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Chapter 1

Introduction

1.1 Bulk amorphous alloys

Development of new materials is an important activity in the continued progress of

science and technology. Metallic amorphous alloys [1, 2, 3] are one such category of

materials which have attracted the attention of scientists and technologists for the

past three decades, during which these materials passed from a basic research interest

to the status of practical materials for industriel applications. This is because of their

excellent combination of characteristics resulting from their disordered structure.

For instance, the amorphous alloys containing the transition metals Fe,Co,Ni as

a major component exhibit extremely high tensile strengths which are about two

times higher than those of crystalline alloys; some of them are exceptionally corrosion

resistant; and they behave as very soft magnetic materials [3].

For the formation of an amorphous phase by rapid solidification (quenching) of

the melt, it is essential to supress the nucleation and growth of crystalline phases

in the supercooled liquid region, i.e. between the melting point Tm and the glass

temperature Tg. For the first generation of metallic glasses, up to the end of the

eighties, critical cooling rates of the order of 104 − 106 K/s were required to form a

glass by rapid solidification. In general, these high cooling rates have been reached by

quenching the melts on a cold metallic substrate, which limits the sample geometry

to thin ribbons of typically 50 to 100 µm in thickness. These ribbons show a low

thermal stability with respect to crystallization when heated into the glass transition

region. In many alloy systems, the glass transition cannot even be observed since

the amorphous alloy transforms to a crystalline phase before Tg is reached. As

an exception, it was known that Pd- and Pt-based amorphous alloys have critical

oooling rates of 102 − 103 K/s and are amorphized in the thickness range of about

4 mm by rapid quenching in water.

The realization of metallic amorphous alloys by very low cooling rates, compa-

rable to those of oxide glasses, has been a long-cherished desire of materials scien-

tists. This aim was realized at the begining of the nineties by the discovery of new

3



CHAPTER 1. INTRODUCTION 4

families of multicomponent glass forming alloys such as Zr-Ni-Al [4], La-Ni-Al [5],

Zr-Ni-Al-Cu [6], and Zr-Ti-Cu-Ni-Be [7]. These alloys show a high thermal stability

of their supercooled liquid when heated above Tg. Moreover, cooling rates as low

as 1− 100 K/s are sufficient to reach high levels of undercooling. Consequently, it

becomes possible to produce bulk samples of about 10 mm (cm class) by conven-

tional casting processes. This opens a new era for amorphous alloys because now

one can overcome earlier limitations of shape and size which have been the most

serious disadvantages for a broader use of these alloys.

These new bulk amorphous alloys are excellent advanced engineering materi-

als due to their excellent wear properties, low coefficient of friction and corrosion

resistance. Viscosities in the range of 107 − 108 poise can be reached in the un-

dercooled region below the crystallization temperature Tx. Therefore they can be

easily deformed by pressing, drawing and blowing, processes known for the working

of oxide glasses. Furthermore, the high thermal stability of these alloys makes for

first time possible the detailed exploration of the kinetics and the thermodynamics

in the supercooled region, up to about 100 K for some bulk amorphous alloys [8].

Various models have been proposed to explain the unusually large glass forming

ability of the bulk metallic glass formers [9, 10]. These models can be grouped into

three categories of thermodynamics, kinetics and structure. The three models are

discussed in chapter 7. On the other hand, Inoue [3] advanced three empirical rules

to characterize a bulk metallic glass, i.e., 1) multicomponent alloy system consisting

of at least three components, 2) significant different atomic size ratios, above about

12%, among the main constituent elements, and 3) negative heats of mixing among

their elements. According to Inoue, fulfillement of these three conditions leads to

the formation of a highly dense packed structure.

1.2 The diffusion mechanisms in amorphous al-

loys

The nature of atomic transport in metallic glasses has been the subject of extensive

theoretical and experimental studies over the past decade. Particularly, the basic

diffusion mechanisms still remains a controversial discussed issue [21, 22]. This

interest comes from the fact that diffusion controlls many processes in amorphous

alloys such as structural relaxation, phase separation and crystallization which are

of importance for predicting the thermal stability of these materials.

The material transport in ordinary liquids well above the melting point seems to

be quite well understood. The diffusion takes place via a viscous flow as described

by the Stokes-Einstein relation. Kinetic models predict a temperature dependence

of the type D ∝ T n, where n is found to be close to 2 according to MD simulations

and experiments [23].
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Upon cooling the liquid, its viscosity increases continously and the atoms become

more and more trapped in their nearest-neighbor “cages” for times longer than the

vibration time. The mode coupling theory (MCT) predicts that this cage effect leads

to a freezing of the viscous flow at a critical temperature Tc, and that the diffusivity

above Tc obeys a power law dependence D ∝ |T − Tc|γ [24]. The predictions of the

MCT have been confirmed by several MD simulations [25, 26, 27]. It was shown,

moreover, that around Tc a change in the diffusion mechanism takes place, namely

a transition from a viscous flow to thermally activated hopping [28, 29, 30].

In the glassy state, the basic diffusion mechanism still remains under discussion.

A very important aspect is whether diffusion is essentially a single-jump process

similar to defects (vacancies or interstitials) diffusion in crystalline solids or a col-

lective process where many atoms are involved. The temperature dependence of the

diffusion coefficient gives access to the activation energy and to the preexponential

factor. These two parameters give, however, no information about the diffusion

mechanism in the amorphous alloys studied. The key experiment, which gives more

insight into this question, is to measure the isothermal pressure dependence of the

diffusivity [21]. If the diffusion takes place via, e.g., a single-jump-type vacancy

mechanism, one expects an activation volume, defined as Vact = −kBT (∂lnD/∂p)T

, of the order of one atomic volume. The few measurements of the pressure depen-

dence of diffusion performed until today lead to contradictory conclusions, since the

activation volumes deduced range from −0.06Ω to 1Ω (Ω: atomic volume).

Höfler et al. [31] measured the effect of pressure on tracer diffusivity of Co in

amorphous NixZr1−x and found an activation volume close to 1Ω. Duine et al. [79]

determined an activation volume for diffusion of Au in amorphous Pd40Ni40P20 also

close to one atomic volume. From the similarity of these activation volumes with

typical values in crystalline materials with diffusion via a vacancy mechanism, these

autors proposed a defect mechanism for the amorphous structures, too.

In contrast, Faupel et al. [32] measured the pressure dependence of Co diffusivity

in Co76.7Fe2Nb14.3B7 and found Vact ≈ −0.06 Ω. Rummell et al. [80] also found

an activation volume Vact ≈ −0.07 Ω for Co diffusity in amorphous Fe40Ni40B20

alloy. These vanishing activation volumes have been attributed to a highly collective

diffusion mechanism involving the simultaneous rearrangement of several atoms.

This observation has been related by Heesemann et al. [81] with the very small isotop

effect of cobalt diffusion in the amorphous state of several conventional metallic

glasses (e.g. Co-rich Co-Zr alloys) as well as in the deeply supercooled melt of the

bulk glass forming alloy Zr41.2Ti13.8Ni10Cu12.5Be22.5.

That both diffusion mechanisms (the single-jump as well the collective process)

are possible in amorphous alloys, is in agreement with findings of Teichler [30] who

showed in MD simulations of arrested Ni80Zr20 and Ni50Zr50 that in the first sample

about 80% of Ni diffusion take place in form of cooperative hopping processes of

several atoms (ring mechanism), while in the second sample 85% of the Ni transitions
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are single atom jumps with flow motion in their environment.

1.3 To this work

Basic understanding of the material properties requires often knowledge on a mi-

croscopic level of the underlying energetics and interaction mechanism. In most

situations, this knowledge is not accessible by experimental tools and the problem is

too complex to be treated by analytical theories. In these situations, which include

the majority of material systems and phenomena, the use of computer-based meth-

ods is unavoidable. Growth in computer power is allowing systems of increasing

complexity to be studied, and refinements in interatomic potentials are leading to

greater precision in the calculations.

In the present work, we use one of the popular computer-based methods, namely

the molecular dynamics (MD) simulation, to model an amorphous alloy with a large

glass forming ability (GFA). At the origin was the intention to understand how is

this large GFA reflected in thermodynamic, structural and (or) dynamic properties

of such an alloy. The availibilty of the microscopic information (atomic positions

and velocities) makes possible the direct calculation of these properties.

The choice of the ternary bulk amorphous alloy Ni25Zr60Al15 has been dictated

by methodical constraints. The realistic modellization of a physical system by MD

simulation methods supposes the availability of reliable interatomic potentials for

this system, or eventually the possibility to develop these potentials. This represents

a complex problem in the case of bulk amorphous alloys since they are all multi-

component systems (more than two components). In the pair-potential picture,e.g.,

a system with k components requires that the k(k +1)/2 pair-potentials are known.

Regarding this, the choice of a ternary system is optimal. Moreover, the binary

systems Ni-Zr have been widely studied in our group [11, 12, 13, 14, 15] by means of

the Hausleitner-Hafner (HH) interatomic couplings [16]. The particular composition

Ni25Zr60Al15 was chosen, as here experimental data concerning the thermodynamics

and the structure are available. A comparison of these experimental results with

those predicted by the model allows to check the reliabilty of the model. The par-

ticular interest of experimentators to this composition is due to its optimal GFA in

the class of Ni-Zr-Al ternary alloys, as stated below.

The HH-potentials turned out to give a quite realistic description of the

transition-metal Ni-Zr binary alloys. In our modelling of the ternary alloy

Ni25Zr60Al15, we make further use of these potentials to describe the interatomic

interactions in the subsystem Ni-Zr. The Al-Al interaction is described by the pair

potential derived for pure Al within the framework of the pseudopotential theory

[17]. The remaining Ni-Al and Zr-Al interatomic couplings are determined by fitting

a Stillinger-Weber analytical form [18] to experimental data of crystalline Ni3Al and

Zr3Al, respectively.
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Amorphous Ni-Zr-Al ternary alloys with a large glass forming ability were devel-

oped first by Inoue et al. [4]. The alloys exhibit a wide supercooled liquid region and

a high mechanical strenght at the Zr-rich composition side. In particular, the alloy at

the composition Ni25Zr60Al15 has a large temperature span ∆Tx = Tx−Tg ≈ 80 K,

which is the largest for these class of amorphous alloys. The highest value of the

reduced glass transition temperature is also found in the vicinity of this composition

with Tg/Tm ≈ 0.64. The minimum cooling rate is in the range of 102 K/s, which is

comparable to that achieved by quenching in liquids.

In attempting to understand the high GFA of amorphous Ni25Zr60Al15 alloy, we

carried out in this work a systematic comparison with the conventional binary glass

former Ni35Zr65. For the Zr-rich Ni-Zr binary amorphous alloys it has been reported

that the glass transition is scarcely observed and that ∆Tx is below 10 K. The

comparison includes thermodynamical properties, the local atomic structure and

the dynamical behavior.

Inoue et al. [4] suggested that the high thermal stability of Zr-rich Ni-Zr-Al

ternary alloys compared to the Zr-rich binary ones originates partly from an increase

in the packing fraction by the dissolution of Al. Due to the intermediate atomic size

of Al (the atomic radii of Ni,Al and Zr are 1.24, 1,43 and 1.60 Å), it can fill up

the vacant sites in the disordered Zr-Ni structure. The dense atomic configuration

is then thought to result in an increase of the viscosity (or equivalently a decrease

of the diffusivity) of the system, leading to an enhanced thermal stability of the

supercooled liquid. The maximal GFA of Ni25Zr60Al15 is explained by an optimal

packing density at this composition. The dynamical study in Chapter 6 shows that

in this point the predictions of our model disagree with the interpretations of Inoue

et al.: We observe an enhanced diffusivity by substituting Ni by Al atoms for a given

temperature. The analysis of the atomic-level stress tensor [103] points out that this

effect is due to the n-defect (vacancy-like) character of the Al sites, which results in

an increasing free volume by the dissolution of Al. This effect may be explained by

the higher binding strength of Zr-Ni relatively to Zr-Al, as we will show in chapter

3.

In Chapter 4 the systems are analysed in terms of thermodynamic quantities

which are used to determine the caloric glass temperature Tg. A higher Tg is found

for the binary alloy compared to the ternary one. This is in agreement with the

enhanced diffusivity obtained by substituting Ni through Al atoms.

In chapter 5 the atomic structure of the amorphous system is investigated in

terms of the radial distribution function, the static structure factors and the bond-

angle distribution. A particular feature which emerges from this analysis is the

existence of a pronounced chemical and topological short range order (SRO) even

at very high temperatures. In a comparative study of a selection of Zr-based bulk

metallic glasses (so-called Johnson glasses), Busch et al. [19] related the large GFA of

these glasses with the presence of a chemical SRO. This suggestion is due to the ob-
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servation that glass formers with the lowest critical cooling rates have smaller Gibbs

free energy differences ∆Gl−x between the undercooled liquid and the correspond-

ing cristalline mixture. This mainly comes from a smaller entropy of fusion which

determines the slope of ∆Gl−x at the melting point. Atom probe field microscopy

and small angle neutron scattering experiments have confirmed the existence of such

chemical SRO [20].

Chapter 6 deals with the dynamical properties of the studied systems. We in-

vestigate for this purpose the self-diffusion, the van Hove correlation functions, the

intermediate scattering function and the shear viscosity for ternary Ni25Zr60Al15.

This investigations are performed over a wide temperature range from the liquid

state at higher temperatures down to the arrested (glassy) state. We test par-

ticularly some predictions of the MCT. We find that the transition in the diffusion

mechanism from viscous flow to hopping processes starts already well above the crit-

ical temperature Tc. This transition is found to be associated with the decoupling

of the diffusity from the viscosity, as expressed by the failure of the Stokes-Einstein

relation. At the end of the Chapter a comparison with the binary Ni35Zr65 alloy is

presented by analysing the atomic-level stress tensor.



Chapter 2

Molecular dynamics simulation

methods

2.1 Introduction

Basic understanding of the material properties often requires knowledge of the under-

lying energetics and interaction mechanism on a microscopic level. In most situations

this knowledge is not accessible to experimental tools. In these cases, which include

the majority of material systems and phenomena, the use of computer-based tech-

niques [33, 34] seems to promise particular success. They make it possible to obtain

rigorous numerical results about a complex system. Another merit of the computer-

simulation methods is that they can produce ’macroscopic’ behavior under precisely

controlled conditions which can be varied by the observator, and by so doing one

can gain a great deal of physical insight into complex phenomena where several com-

peting processes are in play. For instance, it is possible to consider the dependence

of the glass properties on quench rates or on interatomic potentials. Nowadays, the

computer simulations are successfully applied to a wide range of problems in solid

state physics, chemistry, material sciences and quantum field theory, opening so a

new branch of investigations besides the experimental and theoretical methods.

While, in the early days, the computer simulations were limited to small systems

with several hundred particles, large scale simulations are today possible and new

records in system sizes are reported frequently [35]. This is promoted by the re-

markable progress in computer performance in the last two decades, especially with

the generation of the powerfull parallel computers [36, 37].

In the present work, we make use of the molecular dynamics (MD) method ,

which is one of the computer-simulation techniques. A brief description of this

method is given in the following sections. A more detailed representation can be

found in references [38, 39, 40].

9
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2.2 MD simulation algorithms

In MD simulations for a system of N particles, phase space exploration is achieved

by numerical integration of the 3N coupled Newton’s motion equations:

mi
d2ri

dt2
= −∇iΦ(r1, r2, ..., rN) , (2.1)

in discret time steps ∆t (we used in this work ∆t = 2.5 fs) and a given set of

thermodynamic variables (such as volume, pressure and temperature). mi denotes

the mass of the ith particle, {ri} the position vector of the particle and Φ({ri})
the potential energy of the system, oftenly written as the sum of interatomic pair

potentials.

The time evolution of the system is determined, through a deterministic calcula-

tion of the trajectory of each particle in the phase space. This is in contrast to the

Monte Carlo method [38], where the system evolves according to stochastic dynam-

ics by setting up a random walk to sample configurations via a given distribution

function.

In order to solve the Eq. (2.1), we use a modified fifth-order Gear algorithm,

which is described in reference [44]. Gear algorithms [43] refer to a class of predictor-

corrector methods which require only one force evaluation per integration step ∆t.

This requirement is decisive when algorithms choice is made, since the force calcu-

lations take up the lion’s share of the hole computing time. The fifth-order Gear

algorithm uses explicitly positions and velocities of one step and forces at the three

previous steps. Thus, derivatives with time up to the forth order are implicitly in-

volved. This corresponds to an error of (∆t)5 in the particles trajectories. Since

indirectly higher order of derivative of the potential are involved in our algorithm,

numerically rather stable solutions are obtained. The price we pay for such high

accuracy is an extended memory storage space, which amounts 6 data per degree of

freedom. For purpose of comparison: a velocity-Verlet-predictor-corrector algorithm

requires storage of 4 data per degree of freedom, but has an accuracy of (∆t)3 [34]

only.

2.3 Ensembles

In the traditional microcanonical MD simulations, one considers the movement of a

constant number of particles in a box whose size and shape are fixed. The system is

assumed to be free from any external force so that the total energy is conserved. This

ensemble is easy to handle, however it makes direct comparison with experimental

results difficult since laboratory experiments are usually carried out at constant

pressure.

In this work, all the simulations are performed under constant pressure P and

temperature T . This corresponds to the canonical ensemble (N, P, T ) in statisti-
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cal mechanics. In this ensemble, the total energy is allowed to fluctuate by the

interaction with a piston and through the thermal contact with a heat bath. The

temperature T is related classically to the kinetic energy. We use this relation to

realize the isothermal condition by scaling the velocities vi of the particles

vi −→ vi

√√√√3NkBT/
N∑

i=1

miv2
i , (2.2)

in every time step ∆t of the simulation. This simple velocity-scaling method, due

to Woodcock [44], represents an approximation to the gaussian constraint method

[45], which realizes the correct canonical distribution in the coordinate space. The

error of this approximation is of ∆t, if the scaling is carried out at every time step.

The pressure P is expressed as the average of the kinetic energy and the virial

P =
1

3V

N∑
i=1

miv
2
i −

N∑
j>i

∂Φ(rij)

∂rij

rij

 + Pex (2.3)

where vi is the velocity of the particle i, rij the vector joining particle i to particle

j, and Fij = −∂Φ(rij)/∂rij the force exerted by particle j on particle i. Pex is the

external pressure, set to zero in our simulation. From Eq. (2.3) we see that the

pressure can be adjusted by expanding or contracting the simulation box.

A more refined version of the constant pressure method was presented by An-

derson [46] . In this approach the volume is a fluctuating degree of freedom with

corresponding kinetic and potential energy term in the total Hamiltonian of an ex-

tended system. The equations of motion of the volume realize a feedback mechanism

which keeps the pressure around a constant value in a natural way. In a similar way,

Nosé [45] treated the constant temperature condition by adding a degree of freedom

which describes the coupling to the heat bath. Parrinello and Rahman [47] extended

this technique to allow a change of the shape of the simulation box. This method

turned out to be a powerful tool to study the polymorphic phase changes in crystals,

e.g. martensitic transformations [122].

2.4 Periodic boundary conditions

Two limitations are imposed to MD simulations in the realization of the thermody-

namic limit. On one side, there are finite-size effects in the simulations in the sence

that the numerical system with a typical particles number N in the range of 103

is necessarly limited in size. A system of this size would be considerably affected

by surface effects. On the other side, there are finite-observation-time effects in the

sence that the simulation time is much shorter than the time used in experimental

measurements. In this work, we use the conventional periodic boundary conditions

(pbc) to minimize the finite-size effects. This approach consists in a periodic rep-

etition of the simulation box in the three directions to fill the whole space. This



CHAPTER 2. MOLECULAR DYNAMICS SIMULATION METHODS 12

operation removes all free surfaces. By construction, each particle possesses an in-

finity of periodic images. To avoid that a particle interacts with its own image

or with two images of the same particle, the minimal-image convention is adopted

[38, 39, 40]. Only interaction with the closest images is taken into account in this

scheme. The range of the interaction is assumed to be smaller than L/2 , where L

is the length of the cubic box.

In order to minimize the finite-observation-time effects, the desired physical prop-

erties are evaluated by averaging the results over different configurations and over

several MD runs using different starting configurations.

2.5 Cut-off radius and Verlet-list

In modelling of metals, short-ranged potentials are usually used. The advantage

of such potentials in MD simulations is evident: In a relatively large system, the

number of particles pairs to be considered in the laborious forces calculations could

be considerably reduced. In this work, we describe the interatomic potentials mainly

with Stillinger-Weber [18] pair-functions which decay smoothly to zero at a distance

rc, the cut-off radius. For a given atom, the interactions are thus limited to the

neighbors at distances smaller than rc. The calculation of the different N(N − 1)/2

distances in every integration step consumes a significant computing time. This

can be considerably reduced by making use of the Verlet-list [40]. To every atom

one attributes a neighbor list which contains all particles within a Verlet-radius

rv, choosen somewhat larger than rc. In calculating the forces acting on a given

atom, only the particles belonging to its list are considered. The neighbor list is

updated once every about 5 to 20 integration steps, depending on the mobility of

the particles, such that the estimated maximal displacement of the particles between

two updating remains smaller than the difference rv − rc.

2.6 Samples preparation

The simulations presented in this work have been performed with N = 1100 atoms

for the ternary system Ni25Zr60Al15 and N = 648 atoms for the binary Ni35Zr65.

Starting with a liquid configuration at 3000 K, well relaxed structures have been

generated at lower temperatures by cooling and equilibrating the system. The equi-

libration time lies between about 0.8×106 integration steps (2 ns) at highest tem-

peratures and 20×106 integration steps (50 ns) at lowest temperatures. In order to

evaluate the various physical parameters, data analysis was carried out over about

the last two third of the equilibration run. Taking into account the equilibration

time, the effective cooling rate is of the order of 1010-109 K/s, which is much larger

than the cooling rates usually achieved in experiments but still smaller than those
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often used in previous MD simulations.



Chapter 3

Interatomic Potentials

The degree of correspondance between the MD simulation models and the physical

system of interest depends to a large extent on the nature of the potential energy

employed in the simulations. The use of reliable potentials is therefore of a central

importance for atomistic simulations.

In the simple models, the interaction between the atoms are described with

pairwise interactions, the so-called pair potentials. These potentials have known

deficiencies (e.g., a rigid but unrealistic correlation between cohesion and vacancy

formation energy) which can be removed partly by going beyond the pair-potential

picture and introducing some many-atom interactions. We give in the following a

brief decription of some of these potentials [48].

3.1 Pair-potential interactions

There are two different approaches to describe the interatomic interactions in terms

of pair potentials. The first approach is to write the total energy of an atomic

arrangement as a sum over simple pair potentials

ETot = −1

2

∑
i6=j

Φij(Ri −Rj) , (3.1)

where Φ defines the pair potential and Ri the atom coordinates. Rare gases and ionic

systems, for example, can be adequatly described in terms of these pair potentials.

They include the Lennard-Jones potentials

Φ(r) = 4ε((
σ

r
)12 − (

σ

r
)6) , (3.2)

commonly used for rare gases. A variety of other pair potentials have been suggested

to describe materials other than rare gases. A widely used example is the Morse

potential

Φ(r) = ε(e−2α(r−r0) − 2e−α(r−r0)) , (3.3)

14



CHAPTER 3. INTERATOMIC POTENTIALS 15

which has three parameters to be fixed to the experimental properties of the mate-

rials in question.

The deficiency of simple pair potentials lies in their inability to reproduce many

important properties of metals, e.g. the vacancy formation energy and the relation

between the elastic constants (Cauchy relations).

The second approach to pair-potential description of the total energy is based

on the linear response theory and is mainly used in simple metals. In nearly-free-

electron-like simple metals (nontransition metals) the valence electrons form an ho-

mogeneous electron gas and the ions can be described by weak pseudopotentials. In

the second order perturbation theory the total energy of the metal has the form [49]

ETot = −1

2

∑
i6=j

Φij(Ri −Rj) + EV ol , (3.4)

where EV ol is an energy term independent of the structure of the metal but depen-

dent on the total volume of the system. In this approach, the pair pseudopotential

Φ has a very different meaning than the expression of Eq. (3.1) since only part of

the total energy comes from the sum over the pair potentials (in Al, for example,

the pair-potential sum gives only a few percent of the cohesion energy). Generally,

the interatomic potentials based on the pseudopotential approach work fairly well

for those properties of the metals where the density fluctuations are small. In the

case of surfaces and open volume defects, such as vacancies, these potentials are,

however, inappropriate since the density changes are so large that they cannot be

described by the linear response theory.

3.2 Many-atom interactions

For metallic systems, an alternative to the pair-potential picture is provided by the

effective medium theory (EMT) [51] or the related embedded atom method (EAM)

[52]. This approach is based on the ideas of the density-functional theory [50] (and

amenable to MD-simulation modelling). Here the total energy of the metal can be

written as

ETot =
∑

i

F (ni) +
1

2

∑
i6=j

Φij(Ri −Rj) , (3.5)

where ni is an effective electron density at the site of the atom i and is approximated

by the superposition of atomic density tails from the other atoms

ni =
∑

i

nat,i(|Ri −Rj|) . (3.6)

F (ni) is a nonlinear function (the “embedding energy”) describing the interaction of

the atom i with its electronic surrounding, and Φ a pair potential. The embedding-

energy term F (ni) is supposed to describe the complex many-atom interactions.
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Moreover, it is an explicit function of atomic positions so that variations in local

atom density can be easily accounted for. F, ni and Φ can be derived theoretically

or determined empirically by choosing proper parametrization functions and fitting

the parameters to some experimental data.

The first empirical method, in the form of Eq. (3.5), was the EAM model

introduced by Daw and Baskes [52]. In their formulation, the pair potential Φ is a

purely repulsive term accounting for ion-ion and orthogonalization repulsion at short

range. Since this original work, several other methods, equivalent to the EAM, have

been proposed. These methods all take the form of Eq. (3.5) with differences due

to specific parametrizations of F and ni. Finnis and Sinclair [53] proposed that the

d-d hybridization in the second-moment approximation of the tight-binding model

could also be described by Eq. (3.5). The energy function F is found then to be

negative and can be thought to be proportional to the negative square root of the

coordination number.

The advantage of the total energy expression of Eq. (3.5) is that it is essentially

as efficient in computer simulations as the pair-potential expressions of Eq. (3.1) or

Eq. (3.4). Moreover, EAM potentials have been found to describe fairly well bulk

and surface properties of transition metals. Similar good results have been obtained

using the tight-binding model of Finnis and Sinclair [53].

Moriarty [54]has extended the pseudopotential theory to higher order of per-

turbation to derive three-body forces and higher many-body interactions to the

elemental transition metals. This method has been applied by Rössler [55] to re-

produce successfully the structural properties of a range of transition-metals melts.

However, as this approach is based on a uniform electron gas as starting point, it

is not expected to be adequate, even in higher orders, for studying inhomogeneous

defect environments; e.g. the structure of surfaces where the electron density goes

to zero.

3.3 Hausleitner-Hafner (HH) interaction poten-

tials

Hausleitner and Hafner [56] presented a hybridized nearly-free-electron (NFE) tight-

binding-bond (TBB) approach to interatomic forces in disordered (liquid and glassy)

transition-metal alloys. The basic assumption of this model is to divide the total

energy into contributions from the localized strongly bonded d-electrons and the

much more mobile s-electrons

ETot = Es + Ed . (3.7)

The s-electrons contribution is treated in a NFE approximation. The pseudopo-

tential perturbation theory here is used to write Es in terms of a volume-energy term
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and a sum over pair potentials, Eq. (3.4). The d-electrons contribution is written

within the TBB approximation in terms of a repulsive pairwise interaction contain-

ing the electrostatic, exchange-correlation and the nonorthogonality contributions

and a covalent bond energy resulting from the formation of d band

Ed = Ed,rep + Ed,bond . (3.8)

Hybridization between s and d states is taken into account by setting the numbers

of s and d electrons equal to the values resulting from a self-consistent band-structure

calculation for the pure crystalline transition metals.

The repulsive energy Ed,rep is assumed, after Wills and Harrison [58], to be given

by a sum over pair potentials with a power-law dependance Ed,rep ∼ 1
R8 . Ed,bond can

be written in a two-centre orthogonal tight-binding approximation as

Ed,bond ∼
∑
i,j

h(|Ri −Rj|) θij , (3.9)

where h is the transfert integral for d orbitals centered at sites i and j. θij is

the bond order parameter which is defined as the difference between the number

of electrons in the bonding and the antibonding states formed by the orbitals at

sites i and j. Eq. (3.9) represents only formally a pair interaction, the quantum-

mechanical many-body character of the covalent bond enters via the bond order θij

which depends on the local atomic environment.

The hybridized NFE-TBB approach has been applied by Hausleitner et al. [57]

and by Rössler [55, 59] in atomistic modelling of binary (Fe, Co, Ni)(100 − x)Zrx

glasses via MD simulations. The approach is able to explain successfully the signifi-

cant details of structural, of electronic and of magnetic properties of these amorphous

structures.

3.4 Model used in this work

We describe in this subsection the interatomic potentials employed in this work to

study the NiZrAl system.

First we adopt a global form of the total energy similar to that one derivated in

the NFE-TBB approach; i.e., effective pairwise interactions augmented by a volume-

dependent free-electron term EV ol. We use for EV ol the energy expression of a

homogeneous electron gas perturbated to first order by the ionic lattice as known

from the theory of cohesion of simple metals [60].

Concerning the effective pair potentials, a hybrid of different approaches has

been adopted. For the Ni − Zr subset we use the pair potentials as derived by

Hausleitner and Hafner for the amorphous binary alloy Ni35Zr65 in the framework

of the NFE-TBB scheme [56]. This concentration has been choosen because it is

close to the relative concentration of Ni and Zr in the Ni25Zr60Al15 system modelled
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in this work. Hausleitner and Hafner showed, moreover, that in this concentration

range the pair potentials exhibit only a weak concentration dependence, so that

slight concentration deviation from that of Ni35Zr65 alloy could be modelled with

the same pair potentials without significant effects on the obtained results.

As proposed by Teichler [11], the HH-potential is fitted by a Stillinger-Weber

form

Φij(r) = A
(
(αr − a1)

−n − 1
)

exp
(

1

αr − a2

)
(r < a2/α) . (3.10)

The parameters are adapted to the minimum position, depth, width and zero of the

pair potentials. The analytical form of Eq. (3.10) has the advantage to need less

computation time than the original potentials and is therefore more appropriate for

long-time runs. The SW form has, moreover, the advantage to go smoothly to zero

at a reasonable cutoff distance and that the function and its derivatives have no

discontinuities in r. The use of the original potentials would require to cut them

abruptly at a given distance because of their relatively long-range nature.

The resulting SW fitting-parameters for the different atomic pairs of the Ni−Zr

subset are given in tab.(3.1), the corresponding potentials are shown in Fig. (3.1).

The pair interaction ΦAlAl is described in our model by the pair potential derived

for pur Al within the framework of the second order pseudopotential theory [61].

The use of such a first principle potential requires usually tabulation at each atomic

volume. Alternatively, we use hier the following analytical form

Φ(r) = 2
Z2

r

3∑
n=1

Ancos(knr + αn)e−κnr , (3.11)

suggested by Pettifor et al. [17], which is well suited for use in MD simulations. The

parameter values are given in tab.(3.2). As this potential is of a long-range nature

(due to the asymptotic Friedel oscilllations), we impose a cutoff radius at a distance

of 5.5 Å.

At this stage, the remaining cross interaction potentials ΦNiAl and ΦZrAl need to

be determined. We assume these potentials to have the empirical form of Stillinger-

Weber, Eq. (3.10). The parameters (five for each potential function) are then fitted

to the experimental values of the cohesive energy, the bulk modulus and the lattice

constant of the cristalline structure Ni3Al(fcc) and Zr3Al(fcc). The contributions of

nearest-neighbors and second nearest-neighbors are taken into account in the fitting

procedure. Additionnaly, we imposed the equilibrium condition, which involves the

first derivative of the cohesive energy with respect to volume. The physical quantities

used for the fit for the two cristalline systems are listed in tab.(B.1) together with the

values resulting from the fitting. The last square fit was performed by employing

the software minimization package NAG [62] . The SW-parameters for the pair
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potentials ΦNiAl and ΦZrAl are given in tab.(3.1). The corresponding curves are

provided in Fig. (3.1)

An important feature of the pair potentials in Fig. (3.1) is their non-addivity

character. Moreover, in each subset (Ni-Zr,Ni-Al and Zr-Al) the interaction between

the pair of unlike atoms is found to be stronger than the mean interaction in like-

atom pairs

ΦAB(r) <
1

2
|ΦAA(r) + ΦBB(r)| , (3.12)

for r around the potential-minimum distances. This means a compound formation

tendency or a heterocoordination preference (preference for the formation of unlike-

atom pairs) in the three binary subsets [61]. This trend is experimentally well

established for the three binary compounds as reflected by a pronounced negativity

of their respective heats of mixing and a strong tendency to short-range order in their

structure [63, 64, 65] . Moreover, the heterocoordination seems to be stronger for

the binary systems Ni-Al and Ni-Zr than for Zr-Al. This feature implies that there

may be a competing mechanism in the chemical short-range order in the ternary

alloy Ni-Zr-Al as it will be discussed in section (5.5).

Table 3.1: Stillinger-Weber potential-parameters (Eq. (3.10))) used for the
atom pairs indicated in the table.

A[eV] α[Å−1] a1 a2 n

Ni-Ni 1.150 0.393 0 1.527 5

Ni-Zr 3.350 0.365 -0.128 1.672 5

Zr-Zr 5.166 0.337 0 1.854 3

Ni-Al 3.060 0.429 0 1.716 3

Zr-Al 1.305 0.339 -0.068 1.830 12
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Table 3.2: Pair-potential parameters (Eq. (3.11)) for pur Al after Pettifor
et al. [17].

n An[eV] kn[Å] κn[Å] αn/π

1 57.317 0.546 2.776 -0.441

2 9.176 2.254 2.443 0.832

3 0.216 3.353 0.977 0.431
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Figure 3.1: Pair potentials used in this work. For clarity, the pair potentials of
the three binary subsystems Ni-Zr, Ni-Al and Zr-Al are presented
separately.



Chapter 4

Thermodynamic properties

In this section, we characterize the systems in terms of simulated thermodynamic

quantities. We plot, therefore, in Fig. (4.1) and Fig. (4.2) the temperature depen-

dence of the enthalpy per atom reduced by the energy of the harmonic oscillator,

H − 3kBT , and the volume of the cell V . Experimentally and from MD simulation,

these quantities are found to undergo significant changes in the glass transition

region. The changes manifest themselves in our simulations at the temperature

T ≈ 1025K for the ternary system and at T ≈ 1200K for the binary one. These

temperatures we identify as the caloric glass temperatures for the corresponding

model systems.
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Figure 4.1: Enthalpy H − 3kBT per particle versus temperature T for the
ternary Ni25Zr60Al15 and binary Ni40Zr60 alloys.

It is assumed that the glass transition (GT) occurs when the typical relaxation

time of the system exceeds the time scale of probing the system. Moreover, it has

22
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been established experimentally and by MD simulations [123, 124] that the higher

the cooling rate, the higher the glass temperature Tg. This confers a kinetic aspect

to the glass transition.

Since in our case the cooling rates used for both systems are comparable, a higher

Tg for the binary system suggests, thus, that the time scale of the dynamic processes,

for a given temperature in the undercooled state, is larger in the binary system than

in the ternary one. This statement will be confirmed from the dynamic analysis in

chapter 2. The shift of Tg towards lower temperatures by alloying Al to Ni-Zr alloy

can be attributed here to the higher binding strength of Zr-Ni relatively to Zr-Al.

By differentiating the enthalpy H with respect to the temperature, we obtain Cp,

the specific heat at constant pressure, which provides more details on the variation

of the energy of the system with temperature. Cp can be alternatively evaluated

from the time average fluctuations of the enthalpy at a given temperature([66])

< (δH)2 >=< H2 > − < H >2= kBT 2Cp . (4.1)

The validity of this formula supposes that the system is in thermodynamic equilib-

rium. This second method is particularly useful when the enthalpy data are spoilt

by noise or are not sufficiently reliable to allow the evaluation of the derivative.

The values of Cp at temperatures above Tg are calculated here by using the

fluctuation formula Eq. (4.1). For temperatures below Tg, this formula turns out to

give underestimated values of Cp, which is probably due to the fact that for T < Tg

the simulation time scale is too short to take care of all possible fluctuations of

the system. Therefore, we evaluated Cp in this temperature range from the direct

differentiation of the enthalpy. The results are ploted on Fig. (4.3). Additionally we

show the experimental results Cp,exp of Inoue et al. [4] from the differential scanning

calorimetry (DSC) measurements for Ni25Zr60Al15 amorphous alloy with a heating

rate of 0.67 K/s.

We see that Cp increases slowly upon cooling from high temperatures down to

the GT regions, where it drops abruptly. This pronounced drop is conventionally

associated with the glass transition. Cp,exp exhibits a similar behavior. One observes

a continuous increase under heating from low temperatures up to the GT region,

followed by a decrease in the supercooled region bevor it drops rapidly due to the

onset of cristallization. The direct comparison of Cp,exp and calculated Cp is not

possible owing to the large distance between the GT regions in the experiment and

the MD simulation and the onset of cristallization before the high temperature region

has been reached. At very low temperatures, the experimental and the calculated

values of Cp tend both to the classical Dulong-petit value expected for a harmonic

solid (Cp ≈ 25 JK−1g−1).

Note that the drop of calculated Cp starts about 200 K above the value of Tg

determined from the bend of the enthalpy or of the volume. This indicates that Tg,
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evaluated from the change of slope, is an extrapolated quantity which characterizes

a process (the GT) actually smeared out over a relatively wide temperature range.

The drop of Cp,exp is, however, much sharper, i.e., the GT occurs across a narrower

temperature range (of about 50 K) in the experiments. The much larger smearing

of the GT in our simulations is a consequence of the high transition temperature

Tg, or equivalently, the high cooling rate used as argued by Angell et al. [68]: The

temperature interval across which the relaxation time changes by a given factor

decreases with decreasing temperature. This is due to the strong dependence of the

relaxation time on temperature, e.g. Arrhenius or Vogel-Fulcher behavior (s. section

(6.1)). In view of the higher Tg for the binary system and the larger smearing of its

GT, a comparison between Cp data of the binary and the ternary system provides

an additional support to Angell’s argumentation.

At the end of this chapter we shall add a remark concerning the temperature

dependence of the volume at high temperatures. For the ternary system as well

as for the binary one, the volume exhibits a conspicuous kink well above the glass

temperature Tg ; around 1500 K for Ni25Zr60Al15 and around 1700 K for Ni40Zr60.

This somewhat surprising feature cannot be attributed to a lack of equilibration

time since in that temperature region the systems have typical relaxation times in

the range of few picoseconds, whereas both systems have been equilibrated for at

least one nanosecond before we start the evaluations. This effect will be related to

other dynamical features exhibited by these systems in the same temperature range

(s. section (7.2)). We note that Ohsaka et al. [69] also observed an anomaly in the

specific volume of NiZr2 liquid alloy above its melting point. The measurements

have been achieved by using levitation methods.
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Chapter 5

Structural Properties

In this section an analysis of the atomic structure is presented for the ternary system

Ni25Zr60Al15. A comparison with the structure of the binary Ni40Zr60 will be made in

order to understand which structural changes take place in the system when some of

the Ni atoms are substituted with Al. For the structural characterization of binary

Ni40Zr60, we use the results of the detailed investigation performed by Hausleitner

et al. [57] concerning the atomic structure of amorphous binary Ni-Zr alloys using

MD simulations and the NFE-TBB model, an investigation which contributed much

to the fundamental understanding of the structure of transition-metal amorphous

alloys.

5.1 Pair distribution function

The atomic arrangement in amorphous materials is conveniently described in terms

of the pair distribution function (PDF) g(r) [70, 71]. For an homogeneous system

with an averaged number density ρ0, ρ0g(r) gives the probability density that a

particle is separated by a distance r from another one. The PDF is obtained by

means of a three-dimensional averaging procedure and retains only one-dimensional

information. It contains the basic quantitative information which can be gained

from diffraction experiments, like x-ray or neutron scattering.

There are some elementary conclusions, which can be drawn upon and from g(r).

Since the interatomic distances cannot be smaller than the atomic core diameters,

we have limr→0 g(r) = 0. For very large separations, g(r) approaches unity and the

system behaves as a structureless continum, limr→∞ g(r) = 1.

The average number of neighbors of a given atom up to a distance R is given by

4πρ0

R∫
0

r2g(r)dr . (5.1)

In particular, we define the coordination number z, which gives the number of

“nearest-neighbors”, as the number of neighbors up to the first minimum of g(r).

26



CHAPTER 5. STRUCTURAL PROPERTIES 27

An experimentally accessible quantity which is closely related to g(r) is the

coherent scattering intensity Icoh. For one-component system the relation holds

Icoh(k) = Nf2 + Nf2ρ0

∫
4πr2[g(r)− 1]

sin(kr)

kr
dr , (5.2)

where k is the scattering wave vector, f the atomic scattering factor, and N the

number of atoms in the sample. The static structure factor is defined by

S(k) = (Icoh(k)/N − f 2)/f2 = 1 + ρ0

∫
4πr2[g(r)− 1]

sin(kr)

kr
dr . (5.3)

Eq. (6.10) can be generalized to a two-component system as follows

Icoh(k) = N [c1c2(f1 − f2)
2 +

2∑
i,j=1

cicjfifjS
FZ
ij (k)] , (5.4)

where ci and fi are the concentration and the atomic scattering factor , respectively,

of component i. SFZ
ij (k) is the Faber-Ziman partial structure factor related to the

partial PDF gij(r) through

SFZ
ij (k) = 1 + ρ0

∫
4πr2[gij(r)− 1]

sin(kr)

kr
dr . (5.5)

Bhatia and Thornton have adopted a different approach in order to sub-divide

the coherently scattered intensity

Icoh(k)/N =< f >2 SNN(k) + (f1 − f2)
2Scc(k) + 2 < f > (f1 − f2)

2SNc(k) , (5.6)

where <> denote the average over the two components. SNN(k), Scc(k) and

SNc(k) are called the number-number, concentration-concentration and number-

concentration structure factors, respectively. They are given in terms of the partial

PDFs as follows

SNN(k) = 1 + ρ0

∫
4πr2[gNN(r)− 1]

sin(kr)

kr
dr , (5.7)

SNc(k) = ρ0

∫
4πr2gNc(r)

sin(kr)

kr
dr , (5.8)

Scc(k) = c1c2[1 + ρ0

∫
4πr2gcc(r)

sin(kr)

kr
dr] , (5.9)

where

gNN(r) = c2
1g11(r) + c2

2g22(r) + 2c1c2g12(r) , (5.10)

gNc(r) = c1c2[c1g11(r)− c2g22(r)− (c1 − c2)g12(r)] , (5.11)

gcc(r) = c1c2[g11(r) + g22(r)− 2g12(r)] . (5.12)
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From Eq. (5.6) it follows that SNN(k) and gNN(r) represent an average structure

without regard to the type of atom concerned. Thus the number-number correlation

functions correspond to the topological distribution of atoms of components 1 and 2.

On the other hand, the concentration-concentration correlation functions Scc(k) and

gcc(r) are related to the ordering or clustering tendency in the alloy, which makes

them suitable for describing the chemical order in the binary alloy.

5.2 Structural models of glasses

Bernal [72] was the first who proposed a structural model for monoatomic liquids

based upon a dense random packing of hard spheres (DRPHS), which was extended

later to amorphous metallic solids. This model was found to reproduce even the

second peak splitting in the radial distribution function, which is observed as a

structural feature common to many metallic glasses. In view of this success, Polk

[73] extended the DRPHS model to include the binary amorphous system. He sug-

gested that metalloid atoms could occupy the Bernal holes in the DRP structure

of the metal atoms. Polk’s model turned out to be rather successful for transition

metal-metalloid (TM) glasses. Provided the metalloid atoms preferentially occupy

trigonal prismatic holes of the DRP formed by the transition-metal atoms, the lo-

cal environment of the atoms is similar to that observed in the crystalline phases.

However, in the DRP structure, the number of holes having an appropriate size to ac-

comodate all of the metalloid atoms was found too small in the typical glass-forming

range concentration of these alloys.

An alternative model was proposed by Gaskell [74], called the stereochemically

defined model. This model suggets that the glass is made up of local structural

units which may also be present in the crystalline structure. For example, crys-

talline borides, phosphorides, silicides, etc., of those transition metals which readily

form glasses, have structures based on trigonal prismatic coordination of the met-

alloid by the transition-metal atoms. This structure persists over a wide range of

compositions and over a range of radii ratios which differ widely from the ideal ratio

of an undistorted trigonal prism, which suggets that this type of packing is partic-

ularly stable. According to the stereochemically defined model, in modelling the

structure of the glassy phase of these TM alloys, one should proceed by a random

packing of such trigonal-prismatic units rather than of individual atoms (see Fig.

(5.1). Differences in structure with concentration are described by variations in the

way these structural units are arranged.

More recently Hausleitner et al. [57] have established the validity of the stereo-

chemically defined model for a series of intertransition-metal glasses using atomistic

simulations based on the quantum mechanically derived NFE-TBB model (see chap-

ter 3). They demonstrated a clear trend from trigonal prismatic to polytetrahedral

local order in the serie Ni-Y, Ni-Zr and Ni-Nb and within a given system with in-
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creasing Ni content, a topological trend which is also found in the corresponding

crystalline phases.

Figure 5.1: (a) Trigonal prism with capping atoms. (b) Two trigonal prisms
(TP) with a common edge linked as in the cementite structure.
(c) TPs with the edge-sharing arrangement observed in Fe3P and
Ti3P lattices. (d) Disordered chain of TPs produced by random
edge-sharing [125].

5.3 Comparison with experimental results

The atomic structure of Ni25Zr60Al15 amorphous alloy was investigated exprimen-

tally by Matsubara et al. [75], who used anomalous X-ray scattering (AXS) in

combination with the ordinary X-ray diffraction to determine the ordinary and the

environmental radial distribution functions (RDF). The results of these measure-

ment are reproduced in Fig. (5.2). To check the validity of our model, we show in

this figure also the calculated RDF from our MD simulation.

The curves at the top of Fig. (5.2) correspond to the ordinary RDFs which

represents the radial distribution around the average atom, independent of the atom

species. It is the weighted sum of the six partial pair correlation functions gij(r)

4πr2ρ(r) = 4πr2
∑
i,j

∑
=Zr,Ni,Al

cififj

< f >2
gij(r) , (5.13)

with < f >=
∑

i cifi. ci and fi are the atomic concentration and the atomic scat-

tering factor of the element i respectively.
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Figure 5.2: The ordinary (top) and environmental RDFs for Zr (centre) and
Ni (bottom) of Ni25Zr60Al15 amorphous alloy at 300 K. Calcu-
lated (solid line) and measured (filled diamond) data are com-
pared. The experimental results are from Matsubara et al. [75].



CHAPTER 5. STRUCTURAL PROPERTIES 31

The curves at the centre and the bottom of Fig. (5.2) correspond to the envi-

ronmental RDFs for Zr and Ni, respectively. The experimental curves have been

determined by the AXS method. The environmental RDF provides the weighted

average over all atomic pairs around a given element A

4πr2ρA(r) = 4πr2
∑

i=Zr,Ni,Al

<[fi(E1) + fi(E2)]

W (E1, E2)
gAi(r) , (5.14)

W (E1, E2) =
∑

i

ci<[fi(E1) + fi(E2)] (5.15)

where fi is the total X-ray atomic scattering factor, a complex number which con-

tains an anomalous dispersion term in addition to the usual atomic scattering factor.

The measurements have been carried out at two energies E1 and E2 below the ab-

sorption edge of the considered atom. < denotes the real part of the values in the

brackets. For more details we refer to reference [75].

Fig. (5.2) demonstrates that qualitatively as well as quantatively the experi-

mental and the calculated curves agree well. The height and the location of the

peaks are well reproduced. The peaks positions, as given in tab.(5.1), are found to

be within 4% of the values obtained bei Matsubara et al.. However, the splitting of

the first peak in the calculated RDF of Zr is somewhat exagerated relatively to the

measured one, where the latter shows only a weak hump at the same location (note

that this hump becomes more and more important with annealing and cristallization

as shown in [75]). The hump represents the Ni-Zr correlation whereas the main peak

results from Zr-Zr correlations. The discrepancy is due to the fact that our model

underestimates the Ni-Zr interatomic distance and simultaneously overestimates the

Zr-Zr one, as can be seen from tab.(5.1).

5.4 Bond-angle distribution

To take a first insight in the topological short-range order (SRO) present in the

structure of Ni25Zr60Al15, we consider in this section the distribution function of the

bond angles around each atom species. This triple-correlation function is defined as

an average of bond angles between a reference atom and the pairs of atoms within a

radius Rmax, chosen here as the first minimum of the total radial correlation function

gtot(r) (Rmax ≈ 4.1 Å). The results of this analysis are displayed in Fig. (5.3).

The distributions of the angles formed by bonds centered at the Zr and Ni sites

present the same features as those calculated by Hausleitner et al. [57] for the binary

systems Ni50Zr50 and Ni33Zr67. In [57] it is pointed out that the peaks in these

angular correlations are compatible with a local trigonal prismatic order similar to

that in the cristalline CrB structure. Patterns of other trigonal prismatic structures,

like Fe3C, are also detected. In CrB-type compounds, like NiZr, the trigonal prisms
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form layers with B(Ni) atoms centering the prisms. The B(Ni) atoms being arranged

in zigzag chains within this configuration.

Interpreting the here deduced bond angle distributions in the light of the picture

advanced by Hausleitner et al., the bond angles centered at Zr sites correspond to

those on the triangular and square faces of a prism (θ ≈ 60◦; , θ ≈ 90 − 100◦) and

to the rotation of two edge-sharing prisms (θ ≈ 145◦) (like in a Fe3C structure).

The bond angles centered at Ni sites (fig) , θ ≈ 75◦ and θ ≈ 135◦, correspond to

angular correlations between a Ni atom centering the prism and two other atoms on

the vertices. The vertices being occupied in this model by Zr atom predominatly.

The pronounced peak at θ ≈ 110◦ in the Ni-Ni-Ni angular correlation is very close

to the chain angle of θ = 110◦ in the CrB structure.

The distribution of the bond angles at Al sites shows a different pattern than

those for Zr or Ni sites. It exhibits well-defined peaks at θ ≈ 60◦ , θ ≈ 120◦ and

θ ≈ 180◦, which are very close to the icosahedral bond angles (θ ≈ 63.5◦, θ ≈ 116.5◦

and θ ≈ 180◦). This suggests that Al atoms occupy sites with a predominatly

icosahedral symmetry, in contrast to Zr and Ni atoms which occupy sites with a

trigonal prismatic symmetry. Conclusions which can be drawn from this observation

will be discussed in the next section.

5.5 Radial distribution functions

5.5.1 Partial PDFs

Fig. (5.4) shows the calculated partial pair correlation functions gij(r) in the liquid

phase (T = 2000 K)and in the glassy state (T = 300 K). For purpose of clarity we

show the correlation functions associated with each pair of atoms separately.

gNiNi(r) exhibits only a very weak nearest-neighbour peak, which becomes

smaller with decreasing temperature. The first peak in gNiZr(r) is very intense,

even more than in the Zr-Zr distribution. This manifests the tendency for Ni atoms

to be preferentially surrounded by Zr as nearest-neighbors. Such a short-range or-

der between Ni and Zr atoms has been already observed experimentally [76, 64]

and confirmed theoretically [57, 77] in binary Ni-Zr alloys, and is attributed to the

pronounced non-addivity character of the pair potentials as argued by Hausleitner

et al. [57] (see section 3.4 ). In the subsystem Zr-Al, the pronounced first peak and

first minimum in gAlAl(r) deserves particular attention. It is rather unexpected in

the light of the small Al concentration used here and the good mixing behavior of

the binary Zr-Al system.

As discussed in Section 3.4, the three binary systems Ni-Zi, Ni-Al and Zr-Al

manifest good compound-forming behaviour. It is obvious that the ultimate struc-

ture of the ternary system Ni25Zr60Al15 is determined by the competition of the

mixing ability of the three binary subsystems. The bonding strength of the two mi-
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nority species Ni and Al to the majority species Zr is of particular importance here.

Since the compound-forming tendency of Ni-Zr seems to be stronger than that of

Al-Zr, as seen in section 3.4, it is expected that Al-Zr heterocoordination preference

will be depressed by the stronger Ni-Zr preference. From that, an Al-Al clustering

tendency may occur. This can explain the pronounced first peak in the Al-Al dis-

tribution function. Moreover, the atom-size effect may be an additionnal cause for

this clustering feature. By their smaller size, Ni atoms are more appropriate than

Al atoms to match in the Bernal holes of the Zr matrix. The total demixing of Al

atoms is, nevertheless, hindered by the moderate Al-Zr and strong Ni-Al heterocoor-

dination, as show the pronounced nearest-neighbors peaks in gNiAl(r) and gZrAl(r).

The weak clustering tendency of Al atoms can be clearly observed on the snapshot

of Fig. (5.5). A tendency to form chain-like structures of Al may be identified, in

addition.

Table 5.1: nearest-neighbor distances dij and coordination numbers zij in
amorphous Ni25Zr60Al15. The experimental results are from mea-
surements of Matsubara et al. [75].

dij[Å] (calc.) dij[Å] (exp.) zij (calc.) zij (exp.)

Ni-Ni 2.65 0.50

Zr-Ni 2.63 2.67 3.02 2.2

Ni-Zr 2.63 2.67 7.25

Zr-Zr 3.30 3.17 9.93 10.3

Ni-Al 2.60 1.20

Al-Ni 2.60 2.00

Zr-Al 3.02 2.25 0.0

Al-Zr 3.02 8.99

Al-Al 2.59 1.06

The above given structural analysis suggests that the structure of the ternary

alloy consists of a network of Ni-Zr units, where isolated Ni atoms are surrounded

by Zr atoms, interpenetrated by Al groupings. According to the angle-distribution

analysis in the last section, the Ni-Zr units have a trigonal prismatic topology, similar

to that in the binary Ni-Zr alloys, where a Ni atom centers the prism and the vertecis

are occupied by Zr atoms.

5.5.2 Structural comparison with binary Ni40Zr60

In Fig. (5.6) we compare the PDFs of the binary compound Ni40Zr60 with those of

the ternary Ni25Zr60Al15. The latter is obtained by substituting partially Ni with
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Figure 5.5: Cross section of an amorphous Ni20Zr60Al20 configuration at 800
K. The biggest spheres (light) are the Zr atoms, the smallest ones
(dark) are the Ni atoms, and the middle spheres (grey) are the Al
atoms. The sample contains 9216 particles. The box has a side
length of ≈ 60 Å. In order to compare the structural behavior of
Ni and Al atoms, we have chosen the same atom number for the
two species. Notice that a Ni atom rarely has another Ni atom
as nearest-neighbor. Whereas a weak clustering tendency of Al
atoms can be clearly observed. Notice also the tendency to form
Chain-like structures of Al.
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Al atoms, the Zr concentration being kept unchanged. We observe that gNiNi(r)

exhibits a decrease of the nearest-neighbor peak, which is plausible because with

decreasing Ni concentration the probability for a Ni-Ni contact becomes smaller.

The second peak, which marks the average distance between two cells centered by

Ni atoms (within the suggested trigonal prismatic topology) has however grown

slightly. By reducing the Ni concentration relatively to Zr atoms we create a surplus

of Zr atoms which undergo a chemical bonding with Al atoms. The underlying topol-

ogy of this bonding is of icosahedral type according to section 5.4. This can explain

the change in the second shoulder of gZrZr(r) with Al alloying. More conspicuous

is the invariance of the Ni-Zr correlation up to a distance of more than twice the

nearest-neighbor distance. These observations provide support to the above sug-

gested picture of a ternary structure consisting of Ni-Zr units similar to those in the

binary NiZr compound and surrounded by Al groupings.

5.5.3 On the thermal stability of amorphous Ni25Zr60Al15

The tendency to clustering of Al atoms may be related to the observations of Mat-

subara et al. [75], who found that the fraction of Al atoms around Zr in a as-quenched

sample of amorphous Ni25Zr60Al15 was extremely reduced and that this fraction ex-

hibits a drastic increase in the crystallized sample. Furthermore, it was found that

the fraction of Ni atoms around Zr is almost unchanged with crystallization while

the fraction of Zr around Zr atoms decreases markedly. The authors argued that

the Al atoms must be rearranged around Zr for crystallization, which may retard

the crystallization process in this system and explain thereby the effectiveness of Al

addition in Ni-Zr binary system to thermally stabilize the Ni-Zr-Al amorphous al-

loys. Matsubara et al. showed that other multicomponent amorphous alloys with an

extremely large supercooled liquid region exhibit similar feature, i.e. a pronounced

change in the atomic arrangement between the amorphous and the crystallized state.

5.6 Static Structure Factors and Short Range Or-

der

In this section we present the Faber-Ziman (FZ) and the Bathia-Thornton (BT)

static structure factors. The partial FZ structure factor is defined as the Fourier

transform of the partial PDF, analogous to Eq. (5.5). In the lack of a systematic

definition of the BT structure factors for a ternary system, we restrict ourselves to

the three binary subsystems Ni-Zr, Zr-Al, and Ni-Al, for which we determine the

corresponding BT structure factors according to Eq. (6.17). The relative atomic

concentrations are used in the corresponding formula. We attempt with this ap-

proach, albeit not exact, to obtain informations about possible concentration or
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density fluctuations in the ternary system, i.e. chemical or topological short range

order, respectively.

In Fig. (5.7) we show the partial FZ structure factors SFZ
ij (q) for the subsystem

Ni-Zr. We display additionally the results of the binary amorphous system Ni40Zr60

with dotted lines. On the whole, the two sets of SFZ
ij (q) are very similar, except that

the main peak of SFZ
ZrZr(q) is broader in the case of the binary system. SFZ

NiNi(q) differs

from the two other structure factors by the appearance of a well defined prepeak at

the left of the “main” peak, corresponding to the nearest-neighbor peak in gNiNi(r).

The prepeak at the wave vector q ≈ 1.9 Å−1 seems to result from a correlation on

a length scale of about 3.3 Å, after the conventional relation, l = 2π/q, used to

convert wave vectors in lengths. The main peak, at the wave vector q ≈ 2.8 Å−1,

corresponds to a length of l ≈ 2.3 Å. This later value is however clearly smaller

than the location of the first peak in gNiNi(r) (about 2.7 Å), which shows that the

conversion relation above gives underestimated length values (by about 20%). This

can be further confirmed in the case of Ni-Zr and Zr-Zr correlations. Taking into

account this correction, we obtain in the case of the prepeak a correlation length of

about 3.9 Å. It seems plausible to attribute this length to the first split of the second

peak in gNiNi(r). Furthermore the slight hump at the left end of the prepeak, which

is independent of the truncation value used for the Fourier transform, correlates well

with the second split. Note that there is no prepeak in the structure factor SFZ
ZrZr(q).

The appearance of a prepeak in SFZ
NiNi(q) reflects the existence of chemical short-

range order (CSRO) in the atomic configuration of the binary as well as the ternary

system, in other words the preference for Ni atoms to be surrounded by Zr atoms

as discussed in the last section. The chemical nature of this SRO can be seen in the

BT structure factors shown in Fig. (5.8). A peak at the same location appears only

in the concentration-concentration structure factor SBT
cc (q) and not in the number-

density structure factor SBT
NN , nor in the cross term SBT

Nc (q).

In the subsystem Zr-Al, the FZ structure factor SFZ
AlAl(q) also exhibits a well

defined prepeak at a wave vector q ≈ 1.3 Å−1, a clear signature of a structural order

on a length scale of about 5.8 Å (corrected value). The peak related to the Al-Al

nearest-neighbor distance is around q ≈ 2.6 Å−1 , we note also the unusual width

of this peak. The BT structure factor SBT
cc (q) in Fig. (5.8) exhibits correlations at

the same wave vectors. Thus, the prepeak in this case describes a concentration

fluctuation, as well.

In the concentration-concentration structure factor SBT
cc (q) of the Ni-Al subsys-

tem, both prepeaks are seen as expected. Note that the little shoulder at the lefthand

side is not an artefact of the Fourier transform, it persists to appear independently

of the truncation value used (the maximum value is about 30 Å). SBT
NN(q) has also a

large asymmetric prepeak, corresponding to the Ni-Ni correlation, with a shoulder

which extends down to the position of the Al-Al prepeak. It goes without saying

that the relative potentials in the Ni-Al subsytem play only a small role in the struc-
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tural order detected in this subsystem. More decisive is the relation (interaction) of

Ni and Al atoms to the majority species Zr.

Thus, both prepeaks which emerge from the q-space structural analysis are as-

sociated with concentration fluctuations in the amorphous ternary system. The

question how to describe these fluctuations in terms of atomic arrangements can

be answered in the light of the results of the two last sections. In the picture of

the trigonal-prismatic structural ordering (of the subsystem Ni-Zr), the location of

the prepeak in the Ni-Ni correlation may be related to an average distance between

neighboring trigonal prisms, where the Ni atoms occupy the centres of these prisms.

The Al atoms are then constrained to group in the space between these Ni-Zr units,

this can explain the structural inhomogeneity with the characteristic periodicity of

about 5.8 Å in the Al-Al correlation. This is approximatly the distance between two

Al groupings separated by a Ni-Zr unit.

It should be, however, remarked that the absence of a prepeak in the FZ structure

factor SFZ
ZrZr(q) and the density-density structure factor SBT

NN seems to be in contrast

with the suggested structural picture, which suppose clearly a certain topological

structural ordering in the amorphous atomic pattern. This may be due to the fact

that only a small fraction of the Zr atoms are involved in the trigonal prismatic local

ordering because of the low Ni concentration. MD simulation [57]and experiments

[64, 76] on binary Ni-Zr alloys also show that the amorphous Ni33Zr67 does not ex-

hibit a prepeak in SFZ
ZrZr(q) and SBT

NN(q) structure factors, while amorphous Ni50Zr50

and Ni65Zr35 do. The fact that the two prepeaks appear in SBT
NN(q) and SBT

cc (q) of

the subsystem Ni-Al, where the relative Ni and Al concentrations are comparable,

provides support to this supposition.

5.7 Temperature dependence of the prepeaks

The temperature dependence of the prepeaks from the glassy state up to T = 5000 K

is displayed on Fig. (5.10). The intensity of both prepeaks increases continously

upon cooling, marking thereby the increase of the structural ordering with decreas-

ing temperature. A noticeable aspect in this ordering effect is the unusual strong

decrease of the first peak of gNiNi(r) in Fig. (5.9) upon cooling, the second peak get-

ting thereby higher and more structured. The vanishing of the Ni nearest-neighbors

manifests clearly the fact that, on cooling, the Ni atoms are confined at the center

of their specific structural units, having ultimately only Zr or Al nearest-neighbors.

Another conspicuous feature which emerge from Fig. (5.10) is that the prepeaks

are observed even at temperatures as high as T = 5000 K, which indicates that

the structural organization develops already at very high temperatures. This con-

trasts with the conventional conception that the atoms in the melt are randomly

distributed. The persistence of a well-defined SRO even far obove the melting tem-

perature seems to be a common feature of glass formers with bonding forces of
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covalent nature, like network-forming and transition-metals glassy systems [78].
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Chapter 6

Dynamic properties

Dynamic properties of the simulated Ni25Zr60Al15 system are presented in this chap-

ter. The investigations concern the self-diffusion, the van Hove correlation functions,

the intermediate scattering function, and the shear viscosity. A comparison with the

binary Ni35Zr65 alloy is provided in the last section.

6.1 Diffusion

In MD simulations diffusion is studied by monitoring the mean square displacement

(MSD) of a tagged particle from its initial position as a function of time. The

diffusion constants Dα (α=Ni,Zr,Al) are calculated from the long time behavior of

the MSD where it exhibits a linear increase according to Einstein’s law

Dα(T ) =
1

6
lim
t→∞

∂t

〈
(ri(t0 + t)− ri(t0))

2
〉

i,t0
. (6.1)

The averaging is carried out over initial times t0 and over all particles of the

same species to get a good statistical accuracy.

In Fig. (6.1) we show the time dependence of the MSD for different temperatures

in double logarithmic scale. Since the MSD presents similar features for the three

species, we choose to show as illustration the results for one species (Ni) only.

At higher temperatures, i.e in the liquid state, the linear behavior is reached

after a microscopic time, typically a few Einstein-vibration periods (≈ 1 ps). Before

colliding with their neighbors, the particles follow a free ballistic motion which

explains the quadratic dependence on time of the MSD (< r2 >∝ t2) at very short

times. Upon entering in the supercooled liquid region, i.e approaching the GT, a

transient regime builds up between the ballistic and the diffusive motions. This

manifests itself in a plateau at intermediate times, becoming larger with decreasing

temperature and extending over several time decades at the lowest temperatures.

The plateau reflects that, during this time, each moving particle is temporary

trapped in the cage formed by the surrounding neighbors. As the temperature is

lowered, the cage becomes more and more rigid (due to increased viscosity) and only

45
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Figure 6.1: Time dependence of the mean squared displacement of Ni in
Ni25Zr60Al15 for different temperatures. The ballistic time regime
< r2 >∝ t2 and the diffusive one < r2 >∝ t are clearly resolved.

for larger times this cage starts to break up. Then the particles begin to diffuse and

the MSD increases anew. The temperature T = 800 K is the lowest one where it

was possible to reach the linear regime with our computer ressources. Below this

temperature the particles remain practically confined in their cages and no diffusion

could be resolved within the observation time.

In Fig. (6.2), we display the temperature dependence of the diffusion constants

for the three species as gained from the MSD according to Eq. (6.1). This plot

covers a very large temperature range up to 5000 K and 8 orders of magnitude of

diffusivity. The first conspicuous observation from this plot is that the diffusion

constants scale with the atom size upon the whole temperature range. At very high

temperatures, we observe the relations DNi ≈ DAl and DZr ≈ 2DNi. This scaling

is reminiscent of the size and mass dependence of the diffusivity for a gas of hard

spheres, whose size σ is small in comparison to their mean free path, so that their

movement is governed by uncorrelated binary collisions [82]

D ∝ 1

σ2
√

m
. (6.2)

The fact that DNi and DAl are similar seems to be a compensation effect of the

larger diameter σAl but smaller mass mAl. The ratio of DNi and DZr at very high

temperatures seems to be also in agreement with Eq. (6.2).

The three diffusion curves exhibit a change in the slope at the temperature

T ≈ 1000 K which we identified in chapter 4 as the caloric glass temperature Tg.
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Note, that while at higher temperatures the three diffusion constants run parallel

to each other and show a very slow temperature dependence, in the highly under-

cooled region and specially upon approaching Tg, the ratios of the different Dαs

grow up continuously and a faster decreasing of the diffusivity with temperature is

enregistered for each species. Between 2500 K and 1400 K we observe a variation

of approximately one decade against one decade between 1200 K and 1100 K.

It is worth noticing that this drastic change upon crossing the GT region, ref-

ered to in the literature as the “slowing down”, contrasts clearly with the smooth

variation of the thermodynamic properties (e.g enthalpy and volume) and of the

structural quantities (e.g. PDF gij(r)) in the same region as shown in the previous

chapters. This ambivalent behaviour seems to be a fundamental feature common to

all amorphous materials [83].

6.1.1 Self-diffusion in the liquid state

We consider now the temperature dependence of the diffusion constants. At a first

sight, we can say that Tg separates the temperature scale in two regions where the

Dαs exhibit different T-dependences: a curved behaviour above Tg and a linear one

below, when represented in an Arrhenius plot. Above Tg we have used, on the one

hand, a power law fitting

D ∝ |T − Tc|γ , (6.3)

in order to test this central prediction of the MCT [24]. On the other hand, we have

fitted the data with the Vogel-Fulcher law

D ∝ exp(−B/(T − T0)) (6.4)

which is known phenomenologically to describe quite well the temperature depen-

dance of some transport coefficients in the supercooled region of melts.

As shown by the dashed line in Fig. (6.2), the power law seems to fit very well

the diffusion data over a relatively wide temperature range of about 1000 K and over

about 3 orders of magnitude in Dα. The critical temperature Tc and the exponent

γ, listed in tab.(6.1), are apparently independent (within a precision of 2%) of the

particle species, which is in agreement with the predictions of the MCT. The slight

scaling of Tc with the species size is not fortuitous but may be an effect resulting

from the existence of hopping processes which affect differently the three species.

We will come back to the subject of the hopping processes in more details in the

next sections.

It is known that by using extremely high cooling rates in MD simulations, the

calorimetric GT temperature Tg may be raised to such an extent that it lies above

Tc, eclipsing thereby the kinetik GT [84]. We find hier a Tc which is slightly above
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Tg. This indicates that the cooling rate we applied in this work is sufficiently low to

allow a meaningful study of the kinetik GT in the sense of the MCT.

Table 6.1: Parameters of the power law (after MCT), Vogel-Fulcher and Ar-
rhenius fits for the diffusion constants. The power law and VF
relation fit the diffusivity data above Tg, while the Arrhenius fit is
for data below Tg.

MCT VF Arrhenius

Tc[K] γ B[K] T0[K] D0[10−6m2/s] Q[eV]

Ni 1045 2.45 3500 700 1.7 1.12

Zr 1085 2.41 3500 755 6.5 1.36

Al 1062 2.40 3490 730 21 1.31

The VF law gives a good description of the diffusivity, covering even one decade

more of the Dαs and a larger temperature range than the power law. The fitting

parameters are given in tab.(6.1). The “critical” temperature T0 seems to scale with

the mobility of the diffusing atom species. However, if T0 could be identified with

the so-called Kauzmann temperature [85, 86], then it must be the same for all atom

species in the system.

For comparison, we note that the values of Tc and T0 we obtain here are very

close to Tc and the Kauzmann temperature TK obtained by Teichler [12, 15] from

MD simulations of Ni50Zr50 based on Hausleitner-Hafner potentials: Tc = 1120 K,

TK = 750 K. Tc was deduced from analyzing the self-part of the intermediate

scattering function. TK was determined from thermodynamic considerations as the

isentropic Kauzmann temperature.

6.1.2 Self-diffusion in the glassy state

We consider now the temperature dependence of the diffusivity below the glass

temperature. As we know, Tg marks the temperature region where the system falls

out of equilibrium, i.e the relaxation time of the system around and below Tg exceeds

the time scale of the simulations, so that it is no longer possible to equilibrate the

system toward a metastable state. On the scale of the simulation, the system may be

perceived as a disordered nearly frozen structure, ’nearly’ because residual diffusion

events and aging still take place.

We achieved a fit to the Dαs below Tg by an Arrhenius law

D = D0exp(−Q/kBT ) , (6.5)
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which gives a good description of the data in this temperature range. The activation

energy Q and the prefactor D0 for each species are given in tab.(6.1).

A common dynamic feature exhibited by nearly all amorphous alloys, is an Ar-

rhenius law with constant activation energy Q for the diffusivity in the relaxed glassy

state [21]. This gives raise to the assumption that the diffusion in glasses is more

related to the thermally activated diffusion in crystalline solids than to atomic dy-

namics in liquids. Our simulation is apparently able to reproduce this Arrhenius

behavior in the temperature range of what we have called the glassy state on the

time scale of the simulation. This fact is not obvious when we remember that there

are approximately ten orders of magnitude between the time scale of a real experi-

ment (minutes) and that of a simulation (10-100 ns). The Arrhenius behavior below

Tg has been reproduced as well in MD simulations by Teichler [30] for Ni50Zr50. He

obtained an activation energy for Ni comparable to our (QNi ≈ 1.2 eV ). The exper-

imental value [87] lies in the same range Qexp
Ni ≈ 1.3 eV . The value of QZr obtained

by Teichler lies however something higher (≈ 2.0 K) than the value from our model.

Corresponding experimental results for Zr diffusion are not yet available.

0.4 0.6 0.8 1
�

1.2 1.4 1.6 1.8 2
�

1000/T (K
−1

)

10
−24

10
−20

10
−16

10
−12

10
−8

D
(m

�2
/s

)

Figure 6.3: Arrhenius plot of the diffusion constant of Ni in Ni25Zr60Al15 as
calculated from our MD simulation (triangles) and the experi-
mental values for Co tracer diffusion in amorphous Ni23Zr62Al15
(asterisks) as measured by Hahn et al. [88]. The dotted line is an
extrapolation of our data for the melt to lower temperatures with
the Vogel-Fulcher law.
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6.1.3 Comparison with experimental results

In Chapter 5 we have seen that our model gives a realistic description of the struc-

tural properties of amorphous Ni25Zr60Al15. It would be very instructive to know

whether this model is able to describe also the dynamical properties, like diffusion,

in a reasonable way. Unfortunately, no experimental data about the temperature

dependence of self-diffusion in this system or in a comparable concentration are

known to us. Very recently, Hahn and Flege [88] carried out various tracer diffu-

sion measurements in amorphous NiZrAl alloys, among them Cobalt tracer diffusion

in amorphous Ni23Zr62Al15. Due to the chemical and size similarity of Ni and Co

atoms, it is expected that Ni and Co have similar mobilities. Moreover, in most

known cases, these two atom species show diffusion coefficients close to each other.

For this reason we compare in Fig. (6.3) our calculated DNi with DCo measured by

Flege and Hahn. The large gap between the temperature range of our calculations

and that of the experimental results makes difficult a direct comparison of the two

data sets. The extrapolation of our results below Tg to lower temperatures leads to

diffusivity values which are four decades larger than the experimental ones. This

extrapolation, however, has to be considered with caution because we compare two

data sets corresponding to two different cooling rates. Our inevitably large cooling

rate may be the reason for the discrepancy.

Extrapolation of our high temperature equilibrium data to lower temperatures

along the Vogel-Fulcher curve, considered as independent on the cooling rate, and

construction of its intersection with the Arrhenius extrapolation of the results of

Hahn and Flege gives an estimation of the GT temperature Tg as measured at

cooling rates typical for laboratories. With this construction we obtain a Tg of 840

K, which overestimates the experimental GT temperature by 15% (Tg,exp=720 K

[4]) only.

6.2 Van Hove Correlation function

6.2.1 Definition [89]

The correlation between the densities at two points separated by r and t in space

and time, respectively, in a fluid is defined as

G(r, r′, t) =
1

N
< ρ(r + r′, t)ρ(r′, 0) > , (6.6)

where r′ is an arbitrary origin point, and ρ(r, t) the number density, at point r and

time t, which can be defined microscopically as

ρ(r, t) =
N∑

i=1

δ[r− r′i(t)] . (6.7)
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For homogeneous fluids, a non-local correlation function depends only on the

relative coordinates and not on the choice of the origin. This allows in our case to

average over r′ giving

G(r, t) =
1

N

〈
N∑

i=1

N∑
j=1

∫
δ[r′ + r− ri(t)]δ[r

′ − rj(0)]

〉

=
1

N

〈
N∑

i=1

N∑
j=1

δ[r + rj(0)− ri(t)]

〉
. (6.8)

The function G(r, t), introduced first by van Hove, separates naturally into two

terms, usually called the “self” (i = j) and “distinct” (i 6= j) parts

G(r, t) = Gs(r, t) + Gd(r, t) . (6.9)

G(r, t)dr gives the probability to find a particle i in a volume element dr around

the point r at time t given that there was a particle j at the origin at time t = 0; the

division into self and distinct parts corresponds to the two cases where i and j are

the same particles or different ones, respectively. Gs probes the dynamic of a single

particle in terms of its displacement from an initial position whereas Gd describes

the collective character of the dynamics. For isotropic fluids, Gs and Gd depend

only on the scalar quantity r.

In the long-wavelength, low-frequency limit (hydrodynamic limit) the Van Hove

self correlation function writes

Gs(r, t) =
1

(4πDt)3/2
exp(− r2

4Dt
) , (6.10)

where D is the self-diffusion constant.

Rather than considering the density-density correlation in real space, it is often

more convenient to deal with its representation in k-space F (k, t), which is called

the intermediate scattering function. The spectrum of F (k, t), defined as

S(k, ω) =
1

2π

+∞∫
−∞

F (k, t)exp(iωt) (6.11)

is the dynamic structure factor, a central quantity in inelastic neutron-scattering

measurements.

6.2.2 Van Hove self correlation function

Fig. (6.4) shows the function 4πr2Gs
α(r, t) for different times t at temperatures

T = 1800K and T = 1300K. At T = 1800K, which lies well above Tc, we see

that the three species exhibit a hydrodynamic behavior, i.e. they show a single
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gaussian-like peak broadening and shifting toward larger distances with increasing

time. Thus the material transport proceeds at sufficiently higher temperatures via

a continuous flow-like process as it is known for normal liquids. We have observed,

moreover, that the hydrodynamic limit (Eq. (6.10)) is effectively reached within a

time comparable with the relaxation time of the system, i.e. the time after which

density or shear stress fluctuations vanish (see sections 6.4 and 6.5).

At T = 1300K, the van Hove functions still exhibit a gaussian-like peak which

broadens and moves to larger distances. The hydrodynamic limit is far from being

reached even after a relatively long observation time of 2 ns, which is larger than

the relaxation time of the system at this temperature. More remaquable is the

appearance of secondary peaks, especially in the case of Ni and Al atoms. Such a

feature, reported first by Roux et al. [28] in their MD simulation of soft spheres,

has been observed in many computer experiments [29, 30], and is conventionally

attributed to the presence of thermally activated hopping processes.

As the temperature is further lowered, the hopping processes become more and

more important as exhibited in Fig. (6.5) for T = 1100K, i.e. in close vicinity of

Tc. The emergence of several distinct peaks at distances corresponding to multiples

of the interparticle spacing now marks clearly the shape of Gs
α(r, t). This feature is

much more pronounced for Ni and Al than for the larger Zr atoms. The immobility

of the main peak at a fixed location reflects the presence of vibrating atoms trapped

in their cages for long times, as discussed in the previous section. The intensity
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decrease of this peak with time is related to the rate of atoms which succeed to

break their cages.

Fig. (6.6), taken at a temperature well below Tc (T = 900 K), illustrates clearly

how the diffusion in the glassy state is carried by a minority of mobile particles em-

bedded in a rather frozen matrix. This is concluded from the extremely small con-

tribution that develops at the foot of the vibrational peak but extends to distances

of several nearest-neighbor distances. This coexistence of fast and slow mobility in-

dicates the heterogeneous character of the diffusion in this temperature range. We

note here that evidence for structural and dynamical heterogeneities in undercooled

liquids and glasses recently has been found in MD simulations and experiments. We

will discuss this subject again in section 7.3 below.

6.2.3 Van Hove distinct correlation function

We have seen in the previous chapter that the strucure of amorphous Ni25Zr60Al15 is

far from being random and that a chemical and topological ordering is manifestely

present even at high temperatures. Intuitively, we expect therefore that these well

defined structural correlations reflect themselves in the dynamics as well, in form

of correlated motions of the different particles. This means that if, e.g., a Ni atom

with a trigonal prismatic local order makes a jump leaving a hole behind, then

it is expected that this hole will be filled at late times by another Ni atom from

the vicinity to preserve the established order. Motivated by this idea, we have

calculated the distinct part of the Van Hove correlation function Gd(r, t) between

different particles of the same species. The above mentioned correlation feature is

clearly demonstrated in the Gd(r, t)s of Ni-Ni and Al-Al pairs at T = 1100 K (Fig.

(6.7)), where for t > 0 a strong peak has developed and grown with time at the origin

(r = 0). This shows that the position of a moving original particle is occupied with

high probability by another Ni or Al, respectively, at later times. The correlation

seems to be more pronounced for Al than for Ni. This can be explained by the fact

that a Ni atom is principally surrounded by the two others species Zr or Al, so that

the opportunity to hop to a site previously occupied by a Ni atom will be restricted.

Whereas for Al atoms the situation is different because of their tendency to form

groups. Surprisingly, such a correlated motion is almost inexistent for Zr atoms,

where the Gd(r, t) displays a behavior similar to that of normal liquids at sufficient

high temperatures. This observation provides support to a conclusion drawn already

from the analysis of Gs(r, t) in the last section, namely that the hopping processes

are not the dominant mechanism in the diffusion of Zr atoms. Even in the region

of the kinetik GT or below, the Zr matrix moves essentially via continuous viscous

motion.

We see that the peak at the origin is observable at t = 8 ns (and even beyond),

that means at times where the particles show a diffusion behavior and density or
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shear stress fluctuations have almost vanished. This demonstrates that even after

these relatively long times, the sites structure correlates strongly with the one at

t = 0. Another remarkable feature is the appearance, although weak, of the cor-

relation peaks at r = 0 even at the relatively high temperature of T = 2000 K.

This observation is in agreement with the existence of the prepeaks in the same

temperature range, confirming once again that the structural organization develops

already in the liquid state.

6.3 Hopping and flow motion

The analysis of the Van Hove correlation function has shown that hopping processes

begin to take place actually at temperatures well above the kinetic GT, Tc. Upon

crossing Tc, the hopping diffusion becomes more and more important but the viscous

flow is still omnipresent even in the glassy state below Tg. This can be inferred

from a slight but continuous broadening of the vibrational peak and a continuous

shift with time of the hopping peaks to larger distances, which shows that the

whole structure undergoes flow motion. In this section, we attempt to quantify the

relative contribution of both diffusion modes, hopping and flow, in the total material

transport and to establish how it varies upon crossing Tc.

We have to define first what we shall call a hopping event. For this we need a

distance δl and a specific time δt within which the distance is crossed. We choose

δl as the location of the first minimum of Gs(r, t) at sufficiently low temperatures

(T = 800 K) (Fig. (6.6)) to minimize as much as possible the contribution of the

flow motion, this corresponds to δl ≈ 2.1 Å. A hopping is a thermal activated event

which occurs on the time scale of the atomic vibration, we choose therefore δt in

the range of an Einstein vibration period δl ≈ 1 ps. This value is in agreement with

the finding of Sieber [90] who showed, in a MD study on Co67Zr33, that in thermal

activated hopping the saddle point was crossed within about 1 ps. Obviously, the

distinction between flow and hopping diffusion makes sense only if the time scales

of the last process is negligible compared to that of the former. This is indeed the

case in the temperature range (T < 1300 K), where this analysis is carried out.

At T = 1300 K, for instance, where the diffusion seems to be dominated by a

homogeneous viscous flow as displayed by the Van Hove correlation function in Fig.

(6.4), the average time needed by a particle to cross the distance δl is about 100 ps,

i.e. two orders of magnitude larger than the time scale of a thermal activated jump.

To separate flow from hopping diffusion during an observation time t, we divide

t into elementary intervals of length δt and the corresponding atomic displacements

δri are classified as hopping or flow events depending if they fulfill δri ≥ δl or

δri ≤ δl, respectively. The elementary displacements are then summed up to build

the MSDs, from which the diffusion constants Dh and Df for the hopping and flow

motions, respectively, are evaluated according to Eq. (6.1).
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We display in fig(6.8) the temperature dependence of the ratio Dh/Df from

lower temperatures up to the temperature range (T = 1300 K), where a distinction

between a flow and a hopping event after our convention becomes impossible. We

see that the behavior of the three species is manifestly different. While for Ni with

decreasing temperature the hopping diffusion gets more and more effective compared

to flow diffusion, the flow remains for Zr atoms the main diffusion mode over the

whole temperature range investigated. A slight increase of the ratio Dh/Df can

be observed for Zr down to Tc, neverthless below Tc only flow can be detected, in

essence. Al atoms exhibit a behavior similar to that of Ni albeit less pronounced.

An extrapolation to further lower temperatures seems to be obvious for Ni and Al,

where the curves suggest a continuous increase of Dh relatively to Df . For Zr atoms,

the behavior of the curve below Tc suggests that the Zr diffusion is essentially carried

by a flow motion even at lower temperatures.

In Fig. (6.9) we display the Arrhenius plot of the flow diffusion constants Dh

for the three species and additionally the total diffusion coefficients DNi and DZr,

while DAl has been omitted to not overburden the figure. We see that considering

only the flow diffusivity, the parallel run of the three total diffusion constants at

higher temperatures is restored for the lower temperatures. This suggests that the

flow-like motion, at lower temperatures, proceeds in the same manner as the viscous

flow in the liquid state at higher temperatures, i.e. a collective motion where many

particles are involved, independently of their nature. The activation energy for this

diffusion mode is thus the same for the three species. Gaukel et al. [91, 92] arrived

at a similar conclusion in a MD simulation of Cu33Zr67 system modelled with EAM

interatomic potentials.

6.4 Intermediate scattering function

Structural relaxations and the slowing down of the dynamics near Tc may be con-

veniently characterized by analysing the time dependence of the intermediate scat-

tering function F (q, t) [89] for wave lengths near the interparticle spacing, i.e. for

wave numbers q near the main peak of the static structure factor. In this range

of wave numbers, F (q, t) and its self-part Fs(q, t) exhibit a very similar behaviour,

so that we will restrict ourselves here to examine Fs(q, t), which can be, moreover,

calculated with a higher statistical accuracy due to the additional averaging over all

particles.

We compute Fs(q, t) from the positions of the particles [89]

Fs(q, t) =
〈
eiq.[ri(t0+t)−ri(t0)]

〉
i,t0

. (6.12)

Fs(q, t) might be, alternatively, calculated by taking the Fourier transform of the Van

Hove correlation function Gs(r, t) [89]. This method has, however, the disadvantage
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to involve Fourier transform artefacts because of the finite size of our simulation

box.

In Fig. (6.10) we show the time dependence (over nearly 7 decades) of the

partial Fs(q, t) for different temperatures and wave vector q1 = 2.24 Å−1. This

wavelength corresponds approximately to the location of the main peak in the total

static structure factor.

We recognize the well known behavior of the density fluctuations decay. It takes

place in one step at higher temperatures and in three steps in the undercooled liquid

region, i.e., as Tc is approached. The first step is a fast decay on the time scale of the

vibrating atoms (t < 0.5 ps). This regime is associated with the vibration motion

of an atom in the cage formed by its neighboring particles. The second step, the so-

called β-relaxation regime, is identified by the upward curvature of the Fs(q, t). The

physical processes which take place in this regime are still a subject of debate in the

research field of glasses, in particular, for metallic glasses. The β-regime is followed

by a plateau (at intermediate temperatures it has the form of a shoulder) with a

rapidly growing extension as the temperature approaches Tc. This behavior is very

similar to that encountered in the time dependence of the MSD. It characterizes

the transient trapping of a moving atom in the cage formed by its neighboring

particles. The final step of the structural relaxations, the so-called α-regime, is

the region at larger times where Fs(q, t) exhibits again a downward curvature. The

α-relaxation is associated with the final decay of the atomic arrangement. We see

that for temperatures around Tg the onset of the α-process can be observed, but

the correlator Fs(q, t) does not decay to zero within the available observation time.

This reflects that the latter is shorter than the α-relaxation time scale. We note

that a structural arrest below Tc in the sense of the idealized MCT cannot be

observed. It should manifest itself by a horizontal non decaying plateau of Fs(q, t),

not found in the temperature range investigated. This demonsrates once again that

the simulated amorphous structure still is moving even below Tc due to thermally

activated hopping events not included in the idealized MCT.

The α-relaxation is usually characterized by its relaxation time τs(T ), whose

value depends on the investigated variable and on the definition adopted to deter-

mine it. We will investigate here the relaxation time of the density fluctuations by

using the conventional definition as the time after which the intermediate scattering

function decays to e−1 of its initial value. At those temperatures where Fs(q, t) does

not decay to this value, we deduced τs from a fitting of the long-time decay of the

calculated curves whith a KWW law

f(t) ∝ exp(−(t/τsβ), 1 < β < 0 , (6.13)

which has been found, by MD simulations [25, 27] and by experiments [86, 93], to

describe well the long-time behaviour of the structural relaxations in undercooled
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liquids and glasses. The dashed lines in Fig. (6.10) additionally support this state-

ment.

The temperature dependence of τs is presented in Fig. (6.11) for Ni, Zr and Al at

the wave vector q1. At first sight, the behaviour of τs(T ) is qualitatively very similar

to that observed for the diffusion constants, especially a kink at Tg followed by an

Arrhenius behaviour at lower temperatures. A larger relaxation time for Zr atoms

is consistent with their lower diffusivity due to their larger size and mass relatively

to Ni and Al atoms.

The relaxation time τs exhibits, however, a particular behaviour which distin-

guishes it from the diffusivity, namely the parallel run of the three partial τs’s over

the whole temperature range investigated. If we go back to the MSD in Fig. (6.1),

we realize that τs corresponds to atomic displacement less than 2 Å. This means that

the relaxation time τs at the main peak of the static structure factor describes struc-

tural relaxations dominated by small particles displacements only [94]. And since

these latter are governed by the viscous flow motion, it is therefore expected that τs

at q1 behaves similarly to the Df (Fig. (6.9)), i.e., the same temperature dependence

and a parallel run for the three τs’s at higher as well as at lower temperatures.

In Fig. (6.11) we include a power-law and a Vogel-Fulcher fitting of the data

obove Tg. The corresponding fit parameters are listed in tab.(6.2). According to

MCT [24], the relaxation time of the α-relaxation in the supercooled liquids follows

a power law dependence with the same exponent γ and the same critical tempera-

ture Tc as for the diffusion constants and the viscosity. Tc and γ being, moreover,

independent of the wave vector q. In our case, Tc from τs corresponds to that from

the diffusion analysis within about 5%. This is, however, not the case of γ, for which

a deviation of 15% is observed.

Table 6.2: Parameters of the power law (after MCT) and Vogel-Fulcher fits
for the relaxation times τs above Tg.

MCT VF

Tc[K] γ B[K] T0[K]

Ni 1080 2.85 3050 827

Zr 1095 2.75 3100 830

Al 1080 2.85 3050 820

Fig. (6.12) displays the inverse product of the relaxation time τs and the diffusion

constant Dα for each species, as function of the temperature. We observe that this

product is constant at higher temperatures down to T ≈ 1500K, and then starts to

decrease. The intuitive idea behind this plot is the following: τs describes the flow-

like motion of the particles, while Dα describes flow as well as hopping diffusion.
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In the absence of hopping processes, we expect that D−1
α and τs exhibit the same

temperature dependence, their product must then be constant. This is indeed what

we observe in the liquid state at higher temperatures. The decoupling of these two

quantities at lower T might be taken as a hint for the onset of hopping processes.

The temperature region where the decoupling occurs corresponds to that at which

hopping diffusion has been identified from the qualitative analysis of the van Hove

correlation functions.

6.5 Shear stress fluctuations and shear viscosity

Whereas the self-diffusion constant describes the single-particle motion, the viscos-

ity represents a collective property, which involves many-particle correlations. The

viscosity is the most used quantity to describe the development of rigidity in liquids.

We have investigated the shear viscosity by means of the Green-Kubo relation [89]

η =

+∞∫
0

η(t) dt , (6.14)

η(t) =
1

kBTV
〈σxy(t)σxy(0)〉 . (6.15)

η(t) is the stress autocorrelation function (SACF), a quantity that describes the

decay of shear stress fluctuations. σxy represents the off-diagonal elements of the

macroscopic stress tensor given by

σkl =
N∑

i=1

miv
k
i v

l
i −

N∑
j>i

∂Φ(rij)

∂rij

rk
ijr

l
ij

rij

 k, l = 1, 2, 3 , (6.16)

where ri and vi are the coordinates and the velocities, respectively, of the particle

i, rij the vector joining particle i to particle j, and Fij = −∂Φ(rij)/∂rij the force

exerted by particle j on particle i.

The lack of averaging over the particles in Eq. (6.16) makes its statistical accu-

racy inferior to that of the diffusion constant. This has been compensated by aver-

aging the value of the SACF over a large number of configurations (about 2× 105)

in addition to averaging over the three off-diagonal components of the stress tensor.

The Green-Kubo relation for the shear viscosity, Eq. (6.16), is related to the

transverse-current autocorrelation function (TCAF) in its hydrodynamic behavior,

i.e., in the long wavelength (k → 0) and low frequency (ω → 0) limit [89]. The

validity of this relationship supposes that the system is large enough to support

this limiting behavior. Non-hydrodynamic behavior, with respect to the wavelength

limit (k → 0), would manifest itself as finite-size effects in the calculated Green-

Kubo value of the shear viscosity. The direct identification of this behavior might

be obtained by calculating the shear viscosity on a range of system sizes and to look
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for a size dependence. An alternative method is to determine the k-dependent shear

viscosity η(k) [95, 96] for wave vectors k larger than the value kmin = 2π/L, where L

corresponds to the simulation box length. η(k) can be deduced from the long-time

behavior of the TCAF in the frame of the generalized hydrodynamics formalism

procedure. An extrapolation of η(k) to the long wavelength limit (k → 0) then

gives the shear viscosity η. By comparing this value with the one computed from

the Green-Kubo relation, we might gain some insight into finite-size effects due to

nonhydrodynamic behavior of the simulation. This treatment has, moreover, the

advantage that it can be carried out within one and the same simulation. We have

analyzed the k-dependent viscosity for the binary liquid Ni35Zr65 system consisting of

648 particles. The results are given in appendix B. They show that the values of the

shear viscosity determined by extrapolation are in agreement with those computed

from the Green-Kubo relation. This provides support to the reliability of the Green-

Kubo relation for calculating the shear viscosity even for system with rather limited

size. Unfortunately, this affirmation can be made only for higher temperatures above

approximatly 1400 K because at temperatures below an extrapolation of η(k) to the

long wavelength limit becomes difficult due to the strong k-dependence of η(k) in

the vicinity of kmin = 2π/L. In order to determine possible finite-size effects in the

temperature range around and eventually below Tc, the direct method, i.e. change

of the system size, is required.

Fig. (6.13) displays the time dependence of the stress autocorrelation function

normalized to unity for different temperatures. As in the case of the intermediate

scattering function (section 6.4), we recognize the three steps characteristic of the

structural relaxations: vibrational, β-, and α-process. The SACF differs, however,

by a significantly lower plateau at intermediate times. This reflects clearly the

important contribution of vibrational motion to the shear stress decay.

At lower temperatures, where the SACF does not decay to zero within the com-

putation time, we fitted the long-time decay of the curves with a KWW law. The

latter describes the shear α-relaxation as good as the density α-relaxation behav-

ior. The corresponding β exponents are considerably smaller (in the range of 0.45).

At these temperatures, the viscosity value has been evaluated by integrating this

KWW-function.

The curve at T = 850 K exhibits a practically non decaying plateau within the

available observation time (20 ns) and marks thereby the lower bound on tempera-

tures at which our computer experiment is able to give an estimation of the shear

viscosity. We note that even around Tc it becomes quite difficult to give an accurate

value of the viscosity, in view of the large fluctuations and the strong anisotropic

behavior of the SACF. It is tempting to attribute this behavior to the fact that

the system falls out of equilibrium continuously as Tc is crossed. However, this ex-

planation has to be considered with caution, since Böddecker [36] showed in a MD

simulation of binary amorphous Ni50Zr50 that this behaviour also is found after an
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observation time in the range of 1 µs, that means a time comparable to the relax-

ation time of the system at the investigation temperature of T = 1050 K ≈ Tg.

Finite-size effects would be another explanation of this behaviour. They could play

a role in this temperature range because of the increasing rigidity of the system.

This may give rise to shear stresses on length scales becoming comparable to the

box length. Further simulations on systems of different sizes thus seem necessary to

clearify this observation.

The temperature dependence of the viscosity is shown in Fig. (6.14). The values

at lower temperatures are given along with their estimated uncertainities, which stem

partly from the fitting procedure but mostly from the fluctuations mentioned above.

We see that at high temperatures down to Tg the viscosity exhibits a behaviour

similar to that of the diffusion coefficient. Below Tg, the data are insufficient to

identify an Arrhenius behavior, in contrast to the case of the diffusion constant and

the density relaxation time. We have fitted the data with a power law as well as with

a Vogel-Fulcher law. The parameters are listed in tab.(6.3). The critical temperature

Tc and the exponent γ are very close to those found from the self-diffusion analysis,

in agreement with the MCT predictions. The Vogel-Fulcher law fits significantly

better the viscosity data than the power law, covering thereby a larger temperature

range.

Table 6.3: Parameters of the power law (after MCT) and Vogel-Fulcher fits
for the shear viscosity η and the shear stress relaxation time τ

above Tg.

MCT VF

Tc[K] γ B[K] T0[K]

η 1114 2.50 3200 785

τ 1100 2.48 3100 790

Instead by use of the viscosity, structural relaxations can be equivalently char-

acterized by a specific relaxation time for the decay of the shear stress fluctuations

in the long-time behavior. We define here a relaxation time τ as the time where the

SACF η(t) decays to a fraction of 0.2 of its initial value. We choose this arbitrary

value so small (instead of the conventional value of e−1) because the α-relaxation

of the shear mode starts at quite low values of the correlator η(t) (lower than for

the correlators Fs(q, t)), as it can be seen from the relatively low plateau position in

Fig. (6.13). The temperature dependence of τ is displayed in Fig. (6.15) with the

corresponding power law and Vogel-Fulcher fitting. The corresponding parameters

are given in tab.(6.3).

The Vogel-Fulcher curve can be used to estimate the experimental glass tem-
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perature ,i.e., the temperature at which the viscosity of the system reaches the

conventional value of 1013 poise. This extrapolation gives a value of 850 K which

is identical to the value deduced from the self-diffusion analysis in section 6.1. Ex-

trapolation from the shear stress relaxation time τ to the macroscopic value of 102s

leads to the same value. This shows once again that our model allows to reproduce

the experimental, low-cooling-rate calorimetric glass temperature (T exp
g ≈ 720 K)

within a precision of about 15%.

6.6 Stokes-Einstein relation

The Stokes-Einstein (SE) relation was originally introduced to describe the diffusive

motion of a large brownian particle in a continuous fluid with shear viscosity η [89]

d =
kBT

cπηD
, (6.17)

where d is the “effective” diameter of the particle and c a constant depending on

the assumptions made about the contact between the surface of the sphere and the

velocity field of the fluid. If the “stick” boundary conditions are used, the fluid

velocity at the surface matches with that of the particle and c = 3. In the “slip”

approach, the normal component of the fluid velocity is set equal to the normal

component of the particle velocity with non tangential force acting on the sphere.
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In this case one gets c = 2.

Although the SE relation was derived from purely macroscopic considerations, it

is found to work surprisingly well in simple liquids on the atomic scale. Use of the

slip boundaries leads generally to values of the effective diameter d in reasonable

agreement with the atomic diameters.

In order to check the validity range of the SE relation for our system, we plot

in Fig. (6.16) the stokes diameter d versus temperature. The diffusion coefficient

has been averaged over the three species of the system and the “slip” boundary

conditions has been assumed. From this figure we see that d essentially is constant

at higher temperatures with d ≈ 2.1 Å. This value underestimates somewhat the

averaged atomic diameter of the system (≈ 3 Å). We note that it is possible to

evaluate the SE relation for each species separately with the corresponding partial

diffusion constants. This leads, however, to a diameter ratio dZr/dNi ≈ 1.9 which is

markedly larger than the atomic size ratio of ≈ 1.3.
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and the exponent β are determined from the decay of the total
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Around T = 1500 K the Stokes diameter starts to decrease, marking thereby the

breaking of the SE relation. A decrease by about 2 decades is observed down to the

GT temperature Tg. It is worth noticing that the failure of the SE relation occurs in

the same temperature region where the onset of the activated hopping processes has
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been identified by means of the van Hove functions analysis. This might be taken

as an indication that both effects are somehow correlated.

Note that the viscosity and the diffusivity start to decouple in the same tempera-

ture region where the diffusion constant and the density relaxation time τs manifest

a decoupling (see section 6.4). The expression Tτs/η (represented by triangles in Fig.

(6.16)) exhibits a value which is essentially independent of temperature down to Tg.

The strong decrease of Tτs/η below Tg implies, however, that the glass transition

affects differently τs and η. In the inset of the figure, we display the temperature

dependence of the KWW exponent β as determined from the decay of the total in-

termediate scattering function Fs(q, t) averaged over the three species. A tendency

of a constant β value at high temperatures is observed, followed by a decrease below

1600 K. The T-dependence thus is similar to that of the Stokes diameter.

Similar observations about decoupling behavior and breakdown of the SE relation

have been reported from experiments [97, 98] and MD simulations [94, 99] for fragile

as well as strong glass formers. In particular, the power-law behavior D ∝ η−n

with n ≈ 0.5 − 0.7 has been observed at temperatures around Tg [97, 98], which

corresponds to a decrease of the Stokes diameter by two to three orders of magnitude.

6.7 Diffusion and entropy

Bei crossing Tg with increasing temperature, the diffusion coefficients (Fig. (6.2))

exhibit an enhanced temperature dependence in the supercooled liquid compared

to the glassy state. Interpreted in terms of the Arrhenius law, this signilizes a

higher activaton energy Q and a higher prefactor D0 (for example, Q ≈ 2. eV and

D0 ≈ 10−1 for Ni in our ternary system). We note here that for all three species the

diffusion coefficients can be well approximated by an Arrhenius behavior in a range

of about 200 K above Tg, suggesting the existence of a temperature independant

energy barrier distributions even in the viscous supercooled region. A change in the

slope of the diffusivity in association with the GT is a feature observed in many

experiments [99, 100] (albeit depending on the diffusing species). Geyer et al. [101]

reported for the case of Be diffusion in Zr41.2Ti13.8Ni10Cu12.5Be22.5 an increase of

a factor 3 for Q and over 28 orders of magnitude for D0, values which seem to

be unphysically high to be explained simply in terms of an activation energy and

activation entropy. Sharma and Faupel [102] pointed out that the activation energy

in supercooled liquids must be regarded as an effective quantity only. It can be

much larger than the activation energy for overcoming activation barriers, because

any increase in temperature in this region is accompanied by important structural

changes, which open new transition channels.

To rationalize the dramatic increase of Q and D0 at Tg, Geyer et al. [101] sug-

gested a modified Arrhenius law by taking in account the increasing contribution of

the configurational entropy obove Tg,
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D(T ) = D0exp(− Q

kBT
)exp(

N∆S(T )

kB

) . (6.18)

The environment (“the cage”) around a diffusing atom is supposed to be similar

to that in the glassy state, the prefactor D0 and the migration enthalpy Q are there-

fore considered to be the same as those determined below Tg. On the other hand, the

continuous liquid-like rearrangement of the environment offers for a transition step

a larger number of target configurations than in the glassy state, thus enhancing

the diffusion. This is reflected in the additive entropy term N∆S(T ). ∆S(T ) is the

change of the configuration entropy per atom in the supercooled liquid relatively to

the glassy state and N the number of atoms involved in this cooperative behavior

around a diffusing atom.
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Figure 6.17: Diffusivity data with modified Arrhenius fit (dashed line) above
Tg according to Eq. (6.18). The solid lines are Arrhenius fits to
the data below Tg.

∆S(T ) is calculated from the enthalpy data according to

∆S(T ) =

T∫
Tg

(CSL
p − Cg

p )

T
dT . (6.19)

CSL
p and Cg

p are the specific heat in the glassy state and the supercooled liquid,

repectively.

Fig. (6.17)) shows the fitting of our calculated diffusion data obove Tg using

Eq. (6.18). Note that N is the only fitting parameter here, while Q and D0 are

those already determined below Tg. We obtain the values: NNi = 9, NZr = 13 ,
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and NAl = 10, which are comparable with the corresponding average next-neighbors

numbers: zNi = 9.95, zZr = 15.20, zAl = 12.05 (see tab.(5.1).

The fitting fails at temperatures above T ≈ 1250 K, which marks the limit

of validity of Eq. (6.18) for our system. This may be an indication that thermal

activation of individual transition events underlying the Arrhenius description of

Eq. (6.18) becomes invalid in the undercooled melts and has to be substituted by

the viscous-flow-like motion of the mode coupling picture [24]. On the other hand,

the failure may be an indication that particular features of Eq. (6.18) have to be

changed. E.g., the parameter N that describes the length scale of the cooperative

rearrangement is assumed here to be constant, while it is expected that the cooper-

ativity is reduced with increasing free volume. A temperature dependent N would

be thus more appropriate.

Despite of the reasonable values of N obtained by Geyer et al. [101] or those

we obtained here, we have to mention that it is not obvious that the additive con-

figurational entropy term in Eq. (6.18) directly determines the matter transport.

Effects of the saddle point configuration may come into play, making plausible an

additional proportionality factor.

6.8 Comparison of dynamic properties in ternary

Ni25Zr60Al15 and binary Ni35Zr65 alloys- Atomic-

level stress tensor

Fig. (6.19) and (6.18) compare the diffusivity and the viscosity, respectively, between

the ternary Ni25Zr60Al15 and the binary Ni35Zr65 amorphous alloys. Ni and Zr

diffusivities in the ternary system are higher by a about a factor 6 than in the

binary one, which is also consistent with a lower viscosity in the first relatively to

the second system.

The bend of the diffusion curves in the GT region occurs at slightly higher

temperatures for the binary than for the ternary alloy. This is in agreement with a

higher Tg for the first relatively to the second system (see chapter 4). Note that the

bend corresponds to approximately the same diffusivity value in both systems, which

provides support to the kinetic nature of the glass transition in our simulations (the

effective cooling rates in both cases being comparable).

Enhanced diffusivity is conventionally associated with the presence of a higher

amount of free volume. This suggests, thus, that the free volume in the ternary

system is larger than that in the binary system. The definition of the free volume

in both systems, in order to check this last assumption, is however not an obvious

question. Owing to the non-additive character of the pair-potentials, the particles

cannot be treated here as simple hard spheres with defined radii as underlying the
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simple free-volume picture.

An alternative approach to characterize the local atomic structure was introduced

by Egami et al. [103]. They use the concept of structural defects in terms of the

distribution of internal stresses on the atomic level. In the following we recall briefly

this approach and apply it to our binary and ternary systems.

The stress tensor calculated at the position of an atom i in a system of N atoms

is given by [103]

σkl
i =

1

Ωi

miv
k
i v

l
i +

1

2

N∑
j 6=i

∂Φ(rij)

∂rij
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ijr

l
ij

rij

 , k, l = 1, 2, 3 . (6.20)

The quantities in this equation are the same as those in Eq. (6.16). The summation

extends over all the atoms within the cut-off radii of the potentials. Ωi is the local

atomic volume which can be identified with the volume of Wigner-Seitz cell of atom

i, approximated as [103]

Ωi
−1/3 =

∑
j∈nn r−1

ij

2
∑

j∈nn r−2
ij

, (6.21)

where the summation extends over the atoms within the nearest-neighbors (nn) shell

of the atom i. In our case, we identify the nn shell with the volume of a sphere whose

radius corresponds to the first minimum in the partial RDF gij(r).

The atomic pressure pi and the Von Mises shear stress τi, which gives the mag-

nitude of the shear stress at atomic level, (both are independent of the coordinate

system) are defined as [121]
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Egami et al. [103] relate the fluctuations in the local pressure pi with the fluctu-

ations in the local density. They found a close correlation between pi and the atomic

volume Ωi. On this basis, they introduce a simple concept of defects which they clas-

sified in two categories: n-type and p-type defects. The n-type defects are associated

with sites of negative local pressure (tensile) and have lower-than-average densities,

while p-type defects are related to sites with positive local pressure (compressive)

and have higher-than-average densities. In crystalline solids, a n-type defect would

correspond to a vacancy and a p-type defect to an interstitial.

The distributions for the atomic-level pressure pi and shear stress τi are dis-

played in Fig. (6.20) for each species in the binary and the ternary systems at

T = 800 K. As expected, the pressure distribution (averaged over all species) is

centerered around the external hydrostatic pressure, held here constant (equilibrium
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conditions with P = 0). The two distributions around Ni and Zr atoms show similar

features in both systems. The pressure distribution around Ni is somewhat shifted

to higher pressures with respect to the Zr distribution. According to the approach

of Egami et al., this means that the Ni sites are associated preferently to p-type

defects (interstitial-like) with higher-than-average densities. This observation pro-

vides support to the one in section 5.5 about the existence of a pronounced SRO

in both amorphous systems and that Ni atoms reside in the centers of well-defined

optimally packed structural units. Furthermore, the partial τi distributions of the

ternary system are narrower with a slight shift towards lower shear stresses, which

indicates that the ternary state is more relaxed than the binary one.

More striking is the large shift of the pressure distribution of Al to negative

pressures as well as the shift of the shear-stress distribution of the same species

to lower shear stresses. This feature confers rather a n-defect character to the Al

sites, with lower-than-average densities (vacancy-like). It follows therefrom that by

alloying Al to the binary Ni − Zr alloy we introduce an additional free volume at

the Al sites. That means Al looks like a smaller substitute of Zr at Zr-sites. This

plausibly explains the enhanced diffusion, the lower viscosity and the more relaxed

nature of the ternary Ni25Zr60Al15 relatively to the binary Ni35Zr65 amorphous alloy.
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Figure 6.20: Distribution of the atomic level pressure (top) and von Mises
shear stress (bottom) in the ternary Ni25Zr60Al15 (full symbols)
and the binary Ni35Zr65 (open symbols) alloys at T = 800 K.
Circles: Ni; diamonds: Zr; plus: Al.



Chapter 7

Concluding discussion

7.1 Glass transition

The experimental glass temperature Tg,exp from DSC heating measurements for the

binary NiZr2 and the ternary Ni25Zr60Al15 alloy are around 652 K [104] and 720 K

[4], respectively. These values are well below the present findings from our model,

1200 K for the binary and 1025 K for the ternary system determined from the bend

in the energy or the diffusivity data. This discrepancy can be partly attributed

to the cooling rate dependence of Tg. The cooling rate used in our MD simula-

tions (≈ 1010 K/s) lies at least four decades above typical cooling rates used in

experiments (< 106 K/s) and about 8 to 10 decades above the heating rate of the

DSC measurements (≈ 10 K/s). From heating experiments on Ni34Zr66 (near the

composition studied in this work), Lück et al. [105] deduced a raise of the glass

temperature up to about 942 K for a heating rate of about 1012 K. Furthermore,

Teichler [15] established that the simulation model of Ni50Zr50 based on Hausleitner-

Hafner potentials overestimates the melting temperature by about 21% relatively

to the experimental one. The same overestimation may effect the estimated GT

temperature Tg (he obtained a comparable Tg of about 1050 K). All these aspects

have to be taken into account when comparing the glass temperature Tg from our

MD simulations with the experimental Tg,exp from DSC measurements. Moreover,

there is a good agreement with less than 15% deviation between the experimental

Tg,exp and our value Tg,ext = 840 K determined by extrapolating the viscosity (or

the diffusion) data of the ternary alloy to values typical for the experimental GT

temperature. The data used for this extrapolation belong to the temperature region

where the system is in equilibrium. Therefore the extrapolated value Tg,ext should

be independent of the cooling rate.

The model we used in this work is thus able to reproduce the structural features

of Ni25Zr60Al15 in a reasonable way, as seen in section 5.3, and also to predict

with good accuracy the experimental GT temperature, the latter belonging to the

significant dynamical features of a glassy system.

78
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7.2 Prepeaks and medium-range Order

Medium-range order (MRO) in liquids and amorphous solids is a feature that at-

tracted an increasing interest recently. MRO refers to the existence of structural

ordering occuring over range distances larger than the average nearest-neighbor dis-

tance, and giving rise to the so-called first sharp diffraction peak (FSDP) (or the

prepeak) in the structure factor S(Q) at a Q value smaller than that of the main

peak. The structural analysis of Ni25Zr60Al15 in section 5.6 reveals the existence

of well-defined prepeaks in the partial Faber-Ziman structure factors SFZ
NiNi(q) and

SFZ
AlAl(q). This is a clear signature that ordering beyond the nearest-neighbor dis-

tance is present in the studied system.

The structural origin of the FSDP remains a subject of a controversial discussion.

In the case of network-forming glasses, known as “strong” glasses according to the

classification given by Angell [68], the FSDP is attributed to the network structure

due to the directional covalent bonding or the ionic polarization effects [78]. In a

MD simulation of the network-forming system SiO2, Horbach et al. [78] pointed out

that the microscopic explanation of the FSDP in this system is the tetrahedral-like

structure and that the location of this prepeak is related to the distance between two

neighboring tetrahedra. The FSDP has been also observed in some “fragile” glasses

[16, 64, 92, 126]. In this case the MRO is attributed to the formation of structural

units constitued of unlike atoms (good mixing behavior) or like atoms (demixing

tendency). Notice that the MRO in this case could be dictated by steric condi-

tions (topological range order) or by considerations of chemical affinities between

the different atoms (chemical range order). These two orders are not necessarily

independent of each other.

The ternary system Ni25Zr60Al15 simulated here is interesting from a more basic

point of view as a model where two FSDPs of different nature are simultaneously

present. This sheds some light on the problem concerning the physical origin of the

prepeak in liquids and amorphous systems.

The Ni-prepeak at q ≈ 1.9 Å−1 is found to be associated with the weak Ni-

Ni coordination in favour of the strong Ni-Zr heterocoordination, because of the

good mixing behavior in the binary system Ni-Zr. The corresponding length of

≈ 3.9 Å is related to the second nearest Ni-Ni pair correlation. In the picture of

the trigonal prismatic structural ordering (section 5.5), this length is related to an

average distance between neighboring trigonal prisms, where the Ni atoms occupy

the centres of these prisms. This interpretation has been suggested by Suzuki et al.

[126] to explain the origin of the prepeak in the metal-metalloid amorphous alloys

Pd-Ge and Pd-Si. The authors recognize the MRO as the connectivity between

adjacent trigonal prismatic units.

The Al-prepeak is found to be associated with the tendency of Al to cluster and

to form chain-like structures, which seems to be induced by chemical affinities in
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the ternary system. The location of the prepeak (q ≈ 1.3 Å−1) is associated in this

case with the distance between two Al clusters, and thus reflects a different type of

MRO than in the Ni subsystem.

7.3 Change in diffusion mechanism and decou-

pling behaviour

The analysis of the van Hove correlation functions in section 6.2 and the study

of section 6.3 has shown that the onset of hopping processes actually takes place

at a temperature of about 1400 K, well above the dynamic GT temperature, Tc.

In this temperature range the transport mechanism seems to change from a flow-

like motion to a hopping-like one. Moreover, we have shown that this transition

concerns primarily Ni and Al. For Zr atoms, the flow-like motion seems to be the

dominant transport mode even in the region of the kinetic GT and below. The van

Hove distinct correlation function of Zr exhibits a behavior similar to that of normal

liquids, while the same functions for Ni and Al develop a pronounced correlation

peak at the origin (r = 0). The change of the transport mechanism around Tc

is a feature that has been confirmed by several MD simulation [28, 29, 30]. Our

study suggests that there is a distinction between the behaviour of small and large

particles.

While the occurence of hopping processes may be seen as a precursor of the

dynamical Glass transition ( in the sense of MCT) it seems quite clear that they

cannot be considered as a particular feature of the calorimetric GT. The latter is

rather a matter of competing time scales, that is the time scale of the dynamics

and that of the observation time. This point of view is supported by the fact that

the onset of the hopping processes takes place already well above Tc (T > 1400 K),

while the experimental calorimetric glass temperature is as low as 720 K. (This

value is reproduced by our model within a deviation of 15%, as mentioned in the

preceding section).

The onset of hopping processes seems to be related to decoupling effects which we

observe in the same temperature range, decoupling of the diffusivity from the density

relaxation time, on one hand, and diffusivity from viscosity (or the failure of the

Einstein-Stokes relation), on the other hand. Moreover, a kink in the temperature

dependence of the cell volume has been observed at the temperature where these

decouplings start to take place (chapter 4). Although there is evidence that these

effects are related to each other, the nature of this relation is not well understood.

In order to clear this relation further investigated still are necessary.

In a two dimensional study of a binary mixture of soft disks, Perrera et al.

[94] also observed the decoupling between the self-diffusion and the density relax-

ation time (at the first peak of the structure factor) below a crossover temperature.
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They argued that this decoupling arises from the increasing transient localization

(“caging”) effect as the system is cooled. The transition from ballistic to diffusive

dynamics gives rise to larger changes in the temperature dependence of the relax-

ation time, which occurs on (short) length scales comparable to that transition. On

the other hand, this transition length is insignificant when compared to the length

scale over which the self-diffusion constant is defined. In section 6.3 we used a sim-

ilar arguing to explain the same decoupling. The relaxation time τs of the density

fluctuations at the first peak of the structure factor is associated with the flow mo-

tion of the particles. In this way, the diffusivity and relaxation time τs have the

same time dependence as long as the hopping processes are negligible.

In an analysis of experimental data of viscosity and diffusion of several frag-

ile glasses, Rössler [97] reports that the breakdown of the Stokes-Einstein relation

occurs at a particular temperature, which he identifies with the kinetic GT tempera-

ture Tc of the MCT. Rössler associates the breakdown with a change of the diffusion

mechanism in the supercooled liquid. Our system gives evidence that the failure of

the SE relation may occur at as high temperatures as T ≈ 1.4Tc. The ratio of Tc to

the temperature where the SE relation fails may depend on the system studied and

particularly on its fragility.

7.4 Heterogeneity of the diffusion

Many authors [94, 97, 106, 107, 108] have attributed the failure of the Stokes-Einstein

relation and the decoupling behavior observed in the supercooled liquid of glassy

systems to the existence of a spacial heterogeneity in the distribution of local re-

laxation times, in other words to the heterogeneous coexistence of different regions

with different mobilities. It is proposed that the different physical quantities av-

eraged to obtain transport and relaxation time scales sample different parts of the

heterogeneity distribution and, hence, exhibit different temperature variations. Ac-

cording to this interpretation, the faster increase of the diffusivity with respect to

the viscosity in the undercooled liquid is explained by the fact that the increase

of the mean-square displacement is dominated by the more mobile regions (“soft

channels”), while the decay of the stress correlation function is dominated by the

slower rigid regions. The difference between the different averages increases more

and more as the distribution broadens upon cooling.

This point of view is in agreement with the increasing non-exponential (non-

Debye) relaxation behavior inherent to undercooled liquids with decreasing temper-

ature [86]. One microscopic scenario that has been proposed to explain this feature

is the superposition of different exponential contributions with different relaxation

rates [109]. Furthermore, the KWW exponent β, which is a measure of this non-

exponentiality, is found [110] to decrease as the temperature is lowered toward the

glass temperature, indicating the broadening of the distribution of the relaxation
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rates. In section 6.4 and 6.5, we have, indeed, observed such a non-exponential

behavior in the long-time decay of the intermediate scattering function and of the

shear stress autocorrelation function as well as a decrease of the β exponent on

cooling.

A number of recent experiments have given evidence of the non-homogeneous

nature of relaxation processes in amorphous structures. By selective photobleaching

of probe molecules in supercooled ortho-terphenyl, Cicerone and Ediger [106], for

instance, established the existence of long-lived clusters with different mobilities.

The direct characterization of the size and shape of such local kinetic domains and

of the microscopic mechanism reponsible for this phenomenon remains a difficult

experimental task. Here MD simulation may turn out to be a powerful alternative

tool to gain more insight in this phenomenon. Donati et al. [111] used a Lennard-

Jones model to show that stringlike cooperative molecules motions are present even

at temperatures well above the kinetic GT temperature Tc. The mean length of these

strings is found to increase upon cooling. Similar observations have been reported

by other MD studies [112].

A systematic study of dynamical heterogeneities has been not attempted in the

present work. Neverthless, we think that there is more than one indication of their

existence in the systems investigated here. As discussed in the context of the van

Hove functions analysis in section 6.2, the onset of hopping processes and the onset

of correlated motions at high temperatures well obove Tc (T > 1400 K) are one

indication. These phenomena can be attributed to the fact that stable optimally

packed regions develop in the liquid phase making possible these jumps and corre-

lated motions. This may also explain why the onset of hopping processes and the

failure of the Stokes-Einstein relation are observed in the same temperature region.

The idea of dynamical heterogeneities in form of long-living clusters of particles

and the growth of the associated length scale is reminiscent of the concept of “co-

operatively rearranged regions” put forward by Adam and Gibbs [113] to describe

the dramatic change of transport properties of supercooled liquids upon cooling.

They proposed that viscous flow occurs via increasingly cooperative rearrangement

of particles groups.

Huge effort have been made to identify this cooperativity experimentally.

Heesemann et al. [81] investigated the isotop effect of cobalt diffusion in the

amorphous state of several conventional metallic glasses (e.g. Co-rich Co-Zr al-

loys) as well as in the deeply supercooled melt of the bulk glass forming alloy

Zr41.2Ti13.8Ni10Cu12.5Be22.5. From the very small value of the isotop effect, they

concluded that Co diffusion in these alloys is a cooperative process involving about

ten atoms. The same research group [32] confirmed this statement by measuring the

pressure dependence of Co diffusion in these alloys where an almost vanishing acti-

vation volume was found. Geyer et al. [101] used an approach based on the change

of the configurational entropy at the glass temperature (section 6.7) to show that
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the number of atoms involved in the cooperative motion around a diffusing particle

is comparable with the number of the nearest-neighbors. Our results in section 6.7

are in agreement with the prediction of this approach.

In a MD simulation of amorphous Ni1−xZrx alloys, Teichler [30] established that

in the Zr-poor structure, about 80% of Ni transition take place via cooperative

processes, where a few Ni atoms are involved. This cooperativity appears in form

of ring or chain processes. Similar observations have been presented by Gaukel

et al. [91, 92] in a MD simulation of the glassy system Cu33Zr67. Furthermore, the

latter authors associate the highly cooperative hoppings in the glassy state to the

well-known low frequency localized vibration modes.

7.5 Glass forming ability

Busch et al. [19] have carried out a comparative study of a number of eutectic,

mainly Zr-based glass forming systems. They have studied thermodynamics and

kinetics of supercooled liquids by measuring the temperature dependence of the

thermodynamic functions and the viscosity. In order to explain the large glass

forming ability of bulk metallic glasses compared to the conventional ones, Busch

et al. advanced kinetic and thermodynamic arguments.

Regarding the kinetics, Busch et al. deduced that bulk metallic glasses exhibit

a behavior which is close to that of the strong glass forming silicate melts like SiO2,

namely a relatively weak temperature dependence of the viscosity close to the glass

transition. This strong liquid nature implies unusually high viscosity values of the

melt. In the case of Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Mg65Cu25Y10, viscosities around

the melting temperatures of the order of 50 poise have been measured. This gives

evidence that the bulk metallic glasses are much more viscous than pure metals

or some binary alloys, where viscosities of the order of 10−2 poise are observed

at the melting point. The high viscosity of the melt is considered as a crucial

factor in understanding the superior glass forming ability of bulk glasses, since it

implies sluggish kinetics in the entire range of the supercooled liquid leading to a

low nucleation and growth rate for crystallization.

According to these kinetic arguments, the expected large glass forming ability

of the ternary Ni25Zr60Al15 alloy compared to the binary Ni35Zr65 reflects a more

sluggish kinetics in the first alloy with respect to the second. At first sight, this

condition seems to be not fulfilled in our case, since the kinetic comparison in section

6.8 shows that the dissolution of Al into the binary alloy Ni-Zr leads to an increased

diffusivity and decreased viscosity for a given temperature. However, with regard to

the glass forming ability, a comparison of the kinetics in two alloys makes sense only

if these alloys are considered at their respective melting points. The experimental

values of the melting points are around 1400 K for Ni35Zr65 and about 1200 K for

Ni25Zr60Al15. Note that the ratio of the melting points is in agreement with the ratio
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of the corresponding glass temperatures, both reflecting the higher binding strentgh

of Zr-Ni relatively to Zr-Al. Using the data of Fig. (6.18), we get melt viscosities of

≈ 25 poise for Ni25Zr60Al15 and ≈ 3 poise for Ni35Zr65. We conclude therefrom that

the ternary sytem exhibits a more sluggish kinetics at its melting point than the

binary one, which is in agreement with the (experimentally) observed larger glass

forming ability of the first alloy relatively to the second.

Busch et al. [19] have also put forward thermodynamic arguments to describe the

large glass forming ability of bulk metallic glasses. They established that glass for-

mers with the lowest critical cooling rates have smaller Gibbs free energy differences

∆Gl−x between the undercooled liquid and the corresponding crystalline mixture,

i.e. smaller driving forces for cristallization. Bulk glass formers are thus thermo-

dynamically closer to the crystalline state compared to conventional glass formers.

This originates mainly from a smaller entropy of fusion, which determines the slope

of ∆Gl−x at the melting point. This suggests that the melts of bulk metallic glass

formers have a tendency to develop a pronounced chemical short range order even

around the melting point. Atom probe field microscopy and small angle neutron

scattering experiments have confirmed the existence of such chemical SRO [20].

A direct verification of the just mentioned thermodynamic arguments for our

ternary system Ni25Zr60Al15 with respect to the binary Ni35Zr65 alloy is not obvious,

since there is not sufficient experimental informations about the crystalline structure

of the ternary mixture. Nevertheless, the analysis of the amorphous structure in

chapter 5 has shown that the ternary system exhibits a pronounced chemical and

topological SRO which persists even at very high temperatures. The presence of this

SRO could be related to the high glass forming ability of this system. An additional

support to this observation is provided by experimental [114] and MD simulation

results [78] for one of the strongest glass formers SiO2. In the MD simulation

it is shown that the SRO (corresponding here to the open network structure) is

omnipresent even at temperatures well obove the melting point, a feature which is

not observed in fragile glasses.

It has been established by Inoue et al. [10] that crystallization of the glass form-

ing alloy Ni25Zr55Al20, which exhibits a large ∆Tx (≈ 70 K), takes place through

a simultaneous precipitation of more than two types of precipitates. For a ho-

mogenous structure, such a crystallization process requires the redistribution of the

constituents on a large range scale which is thought to represent a significant barrier

for the transition to a crystalline phase.

This interpretation is in agreement with the stochastic approach proposed by

Desré [115], who showed that an increase in the number of components in a glass

forming liquid may contribute to inhibit intermetallic crystal nucleation, thus en-

hancing the glass forming ability. In the case of homogeneous nucleation, Desré

found that addition of one further component lowers the probability of concentra-

tion fluctuations by a factor of the order of ten.
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Further, it has been reported by Matsubara et al. [75] that in the ternary systems

Ni25Zr60Al15 and Ni20La55Al20 the atomic arrangements of Al atoms around Zr and

Ni around La, respectively, differ markedly in the amorphous alloy from those in the

crystallized state. This indicates that the environmental structure around Zr and

La atoms, respectively, must be significantly changed for crystallization to occur,

which provides the high thermal stability of the two ternary alloys.

The topological point of view [10, 116] is another concept to explain the stability

of the amorphous phase by relating to the kinetic argument discussed above. It

assumes that the high stability of the supercooled liquid and the improved proper-

ties of the amorphous solid originate to a certain amount from the increase in the

packing density of the amorphous structure, which can be achieved by taking con-

stituing elements with different atomic sizes. For instance, the intermediate atomic

size of Al in the ternary alloys Ni-Zr-Al (rZr > rAl > rNi) is presumed to be ap-

propriate to fill vacant sites in the disordered structure consisting of Zr and Ni [4].

In the model used in this work, the experimental values of the atomic radii of the

three constituing elements are well reproduced. Neverthless, the system exhibits an

enhanced diffusivity by substituting Ni by Al atoms for a given temperature. The

analysis of the atomic-level stress tensor in section 6.8 has shown that this effect

is due to the n-defect (vacancy-like) character of the Al sites, which results in an

increasing free volume by alloying Al to the binary Ni− Zr alloy. This is clearly in

contradiction with the topological argument above, according to which the free vol-

ume in Ni25Zr60Al15 should be smaller than in Ni35Zr65 and thus the mobility slower.

This is a hint that in the determination of the packing density size differences play

a secondary role compared to the difference in the binding strenght between the

constituing elements.
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Summary

Molecular dynamics (MD) simulations are used in this work to modell the bulk

amorphous alloy Ni25Zr60Al15. The supercooled region of this alloy is known experi-

mentally [4] to show a high thermal stability against cristallization and a low critical

cooling rate compared with conventional metallic glasses. A reliable model for the in-

teratomic couplings is first constructed. For this purpose we adopt the global scheme

used by Hausleitner and Hafner [16] in their hybridized nearly-free-electron (NFE)

tight-binding-bond (TBB) approach to interatomic forces in disordered (liquid and

glassy) transition-metal alloys. We assume thus that the total energy of the system

may be written as effective pairwise interactions augmented by a volume-dependent

free-electron term EV ol. We use for EV ol the energy expression of a homogeneous

electron gas perturbed to first order by the ions as known from the theory of co-

hesion of simple metals [60]. Concerning the effective pair potentials, a hybrid of

different approaches is adopted. For the Ni − Zr subset we use the pair potentials

as derived by Hausleitner and Hafner [56] for the amorphous binary alloy Ni35Zr65

in the framework of the NFE-TBB scheme. The pair interaction ΦAlAl is described

in our model by the pair potential derived for pure Al within the framework of the

second order pseudopotential theory [17]. The remaining cross-term interactions

ΦNiAl and ΦZrAl are assumed to have the empirical form of Stillinger-Weber [18]

with parameters which are fitted to experimental data of the crystalline structures

Ni3Al and Zr3Al, respectively.

Comparison of the calculated radial distribution functions (RDF) with the ex-

perimental results of Matsubara et al. [75] shows that the model reproduces the

structural features of amorphous Ni25Zr60Al15 with a good accuracy. Moreover, our

model is able to predict the experimental GT temperature Tg with an accuracy of

about 15%. The activation energies Q for diffusion in the glassy state are obtained

in the range of those given by experimental measurements.

In chapter 4, analysis of the thermodynamics shows that the caloric GT tem-

perature Tg is shifted to lower temperatures by alloying Al to Ni-Zr alloy. This

effect is attributed to the larger mixing tendency of the Zr-Ni subsystem compared

86
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with the subsystem Zr-Al, as can be seen from the representation of the different

interatomic couplings in section 4.4. Upon undercooling, the binary NiZr2 and the

ternary Ni25Zr60Al15 melts fall out of equilibrium at T ≈ 1200K and T ≈ 1025K,

respectively. These temperatures lie well above the experimental glass temperature

Tg,exp from DSC measurements (about 652 K [104] and 720 K [4], respectively).

A great part of this discrepancy seems to be due to the extrem large cooling rate

used in our simulations (≈ 1010 K/s) compared to typical cooling rates used in

experiments (< 106 K/s).

The structural analysis in chapter 5 reveals the existence of well-defined prepeaks

in the Faber-Ziman Structure factors SFZ
NiNi(q) and SFZ

AlAl(q). Both reflect the exis-

tence of pronounced chemical and topological order. The Ni-prepeak is associated

with the weak Ni-Ni coordination in favour of the strong Ni-Zr heterocoordination,

because of the good mixing behavior in the binary system Ni-Zr. The corresponding

length of ≈ 3.3 Å is related to the second nearest Ni-Ni pair correlation. The pre-

peak in SFZ
AlAl(q) is associated with a tendency of Al-Al clustering, as can be deduced

from the anomalous pronounced first peak in gAlAl. The corresponding concentration

fluctuations have a length scale of about 5.8 Å. The clustering tendency of Al atoms

seems to be a result of the stronger mixing behavior of Ni-Zr system relatively to the

Zr-Al one, i.e. the Al-Zr heterocoordination preference is depressed by a stronger

Ni-Zr preference. Moreover, the smaller Ni atoms have a more appropriate size to

match in the Bernal holes of the Zr matrix than the Al atoms.

A study of the bond-angle distribution in section 5.4 shows that the angular

correlations at Ni and Zr sites are compatible with a local trigonal prismatic order,

while the Al atoms occupy sites with a predominatly icosahedral symmetry. This

suggests that the structure of the ternary alloy consists of a network of Ni-Zr units

having a trigonal prismatic topology. The Ni atoms occupy the centers of the prisms

and the Al atoms are constrained to group in the space between these Ni-Zr units.

From the temperature dependence of the prepeaks we deduce that they exist

even at temperatures as high as T = 5000 K. This indicates that the structural

organization develops at these very high temperatures already. This contrasts with

the conventional picture that the atoms in a melt are randomly distributed. The

persistence of a well-defined SRO even far obove the melting temperature seems to

be a common feature of glass formers with bonding forces of partial covalent nature,

like network-forming and transition-metals glassy systems.

In chapter 6 several aspects of the dynamics are studied. The analysis of the van

Hove correlation functions in section 6.2 shows that the onset of hopping processes

actually takes place in a temperature range well above the kinetic GT temperature

Tc (T > 1400 K). In this temperature range, the transport mechanism seems to

change from a flow-like motion to a hopping-like one. The pronounced peak at

the origin in the van Hove distinct correlation function gives evidence of the highly

correlated nature of the hopping processes. This features seems, however, primarily



CHAPTER 8. SUMMARY 88

to concern the Ni and Al atoms. For Zr atoms, the flow-like motion seems to be the

dominant transport mode even in the region of the kinetic GT and below, at least

for the configurations accessible by the present cooling treatment.

The onset of the hopping processes seems to be related to decoupling effects

observed in the same temperature range: decoupling of the diffusivity and the den-

sity relaxation, on one hand, and diffusivity and viscosity (or the breakdown of the

Einstein-Stokes relation), on the other hand. Moreover, a kink in the temperature

dependence of the volume of the cell has been observed when these decouplings take

place. Although there is evidence that these effects are related, the nature of this re-

lation is not well understood. In order to clear this relation, further investigated still

are necessary. The role of dynamic heterogeneities has to be considered particularly.

We observe an enhanced diffusivity (or equivalently a decreased viscosity) by sub-

stituting Ni by Al atoms for a given temperature. The analysis of the atomic-level

stress tensor in section 6.8 shows that this effect is due to the n-defect (vacancy-like)

character of the Al sites, which results in an increasing free volume by alloying Al to

the binary Ni− Zr alloy. This is clearly in contradiction with the topological argu-

ment advanced by Inoue and co-workers [10], according to which the high thermal

stability of Zr-rich Ni-Zr-Al ternary alloys relatively to Zr-rich binary ones originates

from the increase of the packing fraction by the dissolution of Al. From our model,

it comes out that in the determination of the packing density, size differences play

a secondary role compared to the difference in the binding strength between the

constituent.



Appendix A

k-dependent shear viscosity

A.1 Definition

Owing to its intrinsic hydrodynamic nature, the shear viscosity coefficient η is the

quantity used to specify transverse collective motions in a fluid on a macroscopic

scale. The associated dynamical quantity is the transverse current correlation func-

tion [89, 95]

Ct(k, t) =
1

N

〈
jx
k(t + t0)j

x
−k(t0

〉
t0

, (A.1)

jk(t) is the space Fourier transform of the particle current

j(r, t) =
N∑

i=1

vi(t)δ[r− ri(t)] , (A.2)

where ri and vi are the position and velocity of particle i respectively. In eq.(A.1),

the z-axis is chosen as the direction of the wave vector k.

The shear viscosity η is related to the long-wavelenght, low frequency behavior

(hydrodynamic limit) of the spectrum of Ct(k, t) by

Ct(k, t) =
πρm2

kBT
lim
ω→0

lim
k→0

ω2

k2
Ct(k, ω) , (A.3)

where ρ = N/V is the number density and m is the atomic mass.

Beyond the strict hydrodynamic regime, a liquid is found to support shear-wave

propagation over short distances, manifesting itself in the appearance of inelastic

peaks in the transverse current spectrum. These non-hydrodynamic features are

described formally by a wavevector- and frequency-dependent shear viscosity coeffi-

cient, which can be introduced in the framework of the memory-function formalism

[89].

In the following we consider the normalized transverse current ρt(k, t) =

(Ct(k, t)/Ct(k, 0). In terms of Laplace transforms f̃(z) = Lf(t) one finds that

ρ̃t(k, z) = [z + K̃t(k, z)]−1 = [z + (k2/ρm)η̃(k, z)]−1 . (A.4)

89
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Kt(k, t) = L−1K̃t(k, z) is called the transverse current memory function. The quan-

tity η̃(k, z = iω) is interpreted as the wavevector- and frequency-dependent shear

viscosity. At finite frequencies, η̃(k, z = iω) is in general a complex quantity. Its

imaginary part describes shear-wave propagation while the real part accounts for

damping effects. As ω → 0, η̃(k, iω) becomes purely real and it is reasonable to de-

scribe the microscopic low-frequency response of the system by a generalized shear

viscosity coefficient

η(k) ≡ lim
ω→0

η̃(k, iω) , (A.5)

or equivalently

η(k) = ρm/k2

+∞∫
0

Kt(k, t)dt . (A.6)

In particular, η(k) approaches the shear viscosity η at large k

lim
k→0

η(k) = η . (A.7)

Writing

ρ̃t(k, z = iω) = ρ′t(k, ω) + iρ′′t (k, ω) , (A.8)

ρ′t(k, ω) =

+∞∫
0

cos(ωt)ρt(k, t)dt = πρt(k, ω) , (A.9)

ρ′′t (k, ω) = −
+∞∫
0

sin(ωt)ρt(k, t)dt , (A.10)

along with similar definitions for K̃t(k, z = iω), it is easy to deduce that

K ′
t(k, ω) =

ρ′t(k, ω)

[ρ′t(k, ω)]2 + [ρ′′t (k, ω)]2
. (A.11)

To evaluate η(k), one first determines numerically ρ′t(k, ω) and ρ′′t (k, ω) from

the data of the transverse current correlation function ρt(k, t), and then K ′
t(k, ω)

by eq.(A.11); an inverse Fourier transform gives Kt(k, t). The integral of eq.(A.11)

gives finally η(k).

A.2 Results

The MD analysis of the k-dependent η(k) has been performed for the binary system

Ni35Zr65 by use of the Hausleitner-Hafner interatomic couplings (see chapter 3) and

with a total particles number of N = 648. Ct(k, t) has been calculated at different

temperatures for a range of k larger than the minimum value kmin = 2π/L, which
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is given by the box lenght L of the system. Since Ct(k, t) is a collective property,

no distinction is made between Ni and Zr in eq.(A.1). The statistical accuracy of

eq.(A.1) is affected by the lack of averaging over the particles. This has been com-

pensated by averaging Ct(k, t) over a large number of configurations (about 2×105)

in addition to the six combinations offered by eq.(A.1) to chose the longitudinal

and the transversal directions. The k-dependent viscosity η(k) has been then nu-

merically evaluated according to the method described in the previous section. The

results are displayed in fig.(A.1,A.2).

At higher temperatures above approximatly 1400K, η(k) for k → 0 approximates

well the values directly computed by using the Green-Kubo relations (see section

6.6), additionally indicated in the figures by the triangles. This provides an explicit

support to the reliability of the Green-Kubo relation in calculating the shear viscosity

even for systems with rather limited size. At lower temperatures η(k) exhibits a

strong behavior in the vicinity of kmin = 2π/L, so that an extrapolation to k → 0

becomes difficult.
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Figure A.1: k-dependent shear viscosity η(k) in binary Ni35Zr65. The trian-
gles at k = 0 are the values of the shear viscosity η calculated
from the Green-Kubo relation. k values are in units of 2π/L.
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Appendix B

Fitting results

Table B.1: Experimental values of Ni3Al and Zr3Al properties used in the
fit of the parameters of the Stillinger-Weber pair-potentials ΦNiAl

and ΦZrAl respectively.

Ni3Al Zr3Al

exp. calc. exp. calc.

a[Å] 3.57 [117] 3.54 4.37 [118] 4.38

Ec[eV] 4.57 [117] 4.45 5.89 [63] 5.90

B[eV.Å−3] 1.03 [117] 1.05 0.58 0.65

To get the experimental cohesive energy of the alloys one adds the formation

enthalpy to the cohesive energy of an ideal mixture, obtained by using the pure

metal cohesive energies.

Since an experimental value of the bulk modulus of Zr3Al is not available in the

literatur (to our knowledge), we used the concentration-weighted average of the bulk

modulus of pure Zr [119] and Al [117].

The bulk modulus were calculated from the second derivative of the atomic

cohesive energy Ec with respect to the atomic volume Ω [120]

B = Ω
d2Ec

dV 2
(B.1)
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[123] see, e.g., R. Brüning, K. Samwer, Phys. Rev. B 46, 11318 (1992).

[124] K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B 54, 15808 (1996).

[125] P.H. Gaskell, in Glassy Metals II, edited by H. Beck and H.-J Güntherodt

(Springer-Verlag, Berlin 1983), p. 23.

[126] K. Suzuki, T. Fukunaga, K. Shibata, T. Otomo, H. Mizuseki, in Thermo-

dynamics of Alloy Formation, edited by Y. A. Chang and F. Sommer (The

Minerals, Metals and Materials Society, 1997).



Danksagung

In erster Linie gilt mein Dank Herrn Prof. Teichler für die Anregung, Förderung

und Betreuung dieser Arbeit, sowie seine unendlich grosse Diskussionsbereitschaft.

Herrn Prof. Dr. K. Samwer sei herzlich gedankt für seine Tätigkeit als Korref-

erent.

Ingeborg und den Mitgliedern der Arbeitsgruppe Theorie: Jörg, Kevin und Boris;

sowie den ausgeschiedenen Mitgliedern: Bert, Benny, Matthias, Florian, und Martin

danke ich für das angenehme Arbeitsklima im Labor. An die vielfältigen Diskus-
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Mit der Gesellschaft von Benny, sei es beim Unterhalten oder zusammen rauchen,

verbinde ich schöne Erinnerungen. Meine erste MD simulation habe ich mit seiner

Hilfe gestartet.

Ein Besonderer Dank gilt Maria Dolores, die mich bei dieser Arbeit begleitet

und unterstüzt hat.
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