
1

Caching Video Objects: Layers vs Versions ?

Felix Hartanto� Jussi Kangasharjuy Martin Reissleinz Keith W. Rossy�felix@ie.cuhk.edu.hk yfkangasha, rossg@eurecom.fr zreisslein@asu.edu
Dept. of Information Engineering Institut Eurecom Telecommunications Research Center
Chinese University of Hong Kong 2229, route des Cretes Dept.of Electrical Engineering

Shatin, N.T. 06904 Sophia Antipolis Arizona State University
Hong Kong France Tempe, AZ 85287–7206

Abstract—Because Internet access rates are highly hetero-
geneous, many video content providers today make available
different versions of the videos, with each version encoded
at a different rate. Multiple video versions, however, require
more server storage and may also dramatically impact cache
performance in a traditional cache or in a CDN server. An
alternative to versions is layered encoding, which can also
provide multiple quality levels. Layered encoding requires
less server storage capacity and may be more suitable for
caching; but it typically increases transmission bandwidth
due to encoding overhead. In this paper we compare video
streaming of multiple versions with that of multiple layers
in a caching environment. We examine caching and dis-
tribution strategies that use both versions and layers. We
consider two cases: the request distribution for the videosis
known a priori; and adaptive caching, for which the request
distribution is unknown. Our analytical and simulation re-
sults indicate that mixed distribution/caching strategies pro-
vide the best overall performance.

Keywords— Proxy Caching, Streaming Video, Layered
Video, Multi–version Video.

I. INTRODUCTIONMANY analysts expect streaming stored video to be
the dominant traffic type in the Internet in the up-

coming years, dwarfing the bandwidth usage of other In-
ternet applications. Driving this demand is the current
deployment of residential broadband access technologies,
such as cable modem and xDSL technologies.

Given that the Internet will soon be transporting vast
quantities of video traffic, a major concern becomes the
efficient distribution of the video data. As with Web ob-
jects, video data can be transported to the client in many
different ways, including(i) directly from origin server
to client; (ii) through intermediate ISP caches; and(iii)
through content distribution networks (CDNs) such as the
Akamai network.

In designing new strategies for distributing stored video
over the Internet, we also must take into account that ac-
cess to the Internet is highly heterogeneous [1], [2]. Today,
Internet access includes 56 kbps modem connections, 128

kbps ISDN connections, shared–bandwidth cable modem
connections, xDSL connections with downstream rates in
100 kbps to 6 Mbps range, and high–speed switched Ether-
net connections at 10–100 Mbps. Because Internet access
is heterogeneous, video content providers typically pro-
vide multiple quality levels, with each quality level having
a different encoding rate.

Multiple quality levels can be created by encoding video
into multiple versions, each version encoded at a different
rate. However, multiple versions of the same video can
cause large increases in the amount of storage. For exam-
ple, for storing 1000 videos, each video having an average
length of one hour and having an average encoded bit rate
of 4 Mbps, the required storage is 1800 Gbytes of storage.
If for each video there is a second lower–quality version
at half the bit rate of the high–quality version, then we
need an additional 900 Gbytes of storage. When there are
many versions, the additional required bandwidth can be
yet much more.

Layered encoding (also known as hierarchical encod-
ing) can also be used to create multiple quality levels. The
storage requirements at a server for maintaining multiple
layers is typically much less than maintaining the same
number of versions. However, creating video layers gen-
erates additional bandwidth overhead [3], [4]. In particu-
lar, for the same quality level, layered encoding typically
requires more transmission bandwidth than does a video
version.

Given the presence of a caching and/or content distri-
bution network infrastructure, and the need for multiple
video quality levels, in this paper we compare distributing
video versions to distributing video layers. We also exam-
ine mixed strategies consisting of both versions and layers.

Specifically, we consider a model in which all video
content is encoded into two versions: a low–quality ver-
sion and a high–quality version. All videos are also hi-
erarchical encoded into a base layer and an enhancement
layer. A proxy, representing an institutional cache or a
server in a CDN, sits between the origin servers and the



2

clients. Bandwidth between the proxy and the clients is
assumed to be abundant. However, bandwidth between
the origin server and the proxy is a constrained resource,
as well as is the storage capacity at the proxy. When the
proxy receives a request for a video at a specific quality
level, the proxy will directly satisfy the request if it has
cached the appropriate version or layers; otherwise, if suf-
ficient bandwidth is available between origin server and
proxy, the origin server will stream the needed version or
layers to the client through the proxy.

We first consider the case when the request distribution
for the videos is known. We consider three natural dis-
tribution strategies and develop an analytical performance
methodology. We then consider the case when the request
distribution is unknown. We propose three natural adap-
tive caching studies and use simulation to compare their
performance. Broadly speaking, we find that mixed strate-
gies that use both versions and layers provide the most ro-
bust performance. Our model and methodology brings out
a number of subtle issues that shed important insights on
the distribution of multi–quality in the Internet.

This paper is organized as follows. We end this section
with an overview of related work. In Section 2, we present
our model and establish some basic properties of optimal
caching strategies. In Section 3 we consider the case when
the request distribution is known. We develop an analytical
methodology, which we use to study the performance of
three natural caching strategies. In Section 4, we consider
adaptive caching and again study three natural distribution
schemes. In the concluding Section 5, we summarize our
findings.

A. Related Work

Decuetoset al[5] also compared streaming of video ver-
sions to streaming of video layers. In particular, in a TCP–
friendly context, they proposed prefetching and quality–
level switching schemes for both pure versions and pure
layers. The paper [5] focused on time–dependent stream-
ing of a single video from origin server to client; it did
not take into account an intermediate cache sitting between
origin servers and clients.

Kangasharjuet al [7] considered caching strategies for
layered video. In particular, they formulated the prob-
lem as optimization problem, showed that the optimization
problem was intractable, and proposed and studied several
natural heuristics. The paper [7] did not take into account
multiple versions, and therefore did not compare caching
layers, caching versions, and mixed strategies.

Fig. 1. Architecture for caching and streaming of adaptive
video.

II. M ODEL AND NOTATION

Fig. 1 illustrates our architecture for video caching.
Suppose there areM videos available; and all of them are
stored on the origin servers. Popular videos are cached in
a proxy server, which is located close to its client commu-
nity.

A. Proxy Server

The clients direct their requests to the proxy server; if
the requested video (defined by type and quality) is in the
proxy, then the video is streamed from the proxy to the
client; if it is not in the proxy, the video is streamed from
the origin server to the proxy, and then from the proxy to
the client.

The proxy server is connected to the origin servers via
a wide area network (e.g., the Internet). We model the
bandwidth available for streaming from the origin servers
to the proxy server as a bottleneck link of fixed capacityC
(bit/sec). The proxy is connected to the clients via a local
access network, which could be a LAN running over Eth-
ernet, or a residential access network using xDSL or HFC
technologies. For the purposes of this study, we assume
that there is abundant bandwidth for streaming from the
proxy to the clients. We model the proxy server as having
a storage capacity ofG (bytes) and having infinite storage
bandwidth (for reading from storage). Our focus in this
study is on caching strategies that cache complete layers
or versions of videos in the proxy. Our goal is to cache
video layers or versions so as to maximize the number of
supported streams.

B. Versions

Real Networks [9] and other video streaming technol-
ogy companies today allow content providers to encode



3

video into multiple quality versions. Video versions allow
service and content providers to offer flexible streaming
services to clients with vastly different access bandwidths
and decoding capabilities. Clients with low–speed access
will only be interested in the low–quality stream. Clients
with LAN, cable–modem or ADSL access will be inter-
ested in high–quality streams.

Many content providers today store multiple versions of
the same video on the origin server and stream the video
version that is most appropriate on a user–to–user basis.
This approach allows for flexible pricing structures. A
content or service provider may offer the low–quality ver-
sion for a standard charge and charge a premium for the
high–quality version. Throughout this paper we shall as-
sume that two quality levels are available for each video.

Although the approach of multiple versions offers
greater service and pricing flexibility, it has major draw-
backs. First, it requires more storage at the origin server
than does the approach that makes only one quality level
available. Second, if one quality version is cached in a
proxy server, and there is a request for a different quality
version, then the version must be fully streamed from the
origin server, i.e., the cached version is of no use. And
third, if both quality levels are cached in the proxy, then
more storage is necessary than when only one version is
used.

C. Layers

An alternative to using versions is to use layered (also
known as hierarchical encoded) video. With layered en-
coding, each video object is encoded into a base layer and
one or more enhancement layers. The base layer contains
the most essential information, and the enhancement lay-
ers provide quality enhancements. A particular enhance-
ment layer can be decoded only if all lower quality layers
are available. Throughout this paper, we will assume that
each video has been coded into two layers, a base layer
and a single enhancement layer.

The storage requirements for the base and enhancement
layer together are typically less than the requirements for
the low–quality and high–quality versions together, for
both the origin server and the proxy. Furthermore, if the
base layer is cached in the proxy, and a client requests
a high–quality version, then only the enhancement layer
needs to be streamed from the origin server. Nevertheless,
layered encoding has one major drawback, namely, encod-
ing overhead. Typically, for the same high–quality level,
the total rate of the base and enhancement layer combined
is greater than the rate of the high–quality version. Also,
for the same low–quality level, the rate of base layer is of-
ten greater than that of the low–quality version. This over-

head impacts both transmission and storage resources.
In summary, in this study each video can be encoded

into either versions or layers. For versions, we suppose
that there are two possible versions, namely, a high–quality
version and a low–quality version. For layers, we suppose
that the video is encoded into two layers, namely, a base
layer and an enhancement layer. Thus, each video has four
objects associated with it: a low–quality version, a high–
quality version, a base layer, and an enhancement layer.
We denote these four objects byl, h, b, ande, respectively.

If T (m) is the length of videom; m = 1; : : : ;M ,
in seconds andr(m) is the encoding rate for one of the
versions or layers, then the corresponding storage require-
ment for the object isS(m) = T (m) � r(m). Table I sum-
marizes the notation we will use for the two versions and
the two layers. We naturally assume that the rate of the
high–quality version is greater than the rate of the low–
quality version, i.e.,rh(m) > rl(m).

In order to compare the caching of layers and versions,
we suppose throughout that the encodings are such that
the visual quality of the base layer is the same as the visual
quality of the low–quality version; and the video quality of
the base and enhancement layer combined is the same as
the high–quality version. However, due to encoding over-
head to create layers, we do not assume that the layers
and versions have the same encoding rates. Instead, we
make the following three naturalRate Assumptionswhich
are based on video encoding experiments [3], [4]:
1. Due to the overhead of layered encoding, the base layer
has at least the same rate as the low–quality version, i.e.,rb(m) = rl(m) � [1 + Ol(m)℄ whereOl(m) � 0 is the
low–quality coding overhead.
2. Again due to the overhead of layered encoding, the base
and enhancement layers together have at least the same
rate as the high–quality version, i.e.,rb(m) + re(m) =rh(m) � [1+Oh(m)℄ whereOh(m) � 0 is the high–quality
coding overhead.
3. The base and enhancement layers together have smaller
rate than the two versions, i.e.,rb(m) + re(m) < rl(m) +rh(m).

For any video, the proxy can contain objects made from
versions and/or layers. However, we assume thedecod-
ing constraint, namely, that the proxy never caches the en-
hancement layer if the base layer is not cached. When
a request arrives to the proxy for some low–quality video,
the proxy can satisfy the request if it is currently storing ei-
ther the low–quality version or the base layer of the video.
Otherwise, the proxy must obtain either the low–quality
version or the base layer from the origin server and relay
the object to the requesting client. When a request arrives
to the proxy for some high–quality video, the proxy can



4

Base layer Enh. layer Low quality High quality
Encoding rate rb(m) re(m) rl(m) rh(m)
Size Sb(m) Se(m) Sl(m) Sh(m)

TABLE I
NOTATION: RATES AND STORAGE REQUIREMENTS OF LAYERS AND VERSIONS OF VIDEO m; m = 1; : : : ;M .

satisfy the request if it is currently storing either the high–
quality version or if it is storing both the base and enhance-
ment layers of the video. Otherwise, it must retrieve an
object from the network to satisfy the request. If the proxy
has stored the base layer, then the proxy can retrieve either
the enhancement layer or the high–quality version.

D. Basic Properties

For a given video, there are four cachable objects: the
low–quality version (l), the high–quality version (h), the
base layer (b) and the enhancement layer (e). Thus for any
given video, there are24 = 16 different combinations of
objects that can be put in the cache, including putting no
object in the cache. This is a daunting number of combi-
nations to analyze. Fortunately, without loss of generality,
we may restrict ourselves to only five of the combinations:

Theorem 1:There is an optimal caching configuration
such that for each video one of the following five object
combinations is used:;, flg, fhg, fbg, or fb; eg. In other
words, for each given video we either cache just the low–
quality version, just the high–quality version, just the base
layer, the base and enhancement layers together, or no ob-
jects at all.

Proof: Because of the decoding constraint for lay-
ered video, we can rule out all combinations that includee
but notb.

Now considerfb; hg. Note that Rate Assumptions 3
and 1 together imply thatrh(m) > re(m). Hencerb(m) + rh(m) > rb(m) + re(m). It follows from this
last expression that we can replace the combinationfb; hg
with fb; eg and use less storage while still satisfying all
requests at the proxy for the video. Thus we can rule outfb; hg.

Now considerfb; lg, fb; l; eg, fb; l; hg, fb; l; h; eg.
By caching the base layer, we satisfy all low–quality re-
quests and we partially satisfy higher quality requests
(only need to get enhancement layer from network). If
we additionally cache the low–quality version, we take
up more storage and we do not satisfy more requests
for low–quality video. Combining this observation withrh(m) > re(m) implies that if we cache the base layer,
then there is no need to also cache the low–quality layer.

Thus we can rule out all these four cases.
Now considerfl; hg. This combination will satisfy all

requests at the proxy. However, the combinationfb; eg
also satisfies all requests and, by Rate Assumption 3, takes
less storage. Thus, we can rule outfl; hg.

Finally, we can also rule outfb; e; hg since the combi-
nationfb; eg also satisfies all requests but takes less stor-
age.

As a corollary to the above theorem, for any given video
we use either versions or layers but not both.

Motivated by the above theorem, in the following sec-
tions we will propose and examine some strategies for
caching layer and version objects. But it is also useful to
make a few additionalObservationsabout extreme cases:
1. For a given video if all (or “nearly all”) requests are for
the low–quality version (and none or “nearly none” are for
the high–quality version), then we would either cache the
low–quality version or cache no objects for that video, i.e.,
for object combination we would use eitherflg or ;.
2. Similarly, if for a given video if all (or “nearly all”)
requests are for the high–quality version, we would use
eitherfhg or ;.
3. If there is no overhead for layered encoding, that is, ifOl(m) = Oh(m) = 0, then for videom we would only
use layers; in particular, we would use either;, fbg orfb; eg.

However, when(i) there is layering overhead, and(ii)
request rates for low– and high–quality versions are both
significant, then it is not obvious whether we should use
versions or layers; furthermore, for some videos it may
be preferable to use versions whereas for others it may be
preferable to use layers.

III. K NOWN REQUESTDISTRIBUTION

We start by modeling the steady–state cache perfor-
mance using a static caching model. With this model, we
assume that the request pattern is knowna priori and does
not change dynamically. Suppose that there areM videos.
Suppose that requests for video streams arrive according to
a Poisson process with rate� (requests/hour). Letj denote
the requested quality level withj = 0 indicating a request
for a low quality video, andj = 1 indicating a request for a



5

high quality video. Letp(j;m); j = 0; 1; m = 1; : : : ;M ,
denote the probability that a given request is for thej–
quality stream of videom. As a proper mass distribution
thep(j;m)’s satisfy

PMm=1P1j=0 p(j;m) = 1.
The corollary to Theorem 1 suggests three caching

strategies, namely:
1. Pure version caching, where we cache only video ver-
sions.
2. Pure layer caching, where we cache only video layers.
3. Mixed caching, where we cache layers for some videos
and versions for others.

For all three caching strategies we first order the request
probabilitiesp(j;m); j = 0; 1; m = 1; : : : ;M in de-
creasing order. We then fill the cache by considering the
objects(j;m) that are the most requested. First, we put the
object (j;m) with the largest request probabilityp(j;m)
into the cache. Next, we cache the object(j;m) with the
next largest probabilityp(j;m), and so on. If at some point
(as the cache fills up) the object needed to satisfy the re-
quest with the next largest request probability does not fit
into the remaining cache space, we skip this object and try
to cache the objects with the next largest request probabil-
ities.

With pure version cachingwe cache only versions of
the videos. We cache the high quality version of videom if the next largest probabilityp(j;m) is for the high
quality stream of videom (i.e., j = 1). If the next largest
probability is for the low quality stream of videom, then
we cache the low quality version of videom. Note that
with pure version caching we may end up caching both
high and low quality versions of the same video (which
we know from Theorem 1 is sub–optimal).

With pure layer cachingwe cache only video layers.
If the next largest request probabilityp(j;m) is for low
quality stream of videom (i.e., j = 0), then we cache
the base layer of videom. On the other hand, if the next
largest probability is for the high quality stream of videom (i.e., j = 1), then we cache both base and enhance-
ment layer of videom. If the base layer has already been
cached, i.e., ifp(0;m) > p(1;m), then we need to cache
the enhancement layer only. Due to decoding constraint,
we never cache the enhancement layer of a given video
without caching the corresponding base layer.

With mixed cachingwe cache the high quality version
of videom if the next largestp(j;m) is for the high qual-
ity stream of videom and no other object of the video has
been cached. On the other hand, if the next largest proba-
bility is for the low quality stream of videom and no other
object of the video has been cached, then we(i) cache the
low version of videom if rb(m) > rl(m), and(ii) cache
the base layer of videom if rb(m) = rl(m). However, if

we have already cached the low (or high) quality version
of a given video and the next largest probability is for a
different quality of the video, then we replace the low (or
high) quality version of the video with the base and en-
hancement layer of the video.

A. Video Caching Model

In this section we develop an analytical model for the
caching and streaming of video layers and versions. We
derive expressions for the blocking probability of a client
request and the long run rate at which client requests are
satisfied. To keep track of the objects in the cache we in-
troduce a vector of cache indicators = (1; 2; : : : ; M ),
with m = f;g; flg; fhg; fl; hg; fbg; or fb; eg, form = 1; : : : ;M . m indicates whether no object, the low–
quality version, the high–quality version, both the low–
and high–quality version, the base layer, or the base layer
together with the enhancement layer is cached for videom. (We allow form = fl; hg to accommodate pure ver-
sion caching in our model; note, however, that by Theo-
rem 1 it is sub–optimal to cache both the low– and high–
quality version for a given videom.) In our model we fo-
cus on the bottleneck link of capacityC, that connects the
proxy server to the origin servers. We model this link as a
stochastic knapsack [8]. Letbm(j;m); j = 0; 1; m =1; : : : ;M , denote the link capacity required for satisfying
a request for aj–quality stream of videom, given that the
object(s)m are cached for videom. Table II gives thebm(j;m)’s for all possible combinations ofm andj. We
assume that the lower rate versions are streamed over the
bottleneck link whenever a request cannot be satisfied by
the cache; except in the case where the base layer is cached
and the high–quality stream is requested, in that case we
stream the enhancement layer. Without loss of generality
we assume thatC and allbm(j;m)’s are positive integers.
Let b = (bm(j;m)); j = 0; 1; m = 1; : : : ;M , be the
vector of the bandwidth requirements of the requests. Note
that this vector has2M elements. Throughout we assume
that the client watches the entire stream without interrup-
tion, thus the bandwidthbm(j;m) is occupied forT (m)
seconds. Letn = (n(j;m)); j = 0; 1; m = 1; : : : ;M ,
be the vector of the numbers of ongoingj–quality streams
of videom. Then(j;m)’s are non–negative integers. LetS = fn : b � n � Cg be the state space of the
stochastic knapsack model of the bottleneck link, whereb � n =PMm=1P1j=0 bm(j;m) � n(j;m). Furthermore,
let S(j;m) be the subset of states in which the knapsack
(i.e., the bottleneck link) admits a stream with the band-
width requirementbm(j;m). We haveS(j;m) = fn 2S : b �n � C � bm(j;m)g. The blocking probabilities



6bm(j;m) m = f;g m = flg m = fhg m = fl; hg m = fbg m = fb; egj = 0 rl(m) 0 rl(m) 0 0 0j = 1 rh(m) rh(m) 0 0 re(m) 0

TABLE II
BANDWIDTH REQUIREMENT FOR STREAMINGj–QUALITY STREAM OF VIDEO m GIVEN CACHE CONFIGURATIONbm(j;m).
can be explicitly expressed asB(j;m) = 1�Pn2S(j;m)QMm=1Q1j=0(�(j;m))n(j;m)=(n(j;m))!Pn2SQMm=1Q1j=0(�(j;m))n(j;m)=(n(j;m))! ;
where�(j;m) = �p(j;m)T (m) is the load offered by re-
quests forj–quality streams of videom. These blocking
probabilities can be efficiently calculated using the recur-
sive Kaufman–Roberts algorithm [8, p. 23]. The expected
blocking probability of a client’s request is given byB() = MXm=1 1Xj=0 p(j;m)B(j;m):
The long run throughput, i.e., the long run rate at which
client requests are satisfied is given byTH() = � � MXm=1 1Xj=0 p(j;m)(1 �B(j;m)):
We define the normalized throughputTHn() as the ratio
of the rate of satisfied requests to the total request arrival
rate, i.e.,THn() = TH()=�.

B. Numerical Results

We assume that there areM = 1,000 different videos.
For a given videom we generate the version and layer
rates as follows. The rate of the high quality versionrh(m)
is drawn randomly from a uniform distribution between 2
and 6 Mbps with a granularity of 0.1 Mbps and an average
of 4 Mbps. The rate of the low quality versionrl(m) is
uniformly drawn between0:5 �rh(m) and0:7 �rh(m) with
an average of0:6 � rh(m). The length of the videoT (m)
is drawn from an exponential distribution with an average
length of one hour.

We assume that the aggregate rate for the layered video
has an overheadOh(m) over the high quality version, i.e.,rb(m) + re(m) = [1 +Oh(m)℄ � rh(m). We consider two
cases:(i) rb(m) = rl(m), and (ii) rb(m) > rl(m), in
this case we varyrb(m) betweenrl(m) and[1 +Oh(m)℄ �rl(m). With rb(m) fixed, the rate of the enhancement layer

re(m) is then computed asre(m) = [1+Oh(m)℄�rh(m)�rb(m).
Client requests arrive according to a Poisson process.

The average request arrival rate is� = 270 requests/hour,
chosen to give a blocking probability of 2% whenq = 1:0.
The p(j;m)’s are determined as follows. Letpm; m =1; : : : ;M , denote the probability that a given client request
is for videom (irrespective of whether the request is for the
low quality stream or the high quality stream of the video).
We draw thepm’s from a Zipf distribution with parameter� = 1. Let q denote the probability that the request for a
given video is for the low quality stream of the video. We
fix q as a system parameter in our numerical analysis. We
setp(0;m) = q � pm andp(1;m) = (1� q) � pm.

The cache size is set toG = 200 Gbytes and the link
capacity isC = 150 Mbps. For a given realization of the
layer and version rates (rl(m); rh(m); rb(m); re(m)) as
well as video lengthsT (m); m = 1; : : : ;M , we apply the
three outlined caching strategies to obtain the cache indi-
catorsm; m = 1; : : : ;M . With these cache indicators
we calculate the normalized throughput using the stochas-
tic knapsack analysis introduced in the previous section.
We run many independent replications of this procedure to
obtain confidence intervals for the normalized throughput.
For every independent replication we draw a new indepen-
dent set of layer and version rates and video lengths. We
repeat this procedure until the 95% confidence interval of
the normalized throughput is less than 1% of the corre-
sponding sample mean.

In Fig. 2 we plot the normalized throughput as a func-
tion of the probability of a low quality requestq. The re-
sults show that if no overhead is incurred in generating
layered videos (i.e.,Oh = 0), then pure layer caching
is the best strategy as suggested by Observation 3 above.
Caching layers is also favorable when the requests are non-
homogeneous (0:1 < q < 1) and the overhead is low. We
see that the throughput for pure layer caching increases
monotonically as more requests are for low quality videos
and decreases with increasing overhead. The throughput
for pure layer caching is strongly affected when the base
layer includes overhead (i.e.,rb > rl). This can be con-
sidered as the worst case and therefore, we always assume



7

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Probability of low quality request (q)

Version
Layer (Oh=0.1)
Mixed (Oh=0.1)
Layer (Oh=0.5)
Mixed (Oh=0.5)

(a) rb = rl

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Probability of low quality request (q)

Version
Layer (Oh=0.1)
Mixed (Oh=0.1)
Layer (Oh=0.5)
Mixed (Oh=0.5)

(b) rb > rl
Fig. 2. Static caching scenario with varying probability oflow

quality requests.rb > rl in future plots.

Pure version caching is only favorable in case of ho-
mogeneous request quality, i.e., all requests are either for
low quality (q = 0) or for high quality streams (q = 1).
The largest throughput is achieved if all requests are for
low quality streams. This is expected because in this sce-
nario more videos are cached and hence the cache hit rate
is higher compared to a scenario where all requests are for
high quality streams. The throughput is lowest when the
requests are non–homogeneous as sometimes we need to
cache both the low– and the high–quality version.

The results indicate that mixed caching strikes a good
balance between pure layer caching and pure version

caching for all cases and offers the best overall perfor-
mance. It performs as well as pure layer caching when
the overhead is zero and as well as pure version caching
whenOh = 0:5. Since the smallestrl is 0:5 � rh,Oh = 0:5
is the largest overhead incurred in creating layered video
while meeting Rate Assumption 3.

Fig. 3 gives the normalized throughput as a function of
the overheadOh of layered encoding. We can clearly see
that mixed caching gives better performance than pure ver-
sion caching and pure layer caching for the range of over-
head. Its performance is less sensitive to the overhead than
pure layer caching.

The superiority of mixed caching is independent of the
cache size and the link capacity. In Fig. 4 we plot the nor-
malized throughput as a function of the cache sizeG and
the link capacityC. The cache size is chosen betweenG =
45 and 900 Gbytes or between 2.5% and 50% of the total
video data. Given the average video lengthTavg (in sec-
onds), the average rate of a videoravg (in bit/sec), and the
client request rate� (in requests/second), we would need
on the averageC = Tavg � ravg � � Mbps of bandwidth to
stream all the requested videos. We varied the link capac-
ity betweenC = 10 and 160 Mbps or between 1% and 16%
of the total requested video bit rate.

Both figures show that in all cases mixed caching of-
fers the best overall performance. It shows that mixed
caching gives similar performance to pure layer caching
for small overhead and similar performance to the pure
version caching forOh = 0:5.

In summary, the results with static caching model show
that a mixed caching strategy can strike a good balance
between pure layer caching and pure version caching.

IV. A DAPTIVE CACHING

With the static caching model, the request distribution
is assumed to be known beforehand. However, in practice,
the actual request distribution may not be known. When
the distribution is unknown, we need to make caching
and replacement decisions on–the–fly. Moreover, in most
video distribution systems, new videos are being continu-
ally released. As the video popularities change, providers
replace the least popular videos in their systems with new
videos. In this section we will consider adaptively caching
and replacing videos when the request distribution is un-
known and new videos are being continuously released.
We will compare the performance differences of static
caching (with known distributions) and adaptive caching,
and identify the factors causing the differences. We will
also investigate whether the basic observations of Section
2 still apply.

In order to allow for direct comparison with the static



8

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Overhead in creating layered video (Oh)

Version
Layer (rb=rl)
Mixed (rb=rl)
Layer (rb>rl)
Mixed (rb>rl)

(a) q = 0:4 0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Overhead in creating layered video (Oh)

Version
Layer (rb=rl)
Mixed (rb=rl)
Layer (rb>rl)
Mixed (rb>rl)

(b) q = 0:7
Fig. 3. Static caching with varying amount of overhead of layered encoding.

caching scenario, we model the dynamic request distri-
bution as follows. We start with the same 1000 videos
and generate requests in a similar fashion as in the static
caching scenario. However, in this adaptive model, we as-
sume that a fresh set of videos is made available periodi-
cally and the least popular videos are replaced by this new
set of videos. We assume that 1 to 50 new videos are re-
leased every week and that the exact number of new videos
is uniformly distributed between 1 and 50. The charac-
teristics of these new videos follow the same distribution
as used in Section III-B. Once the least popular videos
are replaced by these new videos, the popularity of all
videos in the system are re–shuffled and requests are gen-
erated based on the new popularity distribution. Upon re–
shuffling, we also evict all currently cached objects from
the videos that have been replaced. If a stream is currently
using the objects, then we remove the objects as soon as
the ongoing stream finishes.

Now, we explain the caching strategies. We start with
an empty cache and cache the layer or version of a video
as it is requested and streamed to the client. If the cache
is full, then we replace the video in the cache following
a least recently used (LRU)replacement strategy. We re-
place videos in the cache until enough space is obtained.
In all strategies, we do not replace a video object from the
cache if the object is currently being used for streaming
the video. In the following we describe the three caching
strategies identified in Section III.

With pure version caching, we cache the high–quality
version if the high quality video is requested and that ver-
sion is not in the cache regardless of whether we have the

low version in the cache or not. Likewise, we cache the
low–quality version if the low quality video is requested
and that version is not in the cache. Again, we do it re-
gardless of whether we have the high–quality version in
the cache or not. Therefore, we can have both high– and
low–quality versions in the cache (which we know from
Theorem 1 is suboptimal).

With pure layer caching, we cache both base and en-
hancement layer if the high quality video is requested and
the video is not in the cache. If we already have the base
layer, then we only stream the enhancement layer from the
origin server and cache it. We stream the base layer from
the origin server and cache it if the request is for low qual-
ity video and the base layer is not cached. During replace-
ment, we remove the enhancement layer before the base
layer.

With mixed caching, we have a similar objective as in
the static caching model. We basically want to reduce the
resource usage by mixing layers and versions in the cache.
Here, we consider two simple heuristics to illustrate our
findings.

Thefirst heuristiccorresponds exactly to mixed caching
in the static model. Its objective is to replace the caching
of both high and low version of a video with the layers of
the video since they use less resources asrb(m)+re(m) <rh(m) + rl(m). The caching proceeds as follows. For the
first request we stream and cache the version of the video.
So, if the request is for high–quality video, we stream and
cache the high–quality version of the video. If the request
is for the low–quality video, then we stream and cache the
low–quality version ifrb(m) > rl(m), or the base layer



9

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Cache size (%total)

Version
Layer (Oh=0.1)
Mixed (Oh=0.1)
Layer (Oh=0.5)
Mixed (Oh=0.5)

(a) varying cache sizeG

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Link capacity (%total)

Version
Layer (Oh=0.1)
Mixed (Oh=0.1)
Layer (Oh=0.5)
Mixed (Oh=0.5)

(b) varying link capacityC
Fig. 4. Static caching with varying cache sizeG and link ca-

pacityC (q = 0:4).

if rb(m) = rl(m). If there is a second request for differ-
ent quality level of the same video, then we try to satisfy
the request with layers and remove the version from the
cache. Otherwise, we proceed with pure version caching.
In replacing the version by layers, we reject the request
and keep the version if we do not have enough link capac-
ity to stream the layers. Moreover, since we do not want
to interrupt ongoing streams, we cannot remove the ver-
sion if it is being used, but we still cache the layers. Once
we have cached the layers, the version will be removed as
soon as the ongoing streams using that version are termi-
nated. If both the base and enhancement layers of a video
are removed from the cache (by LRU replacement), then

we will start again with the streaming and caching of ver-
sions for the next request. The motivation is that if a video
object can be removed from the cache, then the video ob-
ject is probably not very popular. So, it is better to start
again with versions.

Thesecond heuristicis similar to the first heuristic, ex-
cept that for the first request we stream the version of the
video but we donot cache it. So, if the request is for high
quality video, then we stream the high–quality version of
the video but do not cache it, and if it is for low–quality
video, then we stream the low–quality version of the video
but do not cache it. If there is a second request for the same
video then we cache layers of the video. If the second re-
quest is for high–quality video then we stream and cache
both base and enhancement layers. If it is for low–quality
video, then we stream and cache the base layer only. In this
way, we stream versions but never cache them. Instead,
we cache only layers. The motivation of this heuristic is to
avoid caching objects for videos which are requested once
only. Moreover, for videos which are requested more than
once, caching video layers can serve requests of different
quality while using less resources. This caching strategy
requires the proxy to keep track of videos that have been
previously streamed. If all layers of a video are removed
from the cache, then we will start again, streaming but
not caching versions, and caching layers upon second re-
quests.

A. Numerical Results

We now present simulation results for adaptive caching.
We use the same distributions for the layer and version
rates as well as the video lengths as were used in Sec-
tion III-B. While we evaluated the normalized throughput
with the stochastic knapsack analysis in Section III-B, we
now obtain the normalized throughput from simulations of
the cache operation. We use sequential simulation [?] to
stop a simulation run automatically once the 95% confi-
dence interval is reached or it has run for108 seconds. We
then repeat the simulation by using different seeds. This
ensures a different mixture of videos and hence cache com-
position. The final results are obtained by averaging the
values from all runs. The simulation run are repeated un-
til the final results with 95% confidence intervals across
different video mixtures are reached.

Fig. 5 gives the normalized throughput as a function
of the probability of a low quality requestq. The figure
shows that pure version caching is only favorable in case of
homogeneous requests. For heterogeneous requests, pure
layer caching offers better performance than pure version
caching, especially when the layering overhead is low and
no overhead is incurred in creating the base layer. As with



10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Probability of low quality request (q)

Version
Layer (Oh=0.1)
Mixed 1 (Oh=0.1)
Mixed 2 (Oh=0.1)
Layer (Oh=0.5)
Mixed 1 (Oh=0.5)
Mixed 2 (Oh=0.5)

(a) rb = rl

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Probability of low quality request (q)

Version
Layer (Oh=0.1)
Mixed 1 (Oh=0.1)
Mixed 2 (Oh=0.1)
Layer (Oh=0.5)
Mixed 1 (Oh=0.5)
Mixed 2 (Oh=0.5)

(b) rb > rl
Fig. 5. Adaptive caching for varying probability of low quality

request.

the static model, we see that mixed caching — using both
heuristics 1 and 2 — provides a good balance between pure
layer and pure version caching. It performs better than
pure layer caching for small overhead and as well as pure
version caching for large overhead. We also observe that
heuristic 2 gives excellent results for a small layered en-
coding overhead. Note that heuristic 2 can be considered
a variation of pure layer caching where we require to see
two requests before caching layers of a video. Throughout,
heuristic 2 performs much better than pure layer caching.
This demonstrates the importance of weeding out the one–
timer requests.

Comparing the plots with Fig. 2 we notice that in gen-

eral the throughput for adaptive caching is smaller than
the throughput for static caching. This is mainly because
the request pattern is not knowna priori in the adaptive
caching model. In adaptive caching, videos are (1) cached
as requests arrive, and (2) evicted from the cache when
there is not enough space for new video objects. Thus
the order of the request arrivals has a strong impact on
the cache composition, whereas the cache composition is
exclusively based on the stream popularities in the static
caching model. The difference in performance between
static caching and adaptive caching widens as the average
request arrival rate� increases, as is illustrated in Fig. 6.
This can be explained as follows. Consider a cache with a

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

A
da

pt
iv

e 
th

ro
ug

hu
pt

/S
ta

tic
 th

ro
ug

hp
ut

Average request arrival rate (requests/hour)

Version
Layer (Oh=0.1)
Mixed 1 (Oh=0.1)
Layer (Oh=0.5)
Mixed 1 (Oh=0.5)

Fig. 6. Differences in throughput between adaptive and static
caching (q = 0.4).

large request arrival rate. and suppose that a “mistake” has
been made by caching a moderately popular object. With a
large request arrival rate even a moderately popular object
could receive enough requests to have continuously one or
more ongoing streams. These ongoing streams, however,
keep the object in the cache and prevent more popular ob-
jects (which would have been cached in the known request
distribution scenario) from entering the cache.

Fig. 7 gives the normalized throughput as a function
of the amount of overhead incurred in layered encoding.
We observe that heuristic 2 offers the best overall perfor-
mance. However, similar to pure layer caching, it is highly
sensitive to the overhead. On the other hand, heuristic 1
behaves similar to pure version caching and is hence less
sensitive to the overhead.

The effects of varying the cache size and link capac-
ity on the normalized throughput are shown in Fig. 8.
Comparing Figs. 8(a) and 8(b) with Figs. 4(a) and 4(b) we
see that the normalized throughput does not grow as fast as



11

0.6

0.65

0.7

0.75

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Overhead in creating layered video (Oh)

Version
Layer (rb=rl)
Mixed 1 (rb=rl)
Mixed 2 (rb=rl)
Layer (rb>rl)
Mixed 1 (rb>rl)
Mixed 2 (rb>rl)

Fig. 7. Adaptive caching with varying amount of overhead for
layered encoding

in the static caching model for small cache sizes and small
link capacities. This is again due to the fact that without
a priori knowledge of the request distribution the order of
the request arrivals has a strong impact on the cache com-
position. Also, moderately popular objects tend to keep the
few extremely popular objects from being cached. Note
again that by weeding out one–timer requests, heuristic 2
achieves a higher throughput than the other strategies.

V. CONCLUSION

In this paper we have studied pure versions, pure layers,
and mixed distribution strategies. We found that mixed
distribution strikes a good balance to offer the best overall
performance. Our study leads to the following guidelines
for distributing multi-quality video in the Internet:
1. Caches and CDN servers should be partially pre-filled
with the most popular videos. If there are requests for both
quality levels of a popular video, than the server should
cache both the base and the enhancement layer of the video
(rather than use versions). It is important to pre-fill the
cache with the popular videos; otherwise, continuously
streaming moderately-popular videos may prevent popu-
lar videos from getting stored in the cache.
2. For a first-time request of a video with unknown popu-
larity, the origin server should stream the requested qual-
ity level as aversion, and the proxy should not cache the
version. If the video experiences multiple requests, then
layers should be streamed and stored in the cache.
3. Although we should use versions to stream first-time
requests from origin server to client, we should not cache
versions (unless all the requests for a specific video are for
one quality level).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Cache size (%total)

Version
Layer (Oh=0.1)
Mixed 1 (Oh=0.1)
Mixed 2 (Oh=0.1)
Layer (Oh=0.5)
Mixed 1 (Oh=0.5)
Mixed 2 (Oh=0.5)

(a) varying cache size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Link capacity (%total)

Version
Layer (Oh=0.1)
Mixed 1 (Oh=0.1)
Mixed 2 (Oh=0.1)
Layer (Oh=0.5)
Mixed 1 (Oh=0.5)
Mixed 2 (Oh=0.5)

(b) varying link capacity

Fig. 8. Adaptive caching with varying cache size and link ca-
pacity (q = 0:4).

The focus of this study was on two quality levels. We ex-
pect many of the conclusions to be even more pronounced
for three or more quality levels.

REFERENCES

[1] T. Abdelzaher and N. Bhatti, “Web server qos management by
adaptive content delivery,” inProc. of International Workshop on
QoS, May 1999.

[2] W. Ma, I. Bedner, G. Chang, A. Kuchinsky, and H.J. Zhang, “A
framework for adaptive content delivery in heterogeneous network
environments,” inProc. of MMCN 2000, San Jose, CA, January
2000.

[3] K. Chandra and A. Reibman, “Modeling one- and two-layer vari-
able bit rate video,”IEEE/ACM Trans. on Networking, vol. 7, no.
3, pp. 398–413, June 1999.



12

[4] J. Kimura, F. Tobagi, J. Pulido, and P. Emstad, “Perceived quality
and bandwidth characterization of layered mpeg-2 video encod-
ing,” in SPIE International Symposium on Voice, Video and Data
Communications, Boston, MA, September 1999.

[5] P. De Cuetos, D. Saparilla, and K. Ross, “Adaptive streaming of
stored video in a tcp-friendly context: Multiple versions or mul-
tiple layers?,” inProc. of International Packet Video Workshop,
Kyongju, Korea, April 2001.

[6] T. Kim and M.H. Ammar, “A comparison of layering and stream
replication video multicast schemes,” inProx. of NOSSDAV 2001,
Port Jefferson, NY, Jun 2001.

[7] J. Kangasharju, F. Hartanto, M. Reisslein, and K. Ross, “Distribut-
ing layered encoded video through caches,” inProc. of IEEE IN-
FOCOM, Anchorage, AL, April 2001.

[8] K.W. Ross,Multiservice Loss Models for Broadband Telecommu-
nication Networks, Springer-Verlag, 1995.

[9] Real Networks.www.realnetworks.com.


