Figure 3.14: Conceptual block diagram of PHC1.
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Figure 3.15: Conceptual block diagram of PHC2.

The performance of the synchronization of the boost DC-AC converter with the electrical
supply voltage is represented in Fig.3.16 showing satisfactory behavior.

3.4 Conclusion

A control strategy for the complex nonlinear boost inverterwas presented. The method
is based on energy-shaping methodology, which generates a limit cycle guaranteeing the
system stability. The obtained control law is a complex expression. Nevertheless, it has
an important relevance: the system does not require any external reference signals. The
resulting controller achieves the objective by adding a phase controller. The same idea is
used in order to solve the problem of grid electrical synchronization.

The control laws designed in this chapter depends on the value of the resistive load, which
is not necessarily known. Next chapter will deal with unknown and/or slowly varying loads,
which are supposed to be constant.
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Figure 3.16: Electrical supply voltage (solid) and simulated output voltage synchronized with PHCs
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Chapter 4

Adaptive control

In the previous chapter, a control law for the nonlinear boost inverter has been designed,
which guaranties the system stability. Likewise, a phase controller has been proposed in
order to achieve the desired phase in the output voltage signal. This development has been
performed assuming known load. Nevertheless, it is usual, that the load is unknown or/and
change slowly.

In this chapter an adaptive control is designed for the boostinverter in order to cope with
unknown and/or varying resistive load (see Fig. 4.1). This is a common problem in the field
of electronics. Different control strategies have been applied to provide a solution to this
standard problem in switched-mode converters [28, 63, 64, 94, 135]. Adaptation mechanism
for similar controllers, as the one presented in previous chapter, were used in [108] for the
case of the boost converter. The fact that the boost converter model is a 4th-order system
makes the design of the adaptation law more involved. A stateobserver for some of the con-
verter variables is designed even when the state variables are measured. In order to analyze
the stability of the full system singular perturbation analysis is used [76]. For simplicity, the
phase-lock system is not considered in this analysis.

The resultant adaptive control is tested by means of simulations.

4.1 Design of an adaptive control

An adaptive law (or a load observer) is proposed to cope with load variations and/or load
uncertainties. This observer is designed based only on a one-sided circuit, which contains
enough information to make this parameter observable. Therefore, the study of the full two-
sided circuit is avoided due to symmetry considerations.
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Figure 4.1: Controlled boost inverter with observer.

The model problem for one-sided circuit (left part of the Fig. 2.3) (3.7)-(3.8), can be
rewritten compactly as:

ẋl =Ulxl +aDl y+El (4.1)

ȧ= 0 (4.2)

y= x2−x4 (4.3)

ym = Mxl (4.4)

with xl = [x1,x2]
T ; x4 can be considered as an input, and

Ul =

[

0 −u1

u1 0

]

,Dl =

[

0
−1

]

,El =

[

1
0

]

,M = I2×2.

Note, thaty∈ R
1 andym ∈ R

2.

Remark 4.1 In what follows, it is assumed that both voltage and current,ym, are measur-
able, and thus accessible for control use.

Remark 4.2 From remark 4.1, note that xl and y are measurable variables.
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4.1.1 Adaptation law

The proposed adaptation law is comprised of a state observerfor one side of the inverter
boost, plus an adaptation law for parametera.

From Eq. (4.4):K0(ym− ŷm) = K0(Mxl −Mx̂l ) = K(xl − x̂l ) whereK0,K ∈ R
2×2 are

constant design matrix.

Therefore, the adaptation law has the following structure:

˙̂xl =Ulxl + âDl y+El +K(xl − x̂l ) (4.5)
˙̂a= β (xl , x̂l), (4.6)

whereβ (xl , x̂l) is the adaptation law to be designed, ˆxl is the estimated state ofxl and â is
the estimated value ofa. From remark 4.2, the real state ofxl andy in Eq. (4.5) can be used.
Note that even ifxl is accessible, the adaptation law designed here requires the additional
(or extended) state observer. This will become clear duringthe analysis of the error equation
system, as will be shown below.

4.1.2 Error equation

Assume thata is a constant parameter ( ˙a = 0) or that it changes slowly ( ˙a ≈ 0) and define
the following error variables:

x̃l = xl − x̂l , ã = a− â, ˙̃a = − ˙̂a.

Error equations are now derived from (4.1)–(4.4) together with (4.5)–(4.6)

˙̃xl =−Kx̃l + ãDl y (4.7)
˙̃a=−β (xl , x̂l ). (4.8)

Let K be of the form,

K , αI , α > 0

andP = I be the trivial solution ofPKT +KP = −Q, with Q = 2αI .

Now, introducing

V = x̃T
l Px̃l +

ã2

γ
(4.9)
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it follows that

V̇ =−x̃T
l Qx̃l +2ã

(

x̃T
l PDly+

˙̃a
γ

)

=−x̃T
l Qx̃l +2ã

(

x̃T
l PDly−

˙̂a
γ

)

.

The adaptation law is now designed by canceling the terms in parentheses, i.e.

˙̂a = γ(DT
l Px̃l)y. (4.10)

4.1.3 Stability properties

The observer and the adaptive law error equations are now fully defined. These equations
are:

˙̃xl =−Kx̃l + ãDly (4.11)
˙̃a=−γ(DT

l Px̃l )y. (4.12)

The stability properties of these equations follow from theLyapunov function,V, defined
above. Note that with choice (4.10), it follows

V̇ = −x̃T
l Qx̃l

From standard Lyapunov arguments [76], it is proved that error variables ˜xl andãare bounded.
Moreover, asymptotic stability is established by LaSalle’s invariance principle [76]. For
this, consider the level setVc = V(x̃l , ã,y) ≤ c0 for sufficiently largec0 > 0 and where
V̇(x̃l , ã,y) ≤ 0.

From Eqs. (4.11)–(4.12), note thatV̇(x̃l , ã,y) is negative everywhere, except on the line
x̃l = 0. Note that ˜xl ≡ 0 that implies˙̃xl ≡ 0, is only obtained if

ã(t)Dly(t) ≡ 0. (4.13)

In addition, observe that ify behaves as a sinusoidal (as is expected from the control
problem formulation) the unique asymptotic solution for ˜a is ã = 0, as long asy 6≡ 0,∀t ≥ 0.

Consequently, the maximum invariant set inV̇c(x̃l , ã,y) = 0 corresponds to the single
point (x̃l = 0, ã = 0) Therefore, every solution starting inVc approaches this point ast → ∞.

The following lemma summarizes the above results, assumingthaty 6≡ 0. Note, that the
manifoldy(t) ≡ 0 has to be carefully analyzed since can cause problems (e.g.in Eq. 4.13).
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An intuitive explanation about the right system performance (as will be seen by simulation
below) is the PHC introduction, see Chapter 3. The PHC objective is to achievex2+x4 = 0,
thus avoidingy(t) = x2−x4 = 0. A rigorous explanation has not been possible to provide it
a cause of the system and control nature.

Lemma 4.3 Consider the open-loop system (4.1)–(4.4), and the observer (4.5)–(4.6) with
K = αI such that K is a solution for PKT + KP = −Q, then the observer states have the
following properties:

i) The estimated stateŝxl , â are bounded.

ii) limt→∞ x̂l (t) = x(t).

iii ) limt→∞ â(t) = a, if y(t) 6≡ 0,∀t ≥ 0.

4.2 Stability considerations of the full closed-loop system

In the previous section, the stability properties have beenpresented for the extended observer.
These properties are independent of the evolution of the system state variables. The stability
of the complete system is analyzed in this section.

The open-loop two-sided inverter (3.7)-(3.8) plus (2.7)-(2.8) normalized, can be com-
pactly rewritten as:

ẋ=U(u1,u2)x+aDy+E (4.14)

y= x2−x4 (4.15)

with x = [x1,x2,x3,x4]
T , and

U =









0 −u1 0 0
u1 0 0 0
0 0 0 −u2

0 0 u2 0









,D =









0
−1
0
1









,E =









1
0
1
0









.

4.2.1 Tuned system

Thetuned systemis defined as the idealclosed-loopsystem controlled by thetuned feedback
laws u∗1 = κ1(x,a∗) andu∗2 = κ2(x,a∗), (from Eq. (3.39) and Eq.(3.40), respectively ), where
a∗ is theexactvalue ofa.
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The tuned system given in (3.24)–(3.25) and (3.26) states

ẋ=U(u∗1,u
∗
2)x+aDy+E (4.16)

=U(κ1(x,a
∗),κ2(x,a

∗))x+aDy+E (4.17)

, f (x) (4.18)

and, it achieves an asymptotically orbitally stable periodic solution, i.e.

x∗(t) = x∗(t +T).

In Section 3, it has been shown that functionsΓ1 andΓ2 defined in (3.41)–(3.42) tend to
zero. They correspond to periodic sinusoidal solutions of periodT = 2π/ω. Consequently,
y∗ = x∗2−x∗4 is also sinusoidal.

4.2.2 Closed-loop system

In practice, the control laws that are effectively applied depend on the estimation, ˆa, of
parametera. This control laws are denoted as ˆu1 = κ1(x, â) andû2 = κ2(x, â), respectively.
Note that these control laws depend on statex and not on their estimations, ˆxl , because state
x is directly measured. The role of ˆxl is to make possible the design of the adaptation law for
parametera.

The closed-loop equation resulting from the use of ˆu1 = κ1(x, â), û2 = κ2(x, â), u∗1 =
κ1(x,a∗) andu∗2 = κ2(x,a∗) is written as

ẋ=U(û1, û2)x+aDy+E +U(u∗1,u
∗
2)x−U(u∗1,u

∗
2)x (4.19)

= f (x)+ [U(û1, û2)−U(u∗1,u
∗
2)]x, (4.20)

Let us assume that ˆa∈ [âm, âM] and denote ˜a, a∗− â. Applying mean-value theorem [76]
yields

U(u∗1,u
∗
2)−U(û1, û2) = T (x)ã,

being

T (x) ,

[

I
∂u1
∂a |a= ˆ̄a 0

0 I
∂u2
∂a |a= ˆ̄a

]

,

where, ˆ̄a takes any value belonging to the intervalA , [min{a∗, âm},max{a∗, âM}], and

I ,

[

0−1
1 0

]

.
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The termT (x)ã captures the mismatch between the estimated and the true value of the
load. In view of the discussion above, this term has the following property:

Property 4.4 For small enough constantsεx > 0 andεa > 0. LetM = {(x, ã) : dist(x,x∗) ≤
εx, |ã| ≤ εa} be a compact domain that includes the asymptotic periodic solutions from the
tuned system and the exact value of a i.e. a∗. Then,T (x)ã has∀(x, ã) ∈ M, the following
properties:

i) it is continuous, analytic, and free of singularities

ii) limã→0T (x)ã = 0.

Putting (4.20) together with the observer error system yields the complete set of closed-
loop equations, withy = y(x)

ẋ= f (x)−T (x)ãx (4.21)
˙̃xl =−α x̃l + ãDly (4.22)
˙̃a=−γ(DT

l Px̃l )y, (4.23)

remain thatK = αI . The stability consideration discussed here will be based on the time-
scale separation. The main idea is that with the suitable choice of gains (as discussed below),
observer equation (4.22)-(4.23) can be seen as the fast subsystem and equation (4.21) as the
slow subsystem. Note again that this time-scale separationshould be enforced by a particular
choice of the observer and adaption constantsα andγ, respectively.

4.2.3 Singular perturbation form

In order to rewrite the system above in the standard singularperturbation form, it is necessary
to follow the next steps:

• introduce ¯a = ã
α ,

• selectγ = α

• defineε = 1
α
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With these considerations, Eqs. (4.21)–(4.23) are rewritten:

ẋ= f (x)−T (x)αā(ã)x

ε ˙̃xl =−x̃l + ā(ã)Dly,

ε ˙̄a=−(DT
l Px̃l )y,

whereε > 0 is small parameter (for a larger value ofα). Note that, this particular selection
of gains imposes relative gains for the adaptation,γ, and defines precisely, how the observer
gain is related toγ.

Remark 4.5 The perturbed variable parameter,ε = ς(ã), and for a side effect, the adapta-
tion gain,γ, must fulfill

ε ≪ min

{

1
ω2 ,

1
k

}

γ ≫ max
{

ω4,k2} .

These relationships with respect to the tuning parameter, k, and desired frequency,ω, ensures
the convergency of the observer and adaptation parameter, a.

Lettingz= [x̃l , ā(ã)]T yields the general form

ẋ= f (x)−T (x)αā(ã)x (4.24)

ε ż= g(x,z) (4.25)

with x(t0) = x0,x∈ R
4, z(t0) = z0,z∈ R

3, and

g(z,x) =

[

−x̃l + ā(ã)Dly
−(DT

l Px̃l )y

]

According to the singular perturbation analysis, the next steps must be followed:

1. Find a stationary solution of thefastsubsystem (4.25) by finding the roots of the equa-
tion g(x,z) = 0, i.e.z= φ(x).

2. Replace this solution in theslowsubsystem (4.24), and find the resulting slow system

ẋ = f (x)−T (x)φ(x)x.

3. Check the boundary layer properties of the fast subsystemalong one particular solution
of

ẋ = f (x)−T (x)φ(x)x.
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4.2.4 Slow sub-system

The previous step 1 requires to find the roots of

x̃l = ā(ã)Dly

0=−ā(ã)DT
l PDl y

2.

Note thatDT
l PDl = 2, and that the above equation has multiple solutions, i.e

x̃l = 0

ā(ã)y2(x) = 0

which means that ify ≡ 0, there is one solution for ˜xl = 0, and infinite solutions for ¯a.
However, ify 6≡ 0, for instance, in the particulartunedsolutiony∗ = Acos(ωt), then

z= φ(x) =

[

x̃l

ā(ã)

]

= 0

becomes an isolated root.

Now, step 2 is considered. For the previous particular solution, and taking into account
that ā = a−â

α = 0, i.e. â = a, the slow model is written as:

ẋ = f (x)−T (x) ·0 ·x= f (x), (4.26)

which is nothing other than the tuned system whose solutionsx(t) = x∗(t) are sinusoidal.

4.2.5 Boundary layer fast subsystem

The next step is to evaluate the stability of the boundary layer system in the finite time inter-
val t ∈ [t0, t1]. This is obtained by evaluating the fast subsystem (4.25) along one particular
solution of the quasi-steady-statexp(t), and by re-scaling timet to the stretched time coordi-
natesτ = (t− t0)/ε. The fast subsystem (4.25) evaluated along this trajectoryis

d
dτ

ˆ̃xl1 =− ˆ̃xl1

d
dτ

ˆ̃xl2 =− ˆ̃xl2 − ˆ̄a(ã)yp

d
dτ

ˆ̄a= ˆ̃xl2yp,

which can be rewritten as:

d
dτ

ẑ= J(yp)ẑ= J(τ,ω,ε)ẑ. (4.27)
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with

J =





−1 0 0
0 −1−yp

0 yp 0



 (4.28)

Under these conditions, system (4.27) is reduced to the autonomous linear system

d
dτ

ẑ= J(τ,ω,0)ẑ= J(yp0)ẑ. (4.29)

Consider theyp0 ∈ Dx, with Dx , {x : |y| = |x2 − x4| > ε0}. The above system has the
following properties.

Property 4.6 The eigenvalues of J(yp), for [t,xp,z] ∈ [t0, t1]×Dx×R
3, are all strictly nega-

tive, i.e.

λ1 =−1 (4.30)

λ2 = Re

{

−1+
√

1−4yp
2

2

}

< 0 (4.31)

λ3 = Re

{

−1−
√

1−4yp
2

2

}

< 0, (4.32)

whereε0 > 0 is a constant.

ThereforeJ(yp) is Hurwitz in the considered domain. As a result, there exists a matrix
P(yp) = P(yp)

T > 0 and aQ(yp) > 0 such that the standard Lyapunov equation holds:

P(yp)J(yp)+J(yp)
TP(yp) = −Q(yp).

From standard Lyapunov arguments, it follows that for allt ∈ [t0, t1],

||ẑ(t,ε)|| ≤ c1exp

{

−λmin(Q(yp))

(

t− t0
ε

)}

.

Tikhonov’s theorem [76] can now be used to summarize the previous result.

Theorem 4.7 There exists a positive constantε∗ such that for all yp0 ∈ Dx, and0 < ε < ε∗,
the singular perturbation problem of (4.24)-(4.25) has a unique solution, x(t,ε), z(t,ε) on
[t0, t1], and

x(t,ε)−xp(t) = O(ε) (4.33)

z(t,ε)− ẑp(t/ε) = O(ε) (4.34)
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hold uniformly for t∈ [t0, t1], whereẑp(τ) is the solution of the boundary layer model (4.29).
Moreover, given any tb > t0, there isε∗∗ ≤ ε∗ such that

z(t,ε) = O(ε)

holds uniformly for t∈ [tb, t1] whenever,ε < ε∗∗.

In order to extend this result to an infinite time interval, itis necessary that the boundary
layer system is exponentially stable in a neighborhood of the tuned slow solutionxp(t) for
all t ≥ t0. This may not be a simple proof, and it will be left for future investigation. Instead,
the effectiveness of this approach is shown below using simulation.

An intuitive yet not completely rigorous explanation for the resulting good behavior in
the infinite time interval can be given with the help of Fig. 4.2. Notice that the Hurwitz nature
of Jacobian (10.13) is only lost wheny = x2−x4 = 0. Since the fast motion,z, evolves with
almost constanty (vertical lines in Fig. 4.2),y will not reach the value zero during this
motion provided thaty is initially far enough from zero. Once the slow manifold is reached,
the slow variable will evolve in the domainz= 0. This domain corresponds to the case when
the adaptation mechanism has reached its objective and parametera is correctly estimated.
In this domainy may reach the value zero but, intuitively, it is assumed thatthe system, once
the adaptation law has reached the correct value, will present a behavior that is similar to the
known load case, whose stability is proved in Chapter 3.
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Figure 4.2: Evolution of two trajectories in the state subspace (x1,x2,‖z‖). The last part of the
trajectory is in the plane‖z‖ = 0.
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4.2.6 Simulations

The inverter parameter values are the same as those for the known load case given in the
Subsection 3.2.4, where the load resistance has been 50Ω and, therefore,a = 0.01. The
desired output is

Vo = 220
2√
2

sin(100πt).

At time t = 0s, the chosen value for the adaptation parameter is ˆa = 0.001 (which corre-
sponds toR0 = 1000Ω, i.e. the relative error is 90%). Later, at timet = 0.5s, a load variation
is produced fromR= 100Ω to R0 = 1000Ω, such that, parametera is again equal to 0.01

Once again, a commutation time of 50KHz is employed resulting a sample time of 0.1T
s.

Figures 4.3 and 4.4 show the evolution of the output voltage and the voltages of every
boost DC-DC aftert = 0s, respectively. Note that the circuit tends to the desired behavior.
During this period the adaptation mechanism does not destabilize the system.

Figures 4.5 and 4.6 show the evolution of the output voltage and the voltages of every
boost DC-DC aroundt = 0.5s, respectively. Note that the circuit continues with the desired
behavior. The time scale is the real time scale before the change of variable. Note that during
this time, when the perturbation in the resistance and, thus, the corresponding adaptation
mechanism is activated, the output signal does not undergo any significant variation.

The adaptation of parametera is represented in Figs. 4.7 and 4.8 where the load-change
instants in the transition and steady-state are zoomed respectively. Note that the adaptation
is very fast relative to the time scale of the system. In each of these graphs two evolutions
are presented for two different values ofε. Note the smallerε is, the faster the adaptation is.

4.3 Conclusions

In this chapter an adaptation law is added to the previous control law in order to deal with a
common and important problem in the field of electronics: slowly varying and/or unknown
loads. For that, an adaptive control for unknown load is developed, which adapts the load
very fast with respect to the time evolution of the system. The method is based on using a
state observer on one-sided inverter and assuming that the state variables are measured.

The stability of the complete system is proved by rewriting the system in the standard sin-
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Figure 4.3: Output voltage with the adaptation of an unknown load int = 0s.
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Figure 4.4: Output voltages of the first (solid) and second (dashed) boost DC-DC converters with the
adaptation for an unknown load int = 0s.
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Figure 4.5: Output voltage with the adaptation of an unknown load int = 0.5s.
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Figure 4.6: Output voltages of the first (solid) and second (dashed) boost DC-DC converters with the
adaptation for an unknown load int = 0.5s.
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ãã

t(s)t(s)

Figure 4.7: Time-evolution of the fast variable ˜a with ε = 0.01 in a) and ε = 0.001 in b). The
perturbation is att = 0s.
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ãã

t(s)t(s)

Figure 4.8: Time-evolution of the fast variable ˜a with ε = 0.01 in c) and ε = 0.001 in d). The
perturbation is att = 0.5s.
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gular perturbation form; hence some relationship between the adaptation gain,γ, the observer
matrix parameter,α, and the perturbed variable parameter,ε, are achieved. Another impor-
tant relationship between the perturbed variable parameter, ε, and the system frequency,ω,
is achieved in the analysis of the boundary layer fast subsystem. Finally, the stability is es-
tablished by means of Tikhonov’s theorem [76]. The stability proof extension for an infinite
time interval, will be an objective for further investigation.

The assumption that voltage and current are measurable simplifies the observation prob-
lem. No persistant signals are required to prove the stability and the no noise is included
in the measurable signals. As future work, an extension of this development could be done
assuming that only the currents are measurable and including experimental results in order
to validate all assumptions established in this work.



Chapter 5

Estimation of the attraction domain

In the previous chapter, a controller has been developed forthe boost inverter. Global stabil-
ity of the closed-loop system has been guaranteed by a Lyapunov function. However, state
and control-signal constraints including saturations have been disregarded.

In this chapter, the objective is to estimate a satisfactoryattraction domain for the boost
inverter taking into account physical system constraints,containing control signal satura-
tions. That is, to estimate a region composed of all initial conditions corresponding to trajec-
tories that converge towards the right system behavior. Thesystem will be driven into this
attraction domain by a starting phase; this is common on the field of electronics [13,91,156].
This attraction region is estimated by using a novel method developed in this chapter.

Estimating an attraction domain may be involved if there arephysical system constraints.
This problem may present a high degree of difficulty due to thesystem and control-law
nonlinearities, including saturation-like constraints.The term saturation-like constraints is
used for non-linear functionsγ(u) that appear in the system model and they become the
identity, γ(u) = u, in certain regions of the state space that include the desired behavior,
(those regions are referred to regions in which such constraints are not active). Functions of
this sort include typical control signal saturation as wellas others, such as rate limiters, for
example. Other constraints on the state variables can be considered as well.

There exist many published methods to estimate the region ofattraction (see, for ex-
ample [54, 76] and the references therein). A kind of such methods is based on Lyapunov
theory: closed Lyapunov-function level surfaces enclose (conservative) estimations for the
region of attraction [76]. These methods often employ polynomial systems [85, 124, 146].
There exist powerful mathematical tools that can be used in the computation of the maxi-
mum acceptable level for polynomial systems [32, 68, 111, 151]. Some of these tools could
be further developed for application to non-polynomial systems as well [31]. Application of

57
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these methods would imply to seek for Lyapunov functions in order to be able to deal with
the constraints. The search for a Lyapunov function by meansof the numerical estimation
method may be seen as an advantage as the user would not be required to propose a Lya-
punov function. In cases like these, however, the computational method has to solve a much
more difficult problem and it will be hard to tackle with systems of moderate complexity.
Furthermore, saturation-like functions, which are one of the most common nonlinearities in
practice, are usually out of the scope of these techniques. Usually saturation-like functions
are only considered in the case of linear systems [5,21,110,114].

A simple idea that solves the problem of estimation of the attraction domain for poly-
nomial non-linear systems (and some others) with saturation-like constraints and state con-
straints is presented. The idea is to take advantage of the unconstrained global stability anal-
ysis and use this result to obtain a ‘conservative’ estimation of the region of attraction for
the constrained case. Using the Lyapunov function of this analysis, there is no need to look
for a Lyapunov function while estimating the domain of attraction and, thus, this problem
becomes much simpler. On the other hand, the estimated attraction region is included in the
domain where the saturation-like constraints are not active and, therefore, the method intro-
duces a new source of conservatism. This obvious idea may be successful in hard problems
when all other methods fail.

In this chapter, this approach is employed to the boost inverter to estimate an attraction
region. The application of the method produces good, albeitconservative, results. However,
certain difficulties should be mentioned here: 1) the systemequations are quite involved and
can even present non-polynomial terms, namely rational functions; 2) the desired attractor
is not an equilibrium point but a limit cycle. Both complications make the use of any other
analysis method a formidable task.

For sake of simplicity, in the application of this method to the boost inverter, the phase
controller dynamic is not taken into account either the adaptation law.

5.1 Problem statement

In Section 3.2 a control law (Eqs. (3.39)–(3.40)) for boost inverter not has been only de-
signed, but has been also proved that for all initial conditions except the origin, the trajec-
tories of the system tend to the curvesΓi = 0 for i = 1,2. Nevertheless, there are several
constraints in the state variable that make this analysis useless from the practical point of
view. These constraints are of several types:

C1. Saturation-like constraint: sat1
0(ui) for i = 1,2, makes control law (3.39)–(3.40) not to

be feasible in the full state space. Therefore, this constraint is ‘soft’ in the sense that if
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the system arrives at a point where the constraints are violated, the analysis of Section
3.2 is no longer valid for the system with constraints. The point may nonetheless still
lie inside the attraction domain of the desired limit cycle.Therefore, these constraints
are saturation-like.

C2. Capacitor voltages must be strictly positive in this circuit, which impliesxi > 0; i =
2,4. This is a ‘hard’ constraint since this situation should beavoided.

C3. Finally, the control law is not feasible when any of the denominators in (3.39)–(3.40)
are zero. This constraint is actually contained in C1, sincedenominators close to zero
would imply large (positive or negative) values forui ; i = 2,4.

The objective of this work is to obtain a (possibly conservative) estimation for the region
of attraction of the resultant system taking these physicalconstraints into account.

5.2 An approach of estimation of the attraction domain.

Normally, in every control system, the control signal is subject to physical constraints such
as saturations, rate-limiters, etc. As for control designs, such constraints are typically dis-
regarded and the resulting control law is applied to the actuator. In this way, if the de-
signed control law isud = α(x), wherex is the state variable, the actual control signal is
u = γ(ud) = γ (α(x)), whereγ(·) is a saturation-like function. This approach is valid when
the actual expression foru is used in the stability analysis of the resultant system. Itis
however quite common to neglect the actuator constraints inthe stability analysis so as to
simplify the analysis. In fact, the local stability property is not usually affected by these
constraints, since in a neighborhoodD of the desired attractor they are not active, that is,
γ(α(x)) = α(x) ∀x∈ D . However, the resulting attraction domain may be affected by con-
straintsγ. This study deals with the estimation of this attraction domain based on a stability
analysis that neglects the constraints.

The analysis can also take into account state variable constraints in the following sense.
Assume that there exists a ‘forbidden’ region in the state space. This means that the system
state must remain within the boundaries of a pre-specified admissible (‘safe’) region. The
estimation of the domain of attraction should take into account these constraints.

Formally, the problem can be stated as follows:

Actual system.Consider a control system type defined as such:

ẋ = fa(x,u), (5.1)
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wherex∈S ⊂R
n, u∈R

nu. Functionfa may include saturation-like functions. Furthermore,
due to physical considerations, the state of the system mustnot go out of an admissible region
T . �

Unconstrained systemAssume that an approximate model of the system is

ẋ = f (x,u), (5.2)

where functionf : R
n → R

n and, besides, inD , f (x,u) ≡ fa(x,u). The reader can con-
sider that this approximate model includes neither the saturation-like functions nor the state
constraints. �

Assume that a control lawu = α(x) has been designed for the unconstrained model (5.2)
for a given control objective.

Remark 5.1 The control objective is not necessarily the stabilizationof an equilibrium
point, but perhaps the stabilization of limit cycles, for instance, as seen in the examples
in Section 3.2, can be considered.

Assumption 5.2 There is a widely known radially unbounded Lyapunov function V(x), in
which a compact positively invariant setΩ, ∂V

∂x f (x,α(x))≤ 0. LetM be the largest invariant
subset of the set for whicḣV = 0 in Ω.

By the LaSalle invariance principle, assumption 5.2 guarantees that the trajectories of the
unconstrained model tend toM . It is implicitly assumed that this is the desired behavior.
Notice that if the original Lyapunov theorem is used to proveglobal stability, the previous
assumption is also fulfilled.

Assumption 5.2 also guarantees local stability for system (5.1). The problem lies in the
estimation of the domain of attraction.

The key is clearly to ensure that the system state remain within the boundaries of the
region where saturations are not active, thus introducing new constraints. A conservative
estimation of the region of attraction can then be easily obtained. The advantage of the
relative ease with which it is obtained, however, is compromised by the fact that it may be
far too conservative. Nevertheless, in many problems this simple idea may give satisfactory
results.

Assumption 5.3 Consider system (5.1) with control law u= α(x). Let beA
△
= D ∩T , that

is, the intersection between the safe region and the region where the saturation-like functions
are not active. It is assumed that this set can be estimated bya set of inequalities g(x) ≥ 0,
where g: R

n → R
ng.
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Now the problem can be transformed as follows:

Given a control system ˙x = f (x,u) with constraints in both the state variables
and the control inputg(x) ≥ 0, assume that a control lawu = α(x) has been
designed such that global stability is confirmed when no constraints are taken
into account. The problem lies in estimating a region of attraction for the real
system with constraints when this control law is applied.

A ‘conservative’ estimation for the attraction domain of the system with constraints is
given by the following theorem:

Theorem 5.4 Under assumptions 5.2 and 5.3, assume that there exists a constant c> 0
such that in the setΩc = {x : V(x) ≤ c}, the constraints g(x) ≥ 0 are satisfied. Then, all
trajectories of the system with constraints starting atΩc tend toM ∩Ωc.

Proof: Since inΩc the saturation-like constraints are satisfied, the resultsfor the un-
constrained system are valid inΩc. Therefore,V̇ ≤ 0 in Ωc andΩc is positively invariant.
Furthermore, sinceV(x) is radially unboundedΩc is compact. The statement can be vali-
dated by applying LaSalle’s invariance principle.

Remark 5.5 SinceM ∩Ωc ⊂ M , the theorem guarantees the desired asymptotic behavior
for the system with constraints.

Remark 5.6 As with other techniques for estimation of attraction domain, the present method
is conservative. In this case the conservativeness is mainly due to two facts:

• The estimation of the region of attraction is restricted to domains in which V≤ c.

• The method considers the saturation-like functions as hardconstraints. Nevertheless,
there may be points where the saturations are active in the actual attraction domain.

Using Theorem 5.4, the problem is reduced to finding a valuec > 0 such thatg(x) ≥ 0 at
the points whereV(x) ≤ c. In order to use numerical tools for the determination ofc, as will
be seen in the next sections, the optimization problem can bestated as follows:
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Problem 5.7 Maximize c

subject to:
(V(x)−c)+ pi(x)gi(x)− εi ≥ 0 i = 1, . . . ,N, (5.3)

wherepi(x) are unknown semi-definite positive functions andεi > 0; i = 1, . . . ,N. The
purpose of constraint (5.3) is to validate the Theorem 1 hypothesis. To observe this, notice
that at the boundary of the setΩc, V(x) = c and, thus, the above constraints are reduced to
pi(x)gi(x) ≥ εi > 0. As functionspi ≥ 0, the constraintsgi(x) ≥ 0 are satisfied at the points
on the boundary ofΩc. Furthermore, in the interior of this set,V(x)−c < 0 and, thus, these
constraints are also satisfied. Thepi functions lend even more degrees of freedom, thereby
increasing problem feasibility. The smallεi constants are pre-specified and are necessary in
order to avoid problems at the points wherepi(x) = 0. The introduction ofεi parameters
constitute a new source of conservatism.

Remark 5.8 The region of attraction is estimated without the necessityof computingV̇ .

In this work, sum-of-squares optimization is used in order to solve this problem. For this,
a new assumption is needed.

Assumption 5.9 Functions f(x,u) and g(x) are polynomial.

5.2.1 Sum of squares optimization

Sum of squares optimization is an optimization technique based on the Sum Of Squares
(SOS) decomposition for multivariate polynomials. A multivariate polynomialp(x) is said
to be a SOS, if there exist polynomialsf1(x), ..., fm(x), such that:

p(x) =
m

∑
i=1

f 2
i (x)

and therefore,p(x) ≥ 0 [117].

A SOS program has the following form [117]:

Minimize the linear objective function

rTc,

wherec is a vector formed from the (unknown) coefficients of:
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• polynomialspi(x), for i = 1,2, ...,N1

• sum of squarespi(x), for i = N1+1, ...,N2

such that

g0, j(x)+
N

∑
i=1

pi(x)gi, j(x) = 0 for j = 1,2, , . . . ,M1,

g0, j(x)+
N

∑
i=1

pi(x)gi, j(x) are SOS, forj = M1+1, . . . ,M2,

wherew is the linear objective function weighting coefficients vector, and
gi, j(x) represent certain scalar constant coefficient polynomials.

Currently, SOS programs are solved by reformulating them assemi-definite programs
(SDPs), which in turn are solved efficiently, e.g., using interior point methods. Several com-
mercial as well as non-commercial software packages are available to solve SDPs. SOS-
TOOLS [116] is a Matlab toolbox that performs this conversion automatically, calls the SDP
solver, and converts the SDP solution back to that of the solution of the original problem.

The problem stated in the previous section can be addressed solving the following SOS
problem:

Problem 5.10 Maximize c

subject to:

(V(x)−c)+ pi(x)gi(x)− εi are SOS; i = 1, . . . ,N, (5.4)

wherepi are unknown SOS polynomials. This problem is more restricted than that presented
in the previous section. Nevertheless, any solution to SOS problem 5.10 is a solution to
problem 5.7.

Remark 5.11 Assumption 5.9 can be relaxed since other types of functions, such as trigono-
metric functions [109] or rational functions (e.g., the application examples in the next sec-
tion) can be considered.

5.3 Application to the boost inverter

The method developed before is used in order to obtain an estimation of the attraction domain
for the boost inverter when system physical constraints aretaken into account. This method
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is useful because the model and control law have a relative high degree and complexity.
Furthermore, the global stability proof for the unconstrained problem is available by means
a Lyapunov approach.

In Chapter 5.1 it has been proved that, under no constraints,all trajectories (except the
one starting at the origin) of system (2.5)–(2.8) with control laws (3.39)–(3.40) tend to the
desired limit cycle. Remind that the Lyapunov function usedis:

V =
Γ2

1

2
+

Γ2
2

2
. (5.5)

The constraints are (only constraints C1 and C2 are presented here; constraint C3 will be
discussed later):

• ui(x) ≤ 1 i = 1,2

• ui(x) ≥ 0 i = 1,2

• x2 > 0

• x4 > 0.

The expressions foru1 andu2, which are given by (3.39) and (3.40) are not polynomial but
rational functions. Nevertheless, writing them as quotient of polynomialsui(x) = ni(x)/di(x)
all the constraints can be formulated in standard form. For this, it can be assumed that
polynomiald(x) does not vanish at any point of the objective curveΓi(x) = 0 i = 1,2.
Otherwise, control laws (3.39)–(3.40) are not valid for this problem. Therefore, the sign
of d(x) is constant alongΓi(x) = 0 and, by continuity, in a neighborhood of this curve.
By numerical inspection, it can be checked that, for the circuit parameters given below,
d(x) > 0 onΓi(x) = 0. With this consideration in mind, constraints (1)–(3) canbe written as
polynomial constraints:

• di(x)−ni(x) ≥ 0 i = 1,2

• ni ≥ 0 i = 1,2

• x2 > 0

• x4 > 0

Thus, the problem to solve is
minimize(−c) (5.6)
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subject to:

(V(x)−c)+ p1(x)(d1(x)−n1(x))− ε1 ≥ 0 (5.7)

(V(x)−c)+ p2(x)(d2(x)−n2(x))− ε2 ≥ 0 (5.8)

(V(x)−c)+ p3(x)n1(x)− ε3 ≥ 0 (5.9)

(V(x)−c)+ p4(x)n2(x)− ε4 ≥ 0 (5.10)

(V(x)−c)+ p5(x)x2− ε5 ≥ 0 (5.11)

(V(x)−c)+ p6(x)x4− ε6 ≥ 0 (5.12)

Notice that constraints C3 are considered in the previous set of constraints. Indeed, con-
straints (5.9)–(5.10) impliesn1(x) ≥ ε3 > 0 andn2(x) ≥ ε4 > 0, respectively, forV(x) ≤ c,
while constraints (10.15)–(10.16) impliesd(x) ≥ n1(x)+ ε1 andd(x) ≥ n2(x)+ ε2, respec-
tively, for V(x) ≤ c. This implies thatd(x) > 0 inV(x) ≤ c.

The following analysis can be directly modified for the case whend(x) < 0.

Results

The values of the circuit parameters are taken from Subsection 3.2.4.

Software SeDuMi [144] was used as the SDP solver under SOSTOOLS. The values for
parametersεi are chosen equal to 10−6 while the chosen order for the unknown polynomials
pi is 3. The solution is obtained in approximately ten minutes on a PC (1.66 GHz Intel
Core2): 23.26. This result is probably conservative as has been pointedout in Remark
5.6. As a way to corroborate this result, by numerical inspection, it has been found that for
x(1) = (0 −0.1 0.2 5.8)⊤, which corresponds toV(x(1)) = 33.02, the constraintx2 ≥ 0
is violated.

5.4 Conclusions

The problem considered in this chapter is the estimation of the attraction domain for the
boost inverter with the control law proposed in Chapter 3, which does not present a global
stability due to certain physical constraints. For this a method for the estimation of the
attraction region considering general physical constraints is presented. This approach can be
applied to systems with a global Lyapunov stability achieved without considering saturations
and other kind of limitations. This is a common situation since, saturations are neglected in
many stability analysis. The idea is to take advantage of theLyapunov level sets, finding the
maximum Lyapunov level in such a way that constraints are fulfilled inside it. This makes
that the computed attraction domain is a ‘conservative’ estimation. This method is useful
even when the degree and complexity of the equations is high.
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For application of the method, powerful computational tools exist when the system is
polynomial, such as SOS. Therefore, the closed-loop systemneeds to be polynomial or ra-
tional (however, there exist cases where SOS programming have been applied to trigonomet-
rical and other terms [109]). Consequently, the problem is transformed in a sum of squares
optimization problem. Conservativeness of the method has also been discussed.

In the application to the boost inverter the system as the constraints are rewritten in a
polynomial form, as the method requires. For simplicity reasons neither phase controller nor
adaptive control has been taken into account.
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Chapter 6

Introduction

The development of low-power electronic devices has raisedup in recent years. Very-Large-
Scale Integration (VLSI) is mostly used in products relatedto information technology, such
as PCs, mobile devices and digital consumer equipments. Motivated by the Moore’s law
and market evolutions [132], ARAVIS project (Architectureavancée Re-configurable and
Asynchrone pour Video et radio logicielle Intégrée Sur puce) sponsored by Minalogic1, looks
for architecture and design solutions that allow the production of embedded computational
platforms in its scalability limit. It proposes a generalization of certain techniques in order
to obtain a solution to the technology variability problem in 32nm, what will represent an
input toward the development of a new paradigm. This part of the thesis is included in the
ARAVIS project context.

Currently System on Chips (SoCs) technology: 90nm, 65nm and, even, 45nm can not
be applied any more to the technology of 32nm due to the semiconductor material behavior
in small scale. The main problem in this kind of scale is the occurrence of technology
variability phenomenon [154], that generates quite disparate performances in a same chip.
Consequently, a new architecture must be developed in orderto answer to this issue. In
Fig. 6.1, an example of this problem is shown. It presents a fault or low performance of a
computational node2 in high speed.

The ARAVIS project is focused on three technology keys:

• re-configurable structure with respect to applicability requirements. It can be accom-
plished by programming the flexible interconnections between the clustered nodes of
the SoC computational unit [113].

1http://www.minalogic.com/
2The common computational unit of a SoC is composed of clustered nodes [74]
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Figure 6.1: Technology variability problem in a chip in a computational node working in high speed.

• Globally asynchronous locally synchronous method [92], inorder to release the com-
munication constraints between remote points, and

• dynamic management of the power consumption and activity with respect to con-
straints are achieved by control theory application [30,65,122].

The last key looks for achieving a good trade-off between activity, power consumption and
Quality of Service (QoS), what is one of the challenges in future embedded architecture.
This dynamic management is especially difficult for 45nm and32nm, which are at the limit
of the scalability. Figure 6.2 shows chips integration in 32nm scale.

Figure 6.2: Integration of future 32 nm chips.

Advanced control strategies have, therefore, to be designed in order to make the perfor-
mance fits the requirement, minimizing the energy losses on achip. This second part of the
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thesis focuses on designing control strategies for certainloop of the chip that optimizes the
energy consumption.

6.1 Optimization of the energy consumption in SoCs

As has been mentioned before, one of the challenges in the ARAVIS project is the energy-
consumption reduction in SoCs, which can be got by means of automatic control methods.
Control loops can be applied in different architecture levels: cluster frequency and voltage
supply, cluster computational power and management of the quality of service provided by
the application [30]. Figure 6.3 shows these different control loops.

Cluster

Vdd - Hopping

Programmable
Ring

Energy Controller

Voltage Controller

QoS
Controller

Speed1, No. of Instructions1, Deadlines1

Cluster

Energy Controller

Speed2, No. of Instructions2, Deadlines2

Processing Nodes Processing Nodes

f, V
dd

f, V
dd

Vdd - Hopping

Programmable
Ring

Voltage Controller

Figure 6.3: Sketch of the three control loops.

Generally, the power consumption can be reduced if the localcore voltage or/and the
clock frequency are decreased. For this dynamic control loop in frequency and voltage is
more and more important in the embedded systems [122]. Thus,these control loops allow
the adaptation of computational power in the cluster level,and hence, the power-saving.
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Another control loop is used in order to achieve an energy-performance trade-off. The
system must not always work in the maximum power level if it can work in other lower power
levels. This is possible if each task is performed before to certain deadline [45]. In [39],
a control solution has been presented, applying ‘robust control’. This solution reaches a
control that can reduce or, even, reject the influence of the variability problem.

The last control loop employed in this kind of architecture looks for a trade-off between
QoS, computational limitations and global energy consumption.

6.2 Vdd-Hopping DC-DC converter

Microprocessors in SoC have a computational load that requires a time-varying performance.
Consequently, the SoCs can achieve a substantial energy efficiency, if they reach to operate
at the minimum performance level required by the active software processes.

Dynamic Voltage Scaling (DVS) is a known technique that manages the system power
consumption [27, 89, 136]. The operation principle is to adjust the processor supply voltage
to the minimum level of performance required by the system application. Therefore, DC-DC
converters are a key element in a DVS mechanism, since they can adapt this supply voltage.
However, these converters have a different structure than the standards ones, because they
must change the operating voltage in a dynamic way [23].

A dynamic continuous buck converter for DVS systems was presented in [88], which
provides good performance. It, however, limits SoC scalingproperties due to the size of
inductive component. In the framework of SoC miniaturization, a Vdd-Hopping DC-DC
converter was developed, whose basic structure is showed inSection 6.4. Note that this
converter is composed by two supply sources and a Power Supply Selector (PSS) [99]. In
this structure, the inductive element is replaced by a set ofPMOS transistors3, reducing the
converter required size.

Vdd-Hopping converter is specially interesting, because it may deal with Local Dy-
namic Voltage Scaling (LDVS) [23, 157] adapted to Globally Asynchronous and Locally
Synchronous Systems (GALS) systems [92]. The main idea for GALS systems is to replace
the global clock by several independent synchronous blocks. Every synchronous block op-
erates with an own internal clock and they are communicated asynchronously by each other.
This mode of operation provides additional flexibility. This fact allows to use energy-aware
converter structures such as DVS architectures. DVS is applied in every synchronous block,
that is why, it is called LDVS.

3P-channel Metal-Oxide-Semiconductor field-effect transistor.
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The Vdd-Hopping converter, as has been mentioned before, isbasically made up of a PSS
and two external supply voltages. A high voltage supply,Vh, for a unit running at nominal
speed and a low voltage supply,Vl , for a unit running at reduced speed.vc is the output
voltage of the system.

CONTROL

CLK

LPM

+

−

Vh Vl

Set

of

PMOS

vc

e

uk

vr

Figure 6.4: DC-DC Vdd-Hopping converter structure.

A PSS is constituted by a group of PMOS transistors connectedin parallel with common
drain, source and bulk, but separated gates in order to scalethe output voltage from a low
voltage level to a high voltage level (rising transient-period) and from a high voltage level to a
low voltage level (falling transient-period). Furthermore, the PMOS transistor that connects
theVl to the voltage outputvc is switched on whenVl is the selected power supply. This
reduces the dissipated energy when the unit running is at lowspeed. Other component in the
PSS is a control block that provides a control signaluk for the PMOS transistors. Besides
it generates a reference signalvr . Likewise, this control block has as inputs: a clock signal
(CLK), a local power manager signal (LPM), that orders to thePSS to start the hopping
sequence and the error voltage signal from a comparatore.

Load model

The load model taken in this work is an impedance which depends on the core voltage,vc,
and sometimes, also on the clock frequency,ωn [98]. In this thesis, the load model provided
in [98] is employed. This model approaches a low frequency infunction of the core voltage,
thus the load only depends on the voltagevc. It is composed of a current supply,Ileak, a
capacitance,C, and a dynamic resistance,rL, representing the dynamic and short-circuit
consumption. It is shown in Fig. 6.5.
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IleakC rL

Figure 6.5: Load model.

6.3 Non-linear control application to Vdd-Hopping DC-DC
converter

Control objective for this kind of discrete DC-DC converteris to achieve the target voltage
providing a correct and reliable operation during the switching transitions, allowing to ac-
complish the main ARAVIS projet objective: SoCs miniaturization. Therefore, the control
must achieve:

• high energy efficiency,

• system stability,

• small current peaks,

• fast transient periods,

• robustness with respect to parameter uncertainty,

• robustness with respect to delays and

• easy implementation.

Figure 6.6 shows the control problem for the DC-DC Vdd-Hopping converter.

A simple discrete controller was proposed in [99] to handle the two voltage levels of the
Vdd-Hopping technique. In this control structure only one transistor can be switched at each
sampling time. This limits the ability of the converter to make fast transient-periods, and
hence the possibility to optimize the energy consumption. In addition, the employed voltage
reference was a ramp with a computed slope to obtain the smallest possible current peaks.
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Figure 6.6: DC-DC Vdd-Hopping converter control problem.

6.3.1 High-performance controllers

In Chapter 7, a set of high-performance control laws for the DC-DC Vdd-Hopping converter
is developed, without the constraint that only one transistor can be switched at each sampling
time. [8]. This allows to obtain a richer set of control sequences and, thus, a better expected
performance with respect to the issues previously mentioned. The controllers are developed
in order to improve the tracking capability and its regulation characteristic. As a side effect,
it is also observed that the transient current peaks are reduced. However, the computational
cost is increased.

The different controllers are compared in terms of: transient response, quality of the
induced load current and power consumption. It will be seen that the most suitable controller
is the one based on Lyapunov theory. However, this controller is enhanced in order to achieve
a high energy saving, minimum current peaks and a suitable performance with unknown
load resistive parameter, which are very common propertiesin the field of microelectronics
[70, 103]. Firstly, an optimal evolution of the voltage reference will be computed applying
optimal control theory [80,86,155]. This optimal voltage reference is computed looking for
minimizing the current peaks as well as energy losses. Secondly, an adaptive controller is
proposed for an unknown load resistive component, offeringa suitable system performance
by simulation even if it is time-varying. Figure 6.7 shows a sketch of this high performance
controller.
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In spite of the good advantages that this enhanced controller offers, it presents much
more computational blocks (more complex implementation) than the controller proposed
in [99] and thus, although, it reduces notably energy consumption, it does not corresponds
to a feasible solution for the ARAVIS project context. For this, another controller is devel-
oped in Chapter 8 based on the one that presents the easiest implementation from the set of
controllers previously presented. This new developed controller must be easy to implement
and maintain all the good characteristics obtained by the controller mentioned previously in
Chapter 7.

OPTIMAL

REFERENCE
CONTROL

ADAPTIVE

CONTROL

v
∗

vc
+
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Figure 6.7: Vdd-Hopping converter closed-loop with optimal reference and adaptation parameters.

6.3.2 Energy-aware controller

The previous proposed controller provides very suited properties. The only drawback is
that it has a complex implementation, what can exclude it from the ARAVIS project scope.
Among the set of controllers presented before, there is one with a simple implementation. In
Chapter 8, this controller is selected and developed takinginto account the objectives given
before to obtain a suitable controller for the ARAVIS project.

The controller with a feasible structure is a ‘linear controller, what makes it to present
a simple implementation. Hence, it takes a relevant interest in the industrial applications
[17,84,87,120]. Nevertheless, this controller does not provide the best system performance.
Now, from this structure, an ‘advanced linear controller’ is developed in Chapter 8. An inno-
vative approach based on saturations with time-varying limits that manages the current peaks
during the transient periods is proposed for this controller. Furthermore, energy-efficiency is
improved when a step voltage reference is used instead of a ramp voltage reference. Conse-
quently, it does not only reduces the current peaks but achieves also a fast transient response
and reduces energy dissipation. In summary, this proposed ‘advanced linear controller’ is fo-
cused on limiting the current peaks while transient periodsare reduced, being energy-aware.
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Generally, controllers applied in the industry are implemented in discrete-time. Hence
that, the previous advanced controller is discretized. This control law is patent pending under
the name of ENergy-AwaRe Control (ENARC) [6].

In order to show the consumption energy saving that this controller may achieve, a com-
parison with a previous controller published in [99] is performed. It is shown that this con-
troller can diminish the energy consumption 96% with respect to the previous published
controller. In addition, other control objectives are achieved: faster transients, small current
peaks, and easy implementation. For the last characteristic, it is remarked that this controller
needs less computational blocks than the other controllerspresented above. The stability
property is analyzed in Chapter 9. Thanks mainly to its innovative current-peak aware the
ENARC control becomes attractive for industrial applications.

These results will be validated in the ARAVIS project by using VHDL-AMS4 simulator,
since the Vdd-Hopping system with the load is an hybrid system between analog and digi-
tal elements (the controller will be implemented digitally). It is expected that the ENARC
controller is physically implemented in the new generationof SoCs of 45nm and/or 36nm
developed in the project context.

6.3.3 Approximate stability analysis for the energy-awarecontroller

In Chapter 9, an approximate global stability analysis of the equilibrium is developed for
the Vdd-Hopping system with the continuous-time version ofthe ENARC controller [9].
This controller coincides with the ‘advanced linear controller’ mentioned before. For sake of
simplicity, this analysis is performed in continuous-timeand it is not rigorous. This analysis
allows to have an intuition of the closed-loop system behaviour with the discrete ENARC
controller. This assumption is very common [71,152].

As the Vdd-Hopping model as the continuous-time version of the ENARC controller are
nonlinear. Among their nonlinearities, there is a saturation with limits depending on system
state. This makes the analysis involve.

For simplicity, a preliminary stability analysis is performed for the Vdd-Hopping system
with the ‘linear controller’ proposed in the set of high-performance controllers developed in
Chapter 7. This analysis is based on LaSalle’s invariance principle [76]. Then, it is extended
to the continuous-time version of the ENARC.

This continuous-time controller has a saturation mechanism, the system can work in three

4It is a hardware description language used in electronic design automation. It is capable to define the
behavior of mixed-signal systems, because it describes digital systems as well as analog systems. This is a very
used powerful software.
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operating-modes: non-saturated system (Region I), saturated system in the upper limit (Re-
gion II) and saturated system in the lower limit (Region III). It is proved that the equilibrium
is placed in Region I. The stability proof is performed in twoparts. Firstly, it is proved that
the system in saturated mode converges to the non-saturatedmode in finite time, and that, it
crosses the saturation limit to the Region I without being able to return towards the saturated
mode. Secondly, it is also proved that the system converges to the desired point in Region
I. This analysis applies LaSalle’s invariance principle for a bounded domain limited by a
Lyapunov level curve and the saturation limit lines. Figure6.8 represents this idea.

Once the global stability analysis is ensured for the ENARC controller, the control ob-
jective that must be dealt with are: the robustness under delay presence and parameter un-
certainties.

Region II

Region III

Region I

e

σ

Ω2

P2

Figure 6.8: Representation of the system operating regions

6.3.4 Advanced energy-aware controller

Previously, an energy-aware controller has been presented, which not only satisfies certain
requirements for SoCs, but their stability properties havebeen also proved. Now, in Chapter
10, this controller is improved in order to satisfy the control objective of achieving robustness
with respect to uncertain parameters and delays. The delaysare presents in the input and
output of the control block for computational and synchronization issues, respectively.

So far, delays and parameter uncertainties have not been considered in the Vdd-Hopping
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system. In SoC, however, these issues are very usual [112, 140]. The controller presents
delays due mainly to two reasons: synchronization issues and power-performance trade-
off [45]. In addition, another point to take into account is the parameter uncertainties, which
can cause an unpredictable impact on the power, performanceand reliability of the system
[34,93].

In Chapter 10, the ENARC controller is improved dealing withdelays and parameter
uncertainties. A sub-optimal ‘conservative’ control tuning approach for the control gains is
presented based on linear control theory. This method is sub-optimal because, for simplic-
ity, it is developed for an approximate ENARC controller version that does not consider the
current-peaks management. The sub-optimal control gains are obtained solving aH∞ control
problem [26, 53, 101]. This problem is dealt with Lyapunov Krasovskii theory [53, 138],
which provides some stability conditions through Linear Matrix Inequalities (LMIs). Con-
sequently, a robust equilibrium stability as well as a robust disturbance rejection under pa-
rameter uncertainties are ensured for a delay-time system.This kind of approach are used in
industrial applications [14,129].

In this chapter, the robustness properties achieved by the closed-loop system with the
sub-optimal constants applied to the ENARC controller are shown by simulations.

In summary, the ENARC controller with the sub-optimal constants applied to the Vdd-
Hopping DC-DC converter can satisfy all the control objectives mentioned before for low-
power technology. Therefore, it can have an important impact in the recent trends in the
miniaturization of electronic devices.
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Chapter 7

High-performance control for the DC-DC
Vdd-Hopping converter

The development of low-power electronic devices has raisedup in recent years. Very-Large-
Scale Integration (VLSI) is mostly used in information technology related products, such
as PCs, mobile devices and digital consumer equipments. In aSystem on Chip (SoC), sev-
eral levels of supply voltages are required to reduce power consumption. It can be reached
applying the Dynamic Voltage Scaling (DVS) concept, which is an interesting method that
manages dynamically the microprocessor supply voltageVdd according to various loading
conditions.

DC-DC converters may be used in order to apply the DVS concept. Among this kind
of converters, a high efficiency discrete converter is found: the DC-DC Vdd-Hopping con-
verter [99], which is implemented applying, as its name references, the Vdd-Hopping ap-
proach [75, 106, 128]. This technic delivers two distinct small voltage levels with a very
small current, according to the required performance level. Consequently, it achieves a high
energy-efficiency. Therefore, its operation principle is to vary the voltage from a low voltage
level to a high voltage level, and reciprocally.

A controller for this DC-DC converter must be developed taking into account the context
where it will be implemented. One of the main control problemin low-power DC-DC con-
verters is to achieve a high energy-efficiency. Furthermore, DC-DC Vdd-Hopping converters
must be able to adapt to various loading conditions and achieve high efficiency over a wide
load-current range, which is critical for extended batterylife. Moreover, to keep the rate
of change of the device voltage providing a correct and reliable operation during the switch
transition is also important.

In this chapter, a set of controllers for the Vdd-Hopping converter is developed, obtaining

81
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a high-performance. Among these proposed controllers, theone that offers a best transient
performance is selected and enhanced with the aim to deal with the unknown resistive com-
ponent of the load as well as to minimize the dissipated energy and current peaks, what is
very important in the field of microelectronics. Current peaks and power consumption are
minimized by computing an optimal evolution for the voltagereference. Likewise, an adap-
tive controller is proposed to deal with the unknown load resistive parameter. Consequently,
the obtained high performance controller can acquires a high consideration on electronic
devices.

Generally, the power consumption in a SoC can be reduced if the local core voltage
or/and the clock frequency are decreased, that is why a GALS systems is developed in the
ARAVIS project where the Vdd-Hopping converter is embedded. Likewise, the clock fre-
quency has to satisfy that the task (for instance, the execution of the control laws designed
here) is performed before a deadline and that the minimum required local clock frequency
that guaranties the critical path (longest path delay) of the whole chip is fulfilled [45]. Nor-
mally, in order to take into account all of these issues in a GALS system when the frequency
and voltage have to rise, firstly the voltage is rising and later the frequency is rising. On the
contrary, when the frequency and voltage have to fall, firstly the frequency is fallen, and later
the voltage is fallen.

7.1 Mathematical model of Vdd-Hopping mechanism

The discrete DC-DC Vdd-Hopping converter presented in [99]for SoCs shows several ad-
vantages: high efficiency and reduced size, since it does notneed passive components. This
converter uses the Vdd-Hopping technique [75, 106, 128] in order to obtain a LDVS archi-
tecture for a GALS system. Figure. 6.4 shows this connected Vdd-Hopping structure.

7.1.1 Mathematical model for control design

For simplicity the low voltage supply,Vl , is disregarded for control design purposes (see
Fig. 6.4). The main objective is that the core voltagevc achieves the high and low voltage
levels by switching the PMOS transistors. In this configuration,, at least, one transistor must
always be switched on.

Figure 7.1 shows an electrical representation of the Vdd-Hopping converter without the
low voltage supply,Vl , connected to the load that has been described in Section 6.2.

Assumption 7.1 PMOS transistors are modeled as ideal resistors when they are switched
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Figure 7.1: Vdd-Hopping, voltage supply and load.

on and as resistors with infinite resistance when they are switched off. They are considered
to have the same electrical characteristic.

The voltage loop equation yields the relationship

Il (vc) =
Vh−vc

Ruk

, where Ruk ,
R0

uk
. (7.1)

uk is the number of transistors switched on, thus,uk ∈ U = {1,2, ..N} and it is the control
variable. Likewise,R0 is the PMOS transistor resistance. In this kind of system, itcan be
assumed that all transistors have the same transistor resistanceR0 = R1 = R2 = . . . = RN.

The current through the set of PMOS transistors,Il , depends on voltagevc and control
signaluk. Thus,Il varies during the hopping transients.

In this work, as mentioned in Section 6.2, the load model presented in [98] is employed:

Il = f (vc, fclk) = Idyn+ Ishort+ Istat+ Icap (7.2)

Idyn= Kdynfclkvc (7.3)

Ishort = Kshort fclk(vc−2Vth)
3 (7.4)

Ileak= Kleak (7.5)

Icap=C
dvc

dt
, (7.6)

whereC, Kdyn, Kstat and Kleak depending on the real consumption estimation.Vth is the
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threshold voltage, which must fulfillvc > 2Vth. And fclk, which represents the clock fre-
quency, may be approximated as a function of the core voltage, vc.

Figure 7.2 shows the representation of the load model used inthis research.rL represents
the dynamic resistance. For simplicity reasons, firstly, anconstant average value ofrL is
taken in order to design controllers. Later, the real time-varying parameter,rL, will be taken
into account.

The averaged load resistanceRL is given by

RL ,
1

t f − t0

∫ t f

t0
rLdt.

where t0 and t f are the initial and final time, respectively, in the rising transient period.
Assume thatRL has the same value in the falling transient period.

IleakC rL

Il

Icap Idyn + Ishort

IMPEDANCE

Figure 7.2: Load model.

Let us combine the specific form of the load, Eqs. (7.2)–(7.6), with system (7.1). The
voltage equation can be expressed as

v̇c = −βvc +b(Vh−vc)uk−δ , (7.7)

where

• β , 1
CRL

> 0 andδ ,
Ileak
C > 0 depend on the load.

• b , 1
CR0

> 0 depends on PMOS resistance,R0, and on load parameterC.

Define the voltage error as:e, vr −vc, wherevr is a voltage reference. Thus, the asso-
ciated error voltage equation is

ė=−βe+b(vr −Vh)uk−buke+βvr +δ + v̇r . (7.8)
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7.2 Control laws

The objective of this section is to present some high-performance control laws for the Vdd-
Hopping converter, fulfilling the requirements mentioned before. All these controllers are
designed to provide stable behaviors, and different control methodologies are used in each
case.

Some simulations are performed, such that the behavior of the closed-loop system with
the different controllers are shown. In these simulations,N = 24 is taken as the total number
of PMOS transistors in the model shown in Fig. 7.1. Note that,at least, one active transistor
must be always switched on. The voltage supply isVh = 1.2V. The reference signal,vr ,
follows a linear time evolution between the low voltage level Vl = 0.8V and the high voltage
level Vch = 1.2−∆h. This signal has a slope specified by the designer, which is inspired
by [99].

Remark 7.2 For physical reasons, the maximum voltage achieved, vc, must be Vch =Vh−∆h

where∆h ∈ R and is small.∆h depends on the voltage supply, PMOS resistance and load
parameter.

The system resistances areRL = 27.7Ω andR0 = 31.41Ω, the capacitance isC = 9nF
while Kleak = 1.67·10−3, the threshold voltage isVth = 0.4V, and system clock frequency
is ωn = 500MHz. The sampling frequency has the same value that the clock frequency. The
difference between the high voltage supply,Vh, and the high core voltage,Vch, is ∆h = 0.08V
and the slope of the reference signal,vr , is 1.067·106V/s.

7.2.1 Control proposed in [99]

The development of the set of the high performance controllers for the Vdd-Hopping con-
verter is inspired by the ‘intuitive control’ used in [99], under the form:

uk = satN1 {uk−1 +sign(e)} (7.9)

In this law, no more than one transistor switches at each sampling time according to the
sign of the voltage error. Previously to the works developedin this thesis [8, 9], control
(7.9) was the only published controller. Therefore, this controller has the limitation that
one only transistor can be switched on or off at every sampling time. Figure 7.3 shows the
implementation of this controller. Likewise, Fig. 7.4 shows a simulation for this controller
by using Matlab. Note that the performance presents an oscillatory behavior, with important
current peaks.
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Figure 7.3: Intuitive control from [99].

In what follows, other control alternatives are proposed without the constraint that only
one transistor can be switched on or off, as long as the numberof transistor is limited by 1
andN. This introduces a saturation in every control law for the Vdd-Hopping converter.

Remark 7.3 Every control law is designed in such a way that the desired output voltage
corresponds to one of the saturation bounds1 or N, since they corresponds to the lower or
higher voltage level, respectively.

Assumption 7.4 The sampling time is chosen in such a way that the controllability and
observability properties are preserved.

Control laws will be designed using directly the nonlinear continuous-time equation
(7.8). This will lead to a continuous-time controller expression that will be approximately
discretized. This approach is very common in the field of automatic control [71, 81]. The
implementation of these discrete-time controllers are shown by block diagrams.

The time evolution for the reference signal employed in [99]is maintained in the sim-
ulations of each developed controller in this section. However, later, it will be seen that,
by means of choosing an suitable reference, the closed-loopsystem performance can be
enhanced.

7.2.2 Controller No. 1: linear controller

The first proposed controller is based on a linear structure,namely a PI (Proportional-
Integral) controller. This controller is the most common industrial control solution [17, 84,
120]. It has to be designed to cope with possible steady-state errors.
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The proposed control law is:

uk = satN1 round{K1e+K2σ} , (7.10)

whereσ corresponds to
∫ t+Ts
t edt and beingTs = 1

ωn
the sampling time.

The constantsK1 andK2 are tuned off line. The tuning process must take into account
the sampling frequency, low and high voltage level, number of transistors, load parameters
and PMOS resistance.

A tuning method is proposed to ensure the right system performance. For this, the closed-
loop system is linearized around a set point, such that,K = [K1,K2] are defined by ensuring
thatA+BK is Hurwitz. This tuning mechanism is

K1 =
2ξ ωn− (ukl

b+β )

b(Vh−Vl )
(7.11)

K2 =
ω2

n

b(Vh−Vl )
, (7.12)

beingukl the minimum value of transistors that have to remain switched on, i.e., the mini-
mum value ofuk, ukl = 1, andξ is a design parameter. In Chapter 9, constraints onξ are
obtained, such that, the closed-loop system is asymptotically stable to the equilibrium point
[e,σ ] = [0, σ̄ ].

The closed-loop system with control (7.10) can suffer wind-up. This phenomenon has
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not been studied and it is a future work. It is highlighted that in the performed simulations
this effect has not displayed.

The discretization of this controller is:

uk = satN1 {uk−1+ round(K̄1∆ek + K̄2ek)} , (7.13)

where

K̄1 , K1−
K2

2
(7.14)

K̄2 , K2Ts. (7.15)

Equations (7.14)–(7.15) are common relationships betweencontinuous- and discrete-
time system [104].

Next up, Fig. 7.5 shows the approximate discretization of this controller, for digital
implementation.
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Figure 7.5: Digital PI controller.

Figure 7.6 shows a simulation of the system (7.8) with control (7.13). In this simula-
tion is chosen as design parameter valueξ = 0.05. The intervalI defined in Lemma 9.1
(in Section 9.1) results[0.01,0.08]. Therefore, the equilibrium stability will be able to be
guaranteed according to Chapter 9. This controller could bethe most suitable for physical
implementation not only because it requires a reduced number of computational blocks, but
also because it does not require model information. Moreover, as it can be seen in Fig. 7.6, it
provides better performance in both voltage and current variables with respect to the intuitive
controller. Nevertheless, it still presents some peaks in the current signal.
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In summary, this control law can make that the system achievethe suited stability prop-
erties, as will be seen in Chapter 9, with the characteristicto requires a reduced number of
computational blocks.
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Figure 7.6: Control No.1. Evolution of: a) number of PMOS transistors switched on, b) thevr

(dashed) andvc (solid). c) the currentIl .

7.2.3 Controller No.2: feedback linearization

The second proposed controller is designed by using feedback linearization technique. This
leads to a continuous-time linear system in closed-loop. The aim of this method is that the
closed-loop system becomes

ė= −K3e−K4σ ,

which achieves the suited properties of a stable linear system. Remind thatσ =
∫ t+Ts
t edt.

The controller has the following form:

uk =
K3e+K4

∫ t+Ts
t edt+ β (vr −e)+ v̇r + δ

b(Vh +e−vr)
(7.16)

whereK3 andK4 are positive constant.
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Note that, ifK3 andK4 are positive and the next Lyapunov function is chosen:

Vlin =
e2

2
+K4

(
∫ t+Ts
t edt)2

2
,

which differentiation is
V̇lin = −K3e2 ≤ 0,

then the equilibrium stability with control (7.16) is guaranteed.

For physical implementation, the controller (7.16) has thenext discrete-time approxima-
tion,

uk = satN1 round

{

K̄3(ek−ek−1)+ K̄4ek +βTs(vrk −ek)+vrk −vrk−1 +δTs

bTs(Vh+ek−vrk)

}

(7.17)

whereK̄3 andK̄4 follow the similar change of parameter given forK̄1 andK̄2 in Controller
No.1 (Eqs (7.14)–(7.15)), i.e.:

K̄3 , K3−
K4

2
(7.18)

K̄4 , K4Ts. (7.19)

Note that, the saturation and rounding functions are necessarily considered in the discrete-
time controller.

Figure 7.7 shows the implementation of the approximate discrete-time controller No. 2,
Eq. (7.17).

The performance of the control (7.17) withK3 = 2.4 andK4 = 1.44 is displayed in Fig.
7.8. These constants have been tuned by ensuring that the closed-loop system is Hurwitz.
Observe that the current peaks have been reduced with respect to the ‘intuitive controller’,
obtaining a smoother current signal. Moreover, the voltageevolves towards the voltage
reference with hardly oscillations. As a consequence, the dissipated energy will be reduced,
as will be shown below. Nevertheless, this controller has two drawbacks, it directly uses
model parameters and needs a larger number of computationalblocks.

7.2.4 Controller No.3: Lyapunov-based design

The last controller is designed guarantying closed-loop Lyapunov stability conditions for the
equilibrium,e= 0. Once again the design is performed employing the continuous-time error
equation (7.8).



Chapter 7. High-performance control for the DC-DC Vdd-Hopping converter 91

+

−

+

+vr

vc

CONTROL

+

−

βTs

+

+

δTs

+

−

Vh

bTs

÷

uk×

ek

−

K̄3

K̄4

ek−1

+
++

−+

+

vrk−1

round sat
N

1

z−1

z−1

Figure 7.7: Digital feedback linearization control.
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Consider the following Lyapunov function candidate

Vlyap =
e2

2
.

Its time derivative is

V̇lyap = −βe2 +(b(vr −Vh)uk−buke+βvr +δ + v̇r)e. (7.20)

The negativeness oḟV can be assured canceling the undesired terms. This can be done by
choosing

uk =
βvr + v̇r +δ

b(Vh+e−vr)
, (7.21)

then Eq. (7.20) will be
V̇lyap = −βe2 ≤ 0.

Therefore,e= 0 is asymptotically stable.

The approximate discrete-time version of Eq. (7.21) considering the saturation and
rounding function for physical implementation purposes is:

uk = satN1 round

{

βTsvrk +vrk −vrk−1 +δTs

bTs(Vh+ek−vrk)

}

, (7.22)

Figure 7.9 shows a block diagram of this discrete-time controller.
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Figure 7.9: Digital Lyapunov control.

The performance of this controller is displayed by simulation in Fig. 7.10. Note that,
the application of this controller to the Vdd-Hopping converter reduces the current peaks,
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obtaining smoother voltage and current evolutions. Note that the obtained performance is
similar to the one obtained with the feedback linearizationcontroller (see Fig. 7.8). However,
this controller presents less computational blocks. Compare Fig 7.7 and Fig. 7.9.
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7.3 Performance evaluation

In this section a performance evaluation is performed for the resulting voltage and current
signals, after applying the previous controllers. The voltage signal performance is evalu-
ated by computing the mean and variance of the voltage error.Likewise, the current signal
performance is evaluated by computing the maximum current peaks produced as well as its
Power Spectral Density (PSD). This PSD is computed using allthe recorded data, since this
decomposition is computed after the simulation.

Table 7.1 presents the mean and variance of the voltage errorsignal and maximum peak
of the current signal.

Note that, all the new proposed controllers improve the system performance with respect
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Mean Error Var. Error Max. Curr. Peak
Intuitive 3.32·10−3 6.59·10−5 4.0 ·10−2

Contr. No. 1 2.4 ·10−3 2.54·10−5 2.5 ·10−2

Contr. No. 2 2.52·10−3 4.66·10−5 0.5 ·10−2

Contr. No. 3 2.24·10−3 3.37·10−5 0.5 ·10−2

Table 7.1: Performance evaluation.

to the solution given in [99]. Furthermore, equilibrium stability has been guarantied for Con-
troller No.2 and No.3 in the previous section. Likewise, equilibrium stability of Controller
No.1 will be proved in a chapter dedicated to such purpose (Chapter 9) because of its com-
plexity. From this point of view, among these new proposed controllers, the most interesting
one is Controller No.3, since it provides the best voltage and current performance. This can
be observed in Table 7.1 and in Fig. 7.11. Observe that controller No.3 ((d) in Fig. 7.11)
provides a PSD smaller than the other controllers (see (a), (b) and (c) in Fig. 7.11).

7.3.1 Energy evaluation

In the set of PMOS, the accumulated dissipated energy in the transient period depends on the
control law employed, i.e., on the switching sequence. For instance, undesirable oscillatory
current profile can be obtained with certain controllers. This non-smooth behavior of the
transient current may result in a higher energy consumption. The purpose of this subsection
is to evaluate the energy cost associated with each one of thecontrollers presented in previous
section.

The estimation of the dissipated energy in the PMOS transistors during the transient-
period is

Ed =
∫ t f

t0
(Vh−vc)Ildt

wheret0 is the initial time andt f is the final time in such transient period. Figure 7.12 and
Tab. 7.2 show the dissipated energy during the rising transient period.

Note that the energy consumption for all controllers presented above is improved with
respect to the intuitive controller. This is due to the smoother behavior of voltage and current
signals obtained with these controllers. Likewise, note that, the smallest dissipated energy is
achieved with Controller No.3, since it provides the best performance.
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(a) Intuitive controller
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(b) PI controller
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(c) Feedback linearization controller
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(d) Lyapunov Controller

Figure 7.11: Power spectral density.

DISSIPATED TOTAL ENERGY (µJ)
Intuitive control 7.2
Controller No.1 6.8
Controller No.2 6.2
Controller No.3 4.8

Table 7.2: Total energy dissipated in rising transient period.

7.3.2 Summary

The intuitive control proposed in [99] provides a reasonable tracking at the expense of an
oscillatory behavior due to its own limitation. This involves that the current signal time
profile presents a high frequency behavior with some substantial peaks, in particular when
the total PMOS parallel resistances are larger. This seems to be the main cause of a larger
dissipated energy.
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Figure 7.12: Energy dissipated during the rising transient period.

Linear control (Controller No.1) does not need model knowledge. This controller also
reduces the current peaks with respect to the intuitive controller. The dissipated energy
reduction according to this intuitive controller is 5%.

Control by linearization (Controller No.2) yields a smother current and voltage time-
profiles, reducing the current peaks. However, it directly needs system knowledge and
presents more computational blocks. In terms of energy consumption, this controller im-
proves the ‘intuitive control’ by 14%.

Lyapunov’s controller (Controller No.3) requires also model knowledge and a certain
number of computational blocks. The highlight of this controller is its energy consumption
reduction, which is due to the smoother behavior of the voltage and current time profiles.
This involves that the controller reduces by 32% the energy consumption with respect to the
‘intuitive control’.

Although the Lyapunovs controller presents very nice characteristics, they may be en-
hanced by changing the voltage signal reference and adapting the resistive load parameter.
Firstly, a signal reference can be computed looking for minimizing the dissipated energy
and the current peaks as well. And secondly, note that, the controller depends directly on
the resistive load parameter. Therefore, an adaptive controller can be designed to cope with
variations and/or uncertainties on this load parameter. These two issues will be seen in the
next section.

Generally, the power consumption can be reduced if the localcore voltage or/and the
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clock frequency are decreased, that is why a GALS systems is developed in the ARAVIS
project where the Vdd-Hopping converter is embedded. The frequency is chosen in such a
way that the task (for instance, the execution of the controllaws designed here) is performed
before a deadline and that the minimum required local clock frequency that guaranties the
critical path (longest path delay) on the corresponding clock domain [45]. Normally, in order
to take care of this issue when the frequency and voltage haveto rise, firstly the voltage is
rising and later the frequency is rising. On the contrary, when the frequency and voltage have
to fall, firstly the frequency is fallen, and later the voltage is fallen.

7.4 Advanced Lyapunov’s controller

The Lyapunov’s controller (Eq. (7.21)) presents very suited properties for the Vdd-Hopping
converter. However, this controller can be improved.

On the one hand, minimization of energy consumption and current peaks are desired.
This can be achieved finding an appropriate evolution for thevoltage reference,v∗c(t), by
applying optimal control theory [80,86,155].

On the other hand, note that the Lyapunov’s controller depends on the resistance load
parameter,β . However, this parameter is, in many occasions, difficult toestimate and may
change with time, as mentioned in Section 7.1. Therefore, a second objective is to design an
adaptation law in order to obtain an estimationβ̂ for the unknown parameter.

The proposed control architecture including the optimal reference and the adaptation
mechanism is shown in Fig. 7.13.

ukOPTIMAL

REFERENCE
CONTROL

ADAPTIVE

CONTROL

v∗ vc

β̂

+

-

SYSTEM

Figure 7.13: Vdd-Hopping closed-loop with optimal evolution of the reference and adaptation pa-
rameter.
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7.4.1 Optimal voltage reference computation

Assume that the desired voltage is constant. The problem maybe formulated as to find a
continuous-time voltage reference trajectory from a voltage initial valuevc(t0) to set-point
vr , minimizing current peaks,∆I , and the dissipated energy. This problem will be addressed
applying continuous-time optimal control theory [80,86,155].

In order to optimize the current peaks, time derivative of the currentİl is included in the
performance index. In every sampling time, a certain numberof transistors will be switched
on. The total number of PMOS transistors switched on at the previous sampling time is
denoted byu−k , and the total number of PMOS transistors switched on at the current sampling
time is denoted byu+

k . Consequently, the number of PMOS transistors switched on or off in
every sampling time is given by∆uk = u+

k −u−k .

The current peaks are due to the sudden change of the PMOS resistance at the sampling
times. These peaks∆Il = I+

l − I−l are given by

∆Il =
Vh−vc

R0
(u+

k −u−k ) =
Vh−vc

R0
∆uk.

The same notation given above foru+
k andu−k is used here for variableIl . Therefore, the

continuous-time approximation for the current peaks is

İl ≈
Vh−vc

R0
u̇.

Another way to achieve this same expression is taking time derivative of Il given by Eq.
(7.1). Rigorously, the time derivative of this current is

İl =
Vh−vc

R0
u̇− v̇c

R0
u.

Nevertheless, it can be shown by simulation that during a typical transient-period, the last
term is very small (see Fig. 7.14). This simulation is performed using the same parameters
given in Section 7.2. This graph supports the previous argument.

Take the following performance index

J =

∫ τ

0
L(e,u, t)dt, (7.23)

where the final timeτ is free and the LagrangianL(e,u, t) is chosen in order to penalize:

• voltage errore,
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Figure 7.14: Current time-derivative terms.

• dissipated powerP = (Vh−vc)Il and

• current peakṡIl .

For this, the following Lagrangian is chosen

L = q1e2+q2

(

(Vh−vr +e)2

R0
u

)2

+

(

Vh−vr +e
R0

u̇

)2

, (7.24)

whereq1 andq2 are positive weighting constants. The first term of Eq. (7.24) penalizes
the voltage error, the second one penalizes the dissipated power in the set of transistors and

the last one, the current peaks. This dissipated power is modeled asPw = (Vh−vc)
2

R0
u, where

vc = vr −e.

Let us consider a 2-dimensional optimal control problemx = [e,u] with ẋ = [ė,ν], where
ν , u̇. Thus, the Hamiltonian function is

H = q1e2+q2
(Vh−vr +e)4u2

R2
0

+

(

Vh−vr +e
R0

ν
)2

+λ1[b(−Vh+vr −e)u+β +δ ]+λ2ν.

(7.25)
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Solving the algebraic equation

∂H(e,ν,λ1,λ2)

∂ν

∣

∣

∣

∣

ν=ν∗
= 0,

the optimalν∗(x,λ ) is

ν∗ =
−λ2

2

(

R0

Vh−vr +e

)2

,

which gives the optimal Hamiltonian expression

H∗(e,λ1,λ2) = q1e2+q2
(Vh−vr +e)4u2

R2
0

− λ 2
2R2

0

2(Vh−vr +e)2 +λ1[b(vr −Vh−e)u+β +δ ].

(7.26)

The optimal solution is associated with the set of differential equations:

∂H∗

∂λ1
= b(vr −Vh−e)u+β +δ = ė (7.27)

∂H∗

∂λ2
=

−λ2

2

(

R0

Vh−vr +e

)2

= u̇ = ν (7.28)

∂H∗

∂e
= 2q1e+4q2

(Vh−vr +e)3

R2
0

u2+
(λ2R0)

2

2(Vh−vr +e)3 −buλ1−βλ1 = −λ̇1 (7.29)

∂H∗

∂u
=

2q2u(Vh−vr +e)4

R2
0

+bλ1(vr −Vh−e) = −λ̇2 (7.30)

with the boundary conditions,

e(0) = vr −vc(0) (7.31)

e(τ) = 0 (7.32)

u(0) = number of transistors switched on int = 0. (7.33)

u(τ) = number of transistors switched on int = τ. (7.34)

and, the transversality condition
H∗(τ) = 0. (7.35)

Note that, this is a nonlinear Boundary Value Problem (BVP) with a transversality condition,
since the final timeτ is unknown.

Solving (7.27)–(7.35), yieldse∗, from which, the optimal voltage evolutionv∗c = vr −e∗

can be derived. This evolution can be employed as reference for the controllers developed in
Section 7.2.

Numerical solution
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The problem raised before: finding a solution for (7.27)–(7.35) with (7.31)–(7.34) and
(7.35), is a complex problem because it is a nonlinear BVP with a four dimensional character
and it has a transversality condition. For this, a numericalsolution is proposed. Nevertheless,
finding this numerical solution is also an involved task. There is not so many tools that cope
with this kind of problems. In this case the Matlab function‘bvp4c’ has been employed.
Function bvp4c [130] combines the solution of Initial ValueProblem (IVP) for Ordinary
Differential Equations (ODEs) and the solution of algebraic equations, being a non-shooting
code. The nonlinear algebraic equations are solved iteratively by linearization, providing an
initial guess over a mesh and taking into account the boundary conditions. This is due to the
fact that can have more than one solution and, thus, a guess for the desired solution must be
provided by designers, which includes an initial mesh for this desired solution.

Function bvp4c controls the error of the numerical solutionand adapts the mesh in every
iteration to obtain an accurate numerical solution with a modest number of mesh points.
Thus, obtaining an ‘residual’ error is common. If the residual error is small, then the solution
provided by function bvp4c is a good solution.

Function bvp4c is not directly applicable for the present problem since it cannot handle
the transversality condition. Thus, this function has beenused iteratively in order to obtain
a solution that fulfills condition (7.35). The system parameters given in Section 7.2 are
reported. Furthermore, it is considered the rising transient period, i.e, when output voltage
goes from the low voltage level to the high voltage level. Therefore, the next boundary
conditions are selected:

e(0) = vr −vc(0) (7.36)

e(τ) = 0 (7.37)

u(0) = 1 (7.38)

u(τ) = N (7.39)

The following values for the weighting constants are chosen1,

q1 = 0.64 (7.40)

q2 = 0.32. (7.41)

Using as initial guess

e(t) = 0.3e−108t

u(t) = 24−23e−108t

λ1(t) = 106t +105

λ2(t) =−3.2 ·107t2−3.2 ·107t +100,

1As usual in optimal control problems, they have been chosen in a trial-and-error procedure, checking by
simulations the solutions obtained.
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Note that this initial guess has a complex form and, because it has been difficult to obtain.
As mentioned before, this problem is a complex problem, and finding a solution has been
very involved. However, with the future numerical methods,it is expected that new tools for
this kind of problem will be researched and developed.

The nonlinear BVP (7.27)–(7.30) with the specified boundaryconditions (7.36)–(7.39)
reaches the numerical solution shown in Fig. 7.15. Note that, the boundary conditions in
e∗ andu∗ are satisfied whenτ = 23.3 ·10−9s. Frome∗, the optimal evolution of the voltage
referencev∗ can be obtained.

Figure 7.16 shows the evolution ofH∗, whose value atτ = 23.3 ·10−9s is close to zero,
fulfilling the transversality condition.

Notice that, this voltage reference has been computed for the rising transient period. For
the falling transient period, a similar procedure can be applied.
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Figure 7.15: Optimal numerical solution. a) error evolution, b) control evolution, c)λ1 evolution and
d) λ2 evolution.
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7.4.2 Adaptive feedback control design

The Lyapunov’s controller (Section 7.2) has been designed under the assumption that the
parameterβ is known. In this section, an adaptive law is proposed in order to cope with the
case when the load parameterβ is unknown.

Let us denotêβ as the estimated value for the load parameter. This estimated parameter
will be used in control law (7.21) instead of its real value. The application of this law to
system (7.8) yields

ė= −βe+βvr − β̂vr . (7.42)

Let us assume thatβ is a constant parameter which involvesβ̇ = 0 (the case whenβ is
time-varying will be discussed in next section) and define

β̃ = β − β̂ , ˙̃β = − ˙̂β .

For the adaptive control system, the next Lyapunov functioncandidate is proposed

W =
e2

2
+

β̃ 2

2γ1
, (7.43)

whereγ1 is a positive design parameter that may define the adaptationspeed.
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DifferentiatingW with respect to time, yields

Ẇ = −βe2+ β̃

(

vre+
˙̃β

γ1

)

.

Note thatβ > 0, as has been seen above. The adaptive law is designed by canceling the
term in brackets, i.e.:

˙̂β = − ˙̃β = γ1vre. (7.44)

This achieveṡW = −βe2.

Asymptotic stability is established by LaSalle’s invariance principle [76]. For this, con-
sider the level setWc = W(e, β̃) ≤ c0 for sufficiently largec0 > 0, whereẆ ≤ 0. This set is
compact and positively invariant.

Note thatẆ = 0 one= 0. Furthermore, note from Eq. (7.42), that

e(t) ≡ 0 ⇒ ė(t) ≡ 0 ⇒ β̃ (t) ≡ 0.

Therefore, the maximum invariant set inWc with Ẇ = 0 corresponds to the single point
P1 = (e= 0, β̃ = 0), thus, every solution starting inWc approaches the desired pointP1 as
t → ∞.

7.5 Simulation of the advanced Lyapunov’s controller

In this section, some simulations using the parameter presented in Section 7.4 are performed.

The resulting controller (7.22) is

uk = satN1 round

{

β̂Tsv∗rk
+v∗rk

−v∗rk−1
+δTs

bTs(Vh+ek−v∗rk
)

}

(7.45)

wherev∗rk
andv∗rk−1

comes from the discretization of the optimal voltage reference, which has
been previously obtained. For implementation, the values of v∗rk

can be stored in a table. In

the same way,̂β is adapted by the discrete-time approximation of the adaptation law (7.44):

β̃k = β̃k−1−Tsγ1v∗rk
ek
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The data reported in Section 7.2 are used in the simulations.In order to perform more
realistic tests, a more precise model for the load is considered in such a way thatβ depends
on rL, i.e., it is time-varying. The bounds onβ are:βmin = 1.38·107 for vc = Vl andβmax=
5.9 ·107 for vc = Vh. As initial estimated values is taken:β̂ = 0.

Figure 7.17 shows the closed-loop performance by employingthe optimal voltage ref-
erence and the adaptation mechanism. Note that when the adaptation mechanism is imple-
mented the system can achieve a similar performance to the case of known load. Although,
the adaptive control introduces a delay in the system response, small current peaks and faster
transient periods are obtained.

In addition, thanks to the obtained voltage reference the energy consumption is reduced.
The accumulated dissipated energy in the rising transient period is 4.8µJ using the Lyapunov
controller (Eq. (7.22)) and 0.5µJ using the advanced Lyapunov controller (Eq. (7.45)). That
means 90% energy saving. Likewise, the transient period is reduced to 23.3ns.
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Figure 7.17: Vdd-Hopping with control (7.45) and adaptationβ̂ . Evolution of a) number of PMOS
transistors switched on, b)vr (dashed) andvc (solid) and c) currentIl .

The adaptation of the load resistive componentβ is shown in Fig. 7.18. Note thatβ
approaches its real value, in spite of the fact thatβ is time-varying. Observe that the time-
evolutions ofβ̂ andβ are superimposed.

Consequently, the reliability and efficiency of the controller (7.45), which uses the opti-
mal voltage reference and the adaptation mechanism, has been validated. Besides, the fact,
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Figure 7.18: Time-evolution ofβ̂ (solid) andβ (dashed).

that there exists a time-varying load resistive component is not relevant for the right system
performance. In addition, this controller has a small energy consumption as well as small
current peaks and faster transient-periods.

7.6 Conclusion

In this work, a set of controllers has been designed for a Vdd-Hopping converter. Most
of these controllers improve performance over the one used in [99] in terms of transient
responses, as has been seen in Section 10.5. This controlleris a very simple controller with
a strong limitation: only one transistor can be switched on or off in every sampling time.
The good results obtained with the set of controllers developed in this chapter come from
applying control theory as well as the possibility to let such controllers to switch more than
one transistor at once.

In a performance evaluation presented in Section 10.5 to theset of controllers, it has
been concluded that the best one seems to be Lyapunov’s controller. This is not only for
a better signal performance but also for a better energy consumption. Nevertheless, this
controller can be enhanced, if both optimal and adaptive control are developed. These control
approaches allow to diminish energy consumption and current peaks and deal with unknown
load parameters, respectively.

A method to obtain an optimal reference has been developed applying optimal control
theory [80, 86, 155]. Nevertheless, the problem stated for this method presents a high com-
plexity, because it is a BVP with transversally condition for a 4th-order optimal problem.
Hence, that an optimal reference has been computed from of this problem. This numerical
solution has been obtained using the Matlab function bvp4c.It has been a involved task, and
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it is expected that new mathematic tools will be developed tomake easier to compute this
voltage reference. This result achieves a reduction of current peaks and 90% energy saving
with respect to the previous Lyapunov controller. This factmakes that the total energy saving
with respect to the intuitive controller used in [99] is 93% reduction.

In addition, an adaptive strategy is developed in order to deal with the load modeling
error. Moreover, in order to prove the reliability of this adaptive controller, it has been
introduced by simulation that parameterβ is time-varying, as is common in practice.

The suited performance of the results in the Vdd-Hopping converter has been shown by
simulations.

In summary, an advanced controller which does not need knowledge of the load resistive
parameter has been obtained. This controller reduces energy consumption as well as current
peaks and transient-periods. Nevertheless, it presents a more complex physic implementa-
tion, since it requires more computational blocks.

Next chapter, a new controller will be developed to cover this drawback, at the same time
that all nice achieved properties are maintained.
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Chapter 8

Energy-aware controller for the
Vdd-Hopping converter

In the previous chapter a set of high-performance controller has been designed for the DC-
DC Vdd-Hopping converter. From the set of controllers, the one that provides a better per-
formance has been selected and some developments have been done to fulfill with low-power
technology requirements. Nevertheless, it presents some number of computational blocks,
what can be translated in a complex implementation in certain industrial applications, as in
the ARAVIS project. That is why the controller with presentsthe less number the computa-
tional blocks from the set of controller proposed before is chosen and enhanced in order to
accomplish all control objectives. It is based on a PI structure [84,120].

From this controller, an optimal nonlinear energy-aware controller is obtained. The pro-
posed solution is a discrete-time control mechanism, whichdoes not need to track any time-
indexed voltage reference. This control law only needs to know the set-point. As an im-
portant innovation, the proposed a control introduces a saturation with time-varying limits,
which reduces the current peaks. These facts involve an important diminishing of energy
consumption. Moreover, its computing cost have been reduced. It is patented under the
name of ENergy-AwaRe Control (ENARC) [6].

In the ARAVIS project, this controller will be simulated in VHDL-AMS. In addition,
it is expected that it is implemented in the innovated 45nm or/and 36nm SoC developed in
ARAVIS.

109
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8.1 Control design without current-peak managing

In this section, a controller based on linear control theoryis designed to cope with possible
steady-state errors [105]. The relevant characteristic ofthis controller is that presents a rela-
tive low number of computational blocks. This makes it interesting in industry. Previously,
it has been enhanced assuming that more than one transistor is switched at once and, deal-
ing with a tracking problem. Now, let us consider a stabilization point problem. Therefore,
the reference will be constant, i.e., a step. This looks for making faster transient periods.
Nevertheless, important current peaks can be generated being able to damage the system.

The ‘linear control’ proposed in Section 7.2 (Eq. (7.10)) has been:

uk = satN1 {round(K1e+K2σ)} , (8.1)

whereσ corresponds to
∫ t+Ts
t edt, which can be considered as a new variable that augmentes

the system dimension. ConstantsK1 andK2 are chosen with the tunning mechanism (7.11)–
(7.12).

Figure 8.1 shows a simulation to display the stability properties of this control law. The
data reported in Section 7.2 are employed in this simulation. The time-varying reference is
changed by a step reference, what makes to obtain faster transient periods. Nevertheless,
the constant reference generates a no-desired important current-peak (as has been predicted
before), which may increase the dissipated energy as well ascan damage the physical system.
Note that this current peak is not symmetric when system is falling down. It is due to the
current definition (Eq. (7.1) in Section 7.1). Observe that current variable directly depends
on the number of PMOS transistors switched on,uk, that is, smaller current for lower voltage.

8.2 Control redesign with current-peak managing

The controller presented before is modified in order to achieve a high-performance from a
point of view of current-peaks. Current-peaks can be managed by introducing a pre-specified
maximum admissible current-peak constraint, e.g., introducing an on-line saturation mecha-
nism. This current-peak constraint is defined in the Vdd-Hopping system by∆Ilmax.

In Section 7.4, an expression that relates the current variation with the number of tran-
sistor switched on or off in every sampling time has been given. In order to make easier the
reading, this expression is here advocated

∆Il =
Vh−vc

R0
∆uk. (8.2)
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Figure 8.1: Control (8.1) with step reference. Evolution of a) number of PMOS transistors switched
on, b)vr (dashed) andvc (solid) and c) currentIl .

It comes from the discrete property of the Vdd-Hopping converter, while that its core voltage
is a continuous-time variable, as is seen in [99].

Assume that a maximum admissible current variation for Eq. (8.2) is defined as∆Ilmax, in
such a way that

∆Ilmax≤
Vh−vc

R0
∆uk ≤ ∆Ilmax. (8.3)

This constraint can be introduced in the system by saturating the maximum and minimum
PMOS transistors that can be switched on or off and every sampling time, i.e., the maximum
in minimum admissible∆uk are

∆uM
k =

R0

Vh−vc
∆Ilmax , αM

k (8.4)

∆um
k =− R0

Vh−vc
∆Ilmax , αm

k , (8.5)

beingαM
k > 0 andαm

k < 0. Note that the saturation limits depends on the output voltage.
Thus, control (8.1) is modified in order to consider current-peaks

uk = satN1

{

round(sat
ᾱM

k
ᾱm

k
(K1e+K2σ))

}

, (8.6)
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where the current-peak constraints are employed accordingto next expressions:

ᾱM
k , uk−1+αM

k (8.7)

ᾱm
k , uk−1+αm

k . (8.8)

Remark 8.1 The current peak constraint must allow to switch, at least, one transistor in or-
der to guarantee that the system achieves the desired voltage level. Therefore, the admissible
current peak constraint has to be larger than a minimum boundguaranteeing this condition.
From Eq.(8.3), it can be obtained

∆Ilmax ≥
Vch −Vlow

R0
min(∆uk) =

Vch −Vlow

R0
1

wheremin(∆uk) is the minimum number of PMOS transistors that can be switched on or off
in every sampling time. As uk is determined by a rounding function, the minimum of(∆uk)
must be larger or equal than1 in order to have that the constraint∆Ilmax allows switching at
least one transistor.

The aware management of the current-peaks makes Control (8.6) to be an innovated
controller for the Vdd-Hopping converter. As a side effect,an important reduction of the
dissipated energy is achieved by means of a trade-off between faster transient period and
small current-peak as will be shown below. The optimizationof the energy dissipation is a
crucial point in the miniaturization of microsystems.

8.2.1 Time discretization

Usually, the controllers are implemented in discrete-time. That is why control (8.6) is ap-
proximately discretized, yielding the structure

uk = satN1

{

uk−1+ round(sat
αM

k
αm

k
(K̄1∆ek + K̄2ek))

}

, (8.9)

whereK̄1 andK̄2 follows the transformation given in (7.14)–(7.15) in Section 7.2, and where
αm

k andαM
k are given in Eqs. (8.4)–(8.5).

This controller is patent pending under the name of ENergy-AwaRe Controller (ENARC)
[6].

The structure of the ENARC controller is shown in Fig. 8.2. This controller is composed
of:
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• two gains,K̄1 and K̄2, adjusted by a tuning method given by Eqs (7.11)–(7.12), in
such a way that asymptotic stability of the equilibrium of the closed-loop system is
guaranteed. The stability will be analyzed in Chapter 9.

• A current limit mechanism, that computes on-line the maximum and minimum number
of PMOS transistors switched in every sampling time,∆uM

k and ∆um
k , respectively.

The limits over the switched-transistor variation are necessary in order to ensure that a
maximum admissible current peak∆Ilmax is respected.

• A saturation mechanism that limits the maximum and minimum switched-transistor
variation computed before.

• A rounding for digital control signal and

• an output saturation mechanism, that limits the minimum andmaximum PMOS tran-
sistor number switched on at every sampling time.

4. Rounding

mechanism

ek

vr

vc
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ū
s

k

5.Output saturation

mechanism
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Memory
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Figure 8.2: ENARC structure patented in [6].

8.2.2 Simulation of ENARC controller in the Vdd-Hopping system

Now, some simulations are performed to display system signal evolutions. The reference
signal is a step, as has been chosen in Section 8.1. For implementation, some values ofαm

k
andαM

k can be stored in a table. For this, the reported parameter values from Section 7.2 are
chosen. Consequently, from Eqs. (7.14)–(7.15) and Eqs. (7.11)–(7.12)

K̄1 =−19.3 (8.10)

K̄2 = 39.27. (8.11)
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The maximum admissible current peak constraint is chosen according to the equation given
in Remark 8.1

∆Il =
Vch −Vl

R0
0.6.

Figure 8.3 shows a simulation of the resultant closed-loop system with Eq.(8.9). Note,
that the system response obtains faster transient period and reduces considerably the current
peak with respect to the previous controller (see Fig. 8.1).
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Figure 8.3: ENARC with step reference. Evolution of the: a) number of PMOS transistors switched
on, b)vr (dashed) andvc (solid), c) current.Il .

Energy-consumption evaluation.

Now, let us discuss the main objective concerning to the controller: the energy consump-
tion.

The cumulated dissipated energy in the set of PMOS during therising transient time de-
pends on the type of control law employed, and thus, on the switching sequence. Remember
that in the control structure published in [99] only one transistor can be switched at each
sampling time and a ramp reference has been employed. However, with the ENARC con-
troller more than one transistor may be switched in every sampling-time and a step reference
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has been employed. The energy consumption during the risingtransient time has been re-
duced from 7.2µJ (with the control published in [99]) to 0.26µJ (with ENARC), i.e., 96%
reduction.

The energy consumption is much higher using the ‘intuitive’controller than using the
ENARC controller. Note, thus that, a non-smooth behavior ofthe current signal and a larger
transient time may result in a higher energy consumption.

8.3 Conclusions

In this chapter, some important advances have been developed for the ‘linear controller’
(Controller No.1, in Section 7.2) proposed for the Vdd-Hopping system. The ‘linear con-
troller’ has a relevant interest due to its simple implementation, since it requires a relative
low number of computational blocks.

A nonlinear discrete-time controller has been designed forthe Vdd-Hopping system with
the aim of reducing the dissipated energy. This controller has an energy-aware management
of current-peaks in the set of PMOS transistors. In addition, a step reference has been used,
thus, it only needs to know the two desired voltage levels. This result comes from the pos-
sibility to control more than one transistor at once, i.e., to switch more than one transistor in
a same sampling time. As a side effect the transient-periodsare diminished. This controller
has been compared with the ‘intuitive’ control used in [99].In this context, the ENARC
controller reduces the energy consumption a 96%.

The ENARC controller does not only have the same properties that the high-performance
Lyapunov controller developed in Chapter 7; but it also has asimple implementation. And
thus, it may present special interest for industrial applications in the fields of microelectron-
ics.

This mechanism is an innovative controller for the discreteVdd-Hopping converter ap-
plied in the ARAVIS project. It is focused on achieving the project global objective.

The features that have not yet been studied are the presence of delay as well as parameter
uncertainty, which will be taken into account in Chapter 10.In addition, the closed-loop
stability of Vdd-Hopping with ENARC will be studied in next chapter.
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Chapter 9

Approximate stability analysis of the
DC-DC Vdd-Hopping converter

In Chapter 8, a controller has been developed based on a linear structure. This is a nonlinear
discrete-time energy-aware controller called ENARC, which may fulfill most of the specific
control objectives for the Vdd-Hopping converter, mentioned in Chapter 6. Among them
its low computational cost can be highlighted. This characteristic makes it attractive for
industrial applications [17,84,120]. However, in that chapter, the equilibrium stability of the
system with the ENARC has been not studied. Therefore, the convergence and stability of
the equilibrium of the closed-loop Vdd-Hopping is not reliable.

This chapter focuses on studying the stability of the nonlinear system (7.7) with the
ENARC controller developed in Chapter 8. As Vdd-Hopping model is continuous, the sta-
bility analysis is performed in continuous-time, assumingthat the ENARC stability property
is ensured through its continuous-time version (this continuous-time version of the ENARC
has been presented in control (8.6)). This is a very common assumption [71,152].

For simplicity, a preliminary equilibrium stability analysis of the closed-loop system is
studied when the controller does not consider the current peak issues. This controller has
been the ‘linear controller’ presented in Section 7.2 (Eq. (7.10)). Then, a stability analysis is
performed when control (8.6) is employed. This controller introduces a type of nonlinearity:
a saturation with dynamic limits. This fact makes that the nonlinear closed-loop system
works in three operating-modes: non-saturated system, saturated system in the upper limit
and saturated system in the lower limit. It is seen that the equilibrium is in non-saturated
mode. The stability analysis is based on LaSalle’s invariance principle [76].

The stability analysis presented here is not rigorous because it is based on some system
approximations in continuous time. The complexity of the discrete system with the ENARC

117
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does not allow to find another simple way to prove the global stability.

9.1 Stability with control (7.10)

In this section, a stability analysis is performed for the nonlinear model (7.7) of the Vdd-
Hopping converter with control (7.10) developed in Section8.1. For simplicity, the saturation
that limits the number of the PMOS transistors switched on aswell as the rounding function
are disregarded. This analysis is based on LaSalle’s invariance principle [76].

To help the reading of the thesis, the equation of the controlis recalled,

uk = K1e+K2σ (9.1)

Remember thatσ =
∫ t+Ts
t edt and the control parametersK1 andK2 are constant and chosen

according to the tuning mechanism (7.11)–(7.12) describedin Chapter 7. These tuning equa-
tions depend on a design parameterξ . The following lemma deals with tuning the parameter
ξ , such that,K1 andK2 have certain desired properties.

Lemma 9.1 Consider the interval

I =

[

ukl b+β
2ωn

,
ukl b+β

2ωn
+

ωn

2(bukh
+β )

]

.

If ξ is chosen in I, then the following inequalities are satisfied

K1 > 0 and K1(bukh +β )−K2 < 0,

where ukh is the upper-bound of uk, i.e., ukh = N.

Notice thatK2 > 0 from Eq. (7.12).

Remark 9.2 The term ωn

2(bukh
+β )

is always positive from the parameter properties given in Section 7.1, thus it is clear that the
interval I is not empty. Then, there is always a possibility to find the suitable values for the
control parameters K1 and K2.

Assume that the tuning of these control parameters is achieved according to the previous
rules. The next step concerns the stability analysis of the closed-loop system. The following
theorem establishes the global stability of system (7.7) under the control law given in (9.1).
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Theorem 9.3 Consider system (7.7) with the controller (9.1). Then, if K1 and K2 are posi-
tive, the equilibrium of the system is globally stable.

Proof: From the dynamics of system (7.7), its equilibrium satisfiesthe equation

0 = (vr −Vh)būk +βvr +δ .

Thus, an expression of the control input at the equilibrium is straightforwardly obtained:

ūk =
βvr +δ

(Vh−vr)b
= K2σ̄ , (9.2)

where v̄c and σ̄ are the equilibrium values ofvc andσ , respectively. Note that ¯uk corre-
sponds to the saturation bounds 1 andN when the set point is the lower and higher values,
respectively, as has been defined in Remark 7.3. Now, the new variablewk, which represents
the difference between the controluk considered at any position and at the equilibrium, is
introduced:

wk , uk− ūk. (9.3)

Rewriting the dynamic of system (7.7) using this new variable, yields:

ė=−(β +buk)e+(vr −Vh)bwk +(vr −Vh)būk +βvr +δ , (9.4)

Substituting the expression of ¯uk from (9.2) into the right-hand side of (9.4), the following
equation is obtained

ė= −(β +buk)e+(vr −Vh)bwk.

According to the assumption of the theorem, the control constantK2 is positive. More-
over, from Section 7.1, the positivity ofβ andb is guaranteed. Since the controluk is equal
to satN1 {round(K1e+K2σ)}, it is clear thatuk is positive and consequently so isβ +buk+K2.

The next step of the proof is based on the Lyapunov’s theorem.Consider the Lyapunov
function candidate of the form:

V(e,σ) =
e2

2b(Vh−vr)
+

(σ − σ̄)2

2
K2,

Notice that, the reference voltagevr is constant. From the system properties, the high voltage
Vh is greater than the reference voltagevr . As has been seen just before,b is positive. Thus,
V is indeed a positive definite function ofeandσ .

Thanks to (9.1) and (9.2),V can be expressed as follows

V(e,σ) =
e2

2b(Vh−vr)
+

(uk− ūk−K1e)2

2K2
. (9.5)
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The differentiation of the functionV along the trajectories of (9.1) leads to

V̇ =−(β +b(ūk +wk))e2

b(Vh−vr)
−K1e2+

1
K2

[(K1ė+K2e)− (K1ė+K2e)] ·[(K1e+K2σ)−K2σ̄ −K1e] .

Introducing(−K1e2+K1e2) in the previous equality and assuming that the differentiation of
u̇k from Eq. (9.1) is

u̇k = K1ė+K2e.

Then, the differatation of the function can be expressed as:

V̇ = −
(

(β +b(ūk +wk))

b(Vh−vr)
+K1

)

e2. (9.6)

Note thatK1 andK2 have been assumed positive, anduk = ūk+wk is assumed be positive,
thus,

V(e,σ)≥ 0

V̇(e,σ)≤ 0.

Asymptotic stability is established by LaSalle’s invariance principle [76]. For this, con-
sider the level setΩ1 = V(e,σ) ≤ c1 for sufficiently largec1 > 0. This set is compact and
positively invariant. This is represented in Fig, 9.1.

From Eq. (9.6), notice thaṫV(e,σ) is negative everywhere, except on the linee = 0,
whereV̇(e,σ) = 0. Unlessσ = σ̄ , this is impossible from the closed-loop system (7.7) with
control (9.1), since

e(t) ≡ 0 ⇒ ė(t)≡ 0 ⇒ 0≡−(vr −Vh)bK2σ +βvr +δ .

The last equation is satisfied in

σ ≡ vr +δ
(Vh−vr)bK2

= σ̄ .

Consequently, the maximum invariant set inΩ1 with V̇(e,σ) = 0 corresponds to the
single pointP2 = (e= 0,σ = σ̄). Therefore, every solution starting inΩ1 approachesP2 as
t → ∞.

In summary, the global stability of the Vd-Hopping with Eq. (9.1) has been established.
In next section, this result will be employed to analyze the global stability with control (8.6).
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P2

e

σ

Ω1

Figure 9.1: Representation of the compact setΩ1.

9.2 Stability with control (8.6)

Based on the previous study, the objective of this section isto extend the proof before to
control (8.6). Note that, it is the continuous-time versionof the ENARC controller, and it is
nonlinear due to control saturations. Here, the saturationthat limits the number of the PMOS
transistors switched on as well as the rounding function arealso disregarded for simplicity
reasons. An added difficulty is that the limits of the saturations depend on the statee.

The equation of control (8.6) is expressed here, to make easier the reading:

uk = sat
ᾱM

k
ᾱm

k
(K1e+K2σ), (9.7)

with

ᾱM
k = uk−1 +αM

k = uk−1 +
R0

Vh−vc
∆Ilmax (9.8)

ᾱm
k = uk−1 +αm

k = uk−1−
R0

Vh−vc
∆Ilmax, (9.9)

as has been defined in Eqs. (8.4)–(8.5) and Eqs. (8.7)–(8.8).The stability analysis comes
from dividing the space(e,σ) in three regions (see Fig 9.2):

• Region I, where the system does not saturates.
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• Region II, where the system saturates in the upper limit.

• Region III , where the system saturates in the lower limit.

Remark 9.4 The equilibrium of system (7.7), i.e., uk = ūk, is in Region I.

This is easy to see from Eq.(9.2) and Eqs. (9.8)–(9.9):

ūk = sat
K2σ̄+

R0
Vh−vc

∆Imax

K2σ̄− R0
Vh−vc

∆Imax
(K2σ̄),

Notice thatVh−vc andR0 are positive as it has been defined in Section 7.2 and that∆Imax is
also positive according to Section 8.2. Then,R0

Vh−vc
∆Imax> 0.

The proof will be defined in two parts. In the first part, convergence to the non-saturated
region in finite time will be proven. In the second part, convergence to the desired point,
once the system is in Region I is proven.

For the first part, two properties are performed for the saturated cases (Region II and
III), which define the convergence to the non-saturated region (Region I). These properties
are based on the variable ˙uk, since it is directly affected by the saturation limits:αm

k (e) and
αM

k (e).

Assumption 9.5 For system(7.8)with a suited sampling time, next expression in continuous-
time can be taken into account

u̇k = sat
ᾱM

k
ᾱm

k
(K1ė+K2e). (9.10)

Equation before comes from Eq. (9.7) and Eqs. (9.8)–(9.9)

Firstly, next property is defined for Region II:

Property 9.6 In Region II, if K1 is constant and positive, system (7.7) satisfies

• u̇k > αM
k (e) > 0

• ük ≤ εM < 0 being εm ,
K1∆Imax

C = constant

• e> 0
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Region II

Region III

Region I

e

σ

Figure 9.2: Representation of the system operating regions.

whereαM
k (e) is defined by Eq. (9.8) and vc , vr −e (as has been seen in Section 7.1). Be-

sides,εM comes from differentiatinġuk and employing the definition ofαM
k (e) from Eq. (9.8).

Parameters C and∆Imax are positive according to Section 7.2 and Section 8.2, respectively.

Remark 9.7 u̇k is decreasing with time derivative that is bounded away fromzero, as is
shown in Property 9.6, and hence it will reachαM

k (e) (see Eq. 9.8) in finite time.

Secondly, the following property is defined for Region III:

Property 9.8 In Region III, if K1 is constant and positive, system (7.7) satisfies

• u̇k < αm
k (e) < 0

• ük ≥ εm > 0 being εm ,
K1∆Imax

C = constant

• e< 0

whereαm
k (e) is defined by Eq. (9.9) and vc , vr −e (as has been seen in Section 7.1). Besides,

εm comes from differentiatinġuk and employing the definition ofαm
k (e) from Eq. (9.9).

Parameters C and∆Imax are positive according to Section 7.2 and Section 8.2, respectively.



124 9.2. Stability with control(8.6)

Remark 9.9 u̇k is creasing, with time derivative that is bounded away from zero, as is shown
in Property 9.8, and hence it will reachαm

k (e) (see Eq. 9.9) in finite time.

These properties and remarks about the different regions allow to prove the convergence
of variableu̇k to the saturation limits. For this, next lemma can be stated

Lemma 9.10 If the next conditions are satisfied:

K1 > 0, K2 > 0 and K1(bukh +β )−K2 < 0,

and taking into account the Assumption 9.5 then, system (7.7) with controller (9.7) saturated
in the upper or lower saturation limit converges to the non-saturation region in a finite time.

Proof: Firstly, Region II (see Fig.9.3) is studied, i.e., the case when system saturates in
the upper saturation limit.

Employingu̇k which is affected directly byαM
k (e), as has been seen in Eq. (9.10). It is

desired to prove that:
u̇k → αM

k (e)

Region II

Region III

Region I

e

σ

Figure 9.3: Region II in the representation of the system operating regions.
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For this, the following Lyapunov function candidate is selected:

W = u̇k−αM
k (e) = K1ė+K2e−αM

k (e) > 0.

Differentiating

Ẇ = K1ë+K2ė+
αM

k (e)

(Vh−vr +e)
ė.

Next up, from Eq. (8.4),αM
k (e) is differentiated

Ẇ =−b(Vh−vc)K1u̇k +

(

−K1(buk +β )+K2+
αM

k (e)

Vh−vr +e

)

ė. (9.11)

Note thatb and(Vh−vc) are positive from Section 7.2. Besides, from the statement the pos-
itivity of K1 is also established. And Property 9.6 maintains ˙uk > 0 in this region. Therefore,
the first term on the right-hand side is negative for every time instant. For simplicity, this
first term is defined as

ς(e) , b(Vh−vc)K1u̇k > 0. (9.12)

Rewriting Eq. (9.11), such that the next inequalities are satisfied

Ẇ =−ς(e)+

(

−K1(buk +β )+K2+
αk(e)

Vh−vr +e

)

ė

<−ς(e)+

(

K1(buk +β )−K2−
αk(e)

Vh−vr +e

)

K2e
K1

<−ς(e)+

(

K1(bukh +β )−K2−
αk(e)

Vh−vr +e

)

K2e
K1

< 0.

The first inequality comes from applying ˙uk = K1ė+K2e> 0, thus−ė< K2e
K1

. Furthermore,
form Property 9.6, it is known thate < 0. A maximum bound ofuk, ukh

, is taken in the
second inequality.

From Lemma 9.10,K1(bukh +β )−K2 < 0 is fulfilled, then the last inequality is satisfied

Ẇ < 0.

In addition, from Property 9.6, it is ensured that ˙uk converges to the boundary.

The proof for Region III (see Fig. 9.4) is symmetric to the onedeveloped before for
Region II, applying Property 9.8.
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Figure 9.4: Region III in the representation of the system operating regions.

Finally, from the lemma stated before about the convergenceof the saturated region to
the non-saturated region, the equilibrium localization given in Remark 9.4 and the global
stability property of the Region I established in Theorem 9.3, next theorem ensures the global
stability property of the system (7.7) with controller (9.7).

Theorem 9.11 If K1 and K2 are positive, and K1(bukh
+β )−K2 < 0, then the equilibrium

of system (7.7) with controller (9.7) is globally stable.

Proof: There exist two state space regions corresponding to the case when system
saturates in the upper limit (Region II), and when the systemsaturates in the lower limit
(Region III). By Lemma 9.10, the system operating in Region II or III converges to the non-
saturated region (Region I) in finite time. In addition, Properties 9.6 and 9.8 guarantee that
the system once is in Region I can not cross this saturation lines towards Regions II or III.

Now, the proof is concluded by using the assumptionsK1 andK2 that are constant and
positive,K1(bukh +β )−K2 < 0 and by advocating the La Salle’s invariance principle. There
exists a setΩ2 limited by the level curveV(e,σ) = c1 for sufficiently largec1 and the sat-
uration limits, which is compact and positively invariant.Figure 9.5 represents the setΩ2.
From Lemma 9.10 the state of the system reachesΩ2 in finite time.

As has been seen in Section 9.1, the maximum invariant set with V̇(e,σ) = 0 corresponds
to the single pointP2 = (e = 0,σ = σ̄). LaSalle principle establishes that every system
evolution inΩ2 approachesP2 ast → ∞.
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Figure 9.5: Representation of the invariant setΩ2.

9.3 Conclusions

In this chapter the equilibrium stability of the nonlinear Vdd-Hopping system when control
(9.1) has been analyzed . This controller does not manage theoccurrence of current peak
in the system. The proof of this stability analysis has been based on LaSalle’s invariance
principle.

Next up, the analysis has been extended to prove equilibriumstability with the innovative
nonlinear controller (9.7). This controller manages current peaks through saturations. The
saturation limits depends on the system state, making difficult to prove global stability. The
rigorous global stability analysis deals with three operating modes: no saturated, saturated
in the upper limit and saturated in the lower limit. It has been ensured that the equilibrium
is located in the non-saturated mode. When system is saturated, it will converge to the non-
saturated mode in finite time without being able to return to the non-saturated case. This
analysis follows LaSalle’s invariance principle for a domain bounded by Lyapunov level and
the saturation lines.

The analysis presented here has been performed for a continuous-time version of the
ENARC controller. It has been assumed that the stability property is maintained for the
discrete-time ENARC controller. This kind of assumptions is very common in control theory
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[71,152].

The only control objectives that have not yet been considered is the equilibrium robust-
ness in view of delays presence and parameter uncertaintiesthat the system can suffer. These
issues will be seen in Chapter 10.



Chapter 10

Sub-optimal control considering delays
and parameter uncertainties

In Chapter 8, an energy-aware controller has been designed for the Vdd-Hopping converter.
This converter satisfies control requirements for this low-power converter implemented in the
ARAVIS project context. Furthermore, in Chapter 9 a stability analysis of the equilibrium
has been performed. In order to cover all control requirements specified in Chapter 6, this
chapter focuses on system robustness with respect to delaysand parameter uncertainties in
the Vdd-Hopping system at the same time that the stability isguaranteed. They are common
issues in SoC [112,140].

Figure 10.1 shows Vdd-Hopping mechanism including delays.The system has a compu-
tationalh2-sample-period delay at the control block input required toensure that the system
is synchronized with the cluster clock [77]. Likewise, there is a computationalh1-sample-
period delay associated with computational issues in the control block output. The size of this
last delay depends on a trade-off between power consumptionand performance. Generally,
the power consumption can be reduced if the local core voltage or/and the clock frequency
are decreased. However, this fact produces that the computational speed diminishes, in such
a way that the size of the existing delay decreases. Therefore, theh1-sample-period delay de-
pends on the local clock frequency1 [38]. In many cases, applications do not require the full
computational power at any time. The performance requirement is that the task is performed
before a deadline. Therefore, it is possible to have a low frequency, which ensures system
performance, and hence, to allow reducing the power consumption. On the other hand, there
is a minimum required local clock frequency that guarantiesthe critical path (longest path
delay) on the corresponding clock domain circuit [45]. Thatis why, a low frequency of
200MHz is taken here, for the local clock. This frequency introduces an one-sample-period
delay in the control block output. In some cases, it is considered that the delays are fixed and

1The higher the clock frequency is, the longer the delay is.
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known.

The other relevant issue in low-power technology are the parameter uncertainties, which
can generate a non-desirable performance and lack of reliability of the system [34,93].

In summary, delays presence and parameter uncertainties must be considered in the de-
sign of the controller.

The control design procedure given in Lemma 9.1 provides a range of values for param-
eterξ that guarantees equilibrium asymptotic stability for system (7.7) for fixed parameters.
This stability analysis has been performed in Chapter 9. Although this tuning method deals
with the current peak management, it does not consider that some system parameters may be
uncertain. Likewise, perturbation rejection and delays were not considered either.

In order to ensure the robustness of the Vdd-Hopping converter with respect to un-
certain parameters and delays presence, a ‘conservative’ sub-optimal tuning approach for
K̄1 and K̄2 is now developed for an approximate ENARC controller version that, for sim-
plicity, disregards the current peak management. For this,the system is rewritten into a
suitable state-space form to formulate a robustH∞ problem that can be solved by using
Lyapunov-Krasovskii theory [53, 62]. In this process, the saturation in the controller is con-
sidered [26, 50]. The designed controller guarantees asymptotic stability, disturbance rejec-
tion as well as robustness of the system with respect to delays and uncertain parameters. The
problem is expressed in terms of Linear Matrix Inequalities(LMIs). Likewise, an attraction
domain is estimated in such a way that a regional stabilization for the saturated control is
guaranteed.

The robustness properties of the closed-loop system with the sub-optimal control tuning
design applied to the ENARC controller are tested by simulations. In these simulations is
taken into account that the load dynamic parameter is not constantRL, but is time-varying
rL, as mentioned in Chapter 7. Remember that for control purposes, it has been taken as
constant in Section 7.1.

CONTROL Vdd-HOPPINGvr e uk vc+

- R0

LOAD

RL, CK1 K2
z−h2 z−h1 +

Figure 10.1: Sub-optimal control tuning for the ENARC controller.

An evaluation of the two control tuning approaches developed in this part of the thesis
for the ENARC controller is performed.
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10.1 Problem statement

In this section, we are going to formulate the problem rewriting the system (7.8) in an approx-
imate discrete-time form considering both delays and uncertain parameters. This approxi-
mate time-discretization is performed by using forward euler method [104], by assuming
that the sampling time is small enough to the system evolution. Likewise, for simplicity, an
approximate version of the ENARC controller is taken.

From Fig. 10.1, note thath1 andh2 are the number of sampling periods in the input and
in the output of the control block, respectively. Taking this notation and considering a small
sampling period,Ts, the associated approximated discrete-time voltage errorequation after
employing forward Euler method is

ek+1 = (1−Tsβ )ek +Tsb(vr −Vh)uk−h1 +Ts(βvr +δ )−bTsuk−h1ek. (10.1)

Remember that the sampling frequency takes the clock frequency value,Ts = 1
ωn

.

Considering the statexk = [ek ek−1]
T , the applied control law is

uk−h1 = satN1 {uk−1−h1 +Kxk−h}, (10.2)

whereh , h1+h2 andK = [K̄1 K̄2].

The parametersRL, R0 andC that correspond toβ , b andδ andωn that defines theTs in
model (10.1), can be considered uncertain. Each uncertain parameter is within an uncertainty
interval, whose corresponding extremes are

• uk ∈ [ukl = 1,ukh = N],

• RL ∈ [Rm
L ,RM

L ] ,

• R0 ∈ [Rm
0 ,RM

0 ],

• Ts∈ [Tm
s ,TM

s ].

Remark 10.1 The asymptotic stability of system (10.1) is guaranteed in apoint within an
uncertainty interval for the low level voltage,Il , and within an uncertainty interval for the
high level voltage,Ih, bounded by

Il ,

[

Rm
L (ukl

Vh−RM
0 Kleak)

ukl R
m
L +RM

0
,

Rm
L (ukl

Vh−Rm
0 Kleak)

ukl R
m
L +Rm

0

]

(10.3)

Ih ,

[

RM
L (ukhVh−RM

0 Kleak)

ukhR
M
L +RM

0
,

RM
L (ukhVh−Rm

0 Kleak)

ukhR
M
L +Rm

0

]

. (10.4)
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Other added problem is that the system can suffer some exogenous disturbances.

Consequently, the main objective is to find the optimal gain Kin such away that Control
(10.2) is robust with respect to delays as well as parameter uncertainties. Likewise, this opti-
mal K must guarantee asymptotic stability and disturbance rejection for the known constant
delays,h1 andh2.

10.1.1 Alternative representation for the saturated control (10.2) and
the error equation (10.1)

Firstly, some lemmas are given to rewrite the saturated control (10.2) and an alternative form.

Lemma 10.2 [67], for xk in Rn, assume that there exist K,G∈R1×n such that1< uk−1−h1 +
Gxk−h < N, then

satN1 {uk−1−h1 +Kxk−h}∈Co
{

α(m)(uk−1−h1 +Kxk−h)+ (1−α(m))(uk−1−h1 +Gxk−h), m= 1,2,
}

.

Lemma 10.3 Assume that there exists G∈ R1×n, P1
2 > 0∈ Rn×n and c> 0 such that for

any xk ∈ X, where
X =

{

xk : xT
k P1xk ≤ c−1} ,

then,1 < uk−1−h1 +Gxk−h < N, and Control(10.2)admits the following representation

uk−h1 =
2

∑
m=1

λmk

[

(α(m)(uk−1−h1 +Kxk−h)+(1−α(m))(uk−1−h1 +Gxk−h)
]

=
2

∑
m=1

λmk

[

uk−1−h1 +α(m)Kxk−h +(1−α(m))Gxk−h)
]

,

being∑2
m=1 λmk = 1, with λmk ≥ 0, for all k > 0.

Then, defining

Ωα ,

2

∑
m=1

λmkα(m), for all 0≤ λmk ≤ 1,
2

∑
m=1

λmk = 1

where the vertices of the polytope are given byα(m), Eq. (10.1) can be rewritten

ek+1 = (1−Tsβ )ek +Tsb(vr −Vh)(uk−1−h1 +α(m)Kxk−h

+(1−α(m))Gxk−h)+Ts(βvr +δ )−bTsuk−1−h1ek (10.5)

for m= 1,2.

2P1 is a positive matrix defined to guarante system stability.
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10.1.2 State-space representation

The saturated control and error equation, as redefined before, allow to system (10.1) rewrite it
in a state-space form. For this, an expression for the dynamic part of the controller,uk−1−h1,
is obtained.

Next expression is achieved from (10.1)

uk−h1 =
ek+1− (1−Tsβ )ek−Ts(βvr +δ )+bTsuk−h1ek

Tsb(vr −Vh)
,

and it is delayed one sampling period

uk−1−h1 =
ek− (1−Tsβ )ek−1−Ts(βvr +δ )+bTsuk−1−h1ek−1

Tsb(vr −Vh)
. (10.6)

Now, Eq. (10.6) is applied to (10.5) obtaining

ek+1 = (2−Tsβ )ek− (1−Tsβ )ek−1+Tsb(vr −Vh)(α(m)K +(1−α(m))G)xk−h

−Tsb(uk−h1ek−uk−1−h1ek−1), m= 1,2. (10.7)

This can be rewritten in the following matrix form:

xk+1 = A(uk−h1,uk−1−h1)xk +Bū(m)
k−h m= 1,2, (10.8)

where

A =

[

2−Tsβ −Tsbuk−h1 Tsβ −1+Tsbuk−1−h1

1 0

]

,

B =

[

Tsb(vr −Vh)
0

]

,

beingū(m)
k−h = (α(m)K +(1−α(m))G)xk−h for m= 1,2, with α(m) = [0,1]. uk−h1 anduk−1−h1

are treated as uncertain parameters, whose values will be inside the uncertainty interval
[1,N].

10.1.3 Stability and disturbance rejection problem

Equation (10.8) can be rewritten in the following explicit closed-loop form with anL2 per-
turbation added, in such a way that aH∞ problem can be formulated.

xk+1 = Axk +B(α(m)K +(1−α(m))G)xk−h+Bwwk m= 1,2, (10.9)

xl = φl , ∀l ∈ [−h,0] (10.10)

zk = I2xk, (10.11)
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with

Bw =

[

bw11 bw12

bw21 bw22

]

,

wherexk,zk,wk ∈Rn are the state vector, controlled output and exogenous disturbance input,
respectively.φk is the initial condition andh≥ 0∈R is a fixed and known delay. Moreover,

Problem 10.4 The problem is to find aX(P1,c), a vector G and K such that,

a) Lemma 10.3 holds and, hence, the closed-loop system(10.8)and

b) there exists a Lyapunov-Krasovskii functional Vk > 0, such that Vk+1−Vk along the
solution of (10.9)fulfills

Vk+1−Vk < 0, (10.12)

when the system is not perturbed, and for any perturbation input, there exists a min-
imum disturbance attenuation,γ∗ ≥ 0, such that, for allγ ≥ γ∗ theL2 gain between
the perturbation vector wk, and the output vector zk is less or equal toγ. i.e.

‖zk‖2
2− γ2‖wk‖2

2 < 0, ∀wk ∈ L2

for φl = 0, −h≤ l ≤ 0. (10.13)

The solution to this problem guarantees the system stability as well as the disturbance
rejection for the time-delay system (10.9)–(10.11).

10.2 H∞ control design

In order to cope with this problem a mathematical manipulation of Eq. (10.9) is performed
via a descriptor model transformation [51]. The descriptorapproach is just a variable change,
which makes easier to work with Lyapunov-Krasovskii functional [52].

10.2.1 Descriptor model transformation

Equation (10.9) is manipulated in order to achieve the previous objectives. For this, a de-
scriptor model transformation is applied.
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Considering:

yk , xk+1−xk, ψk ,

k−1

∑
i=k−h

yi .

Next, Eq. (10.9) is rewritten in the descriptor form [51]:
[

xk+1
0

]

=

[

yk +xk

−yk +Axk−xk +B(α(m)K +(1−α(m))G)xk +Bwwk

]

, m= 1,2.

Fromxk−h = xk−ψk, this system can be compactly written as:

Ex̄k+1 = Āx̄k−
[

0
B(α(m)K +(1−α(m))G)

]

ψk +

[

0
Bw

]

wk, m= 1,2, (10.14)

where

Ā ,

[

I2 I2
A+B(α(m)K +(1−α(m))G)− I2 −I2

]

, E , diag{I2,0}, x̄k ,

[

xk

yk

]

,

m= 1,2.

10.2.2 Condition for state-space representation

Firstly, the condition a) of the Problem 10.4 is dealt with. From [49], it is seen that, in order

to guarantee 1< u(i)
k−1−h1

+Gxk−h < N, for i = 1,2, whereu(i)
k−1−h1

= {1,N} ∀x∈X given in
(10.3), it is necessary that next equations are satisfied

2N ≥ N(1+cxT
k−hP1xk−h) ≥ 2(u(i)

k−1−h1
+Gxk−h) (10.15)

2≤ (1+cxT
k−hP1xk−h) ≤ 2(u(i)

k−1−h1
+Gxk−h), (10.16)

which correspond to

[

1 xT
k−h

]

[

N−2u(i)
k−1−h1

−G
∗ cNP1

]

[

1
xk−h

]

≥ 0, (10.17)

for (10.15) and

[

1xT
k−h

]

[

−1+2u(i)
k−1−h1

G
∗ cP1

]

[

1
xk−h

]

≥ 0, i = 1,2. (10.18)

for (10.16).

These matrices can be rewritten in a suitable form by employing the Schur’s comple-
ment. Likewise definingY = GQ1, applyingP̄1 = Q1P1Q1 and pre and post-multiplying by
diag{1,Q1}, next LMIs from (10.17) and (10.18) are obtained
[

c Y

∗ (N2−2Nu(i)
k−1−h1

)P̄1

]

≥ 0,

[

c Y

∗ (−1+2u(i)
k−1−h1

)P̄1

]

≥ 0, i = 1,2, (10.19)

respectively.
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10.2.3 Control design

Now, the condition b) of the Problem 10.4 can be formulated interms of Linear Matrix
Inequalties (LMIs) [53]. Fulfillment of condition (10.12) plus condition (10.13) is looked
for.

Takeζ , [x̄k ψk wk]
T , then objective (10.13) is satisfied if

Vk+1−Vk +xT
k xk− γ2wT

k wk ≤ ζ TΓ0ζ < 0. (10.20)

DefineP ,

[

P1 P2

PT
2 0

]

, beingP2 Hermitian.

For this purpose, as Lyapunov-Krasovskii candidate is considered

Vk = V1,k +V2,k +V3,k, (10.21)

being

V1,k = x̄T
k EPEx̄k, P1 > 0 (10.22)

V2,k =
h

∑
n=1

k−1

∑
i=k−n

yT
i Ryi , R> 0 (10.23)

V3,k =
k−1

∑
i=k−h

xT
i Sxi , S> 0, (10.24)

whereV1,k guaranties asymptotic stability of system (10.14) withoutdelays. Delay-dependent
as well as delay-independent criteria are considered inV2,k andV3,k, respectively [53,62].

Next, a sufficient condition for asymptotic stability and disturbance rejection is derived.

Theorem 10.5 Consider system (10.9)–(10.11) with energy-bounded wk and control law
ūk−h = α(m)Kxk−h +(1−α(m))Gxk−h for m= 1,2, where h> 0 ∈ R is a known constant
delay and K,G ∈ R1×n. If there exist S,R,P1 > 0 ∈ Rn×n such that the LMIs(10.19)plus
the following LMIs are satisfied:

Γ(m) ,









ĀTPĀ−EPE+diag{In,hR} −ĀTP

[

0
B(α(m)K +(1−α(m))G)

]

+

[

S
0

]

ĀTP

[

0
Bw

]

∗ −1
hR−S 0

∗ ∗ −γ2In









< 0

(10.25)
for m= 1,2,, then the equilibrium of the closed-loop system (10.9)–(10.11) is asymptotically
stable and there is a valueγ∗ such that forγ < γ∗ condition (10.13) is fulfilled.
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Proof: The goal is to satisfyVk+1 −Vk + zT
k zk − γ2wk

Twk < 0 for both disturbance
rejection and asymptotic stability of the equilibrium for system (10.14).

Lyapunov-Krasovskii method yields:

V1,k+1−V1,k = x̄T
k+1EPEx̄k+1− x̄T

k EPEx̄k

=
{

x̄T
k ĀT −ψT

k [0 α(m)KTBT +(1−α(m))GTBT ]+wk[0 BT
w]
}

×P

{

Āx̄k−
[

0
α(m)BK+(1−α(m))BG

]

ψk +

[

0
Bw

]

wk

}

− x̄T
k EPEx̄k

= x̄T
k [ĀTPĀ−EPE]x̄k +ηk +νk, m= 1,2.

where

ηk = −x̄T
k ĀP

[

0
α(m)BK+(1−α(m))BG

]

ψk−ψT
k [0 α(m)KTBT +(1−α(m))GTBT ]PĀx̄k

m= 1,2.

νk = wT
k [0 BT

w]P

[

0
Bw

]

wk + x̄T
k ĀP

[

0
Bw

]

wk +wk[0 BT
w]PĀx̄k,

V2,k+1−V2,k = hyT
k Ryk−

h

∑
n=1

yT
k−nRyk−n ≤ x̄T

k

[

0 0
0 hR

]

x̄k−
1
h

ψT
k Rψk

This inequality is obtained developing Eq. (10.23) and applying Jensen Inequality [61].

V3,k+1−V3,k = xT
k Sxk−xT

k−hSxk−h = xT
k Sψk +ψT

k Sxk−ψT
k Sψk

These developed expressions are applied to inequality (10.20), in such a way that the
LMIs (10.25) are obtained.

10.3 Robust control tuning

Now, in this section, the uncertain parameters given in Section 10.1 are taken into account,
guarantying the properties achieved above, stability as well as disturbance rejection for the
time-delay Vdd-hopping system. That means, to obtain a robust saturated control under
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parameter uncertainties, satisfying those properties. For this, Theorem 10.5 is extended in
the case of polytopic uncertainties.

Denote
Ω , [A BK Bw α uk−h1 uk−1−h1]

and assume thatΩ ∈ C o{Ω j , j = 1, ...,128}, namely

Ω =
n

∑
j=1

λ jΩ j , for some, 0≤ λ j ≤ 1,
n

∑
j=1

λ j = 1

and being the vertices of the polytope described byΩ j = [A( j) B( j)K B( j)
w α( j) u( j)

k−h1

u( j)
k−1−h1

] for j = 1,2, ...,128.

Pre and post-multiplying LMI (10.25) byQ = diag{Q1,Q1,Q1,Q1, In} and takingQ1 =
P−1

2 > 0 andP̄1 = Q1P1Q1, R̄ = Q1RQ1, S̄= Q1SQ1, the following sufficient condition is
achieved:

Theorem 10.6 Consider system (10.9)–(10.11) with energy-bounded wk and the control law
uk−h = Kxk−h where h≥ 0∈ R is a known constant delay and K,G∈ R1×n. If there exist
T,Y ∈ Rn×1 and Q1 ∈ Rn×n with K = TQ−1

1 , G = YQ−1
1 andR̄, P̄1, S̄> 0 ∈ Rn×n for j =

1, ...,128such that the LMIs(10.19)and

Γ̄( j) ,











Γ̄( j)
1 Γ̄( j)

2 −α( j)B( j)T − (1−α( j))B( j)Y + S̄ BwQ1

∗ P̄1−2Q1+hR̄ −α( j)B( j)T − (1−α( j))B( j)Y BwQ1

∗ ∗ − R̄
h − S̄( j) 0

∗ ∗ ∗ −γ2Q1











< 0, (10.26)

j = 1, ...,128.

where

Γ̄( j)
1 , Q1A( j)T +A( j)Q1−2Q1+α( j)TTB( j)T

+(1−α( j))YTB( j)T
+αB( j)T

+(1−α)B( j)Y + In

Γ̄( j)
2 , P̄1+Q1A( j)T −2Q1+α( j)B( j)T

+(1−α( j))YTB( j)T
,

are satisfied. Then, in the vertices j and i, the equilibrium is asymptotically stable as well as
the disturbances are rejected in the entire polytope.

Proof: This is an extension of Theorem 10.5 for a polytopic uncertainties with some
mathematical manipulations. Therefore, this theorem follows Theorem 10.5 proof.
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Remark 10.7 This robust control tuning method is conservative due to thedefinition of the
matrix P, as well as, the attraction domain,X.

Corollary 10.8 Gain K, obtained from T and Q1 in Theorem 10.6, fulfills Theorem 10.5 and
consequently guaranties both robust stability and robust disturbance rejection for a fixed
delay.

The extension of this approach considering the saturation mechanism of the ENARC
controller is open for future work.

10.4 Sub-optimal control result

In this section, the previous sub-optimal control tuning isapplied with the data reported in
Section 7.2. Now, the clock frequency is takenfclk = 200MHz. This frequency introduces
an one-sample-period delay (h1 = 1) in the control block output due to a power-performance
trade-off. Likewiseh2 = 2, thush = 3.

The uncertain parameters take the following ranges:

• transistor characteristic,R0, from 25Ω to 38Ω,

• load dynamic resistance,RL, from 55.53Ω to 72.46Ω,

• load capacitance,C, from 1pF to 1nF and

• clock frequency,ωn, from 125MHz to 600MHz.

Then, LMIs (10.6) are resolved, obtaining

K̄1 =−7179 (10.27)

K̄2 = 12114. (10.28)

This was obtained forc= 7.56,P1 =

[

0.0004 0.0008
0.0008 1.931

]

·1011 andG=
[

−35.09 736.45
]

.

In this computation, any perturbation was not taken into account. However, this method
can be applied for anyL2 exogenous disturbance.

Note that even if the control constant tuning is conservative, there is a feasible solution.
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10.5 Simulation Results

In this section some simulations are performed in order to show the properties that the
closed-loop system can achieve when the sub-optimal control gains are used in the ENARC
controller. Likewise, a comparison between the performance achieved with respect to the
control gains obtained by the previous control tuning givenin Section 7.2 (̄K1 = −19.3
and K̄2 = 39.27), and the gains got by the sub-optimal control tuning (K̄1 = −7179 and
K̄2 = 12114) is made.

For these simulations, the parameters values given in Section 7.2 and the data given above
are taken. We want to remark that in the following simulations, the delay ish = 3 and the
load dynamic resistance,RL, will be time-varying,rL.

10.5.1 Uncertain clock frequency.

In this kind of systems, clock frequency can be changes. The closed-loop system robustness
(with K̄1 = −7179 andK̄2 = 12114) is displayed when the sampling frequency isωn =
200MHz in Fig. 10.2 andωn = 400MHz in Fig. 10.3. Observe that the effect of the delay
is shown in system response. Note that the equilibrium is robust with respect to parameter
uncertainties and delay.

10.5.2 Uncertain PMOS resistance

In this first evaluation, it is assumed that the electrical characteristic of the PMOS can suffer
changes. For this, 0.8R0% and 1.2R0% is changed. This is shown in Fig. 10.4 and 10.5,
respectively.

Note that the system in the low voltage level converges to 0.677V and 0.797, which are
inside the interval given by (10.3),Il = [0.675V, 0.799V]. Likewise, the high voltage level
converges to 1.133V, which is inside the interval given by (10.4),Ih = [1.132V, 1.155V].
Therefore, system converges to the uncertain intervals. These tests show once again the
system robustness.

10.5.3 Uncertain load parameter

Finally, an example shows that system performance is sensitive to K̄1 andK̄2.
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Figure 10.2: ωn = 200MHzandK̄1 =−7179 andK̄2 = 12114. Evolution of the: a) number of PMOS
transistors switched on, b)vr (dashed) andvc (solid), c) currentIl .
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Figure 10.3: ωn = 400MHzandK̄1 =−7179 andK̄2 = 12114. Evolution of the: a) number of PMOS
transistors switched on, b)vr (dashed) andvc (solid), c) currentIl .
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The capacitance employed in the previous simulations have beenC = 1nF. In the follow-
ing, it is desired to validate the system robustness whenC = 1pF, i.e., 1000 times smaller.
The lack of knowledge of the load in the real applications of these systems may achieve
this change of three order of magnitude. Some simulations using both the original and sub-
optimal control tuning are made.

In Fig. 10.6, it can be seen a wrong behavior of the controllerwhen the previous control
tuning given in Section 7.2̄K1 = −19.3 andK̄2 = 39.27 are used. Nevertheless, Fig. 10.7
shows the simulation employing the sub-optimal control tuning, K̄1 =−19.3 andK̄2 = 39.27.
Note that in Fig 10.6, the system does not respond to voltage variation. However, in Fig. 10.7
the system performance is satisfactory.

This example shows the great robustness of the system when the sub-optimal control
tuning is employed.
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Figure 10.6: C = 1pF and K̄1 = −19.3 andK̄2 = 39.27. Evolution of the: a) number of PMOS
transistors switched on, b)vr (dashed) andvc (solid), c) currentIl .

10.6 Evaluation of the tuning methods

In this section, we want to perform an evaluation of the two control tuning approaches pre-
sented in this part of the thesis.
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The first tuning method for the ENARC controller was presented in Chapter 7. It was
developed focussed on ensuring the equilibrium convergence around of a set point for the
linearized closed-loop system. Later, in Chapter 9, an approximate stability analysis for
the nonlinear system and the approximate continuous-time ENARC controller with this first
tuning approach was performed. Consequently, this tuning mechanism takes into account
the management of the current peaks and the fast transient periods in such a way that a
high energy efficiency is achieved. However, the saturationof the total number of PMOS
transistors, system delays and parameter uncertainties have not been studied .

The second tuning method was developed in this chapter. It was developed taking into
account the saturation of the total number of transistors, fast transient periods, delays, per-
turbation rejection and uncertain parameter as well as stability issues. Moreover, the closed-
loop system with this method also offers a high energy efficiency. For this, it was called
sub-optimal control mechanism. Nevertheless, in this approach was not considered the man-
agement of the current peaks. An estimation of an attractiondomain, that ensures a maxi-
mum variation of the switched transistors in every samplingtime, could guarantee that these
current peaks are small. As future work, it is desired to extend this result regarding the
saturation mechanism that manages the current peaks.

This last control tuning takes into account more control objectives, and thus, it consideres
a closed-loop system closer of the real one. In order to test the achieved properties, some
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simulations are done employing the ENARC controller (i.e.,the controller with the current
peak management) with this sub-optimal tuning approach. Itcan be seen, the right system
behavior.

10.7 Conclusions

An energy-aware control has been developed for the Vdd-Hopping system. This controller
achieves almost of the control requirements for SoCs technology. Nevertheless, parameter
uncertainties and delays have been disregarded. Generally, this kind of systems have delays
due to synchronization issues and performance constraints. Furthermore, parameters can
change due to task requirements or can be varying on time.

In this chapter, these important issues have been dealt with. An sub-optimal ‘conser-
vative’ control tuning approach has been developed for the ENARC controller in order to
achieve a robust closed-loop system with respect to the parameter uncertainties and delays.
For this, the system is rewritten in a state-space form. The control has been based onH∞
theory applied to time-delay systems [26, 53, 101]. For this, some LMIs have been de-
veloped following Lyapunov-Krasovskii method. Conservativeness of the method for the
Vdd-Hopping system has been discussed. This kind of method to tune a linear controller are
employed in industrial applications [14,129]. System robustness has been showed by means
of some simulations.

An evaluation of the two tunning methods presented in this part of the thesis have been
performed taking into account the approximations employedin both approaches.

A future research will be performed, in order to extend this result considering the current
peak management in the control signal.

Therefore, with this development, all control requirements specified in Chapter 6 have
been achieved. A controller, pending patent under the name ENARC, was designed for the
Vdd-Hopping system with the aim of reducing the dissipated energy. This controller has an
energy-aware management of current-peaks in the set of PMOStransistors. In addition, a
step reference is used, thus, it only needs to know the two set-points. This result comes from
the possibility to control more than one transistor at once,i.e., to switch more than one tran-
sistor in a same sampling time. As a side effect the transient-periods are diminished. These
improvements make that system is more energetically efficient. In a comparison performed
with an ‘intuitive’ controller published in [99], it has been showed that energy-consumption
is reduced a 96%. Furthermore, it presents a relative low number of computational blocks,
what makes this controller feasible for industry applications. Finally, the closed-loop system
has a robust equilibrium stability with respect to parameter uncertainties and delays.
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In summary, in this work a controller for the Vdd-Hopping system has been obtained.
This controller has the next properties:

• high energy efficiency,

• system stability,

• small current peaks,

• fast transient periods,

• robustness with respect to parameter uncertainty,

• robustness with respect to delays and

• easy implementation.

Hence, it achieves an interesting relevance for SoCs applications and, thus, in ARAVIS
project implementation. An implementation of the ENARC controller in VHDL-AMS will
be performed in the project context, in order to validate itsperformed.



Chapter 12

Conclusions and future work

12.1 Conclusions and contribution summary

This thesis contributes to provide nonlinear control problem solutions to several classes of
power converters. Specifically, this thesis deals with a DC-AC converter for applications
of medium or high power, and a DC-DC converter for low-power applications. The first
problem was developed in the ‘Departamento de Ingenierı́a de Sistemas y Automática’ at
the ‘Universidad de Sevilla’ (Spain). And the second electronic application was raised in a
project of the French government, sponsored by the international competitiveness pole Mina-
logic, called ARAVIS. The control problem was tackled in the‘Département d’Automatique
de GIPSA-Lab’ at the ‘Institut Polytechnique de Grenoble’ and at the ‘Institut National de
Recherche en Informatique et en Automatique de Grenoble’ (France). Both converters are
regarded with respect to their work contexts, and thus, the associated control objectives are
different.

Due to the dissimilar natures of both applications mentioned before, the thesis is com-
posed of two parts. The first part is focused on the control problem of the DC-AC converter.
Its structure is based on a double DC-DC boost converter, obtaining a boost inverter. It is
no-minimum phase 4th order nonlinear system. Its main objective is to achieve thedesired
voltage with a suitable control law, that does not require any reference signal. Furthermore,
other problems, as no purely resistive and known loads, and the proposition of an estimated
attraction region have been coped with. The second part of the thesis is devoted to a discrete
DC-DC converter for low-voltage application in SoC. Its structure is the result of employing
DC-DC converters in this kind of technology. It is based on the Vdd-Hopping technic in
order to fulfill Dynamic Voltage Scaling, hence, it is called‘Vdd-Hopping converter’. This
system is a 1st order nonlinear system. Although, its simple model may not be attractive
for control applications, it has relevant interest in this field due to the project context, where
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it is dealt with. The control objectives come from the ARAVISproject. In this context, the
relevant aim for this DC-DC converter is to achieve a high-efficiency, while the current peaks
and the transient periods are minimized. This must be reached with a controller that ensures
the convergence to the desired equilibrium points, global stability and robust behaviour with
respect to delays and parameter uncertainties.

Next up, the most important contributions of this thesis arehighlighted.

For the first part, i.e., controlling the boost inverter circuit, the most important contribu-
tions have been:

1. A control law for the boost inverter has been designed based on an energy shaping ap-
proach for oscillation generation. This method provides a relevant property, the system
is autonomous, and hence, its analysis and implementation are easier, since the sys-
tem needs no reference signal. Furthermore, the energy shaping approach employed
to obtain the control structure ensures global stability.

2. A phase controller inspired by a phase-lock loop is presented in order to synchronize
the two output voltages of both parts of the system. This ideais extended to synchro-
nize the circuit with an external signal, as for example, with the electrical grid.

3. By means of developing a control adaptive for the unknown or/and slowing varying
load connected to the boost inverter, the desired output voltage is always achieved.
This control adaptive needs of a state observer for some variables, although all vari-
ables are measured. Global stability of the full system is proved by using singular
perturbation method, for this, the system is rewritten in the suitable form by using
time-scale separation.

4. The previous problems dealt with before have been extended to a load that is not purely
resistive but also has an inductive component. These developed works, have been not
considered in this thesis to make a simple reading, since they are just an extension.
However, as the inverter control law as the adaptive controller developed for the boost
inverter with an inductive load were published in [10] and in[12], respectively.

5. The last issue considered has been the estimation of an attraction region for the boost
inverter. It provides a set of initial conditions corresponding to trajectories that con-
verge towards the desired system behavior. This problem comes from the real nature of
the boost inverter, which has several constraints, including saturations. This makes that
the system has not global stability with the Lyapunov function obtained from energy
shaping approach.

Inspired by this estimation problem of an attraction regionfor the boost inverter, a
general estimation method for this class of problem has beenproposed. It takes ad-
vantage of certain defined Lyapunov function, that ensures global stability, raising a
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simple optimization problem. This fact makes that the estimation is ‘conservative’.
This problem is resolved rewriting it as a sum of squares optimization.

This method is applied to the boost inverter. For this, the previous Lyapunov function,
has been employed. The method provides a good ‘conservative’ estimation for the
inverter.

The second part of the thesis is focused on the control problem of the DC-DC Vdd-
Hopping converter. Here, the provided contributions have been:

1. A set of high-performance controllers has been proposed.These controllers have been
developed by applying several control theories focused on reaching the desired equilib-
rium point by the closed-loop system. From the set of controllers, the one that provides
a best performance is selected. In order to satisfy the objectives, some developments
have been made to this controller, applying optimal and adaptive control theory. This
control solution in spite of providing nice properties to the Vdd-Hopping converter
behaviour, has a relevant drawback: its computational costis very large. Therefore, it
is not a suitable solution for the ARAVIS project.

2. An innovative controller for the DC-DC Vdd-Hopping converter has been developed
based on the control structure with the smallest computational cost from the set of
control solutions proposed before. This controller has been designed based on energy-
aware concept. Its originality is due to its current-peak managing through saturations
with dynamic limits depending on the state of the system. It achieves the desired equi-
librium points increasing the energy saving, reducing the current peaks and diminish-
ing the transient periods. It covers almost all requirements in low-power technology.
In addition, its simple structure is remarkable for industrial applications.

3. A global stability analysis of the nonlinear model of the Vdd-Hopping converter with
the nonlinear controller presented before has been developed. The stability analysis of
the closed-loop system has been involved due mainly to the saturation limits depending
on the system state. The global analysis is ensured by LaSalle’s invariance principle.
For simplicity, this analysis has been performed in continuous-time. It is assumed that
the stability properties in discrete-time are conserved, as is common in control.

4. The last contribution is performed with respect to delaysin parameter uncertainties.
On the one hand, some delays can be presented due to the regarded work context of
the Vdd-Hopping converter. They may be caused by synchronization issues, as well
as, by providing an energy-performance trade-off. These delays can be considered as
one only constant delay. On the other hand, depending on the specific application,
the system parameters can be diverse and time-varying during the transient periods,
as well. Consequently, the problem is to find the optimal gains for the controller.
For this, an optimal tuning mechanism for these control gains based onH∞ theory
is proposed. They are obtained resolving some Linear MatrixInequalities (LMIs),
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which have been developed by Lyapunov Krasovskii method. These LMIs ensure the
equilibrium robustness with respect to delays and parameter uncertainties.

Finally, it can be concluded that nonlinear control theories can be powerful tools to pro-
vide solutions of several natures in industrial applications, in such a way that global stability
of these systems is guaranteed.

12.2 Future work

Following the investigations described in this thesis, thenext future work will be taken up:

In the boost inverter:

1. A physic implementation of the boost inverter will be madein order to test the per-
formance of the control law proposed from applying energy shaping. In addition, this
will allow to compare this control law with other controllers that have been already
published for the same inverter.

2. An extension of the proposed adaptive control can be performed considering that not
all the states are measured.

3. In the case of the global stability analysis to the system with the adaptive controller,
to extend this analysis (which has been performed employingsingular perturbation
analysis) for a infinite time.

4. To find a less conservative solution to estimate the attraction region by employing
another advanced tool to solve the sum of squares optimization problem.

5. .

In the Vdd-Hopping converter:

1. An implementation of the controller proposed in this thesis will be performed in
VHDL-AMS, in order to test its real approximate behaviour before to implement it
in SoCs.

2. A better numerical solution to obtain an optimal voltage reference for the Lyapunov
controller will be performed with another advanced mathematical tool.

3. Extension of the stability analysis of the closed-loop system in discrete-time.
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4. Extension of the sub-optimal tuning approach for the control gains considering the
saturation of the current peak management.
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