
Making the Semantic Data Web easily writeable
with RDFauthor

Sebastian Dietzold, Norman Heino, Sören Auer, and Philipp Frischmuth

Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,
{lastname}@informatik.uni-leipzig.de

http://aksw.org

Abstract. In this paper we present RDFauthor, an approach for au-
thoring information adhering to the RDF data model. RDFauthor com-
pletely hides syntax as well as RDF and ontology data model difficul-
ties from end-users and allows to edit information on arbitrary RDFa
annotated web pages. RDFauthor extends RDFa with representations
for provenance and update endpoint information. RDFauthor is based
on extracting RDF triples from RDFa annotations and transforming the
RDFa annotated HTML view into an editable form using a set of author-
ing widgets. As a result every RDFa annotated web page can be easily
made writeable, even if information originated from different sources.

1 Introduction

The overwhelming success of the World Wide Web was to a large extend based
on the ability of ordinary users to author content easily. In order to publish
content on the WWW, users had to do little more than to annotate text files
with few, easy-to-learn HTML tags. Unfortunately, on the semantic data web
the situation is slightly more complicated. Users do not only have to learn a new
syntax (such as N3, RDF/XML or RDFa), but also have to get acquainted with
the RDF data model, ontology languages (such as RDF-S, OWL) and a growing
collection of connected RDF vocabularies for different use cases, such as FOAF,
SKOS and SIOC.

Previously, many approaches were developed to ease the syntax side of se-
mantic authoring [11, 2]. In this paper we present an approach, which also hides
the data model from ordinary users and thus allows absolute novices to create
semantic representations easily.

The RDFauthor approach is based on the idea of making arbitrary XHTML
views with integrated RDFa annotations editable. RDFa [1] is the W3C Recom-
mendation, which allows to combine human and machine-readable representa-
tions within a single XHTML document. RDFauthor builds on RDFa by preserv-
ing provenance information in RDFa representations following the named-graph
paradigm and by establishing a mapping from RDFa view representations to
authoring widgets. On configurable events (such as the clicking of a button or
moving over a certain information fragment with the mouse) the widgets will

be activated and allow the editing of all RDFa-annotated information on the
Web page. While editing, the widgets can access background information sources
on the Data Web in order to facilitate the reuse of identifiers or to encourage
the interlinking of resources. Our resource editing widget, for example, suggests
suitable, previously defined resources derived from calls to the Sindice Semantic
Web index [12]. Once editing is completed, the changes are propagated to the
underlying triple stores by means of the SPARQL/Update language.

RDFauthor is not at all limited to editing semantic representations from a
single source. An RDFa view made editable with RDFauthor can contain state-
ments from a variety of sources, which can be edited simultaneously and in
a completely transparent manner for the user. Based on our extended RDFa
markup supporting named graphs and SPARQL/Update endpoint information,
simultaneous changes of several graphs from different sources will be dispatched
to the respective SPARQL/Update endpoints. RDFauthor is implemented in
JavaScript so that it works completely on the browser side and can be used
together with arbitrary Web application development techniques.

In particular with this paper, we make the following contributions:

– We define a light-weight extension of RDFa to accommodate named graphs
and an RDF vocabulary to provide metadata on these graphs, such as prove-
nance information.

– We develop the RDFauthor library, which can be used to make arbitrary
RDFa representations editable. We provide a number of widgets for author-
ing common datatypes and define a mechanism for plugging in and auto-
matically configuring additional editing widgets.

– We demonstrate the benefits of RDFauthor in three use cases: semantic
authoring in OntoWiki, editing information from multiple sources in a com-
bined vCard/publications view as well as collecting semantic data from any
RDFa-enhanced page and pushing it to a personal RDF store.

As a result, RDFauthor dramatically simplifies the authoring of semantic
information. Users can interact with Semantic Web applications without having
to learn a new syntax or even having to get acquainted with the RDF data
model or other knowledge representation formalisms. This advantage adds easy
write support to Semantic Web applications, which can help them to enlarge
significantly their user bases and to achieve generally a higher penetration of
Semantic Web technologies.

The paper is structured as follows: We describe the requirements which
guided the development of RDFauthor in section 2. We present our RDFa exten-
sion for representing named graphs and provenance in section 3. A description
of our approach regarding architecture and implementation is given in section 4,
while this approach is demonstrated on the basis of three use cases in section 5.
Finally, we survey some related work in section 6 and conclude with an outlook
on future work in section 7.

2 Requirements

In this section, we gather and describe the most important requirements, which
guided the development of RDFauthor.

The rationale behind the development of RDFauthor was to provide a general
framework to edit data chunks (triple or multiple triples) in XHTML pages by
means of small authoring components called editing widgets (or, as in the present
paper, just widgets). The framework, which should be usable with arbitrary Web
applications, has to provide edit functionality on top of RDFa-annotated web
pages with only minor modifications of the existing markup, i. e. there should be
no need to create special edit views. This mode will reduce the effort required for
the development and maintenance of (Semantic) Web applications significantly.
For Web applications which focus on collaboration and interaction, we can as-
sume that probably more than 50 % of the effort regarding the user interface
creation is spent on implementing and maintaining edit functionality.

To allow mashing-up content from different sources, the framework should
preserve the provenance of all content chunks, even if combined on a single re-
sulting XHTML page. This possibility allows to hide even more complexity from
the user, since she does not have to care where to edit certain information or to
switch between different editing views. To achieve this goal, we have to provide
a vocabulary in order to connect RDFa fragments with updatable SPARQL/Up-
date endpoints. RDFauthor should provide functionality not only to edit existing
information but also to create new data. The framework should also allow to dis-
tinguish between writeable and non-writeable information sources. In this way
authentication and access control is easily combinable with RDFauthor, without
increasing the complexity of the implementation for Web developers.

In order to make the general editing framework as flexible as possible, the
goal was to provide a number of authoring widgets for specific content types,
such as resource references, dates, locations, images/files etc. The Web devel-
oper/designer should not be limited in her possibilities to create Web designs.
RDFauthor should be as unobtrusive as possible and provide flexible editing
widgets (or allow different configurations e. g. via CSS definitions) for different
use cases, such as inline editing, popup/overlay editing etc. RDFauthor should
also retrieve background information (such as schema/vocabulary information
with domain/range restrictions) required for the selection of appropriate widgets.
Furthermore, it should facilitate the interlinking of information on the basis of
the Linked Data paradigm and incorporate services, such as Sindice, DBpedia
and Geonames, for establishing links.

3 Named Graphs and Provenance in RDFa

RDFa enables the annotation of information encoded in XHTML with RDF.
This ability allows to extract a set of RDF triples from an RDFa-annotated
XHTML page. RDFauthor makes these triples editable, but in order to store
changes persistently, RDFauthor needs information about the data source (i. e.

SPARQL and SPARQL/Update endpoint) regarding the named RDF graph from
which the triples where obtained or where they have to be updated. In order to
make this information available, we have defined a slight extension of the RDFa
annotations.

To represent information about the information source, we follow the named
graphs approach [4]. We created a vocabulary1 to represent attributes and rela-
tions for the following purposes:

– In order to link certain RDFa annotations on the page to the respective
querying/update services, namely SPARQL/Update and SPARQL endpoints,
we propose the use of the link HTML tag with an about-attribute to identify
the named graph, a rel-attribute with the value update:updateEndpoint

and a href-attribute with the URL of the respective SPARQL/Update end-
point. Another option to declare graph meta-data is the use of empty span-
or div-elements together with the RDFa attributes inside the body of the
page. This option is in particular useful, if the program, which generates the
RDFa-enhanced HTML code from the RDF store, does not have access to
the head of the page (which is typically true for small content plugins in
CMS or CMS-like applications).

– For declaring which statements belong to which named graph, we propose the
use of the update:from-attribute with the named graph as attribute value
to which all nested RDFa annotations should belong. The update:from-
attribute and the additional RDFa processing rules are inspired by [7]. The
use of named graphs is optional and only required, if triples from multiple
sources should be made editable.

The next listing is an example of an RDFa-enhanced XHTML snippet from
the vCard and publications mashup (which we describe as a use case for RDFau-
thor more profoundly in section 5). All RDFa attributes as well as our update
vocabulary extensions are highlighted.

1 <head xmlns:foaf="http :// xmlns.com/foaf /0.1/"
2 xmlns:update ="http ://ns.aksw.org/update /"
3 xmlns:dc="http :// purl.org/dc/elements /1.1/" >[...]
4 </head >
5 <div update:from="http :// showcase.ontowiki.net/"
6 about="http :// sebastian.dietzold.de/terms/me" typeof ="foaf:Person">
7
8 <b property ="foaf:name">Sebastian Dietzold
9 tel :+49 341 9732366

10 </div >
11 <div about ="http :// showcase.ontowiki.net/"
12 rel=" update:updateEndpoint" resource ="http :// trunk.ontowiki.net/sparul /" />
13 <div about ="http :// showcase.ontowiki.net/"
14 rel=" update:queryEndpoint" resource ="http :// trunk.ontowiki.net/sparql /" />
15 <div update:from="http :// publications.aksw.org/">
16 <p about="http :// www2009.eprints.org /63/1/ p621.pdf" typeof ="foaf:Document">
17
18
19 ...
20 </p>
21 </div >

1 The RDFauthor vocabulary namespace is http://ns.aksw.org/update/. We use
the prefix update for this namespace throughout this paper.

After declaring all required namespaces in the page head (lines 1-4), two div-
sections (starting in lines 5 and 15) contain RDFa annotations derived from two
different named graphs. The graph URIs are specified by using the update:from-
attribute. All nested RDFa annotations are parsed into RDF triples which belong
to the given named graphs. The first graph contained in lines 4-10 consists of a
vCard description of a foaf:Person and the second graph in lines 15-21 consists
of information about a foaf:Document resource which is connected to the person
using the foaf:maker relation. In addition to the FOAF vocabulary, properties
from Dublin core and LDAP are used.

In order to annotate the named graph resources with the service locations,
two more div-sections per graph are included (lines 11-14 associate one graph
with two endpoints different for updates and queries). Here we use our update-
vocabulary to link the SPARQL/update service (in this case an OntoWiki in-
stance).

The XHTML listing above represents the simplified source code of the ex-
ample screenshot from the mashup in figure 5. The XHTML page is parsed by
the RDFauthor RDFa+named-graph parser into the triples (represented in N3
notation) shown in the following listing2:

1 <http :// showcase.ontowiki.net/>
2 update:updateEndpoint <http :// trunk.ontowiki.net/sparul/>;
3 update:queryEndpoint <http :// trunk.ontowiki.net/sparql/>.
4

5 <http :// showcase.ontowiki.net/> = {
6 <http :// sebastian.dietzold.de/terms/me > a foaf:Person;
7 foaf:depiction <http :// aksw.org/img /...>;
8 foaf:name "Sebastian Dietzold ";
9 foaf:phone <tel :+49 -341 -97 -32366 >;

10 #[...]
11 }.
12

13 <http :// publications.aksw.org/> = {
14 <http :// www2009.eprints.org /63/1/ p621.pdf > a foaf:Document;
15 dc:description "Soren Auer , Sebastian Dietzold , [...]";
16 foaf:maker <http :// showcase.ontowiki.net/SoerenAuer >,
17 <http :// sebastian.dietzold.de/terms/me > .
18 }.

The extracted model consists of two named graphs and additional statements
in the default graph. For both of these named graphs, update and query infor-
mation is available. The RDFauthor widget library treats all statements from
graphs without update information as read-only statements.

4 System Architecture and Implementation

In this section we describe the architecture and implementation of RDFauthor
in more detail. The basic cycle of how webpages are edited with RDFauthor is
depicted in figure 1. It is composed of four distinct processes, three of which (b–
d) are handled by RDFauthor components and are described in the subsequent
sections.

2 For reasons of limited space, we omit the first lines with prefix definitions for foaf,
dc, update and ldap.

RDF Store

XHTML
+

RDFa

a)

b)c)

d)

Fig. 1. Editing cycle for an
RDFa-enhanced webpage. The
processes involved are a) page
creation and delivery, b) client-
side page processing, c) form cre-
ation and d) update propaga-
tion via SPARQL/Update. The
dashed line encloses the pro-
cesses carried out by RDFauthor.

Initiation of these processes can happen through a number of different trigger
events. These events can be grouped into element-based events or page-wide
events. In particular, the following triggers are supported:

– Clicking on an edit button next to an element containing the object of a
statement,

– moving the pointer and hovering above an object element,
– an application-specified custom trigger similar to the edit toolbar in On-

toWiki (see section 5),
– a bookmarklet which loads all RDFauthor components and runs all widgets

at once,
– the universal edit button3.

4.1 Client-Side Page Processing

Upon user interaction or a programmatic trigger, RDFauthor starts processing
the current page by extracting all RDF triples and placing them in an rdfQuery
databank (cf. section 4.5); one for each named graph. Triples that describe the
named graphs in the page by using the update vocabulary are excluded from
editing. If no update information has been defined for a graph, it is considered
non-editable, hence no form elements are created for the triples it contains.

Figure 2 depicts the default page processing procedure. Initially, the user
loads an RDFa-annotated webpage into her browser (1). She then triggers the
parsing process by one of the possible edit triggers the developer of the page has
decided to make available on her page (2). RDFa parsing and widget selection

3 http://universaleditbutton.org

4.�Run�widgets�on
different�events

1.�User�loads�RDFa�page
2.�Parse�statements

into�graph(s)
3.�Select�corresponding
widgets�for�triples

6.�Propagate�updates
to�linked�services

5.�Wait�for�user
input�and�submission

?

Fig. 2. Steps involved in the client-side processing of the page to be edited.

are performed lazily on the first of these events. For each statement on the page
the corresponding widget is selected by an algorithm described in more detail in
section 4.2 (3). An edit view is presented to the user in one of the ways described
above. In which way it is shown is controllable by the author of the page (4).
The user completes her editing tasks and submits her changes or cancels the
whole process (5). In case of submission, the changes are propagated back to the
services linked to each graph (6). In section 4.3 we describe this process in more
depth.

4.2 Widget Selection and Form Creation

Widgets for editing existing statements are selected by exploiting the object’s
datatype and the property from the encoded RDFa model. If no datatype is
present (plain literal or object property), a deployed selection cache of pre-
calculated decisions is used.

For this cache, we analyzed 19 of the most frequently used namespaces listed
by the Ping the Semantic Web service4. Together, these vocabularies describe
124 datatype properties and 176 object properties. For these 300 properties, we
populated the widget selection cache with information on type and datatype
of the properties used. This cache is made available as a JSON file. Most of
the datatype properties requested a standard literal widget. Only 17 datatype
properties had an integer domain (float 8, date/time 4, boolean 2).

If the named graph from which the statement originates is linked to a SPARQL
endpoint and neither the RDFa model nor our cache can provide useful hints as
to which widget to use, RDFauthor tries to retrieve this information from the
SPARQL endpoint by querying the rdf:type and rdfs:domain of the property.

The selected widgets are combined into an edit view and are displayed to the
user. Depending on the type of trigger, this can be done in one of the following
ways:

– A single-statement overlay,

4 http://www.pingthesemanticweb.com/

– a single-statement widget injected into the page or
– a bulk overlay containing widgets for all editable statements.

4.3 Update Propagation

When the user finishes the editing process, all widgets involved are asked to
update the page graph with their changes. The difference between the original
and modified page graphs are calculated (i. e. added statements, removed state-
ments), yielding a diff graph. The associated store to each graph is then updated
with the respective diff graph by means of SPARQL/Update [9] INSERT DATA

and DELETE DATA operations. By explicitly listing all inserted or deleted triples,
sophisticated SPARQL/Update support is not required. In addition, RDFauthor
can cope with several access control scenarios. It, therefore, evaluates the server’s
response to SPARQL/Update requests. For instance in the case of a HTTP 401
(unauthorized) or 403 (forbidden) status code, a login form is displayed.

4.4 Statement Adding Methods

In addition to modifying the triple content of a page, it is possible to add new
statements. This can happen either based on existing triples used as templates
or by adding entirely new statements. If existing triples are used as templates,
three cases can be distinguished:

– Creating a new statement that shares subject and property with an existing
statement. Our approach supports this case via a small button beside each
statement.

– Creating a new statement that shares the subject with an existing statement.
At the end of a subject description a small button is shown that lets the user
add a new statement to the subject’s description.

– Creating a new resource using an existing resource as a template. Widgets
for all properties found on the template resource are available on the new
resource.

4.5 Architectural Overview

Putting the processes described above into perspective, three components can
be identified that are involved in the cycle depicted in figure 1.

– An XHTML page annotated with RDFa and a named-graph extension as
described in the previous section,

– for each named graph that is intended to be writable: a SPARQL/Update
endpoint to which updates are sent and an optional SPARQL endpoint to
gather additional information (see below),

– the RDFauthor API with a set of editing components (called widgets) and
included libraries.

RDF Store

XHTML
+

RDFa

JavaScript
Components

:Widget

:PropertyRow

:ViewController

RDFauthor

1.3.2.1.1: Create

1.3.2.1: GetWidget

1.3.2.2: GetHTML

1: Edit

1.3.2.3: Init

1.3.1: Create

1.3.2: AddWidget

1.4: Display

1.3: AddRow

1.1: Create

:RDFA

1.2: Parse

Form

Fig. 3. RDFauthor architecture overview and communication sequence.

In-page triple storage (page graphs) and RDFa parsing are included from
external projects. The JavaScript API has thus three components:

– RDFauthor JavaScript objects,

– an in-page RDF store based on the rdfQuery jQuery plug-in, developed by
Jeni Tennison5,

– an RDFa parser component obtained from the W3C RDFa JavaScript im-
plementation page6 (modified according to [7] in order to allow for parsing
named graph attributes).

Our own contribution to this stack, namely the RDFauthor JavaScript ob-
jects is a collection of scripts that allow the creation of an edit view and included
widgets. These widgets can be either included into the existing page or displayed
as an overlay. The overlay approach provides sleek editing capabilities for even
the most complex XHTML+RDFa markup, while the inline option can be used
to integrate authoring functionalities seamlessly into existing pages.

5 http://code.google.com/p/rdfquery/
6 http://www.w3.org/2006/07/SWD/RDFa/impl/js/

5 Use Cases and Evaluation

In order to demonstrate the benefits of RDFauthor, we integrated the approach
into two Semantic Web applications. Firstly, RDFauthor became the primary
semantic authoring component in our Semantic Wiki OntoWiki. Secondly, we
integrated RDFauthor into a text-based wiki application called WackoWiki, thus
being able to demonstrate the simultaneous authoring of information from mul-
tiple sources. Finally, we describe a usage scenario facilitating the collection of
RDF data from arbitrary RDFa-annotated websites.

5.1 OntoWiki

OntoWiki [2]7 is a tool for browsing and collaboratively editing RDF knowl-
edge bases. Different from other Semantic Wikis, OntoWiki uses RDF as its
natural data model instead of Wiki texts. Information in OntoWiki is always
represented according to the RDF statement paradigm and can be browsed and
edited by means of views, which are generated automatically by employing the
ontology features, such as class hierarchies or domain and range restrictions.
OntoWiki adheres to the Wiki principles by striving to make editing of infor-
mation as simple as possible and maintaining a comprehensive revision history.
It has recently been extended to incorporate a number of Linked Data features,
such as exposing all information stored in OntoWiki as Linked Data as well
as retrieving background information from the Linked Data Web. Apart from
providing a comprehensive user interface, OntoWiki also contains a number of
components for the rapid development of Semantic Web applications, such as
the RDF API Erfurt, methods for authentication, access control, caching and
various visualization components.

RDFauthor is used in OntoWiki both in the generic resource property view
as well as in extensions which render resources in a domain-specific way (e. g.
specific visualisations for SKOS concepts or FOAF persons). In order to perform
the integration, we extend OntoWiki in two ways:

1. We extended the default properties view for resources and all other views
with RDFa attributes to annotate which data is presented as well as to link
the graph to the internal update service. Since OntoWiki is entirely based on
an RDF store, this extension was easy to implement. Likewise, all extension
developers had to extend their views e. g. for SKOS concepts.

2. We included RDFauthor by referencing it in the head of every OntoWiki
page and adding JavaScript edit buttons on every page where data should
be editable.

The integration of RDFauthor into OntoWiki is displayed in figure 4. For
all information displayed at the user interface, OntoWiki generates RDFa views
which can be edited by using RDFauthor with a simple click on an edit button.
In order to reuse previously defined resources as much as possible, we included a

7 Online at: http://ontowiki.net

Fig. 4. OntoWiki with RDFauthor widgets in “inline mode”.

resource selector which searches for existing resources in the background, match-
ing the search string typed by the user.

Adding new properties to an existing resource is done in two steps. First, the
user chooses a property which she wants to use. She types a name or description
fragment into the search input field of the property widget and RDFauthor
searches for properties in the referenced SPARQL endpoint of the given named
graph. Subsequently, the corresponding widget is selected from the library as
described in section 4.2.

As a result of the RDFauthor integration, OntoWiki is now able to handle not
only different visualisations for specific content but can also use these views as
a base for independent editing widgets, thereby achieving a new level of content
versatility.

5.2 vCard and Publication Mashup

In order to showcase the simultaneous authoring of information from multiple
sources, we integrated RDFauthor into the text-based wiki application Wacko-
Wiki8. WackoWiki is often used in small and medium companies as well as in
small organisations such as research groups.

The AKSW research group uses WackoWiki for its entire webpage (http:
//aksw.org) and integrates external data sources by means of so-called Wacko-
Wiki actions. Actions are small scripts which prepare some content and output

8 http://wackowiki.org

it at the given position in the wiki page. Actions are also able to fetch data from
external resources, allowing us to use structured information on different places
in the wiki, e. g. by presenting the last publications selected by author, project
or topic.

Fig. 5. RDFa-enhanced FOAF vCard and publications mashup with statements from
different named graphs. In addition to the plain literal and resource widgets, we de-
veloped widgets for the special URI schemes tel: and mailto:, which hide the URI
syntax behind a plain input field.

While integrating and presenting this information is easy and covered by
many applications and techniques, the read/write integration of such external
resources is tackled by RDFauthor. By employing RDFauthor, users of our wiki
are able to edit both the wiki page and the structured information in one place
and avoid using different web applications for one edit task and with different
data.

We have developed two actions for integrating two different resources: public
vCard information and a publication database. Both sources are available as
RDF data and accessible via SPARQL endpoints. The output of these actions
included in the authors wiki page is displayed on figure 5.

The displayed page is a mashup of three resources: static wiki content, vCard
RDF data as well as publications RDF data using the FOAF vocabulary as a
base. The output describes two named RDF graphs with RDFa attributes as
introduced in section 3. Both graphs are annotated with corresponding SPAR-

QL/Update services. This allows RDFauthor to pass the changes back to the
originating databases.

In doing so, a user who wants to edit her contact details (e. g. because she
moved to another office room) can change this information directly where she
noticed the old and obsolete information.

5.3 Data Collection from RDFa Websites

Another interesting usage scenario that is more concerned with collecting data
instead of editing, is described in this section. Most of the RDFa-enabled pages
on the web do not yet contain provenance and update information. However,
RDFauthor also allows to use an arbitrary update endpoint, which does not
necessarily have to match the originating endpoint.

Fig. 6. An RDFauthor overlay view containing widgets for triples extracted from PLoS
webpage underneath.

Since a SPARQL/Update-capable RDF store and a target graph is all the
information required for using RDFauthor, it is easy to embed these into a
bookmarklet used to initialise the editing process. In this case, the number of
possible SPARQL/Update endpoints is limited to those under one’s control.
RDFauthor extracts the data from any page visited and displays the edit form.
The data can be revised and unwanted statements can be removed from the view.
Saving, however, is different: instead of propagating the changed data back to the

original source, it is sent to one’s own RDF store and saved into the previously
set up graph.

6 Related Work

The problem of making Semantic Web content writable in an easy to use man-
ner was recognized by a number of authors. Pushback [6], for example, tackles
this problem by providing a vocabulary and methodology for bi-directionally
mapping Web 2.0 data sources and APIs to RDF. Since it relies on predefined
vocabulary transformations from said sources into an RDF vocabulary describ-
ing edit forms (RDForms), its use is limited to cases where such a mapping
already exists.

Earlier in [5] we presented a JavaScript API that allows the independent
creation of editing widgets for embedded RDFa. The ideas in this paper build
upon the concepts discussed there. In [10] a document-style editing model over
RDF data is presented which, like RDFauthor, is based on commonly available
HTML manipulation tools and rdfQuery, a JavaScript RDFa library, to maintain
an RDF model embedded in the page. We use part of this work (the rdfQuery
library) in our client-side JavaScript stack. Likewise, Tabulator [3] allows modi-
fication and addition of information naturally within the browsing interface, and
to relay changes to the server. However, due to Tabulator’s nature of being a
generic data browser, little effort is made to cater users unfamiliar with the RDF
data model.

Loomp [8] aims at providing a user interface for both creating textual content
as well as annotating this content by using semantic representations. However,
the focus of Loomp is not to author RDF content in the first place, but only as
annotation of texts.

7 Conclusion and Future Work

We presented RDFauthor, a pragmatic and light-weight approach to make ar-
bitrary RDFa views editable. RDFauthor does not only simplify the syntactic
editing of semantic representations, but it also allows to hide the RDF and
related ontology data models from novice users completely. Thus, RDFauthor
contributes to enabling more users to employ and interact with Semantic Web
applications successfully. Since RDFauthor converts an RDFa-annotated view
directly into an editable form, as an additional benefit, the costs for the devel-
opment and maintenance of (Semantic) Web applications can be significantly
lowered.

Regarding future work, we aim at integrating RDFauthor into more (Seman-
tic) Web applications and at establishing a repository of forms and widgets for
common vocabularies and datatypes. Based on such a comprehensive repository
of common vocabulary renderings, RDFauthor could evolve into a participatory
semantic mashup technology.

References

1. Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in
XHTML: Syntax and Processing. Recommendation, World Wide Web Consortium
(W3C), October 2008. http://www.w3.org/TR/rdfa-syntax/.

2. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki – A Tool for
Social, Semantic Collaboration. In ISWC2006, volume 4273 of LNCS. Springer,
2006.

3. T Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Pru d’ommeaux, and m.c.
schraefel. Tabulator Redux: Writing Into the Semantic Web. Technical report,
Electronics and Computer Science, University of Southampton, 2007.

4. Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In WWW2005. ACM, 2005.

5. Sebastian Dietzold, Sebastian Hellmann, and Martin Peklo. Using JavaScript
RDFa Widgets for Model/View Separation inside Read/Write Websites. In
SFSW2008, volume 368. CEUR, 2008.

6. Michael Hausenblas et al. pushback – Write Data Back From RDF
to Non-RDF Sources. ESW wiki, 2009. http://esw.w3.org/topic/

PushBackDataToLegacySources.
7. Toby Inkster and Kjetil Kjernsmo. Named Graphs in RDFa (RDFa Quads), Jan-

uary 2009. http://buzzword.org.uk/2009/rdfa4/spec.
8. Markus Luczak-Roesch and Ralf Heese. Linked Data Autoring for non-Experts.

In Workshop on Linked Data on the Web, 2009, Madrid, 2009.
9. Andy Seaborne and Geetha Manjunath. SPARQL/Update: A language for updat-

ing RDF graphs. Technical Report Version 5 : 2008-04-29, Hewlett-Packard, 2008.
http://jena.hpl.hp.com/~afs/SPARQL-Update.html.

10. Rob Styles, Nadeem Shabir, and Jeni Tennison. A Pattern for Domain Specific
Editing Interfaces Using Embedded RDFa and HTML Manipulation Tools. In
SFSW2009, volume 449. CEUR, 2009.

11. Tania Tudorache, Natalya Fridman Noy, Samson Tu, and Mark A. Musen. Sup-
porting Collaborative Ontology Development in Protégé. In ISWC2008, volume
5318 of LNCS. Springer, 2008.

12. Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving the
Open Linked Data. In ISWC2007, volume 4825 of LNCS. Springer, 2007.

